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Nanoscale optoelectronics and molecular-electronics systems operate with current injection and nonequilib-
rium tunneling—phenomena that challenge consistent descriptions of the steady-state transport. The current
affects the electron-density variation and hence the intermolecular and intramolecular bondings which in turn
determine the transport magnitude. The standard approach for efficient characterization of steady-state tunnel-
ing combines ground-state density-functional theory �DFT� calculations �of an effective scattering potential�
with a Landauer-type formalism and ignores all actual many-body scattering. The standard method also lacks
a formal variational basis. This paper formulates a Lippmann-Schwinger �LS� collision density-functional
theory �LSC DFT� for tunneling transport with full electron-electron interactions. Quantum-kinetic �Dyson�
equations are used for an exact reformulation that expresses the variational noninteracting and interacting
many-body scattering T matrices in terms of universal density functionals. The many-body LS variational
principle defines an implicit equation for the exact nonequilibrium density.
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I. INTRODUCTION

The function of heterostructure-based optoelectronics and
of future molecular electronics1 rests on current injection and
tunneling transport that causes genuinely nonequilibrium
conditions. The systems are nanoscale and the performance
is sensitive to the atomic configuration. The technologies de-
fine difficult theory problems of calculating nonequilibrium
tunneling in the presence of electron-electron or boson scat-
tering. A quantum-cascade laser2 �QCL� produces optical
transitions in repeated stages with current injection in
resonant-tunneling structures. The electron-electron interac-
tion is ubiquitous, causes strong many-body scattering out of
equilibrium,3 and directly affects the QCL operation. This is
because electrons which exit one QCL stage must be re-
cycled for current injection in subsequent stages and because
the optical activity depends on details of the energy distribu-
tion of injected electrons. Similarly, a current-driven
molecular-electronics switch4 positions a nanoscale molecule
between leads and uses charge-transfer processes to adjust
the intramolecular and intermolecular bondings and mor-
phology. Understanding details of the current-induced
changes in the interacting electron distribution is also impor-
tant here because the molecular morphology �and nature of
bonds� determines the magnitude of the nonequilibrium tun-
neling. Deriving a quantum-physical description that pro-
vides ab initio predictive and self-consistent accounts of
nonequilibrium tunneling with full electron-electron interac-
tion is very desirable.

For equilibrium systems it is possible to rely on the tradi-
tional ground-state density-functional theory5,6 �DFT� to pro-
vide a material-specific or system-specific account. The
ground-state DFT is formulated in the canonical ensemble,
conserves the total number of electrons, and takes as input
only the potential defined by the nuclei. The approach uses
predefined approximations for a universal functional that ex-
presses contributions of the electron-electron interaction to
the total interacting ground-state energy for a system in equi-
librium. Traditional implementations of ground-state DFT

calculations, using the local-density approximation7 or the
generalized-gradient approximation,8 provide a rich descrip-
tion of the bonding inside materials with a dense electron-
density distribution and within molecules. Recent
extensions9–11 of the density functionals that include ac-
counts of dispersive interactions allow descriptions of van
der Waals bonding and organization in sparse materials12 and
in �as well as of� macromolecules.13 The ground-state DFT
calculations define an ab initio level �as opposed to a model
level� of details in the description of materials-physics or
molecular-physics properties and are extremely useful for
they allow a transferable description of specific systems. It is
this ab initio level of detail that we seek also for the open
nonequilibrium tunneling systems. Unfortunately, the open-
ness and transport invalidate the assumptions of traditional
DFT which rests in a ground-state total-energy variation
principle that applies in equilibrium.

There is exciting recent progress toward ab initio calcu-
lations of steady-state interacting tunneling even if consistent
quantum-physical calculations of open nonequilibrium sys-
tems are challenging. The nonequilibrium tunneling problem
is difficult because the finite applied bias makes phase space
available for actual electron-scattering processes �which are
normally suppressed in equilibrium�. It is also difficult be-
cause it is essential �but hard� to ensure conservation rules14

in accounts of the nonequilibrium and interacting electron
dynamics. The Landauer-type formulations,15 characterizing
tunneling transport in terms of ballistic propagation of indi-
vidual particles moving in an effective potential, constitute a
simple approximation. They can formally be derived16–18 for
the linear-response regime or in the absence of many-body
scattering using the nonequilibrium Green’s functions19,20

�NEGF� within the so-called partition scheme introduced by
Caroli et al.,21 but they only have limited applicability. One
solution strategy for ab initio calculations of nonequilibrium
interacting tunneling involves use of quantum-kinetic
equations20 for conserving calculations, and there exists a
number of formal results17,18,22–25 extending and correcting
the Landauer-type formulation. Several explicit calculations
for nonequilibrium tunneling with electron-electron interac-
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tions focus on correlated-electron systems such as the Kondo
problem and use both diagrammatic approaches �for ex-
ample, see Refs. 17, 26, and 27� and exact reformulations24,28

of the quantum-kinetic equations. Tunneling through mo-
lecular systems has been investigated on an ab initio level
diagrammatically starting from either Hartree-Fock eigen-
states of the molecular system29 or by applying a conserving
GW formulation.30 A second solution strategy for interacting
steady-state tunneling invokes time-dependent �TD� DFT
�Ref. 31� either in combination with a master-equation ap-
proach for a finite closed-loop system32,33 or with the NEGF
formulation in an infinite open partition-free formulation
with an explicit time evolution in the applied bias.25,34 Tra-
ditional TD DFT contains no implicit dephasing and de-
scribes coherent evolution of the �interacting� many-body
wave function for finite systems. Explicit and implicit
dephasing mechanisms must be carefully analyzed25,33 in
these applications to steady-state tunneling. Both of the TD-
DFT-based methods allow calculations of interacting tunnel-
ing transport that are in principle exact, and the TD-DFT
basis should make it simpler to achieve an ab initio level of
details. All of the above-mentioned solution strategies for ab
initio nonequilibrium calculations are computationally inten-
sive.

The standard method for efficient calculations of steady-
state tunneling with an ab initio level of detail combines
ground-state DFT with a Landauer-type formulation,15 com-
puting tunneling transport as an independent-particle trans-
mission problem. The resulting ballistic-transport �BT�-DFT
approach was introduced by Lang35 and uses the ground-
state DFT exchange-correlation energy to define an effective
potential for scattering of independent particles. The BT DFT
represents a natural �but ad hoc� extension of the Poisson-
Landauer-type transport solvers.36 It is a meaningful approxi-
mation because electron conservation is automatic in the bal-
listic single-particle description. There exist efficient
implementations37,38 and BT-DFT calculations provide valu-
able theory characterizations of tunneling systems. However,
the BT-DFT approach also constitutes an uncontrolled ap-
proximation. Stefanucci et al.25 identified implicit �memory-
loss� conditions under which their TD-DFT single-particle
description will relax to noninteracting steady-state scatter-
ing of fictitious particles. However, this scattering dynamics
is given by the functional derivative of the TD-DFT action
not by the exchange-correlation potential of ground-state
DFT. Use of a ground-state DFT formulation to determine an
effective scattering potential must be discussed even in linear
response.39 Use of the Landauer-type formulation, ignoring
all actual many-body scattering events and assuming that
quasiparticle properties remain unchanged from equilibrium
conditions, is problematic for fully nonequilibrium condi-
tions. Analysis40 of the frequency-resolved current density
shows that nonequilibrium electron-phonon scattering causes
distribution changes that are inconsistent with Landauer-type
descriptions �corresponding problems for nonequilibrium
electron-electron scattering can be inferred from Ref. 3�. The
use of a Landauer-type formulation prevents BT DFT from
consistent calculations of current-induced changes in the
electron distribution and hence of effects that are important
for nanoscale optoelectronics and molecular electronics. The

fact that BT DFT lacks a formal variational basis motivates a
continued search for efficient ab initio calculations of non-
equilibrium tunneling with full electron-electron interaction.

This paper formulates a Lippmann-Schwinger �LS� colli-
sion �LSC� DFT for steady-state nonequilibrium tunneling
systems treated in the Born-Oppenheimer approximation.
The LSC DFT is based on formal collision theory41 for the
interacting many-body problem42,43 and allows an exact dis-
cussion resting on the LS variational principle.44–46 The LSC
DFT is expressed through universal density functionals that
characterize the variational form of the noninteracting and
interacting many-body T matrices. The LSC DFT provides a
formal solution in terms of an implicit equation for the exact
electron density. The formal LSC-DFT solution constitutes a
natural starting point in search for rigorous formulations of
single-particle schemes based on the LS variational prin-
ciple.

This paper is organized as follows. Section II defines the
partition scheme and the Hamiltonian. It also discusses the
general �nonequilibrium and interacting� tunneling problem
as a complex many-body collision problem. Section III pre-
sents the formal density-functional basis for the theory while
Sec. IV develops the LS T-matrix functional description. Fi-
nally, Sec. V contains a summary and outlook while the Ap-
pendix provides details of the uniqueness-of-density proof
for the time-dependent interacting tunneling problem.

II. PARTITION SCHEME, HAMILTONIAN,
AND COLLISION THEORY

It is convenient to utilize the partition framework of
Caroli et al.21 but retain the full level of details of atomistic
many-body calculations everywhere close to the tunneling
region r�0 at all physically relevant times t�0 in the col-
lision problem.47 For simplicity, the tunneling structure only
comprises a left �right� lead r�zL��zR� plus a central tun-
neling region “C” in zL�r�zR. Atomic units will be used
throughout and the full kinetic energy is written as

�
s
� dr�� dr�̂s

+�r���−
1

2
����r − r���2	�̂s�r�


 KL + KR + KC + �K , �1�

where KL,R,C have support strictly confined to separate spa-
tial regions,

KL = �
s
�

z��zL

dr�� dr�̂s
+�r���−

1

2
����r − r���2	�̂s�r� ,

�2�

KR = �
s
�

z��zR

dr�� dr�̂s
+�r���−

1

2
����r − r���2	�̂s�r� ,

�3�
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KC = �
s
�

zL�z��zR

dr�� dr�̂s
+�r���−

1

2
����r − r���2	�̂s�r� ,

�4�

and where

�K = �
i=L/R

�
s
� dr���r� − zi�� dr�̂s

+�r��

��−
1

2
����r − r���2	�̂s�r� . �5�

At time t→−� the partition scheme assumes that each of
the disconnected subsections of the partitioned system Hd
=�i=L,C,RHi is in equilibrium at �generally� different chemi-
cal potentials48 �L/C/R. The operators NL/C/R describe the
electron count in each of the three subcomponents. Initially,
at t→−�, the system is described by a static potential v0�r�
and corresponding operator

V0 =� drv0�r�n̂�r� , �6�

where n̂�r�
�s�̂s
+�r��̂s�r� denotes the electron-density op-

erator. I assume, for simplicity, that v0�r� reduces to a uni-
form background potential 	L/R �with a value set by the av-
erage electron concentration� far in the leads. The choice of
initial Hamiltonian,

Hd = �
i=L/R/C

Ki + V0, �7�

ensures an automatic charge neutrality at t→−� �and at z
→ 
� even at finite t�. The equilibrium distribution at t→
−� is specified by a Gibbs energy weighting Hd−�LNL
−�RNR−�CNC, which is independent of the value of the ap-
plied bias 	bias
�L−�R and exclusively depends on the ini-
tial electron concentration in the leads �and on the initial
electron occupation of the central island C�.

The LSC DFT further assumes an adiabatic turning on of
the tunneling, of the electron-electron interaction W, and of
the static electron-scattering potential vsc�r� which includes
the effects of the applied bias and of the set of atomic poten-
tials. One can also allow for an addition of a time-dependent
potential 	g�r , t� t0� that describes a possible gate operation
starting at some finite time t0. The time-dependent collision
potential is

vcol�r,t� = �vsc�r� + 	g�r,t��exp��t� �8�

and the collision problem is formally described by the
Hamiltonian

H�t� = Hd + H1�t� , �9�

H1�t� = ��K + W�exp��t� + �V�t� , �10�

Vcol�t� = �V�t� =� drvcol�r,t�n̂�r� , �11�

where the factor exp��t� ,�→0+ expresses the adiabatic
turning on. The collision term that drives the dynamics is

H1�t�. One may, without lack of generality, assume that the
collision potential vcol�r , t� also contains an implicit multipli-
cative factor that restricts the support to a finite but very
large region �much larger than zL�z�zR�; given the choice
for v0��r�→�� this assumption simply amounts to treating
the remote part of the leads as jellium.

The expectation value of the electron density is defined,20

n�r,t� = �n̂�r�
�t� 

Tr��̂0n̂H�r;t��

Tr��0�
, �12�

n̂H�r;t� 
 Û�t,− ��+n̂�r�Û�t,− �� , �13�

by establishing the initial �equilibrium� density matrix �̂�t
→−��= �̂0 and by formally solving for the ensuing �nonequi-
librium� dynamics described by44

i
�Û�t,− ��

�t
= H�t�Û�t,− �� . �14�

This applies to general quantum-statistical problems but it is
important to provide consistent �conserving� approximations

to the time evolution Û�t ,−�� of the systems. Such approxi-
mations are notoriously difficult to obtain for interacting sys-
tems out of equilibrium.

In this paper, I use the LS many-body collision theory44–46

and describe the interacting tunneling problem as a complex
collision problem42,43 in which �an ensemble of� fully inter-
acting many-body electronic states of the leads encounter
and scatter off a potential in some central tunneling region.
For any initial many-body state �
�
 �eigenstate of Hd� one
may formally obtain the many-body collision state44

���,+�t�
 = Û�t,− ���
�
 �15�

from a direct application of the temporal-evolution operator
�14�. The case of a purely static scattering potential is then
described as an elastic many-body collision but the finite bias
still causes actual electron-electron scattering3 that invali-
dates assumptions of ballistic transport. An inelastic collision
event arises when the ensemble of many-body states scatters
off a corresponding time-dependent collision potential.49,50

An effective time-dependent potential may also arise in the
description of tunneling in the presence of a quantized boson
field40,51–53 as is relevant for further investigations of opto-
electronic devices, for example, lasers under typical operat-
ing conditions.

The many-body collision problem �for tunneling� is from
the outset specified by the choice of partitioning, that is, �i� a
specific choice of Hamiltonian Hd with an interrupted kinetic
energy K−�K, �ii� the lead electron concentration, and �iii�
the choice of an initial state �
0
 �or ensemble of initial
states �̂0� that also formally depends on the initial distribu-
tion in the central region C.

III. DENSITY-FUNCTIONAL THEORY OF INTERACTING
TUNNELING

For a time-dependent collision potential it is relatively
simple to generalize the TD-DFT analysis31,54 to the many-
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body collision theory of nonequilibrium interacting tunneling
�Appendix�. This demonstrates that the time-dependent den-
sity is a unique functional of the time-dependent collision
potential. The time-dependent collision density-functional
theory contains the steady-state formulation of LSC DFT as
a limiting case under some conditions.

A. Density-functional theory of time-dependent tunneling

Applying a time-dependent gate voltage to a nonequilib-
rium tunneling system probes a response49,50 that reflects
electron correlations. It is interesting in itself to develop a
formal density-functional theory basis for such time-
dependent many-body collision problems. I note that solving
these collision problems for the electron density defines a
mapping N :vcol�r , t�→n�r , t�.

Observation 1. The electron density n�r , t� is a unique
functional of the collision potential vcol�r , t� for a given bias
and partitioning of the general time-dependent collision
problem.

For the collision problem the goal is to determine the
nonequilibrium time evolution of a single state �or a grand-
canonical ensemble� of an infinite open system under a col-
lision term H1�t� which includes an adiabatic turning on of
both tunneling, �K, the electron-electron interaction W, and a
time-dependent potential �V�t� �with a finite support�. In
contrast, TD DFT considers a single state which from the
outset is described by K+W and which evolves under an
external potential V�t� and demonstrates uniqueness of the
time-dependent density when the system is finite31 or when
the external potential V�t� has a finite support.54 However, it
is straightforward to generalize the reductio ad absurdum ar-
gument from TD DFT to the present many-body collision
formulation of interacting nonequilibrium tunneling de-
scribed in a partition scheme. This is because the difference
of collision terms, H1�t�−H1��t�, remains exclusively speci-
fied by the difference in collision potentials, vcol�r , t�
−vcol� �r , t� �and this difference may be assumed to have a
finite support�.

Formally the observation �1� only establishes the unique-
ness of the density variation and history for a given bias and
for a given choice of partition scheme �that is, choice of zL/R
and choice of the initial occupation in the central region C�.
A different partition scheme produces a different unique

mapping Ñ �as well as corresponding T-matrix functionals
for the scattering behavior�. However, the choice of partition
scheme must become irrelevant for very large zR−zL and a
very large support of the collision term �V�t�. This is argued
on physical grounds for tunneling systems that lack singular
responses: since dephasing eventually decouples the time
and spatial correlations24 the solution n�r , t� must eventually
become insensitive to memory effects as well as details of
the potential far in the leads.25,38

B. Density-functional theory of steady-state tunneling

For static collision problems the four-dimensional varia-
tional space of a general density history n�r , t� naturally be-
comes over complete in its definition of the scattering poten-

tial vsc�r�. The mapping N−1 :n�r , t�→vcol�r , t� shows that a
general density history causes potential variations,

�v =
�N−1

�n
�n�r,t� =

�N−1

�n
��n�r +

�n

�t
�t� , �16�

that are incompatible with the steady-state transport assump-
tion.

Observation 2. The time-independent scattering potential
vsc�r� is uniquely determined by the steady-state density
n�r�
n�r ,0� for time-independent collision problems that
have a steady-state solution, n�r , t�=n�r ,0�.

The adiabatic turning on of the static scattering potential
vsc�r� can be viewed as a limiting case of a time-dependent
tunneling problem with the restricted variation,

�vcol = �vsc exp��t��r + � vsc exp��t��t → �vsc �r .

�17�

The unique mapping N :vcol�r , t�→n�r , t� identifies the cor-
responding set of relevant density variations. If the steady-
state tunneling problem is characterized by nondivergent val-
ues of �N /�v, we have55

�n

�t
=

�N
�v

�vsc exp��t� → 0. �18�

This is the condition that specifies the steady-state scattering
solutions, �n�r�=�n�r , t=0�.

Observation 2 permits formulation of universal density
functionals that characterize variational expressions for the
noninteracting and interacting T matrices in LSC DFT. For-
mally these universal functionals also depend on the assump-
tions that are built into the partition scheme. For some tun-
neling problems it may be important to retain a functional
dependence on the initial island occupation �C. Here I as-
sume that the solution of the steady-state LSC-DFT problem
is a functional only of the density �for a given applied bias
and choice of �L and �R�.

IV. LIPPMANN-SCHWINGER T-MATRIX FUNCTIONAL
DESCRIPTION

Formulation of a single-particle scheme with independent
dynamics of fictitious particles is important for an accurate
and efficient evaluation of the electron density in interacting
nonequilibrium tunneling problems. Prerequisites for such a
formulation are �a� corresponding variational expressions of
a many-body quantity evaluated both in the interacting and
noninteracting cases, and �b� universal density functionals to
characterize those variational physical quantities. The LSC
DFT uses the many-body LS variation principles for the in-
teracting and noninteracting many-body T matrices as well
as exact reformulations to satisfy those necessary conditions.
The LS variational properties also permit the LSC DFT to
specify an exact implicit equation for the nonequilibrium
electron density.

A. Lippmann-Schwinger variation principle

In their seminal paper Lippmann and Schwinger44 identi-
fied a set of variational properties for the collision problems.
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The original theory ignores the self-energy shifts associated
with the adiabatic tuning on of the collision term H1�t� but
the work was soon after supplemented and regularized by
additional analysis.45,46 The LS variational principle41 ap-
plies for any combination of collision states and it should be
straightforward to generalize the following also to finite-
temperature tunneling problems. Like in traditional equilib-
rium DFT, however, the focus will likely remain on zero-
temperature properties. It is natural to build a functional that
reflects the evolution of the ground-state �
0
 of the original
disconnected system.

The LSC DFT provides an exact variational evaluation of
the ground-state-to-ground-state transition matrix element
TV�n� with usual definition TV�n�= �
0�H1��0,+�n�
. This ma-
trix element is a functional of the tunneling electron density
because the scattering state ��0,+�n�
 is specified by the
choice of external potential. Through the optical theorem,56

this T-matrix element characterizes the total rate of tunneling
�a charge-transfer process� arising in the presence of full
electron-electron interaction.

The LS variational principle is expressed using the nota-
tion of Ref. 44. I generally follow the discussion in Ref. 41
and introduce G


d = �E0−Hd
 i��−1 as the retarded �+� and
advanced �−� Green’s function operators of the original dis-
connected Hamiltonian Hd while

��0,
�n�
 = �
0
 + G

d H1��0,
�n�
 �19�

identifies the many-body �collision� state that evolves for-
ward or backward in time under the collision term H1. These
states are functionals exclusively of the density n�r� �or
n�r , t� in the wider problems beyond the present scope�. I
further introduce

�−�n,V� 
 ��0,−�n��H1�
0
 , �20�

�+�n,V� 
 �
0�H1��0,+�n�
 , �21�

��n,V� 
 ��0,−�n��H1 − H1G+
dH1��0,+�n�
 , �22�

which, like the compensated form

TV�n� = �−�n,V� + �+�n,V� − ��n,V� , �23�

are functionals of the density n but also contain an explicit
dependence on V=V0+�V through the collision term H1. All
four functionals represent a correct evaluation of the
T-matrix behavior when evaluated at the correct density n
�the density n that results under the collision term H1�. For
��n ,V� this follows by a simple application of the Dyson
equation, T+=1−H1G+

d =1−G+
dH1, see Refs. 42 and 44.

The key observation for the LSC-DFT formulation is that
the extremum identified by the variational condition,

�TV�n�
�n

=
�TV

��0,−

��0,−

�n
+

�TV

��0,+

��0,+

�n
= 0, �24�

identifies the electron density n that solves the collision prob-
lem H1. This follows from the �many-body� LS variational
principle42,44 because the derivative �TV /��0,−�+� is directly
proportional to the many-body LS equation for scattering
states ��0,+�−�
 �Ref. 44�.

The noninteraction collision problem, defined by H1
0

=�K+�V, has a corresponding density-functional descrip-
tion. It has a different unique mapping between the density
and the potential �V and different scattering states ��0,


0 
,
and this mapping defines other �related� functionals

�−
0�n,V� 
 ��0,−

0 �n��H1
0�
0
 , �25�

�+
0�n,V� 
 �
0�H1

0��0,+
0 �n�
 , �26�

�0�n,V� 
 ��0,−
0 �n��H1

0 − H1
0G+

dH1
0��0,+

0 �n�
 , �27�

TV
0�n� = �−

0�n,V� + �+
0�n,V� − �0�n,V� . �28�

The extremum, identified by the variational condition

�TV
0�n� = 0, �29�

identifies the density that solves the noninteracting problem
H1

0=�K+�V.

B. Universality of T-matrix functionals in LSC DFT

To obtain a description given in terms of universal func-
tionals it is necessary to identify the partial contributions that
arise from the kinetic-energy addition, the electron-electron
interaction, and the potential scattering and to find a method
to evaluate the difficult many-electron effects once and for
all. This is possible by formal manipulation using the Dyson
equation and by use of the LS equation itself. By construc-
tion, the formal manipulation does not invalidate the under-
lying variational character of the LS formulation �23�.

I first introduce scattering states and the Green’s function
operators for the set of partial collision problems defined at
�V
0. I use ��0,


0 
 and ��0,

 to denote the collision states
for the �V
0 noninteracting and interacting connected prob-
lems given by Hd+�K and Hd+�K+W, respectively. Also,
G


0 = �E0− �Hd+�K�
 i��−1 and G
= �E0− �Hd+�K
+W�
 i��−1 identify the noninteracting and interacting
Green’s function operators at �V=0. These noninteracting
and interacting collision problems contain an implicit choice
of potential V0 while the general noninteracting and interact-
ing collision problems are described by V=V0+�V
Vcol.
Neither �0,
 nor �0,


0 are therefore functionals of n �and the
same applies for all the Green’s functions in use�.

For the matrix element �+
0�n�= �
0���K+�V���0,+

0 �n�
 I
use a simple formal manipulation of the “ket” state,

��0,+
0 �n�
 = �
0
 + G+

d��K + �V���0,+
0 �n�


= ��0,+
0 
 + G+

0�V��0,+
0 �n�
 , �30�

as can be verified by a direct application of the LS
equation.41 The resulting separation

�+
0�n,V� = �
0��K��0,+

0 
 + ��0,−
0 ��V��0,+

0 �n�
 �31�

can, of course, be repeated for a separation also of �−
0�n� and

of the corresponding interacting expression �
�n ,V�, for ex-
ample,
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�+�n,V� = �
0���K + W���0,+
 + ��0,−��V��0,+�n�
 .

�32�

This reformulation can also be derived �Eqs. �XIX.9� and
�XIX.120� of Ref. 41� by applying the Green’s theorem on
the weighted overlap between the two collision states. The
Green’s theorem plays a central role in NEGF calculations
for the open tunneling systems and enters, for example, in
the quantum-kinetic based derivation of resonant-tunneling
rate equations.23

For the noninteracting matrix element �0�n ,V�
= ��0,−

0 �n����K+�V��1−G+
d��K+�V����0,+

0 �n�
 �and for
��n ,V�� it is necessary to first expand the “bra” and ket
collision states by the LS equation. I collect terms involving
either a ��0,−

0 � or a ��0,−
0 �n�� bra state and either a ��0,+

0 
 or a
��0,+

0 �n�
 ket state separately, and I use the underlying
quantum-kinetic �Dyson� equation for simplification. Taking
one of the cross terms as an example, one obtains

��0,−
0 ��K�G+

0�V0� − G+
d�KG+

0�V0� − G+
d��V��0,+

0 �n�
 
 0.

�33�

Repeated applications of the Dyson equation completes the
separation

�0�n,V� = ��0,−
0 ��K�1 − G+

d�K���0,+
0 
 + ��0,−

0 �n���V�1 − G+
0�V�

���0,+
0 �n�
 . �34�

A corresponding expansion applies, of course, also for the
interacting matrix element

��n,V� = ��0,−���K + W��1 − G+
d��K + W����0,+


+ ��0,−�n���V�1 − G+�V���0,+�n�
 . �35�

The electron-electron interaction effects on the many-
body scattering problem can now be expressed in universal
functionals. A set of complex constants,

a− 
 ��0,−���K + W��
0
 , �36�

a+ 
 �
0���K + W���0,+
 , �37�

b 
 ��0,−���K + W��1 − G+
d��K + W����0,+
 , �38�

�along with corresponding definitions a

0 ,b0 for the noninter-

acting case� characterizes the dynamics in the absence of the
collision potential �at �V=0�. More importantly, a set of
collision-state matrix elements,

A−�n��r� 
 ��0,−�n��n̂�r���0,+
 , �39�

A+�n��r� 
 ��0,−�n̂�r���0,+�n�
 , �40�

B1�n��r� 
 ��0,−�n��n̂�r���0,+�n�
 , �41�

B2�n��r,r�� 
 ��0,−�n��n̂�r�G+n̂�r����0,+�n�
 , �42�

represents universal density functionals that determine the
many-body dynamics when the collision potential is included
in the presence of full electron-electron interaction �while

corresponding universal functionals A

0 �n� and B1,2

0 �n� char-
acterize the full collision problem at W=0�. The variational
form of the interacting and noninteracting T matrices can
thus be reformulated as

TV�n� = a− + a+ − b +� drvsc�r�KV�n��r� , �43�

TV
0�n� = a−

0 + a+
0 − b0 +� drvsc�r�KV

0�n��r� , �44�

KV
�0��n��r� = A+

�0��n��r� + A−
�0��n��r� − B1

�0��n��r�

+� dr�B2
�0��n��r,r��vsc�r�� . �45�

In essence, calculation of a set of universal functionals �for
relevant choices of chemical potentials �L/R� permits a
simple general evaluation of the interacting T matrix for ar-
bitrary scattering potentials vsc�r�.

The LSC-DFT description also permits a succinct formu-
lation of the interaction effects on the T-matrix functional
derivatives,

��TV�n� − TV
0�n��

�n�r�
= vsc�r�

��KV�n� − KV
0�n��

�n�r�


 vsc�r�
��KV�n�

�n�r�
. �46�

The interaction effect is expressed as a complex function of r
and it is entirely specified by suitable approximations to uni-
versal density functionals.

C. Variational solution of the interacting collision problem

Separating out the noninteracting dynamics �for which we
can seek highly accurate characterizations� and the interac-
tion effect �46� defines a formal LSC-DFT solution,

�TV�n�
�n�r�

=
�TV

0�n�
�n�r�

+ vsc�r�
��KV�n�

�n�r�
, �47�

which constitutes an exact but implicit equation for the non-
equilibrium electron density.

The formal LSC-DFT solution �47� serves as a natural
starting point of search for a single-particle scheme for cal-
culations of the density in specific nonequilibrium tunneling
systems. The possibility is exciting for a rigorous single-
particle scheme would permit efficient and exact calculations
of �TV

0�n� and would ensure automatic current conservation
in ab initio calculations specified by universal functionals.
The single-particle LS equation certainly determines the non-
interacting many-body dynamics described by �TV

0�n� /�n. It
is not a priori clear that the interaction term �46� represents
an additional effect caused by some effective single-particle
scattering and it is not a priori clear that a single-particle
scheme exists for the LSC DFT. However, the present results
show that the LSC DFT satisfies necessary conditions and
motivate a search for rigorous single-particle formulations.
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V. SUMMARY AND OUTLOOK

This paper formulates a Lippmann-Schwinger collision
density-functional theory �LSC DFT� for nonequilibrium in-
teracting steady-state tunneling. The theory rests on the
Lippmann-Schwinger variational principle for the interacting
and noninteracting many-body T matrices and includes exact
reformulations that express the variational T-matrix forms
through universal density functionals. The variational prop-
erty of the LSC DFT specifies an exact implicit Eq. �47� for
the electron density. The LSC DFT furthermore fulfills nec-
essary conditions for a possible formulation of a rigorous
single-particle scheme. The present results motivate a future
study �using the formal LSC-DFT solution �47� and the LS
variational properties of single-particle scattering� to explore
conditions on the dynamics and to test if a rigorous single-
particle scheme can be defined in LSC DFT.

It is important to stress that the underlying �many-body�
T-matrix variational principle of LSC DFT is, in principle,
different from the wave-function action variational principle
exploited in TD DFT. It is not clear that one will be able to
derive an explicit mapping between the T-matrix functionals
of LSC DFT and the action functionals of TD DFT. The
TD-DFT fxc kernel is defined by the �nonequilibrium�
density-density correlation function. However, a nonequili-
brum problem has no fluctuation-dissipation theorem and
there is no reason to expect a simple connection of this cor-
relation function to the variational formulations of the many-
body T-matrix behavior �and hence to the LSC-DFT func-
tionals�. On the other hand, one can expect the LSC-DFT
�with its formal connections to the open-system many-body
Green’s functions� and the TD-DFT functionals to supple-
ment each other in the descriptions of steady-state nonequi-
librium tunneling.

Any implementation of a LSC-DFT method must rely on
successful formulation of a good approximation for the uni-
versal functionals A
�n� and B1,2�n� that characterize the
complex many-electron collision behavior. The formulation
of TD-DFT-based ab initio calculations25,32 facilitates a pro-
gram to explore the T-matrix behavior for a range of scatter-
ing potentials and thereby deconvolutes approximations for
the universal functionals A
�n��r� and B1,2�n��r�. The
partition-scheme method for time propagation of the tunnel-
ing many-body wave function34 may allow a direct extrac-
tion of T matrices and simplify the task. Calculations of in-
teracting steady-state and weakly time-dependent nonlinear
transport in periodic or even homogeneous systems57 may
offer an alternative approach by characterizing local charge-
transfer rates �and hence T-matrix behavior� as a function of
a homogenous electron density and of the electric field �local
voltage drop�. Either way it is natural to first seek functionals
that have a local-density flavor in the parametrization of Eqs.
�39�–�42�, in essence, assuming that A
�n��r� and B1,2�n��r�
depend only on n�r� and the local field. It is also possible
that more complex functional forms must be explored. Exact
solutions of nonequilibrium correlated-electron model
systems28 present possibilities for further refining parametri-
zations of approximations for the universal functionals.
There is value in building good approximations to the uni-
versal T-matrix functionals of LSC DFT from a range of

calculations obtained using a range of different �consistent�
theoretical descriptions of nonequilibrium tunneling dynam-
ics.
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APPENDIX: UNIQUENESS OF DENSITY IN COLLISION
THEORY

I argue uniqueness of the time-dependent density, obser-
vation 1, for the complex LS collision problem of open tun-
neling systems in the partition scheme as a relatively
straightforward generalization of the TD-DFT analysis for
finite31 and for infinite systems with a restricted support of
the single-particle potential.54 The grand-canonical founda-
tion, the use of the partition scheme, and the basis in
quantum-kinetic equations make the analysis of the many-
body collision problem slightly different from that of Ref.
54, and the argument is included here for completeness.

For a specific partition with given initial configuration and
initial density-matrix operator �̂�t→−��= �̂0, I consider the
time evolution

i
� �̂�t�

�t
= �H�t�, �̂�t�� , �A1�

with formal solution given by the many-body evolution op-
erator

�̂�t� = Û�t,− ��+�̂0Û�t,− �� . �A2�

I compare two similar systems given by H1�t� and H1��t� for
which the kth time derivative of the collision potential begins
to differ at some time ti �Eq. �3� of Ref. 31�. The current-
density operator,

ĵ�r� = �2i�−1�
s

���̂s
+�r���s�r� − �̂s

+�r����s�r�� , �A3�

constitutes a sensitive probe of system differences at times
immediately thereafter, t= ti

+.
The density matrices �̂�t� and �̂��t� that correspond to

H1�t� and H1�t� must, of course, agree at ti. Use of Eq. �A1�
permits the evaluation,

i
�

�t
�j�r,ti� = Tr��H1�ti� − H1��ti�, �̂�ti�� ĵ�r��

=� dr��vcol�r�,ti� − vcol� �r�,ti��

�Tr��̂�ti�� ĵ�r�, n̂�r����

= iTr��̂�ti�n̂�r�� � �vcol�r,ti� − vcol� �r,ti�� ,

�A4�

of the system differences in time evolution of the current
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expectation values. The third line of Eq. �A4� results from an
operator identity and by partial integration in formal manipu-
lations that directly mirror those of the TD-DFT analysis. It
applies because the finite �but assumed very large� support
for vcol�r , t� and for vcol� �r , t� eliminates surface contribu-
tions.

If the potentials themselves differ at ti it follows directly
that the current densities must differ at a time immediately
thereafter. If instead the potentials only differ at some deriva-
tive of order k�1, we proceed by direct differentiation of
Eq. �A4�,

i
�

�t
�i

�

�t
�k

�j�r,ti�

= iTr��̂�ti�n̂�r�� � �i
�

�t
�k

�vcol�r,ti� − vcol� �r,ti�� � 0.

�A5�

It follows that the current densities must differ at time ti
+.

Finally, uniqueness of the electron density n�r , t� results
by direct application of the reductio ad absurdum argument
given for infinite-system TD DFT in Ref. 54. Using n�r , ti�
=Tr��̂�t�n̂�r�� and the continuity equation gives

�k+2

�tk+2 �n�r,ti� − n��r,ti�� = − � · �n�r,t� � u�r,ti�� , �A6�

u�r,ti� =
�k

�tk �vcol�r,ti� − vcol� �r,ti�� , �A7�

that is in agreement with Eq. �6� of Ref. 31. Use of Green’s
first identity shows that

−� dru�r,ti� � · �n�r,t� � u� =� drn�r,ti���u�r,ti��2

�A8�

because our collision problem permits us to make an implicit
assumption of a finite support for vcol�r , t� so that u��r�
→��=0. As in Refs. 31 and 54 it follows that the difference
�A6� must be nonzero since n�r , ti���u�r , ti��2�0 and since
n�r , ti���u�r , ti��2 cannot vanish identically. In summary, a
reductio ad absurdum argument shows �observation 1� that
the time-dependent density variation n�r , t� is a unique func-
tional of the collision potential vcol�r , t� in the many-body LS
collision problem that is used here to describe nonequilib-
rium interacting tunneling.
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