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Resonant thermal transport in semiconductor barrier structures
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I report that thermal single-barri€f SB) and thermal double-barri€f DB) structuregformed, for example,
by inserting one or two regions of a few Ge monolayers ih@ovide both a suppression of the phonon
transport as well as a resonant-thermal-transport effect. | show that high-frequency phonons can experience a
traditional double-barrier resonant tunneling in the TDB structures while the formation of Fabry-Perot reso-
nances(at lower frequenciescauses quantum oscillations in the temperature variation of both the TSB and
TDB thermal conductancas;sg and orpg -
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The understanding of phonon transport in nanoscale hefrom the previous focus on low-temperature phonon
erostructured materidiss in an exciting development moti- transmissioff to the finite-temperature nanostructure heat
vated in part by the search to improve both thermoeléctricconduction for which | show that oscillations persist up to
and thermoionit cooling. The interest also derives from the temperature® ~50 K.
observation that nanostructure phonons exhibit nanoscale- To emphasize the potential technological relevance | first
transport, confinement, and quantization effects similar tdeport a simple estimate for the thermal-conductance sup-
those observed for electrons and photons. A significant sugpression in two examples of TSB and TDB structures, Fig. 1,
pression is observ&d in the in-plane thermal conductivity formed as a Si/triple-Ge-monolayer/Si and as a Si/2Ge/3Si/
of heterostructures and is explained by interface scattering &G€/Si semiconductor heterostructure, respectively. | predict
a phonon Knudsen-flow effelt. Similarly, the perpendicu- below a strong high-temperature suppression
lar thermal conductivityxg, of semiconductor superlattices
shows a dramatic reductith(compared to the average bulk O1sBTDB™~ OK= 10* W/Kem? (1)

conductivitie$ that cannot be accounted for alone by the . ) ] ] ]
expected decreaein the effective superlattice-phonon life- specified by the single-Si/Ge interface Kapitza qondqcﬂénce
time 75 . Instead, the strong reduction iag /75 results ‘TK(®)$UK(®—’°°)~194 W/Kem? (as also obtained in my
from a pronounced miniband formation where the difference?honon-model calculation The thermal-conductance esti-
in materials hardness forces an increasing confinement dpate(1) results by describing the full dynamics of phonons
modes with a finite in-plane momentum to either the Si or G¢hat approach an individual single-barrier/double-barrier
layers in the superlatticE. Finally, the phonon quantum- structure(rather than moving in a superlattjcend therefore
point-contact effect in nanoscale dielectric wifeshows that provides a more consistent description than the so-called ef-
the phonon wave nature also directly affects the low-
temperature phonon transport. Thermal single—barrier (TSB) structure

Here | extend the search for quantized thermal-transport g K, g K, Eg
effects in semiconductor nanostructures to finite tempera-

tures. | focus on the phonon conduction across Si/few-Ge- Mg - Mg, oM
monolayers/Si thermal single-barri€fSB) and correspond-
ing Si/Ge/Si/Gel/Si  thermal double-barrier (TDB) p 5 Py ; a

heterostructures. | documefi} a strong suppression of the silicon | germanium | silicon
phonon-transport thermal conductanegsg and orpg, (i) : '

a traditional type of double-barrier resonant tunneling for

high-frequency phonons in the TDB structures, @iid that Thermal double—barrier (TDB) structure

phonon Fabry-Perot resonant®@t lower frequenciéspro- WWVWMW

duce a resonant-thermal-transport effect at finite tempera- : ; i ;

tures in both the TSB and TDB structuréer sufficiently Si i Ge | Si L Ge | s

small Ge-barrier thicknessgedy focus is on the technology ‘ f : f

relevance rather than the low-temperature transport. Instead FIG. 1. Sample realization of thermal barrier structures in which

of the long-wavelength phonon analysis of Ref. 12, | there+en 4 few monolayers of a softer matefiatre germaniuinserve

fore present a phonon-model calculation of thesonant g inhipit the otherwise effectivéphonon thermal transport in sur-
thermal transport which remains applicable at finite frequenrounding hard materialéhere SJ. The figure shows examples of
cies, includes the phase-space limitations imposed by totahoth thermal single-barrief TSB) and thermal double-barrier
internal reflection, and describes the important effect of in{TDB) heterostructures that exhibit a resonant-thermal transport ef-
creasing misalignment of the Si-/Ge-phonon dynamics as thgct. The figure also shows schematics of the phonon model used to
in-plane  momentumq increases! The prediction (i)  calculate the finite-temperature variation of the TSB and TDB ther-
bridges the concept of thermal-transport quantization effectsal conductances.
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fective conductande Gg = kg (d)/(d/2)~10° W/Kcm? 10
extracted from measuremeni@t © = 200 K) of the thermal
conductivity kg (d) in Si/Ge superlattices with a nano-
scale periodicityd. The estimatél) shows that repeating the
TSB or TDB formation every 50 nm provides a reduction of

Phonon double—barrier

resonant tunneling

1

the effective thermal conductivity to the value of a Si/Ge fsf

alloy rai0y~5 W/Km (repetition every 5 nm would be ';,

needed if the limito;5g=<Gg applies. 5
The TSB and TDB structures also give rise to a resonant-§ o5 _

o

thermal-transport effect which is observable at finite tem- £
peratures @ <50 K). Figure 1 shows a schematics of the -

SSI0

phonon model which | here solve to calculate the phonong Phonon —— TDB structure
tunneling and the resulting thermal conductance across botlg Fabry-Perot | L8 | Si/Ge interface
a single interface and across the repeated interfaces in th~ resonances

TSB and TDB structures. | assume a shared sili@germa-
nium) lattice constang, the atomic massed sjge), and in-
trasilicon (intragermanium force constantsFF;Si(Ge) and in- B
terlayer coupling constark ,=(F ,.sFp.co "> specified by 0% 05 10
the materials sound velocitiésThe tunneling® of phonon SloW
modes that are polarized and propagating in the perpendicu-

lar Zz-direction is well described within such a one- FIG-2. Comparison of calculated phonon transmission probabil-
dimensional lattice model. | refer to our previous investiga-Y (evaluated at in-plane momentug=0) for the Si/Ge thermal
tion of superlattice thermal transpbrfor a description of double-barvier structure, Fig. (solid curve and for the individual
how | include the effects of a finite in-plane momentum Si/Ge interface(dotted curve The_ vgrtlcal_llne _|dent|f|es the
within a simple-cubic model by adding in-plane force Con_frequency-squared value above which incoming Si phonons become

stantsk..« and correspondina characteristic frequencie attenuated in Ge. The TDB structure is seen to support a traditional
t:SiCe) P 1,9_ . ISt quenct Stype of double-barrier resonant tunneling above this liwhen the
Qp,t;Si(Ge):(4Fp,t;Si(Ge)/MSi(Ge)) ) F|g l Of Ref 11 The

o Ge-layers represent actual barrjetait also multiple Fabry-Perot
set of force ConStamEp,t;Si(Ge) also specifies the phonon- resonancesat lower frequencigswhen incoming phonons experi-

transport contributions fronds ;||x,y-polarized heterostruc- ence a partial transmission at each of the individual Si/Ge inter-

ture phonon® and these modes are, of course, also includedaces. Note that the TDB'sand TSB’ naturally become com-

in the transport calculation. Below I limit the formal discus- pletely transparent as—0.

sion to the contributions fron§p||2-polarized modes which N _

for a given in-plane momenturg can be characterized by UM, @7 0. | note that bulk silicon(germanium phonon

the dimensionless in-plane energy mea%]w@:<aaz[2 propagatlonzat a giveng req;ures that the frequency square

—cos,@)—cos@,a)]<4. This measure is, like the fre- exceeds  wgige ,mir(“d)EQt;Si(ng)(adlz) but , remains

quency, conservélacross the heterostructure interfaces inPounded by wg;ge) maf @q) =L sicef @a/2) + Qp;siccey

this phonon-transport model study. The finite silicon/germanium acoustic mismatch ensures that
Figure 2 reports my calculations of the phonon transmis<siminimax( @g) > @ce,minimax{ @g) - Phonon propagatiofi.e.,

sion in the single-interface, TSB, and TDB structures. Startabsence of attenuatipm bothsilicon and germanium layers

ing from the model equations of motion for every atom andthus effectively requires that

adapting the approach of Ref. 14, | determine the single-

interface, TSB, and TDB transmission probabilities wéi,min(ad)<w2< w(23e,ma>(ad)! 2

Tk tse1o8(w, @) as a function of the phonon frequency and

(conserveglin-plane momentung. The figure reports a com- since this is the condition for an incoming silicon phonon to

parison ofT(w,ag-o) andTrpg(w,aq-o) and identifies the ~ avoid total internal reflection at an individual Si/Ge interface

onset (vertical dashed-dotted linewhen incoming Si (as formulated in the present model studihe condition(2)

phonons become attenuated in the Ge barriers. The figuie a severe phase-space restriction which, for example, be-

documents that the TDB structure supports a traditional typeomesimpossibleto satisfy atag>2 in Si/Ge structured:

of phonon (double-barrier resonant tunneling at high fre- For incoming Si phonons with a frequeneyabove the onset

guencies {-) when the phonon dynamics in Ge is attenu-of Ge attenuation, the model study yields a strong exponen-

ated[and T¢(w~)=0]. The figure also illustrates that both tial decay 1§c.~a, a vanishing single-barrier transmission

the TDB and TSB structures support a number of Fabry{T+sg—0), and the strongly peaked double-barrier resonant-

Perot resonances at lower frequencies-] when the indi- tunneling transmissioii g that is illustrated in Fig. 2. The

vidual interfaces provide partial transmissifire., when 0  high-frequency resonant tunneling may become obsertable

<Tk(w)<1]. if it is possible to design a frequency-selective source of
To clarify the nature and measurability of the high- terahertz phonons. However, for a thermal distribution

frequency resonant tunneling, | summarize the model calcuN(w,®) of incoming Si phonons at a relevant elevated tem-

lations of the phonon dynamics at general in-plane momenperature®, | find the phase-space contribution from the

nset of attenuation of S{phbno}ls {n Ge 4
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10 . . . . . . by summing up the contributions at different modes
Oy [Si/Ge~interface Kapitza transport] =&y, &y and in-plane momenta In the result(3) y,, and
| T Orsp [TSB: SI3G3/Si Thermal barrier] ] wmax FEPresent a shorthand for the corresponding frequency-
= integration limits wgj min(ag) and wsjge)mak@g). | stress
that the conditior{2) must be absolutely satisfied to obtain a
transport contribution to the interface conductamge and
effectively satisfied for the TSB and TDB conductances
orse.1os (however, all TSB and TDB-transport contributions
are retained in the calculations reported here
00, [g=0] The top panel of Fig. 3 illustrates the ge_nera}l validity of
05 - the “classical” thermal-conductance approximation, ED,

: . and documents the additional temperature variation produced
__ by the low-energy Fabry-Perot resonances. The panel shows
01} / ) 1 A that the thermal-barrier conductanegsg (solid curve at all

. temperatures is comparable to and generally smaller than the
s ) ; . . individual Si/Ge-interface conductanog (dotted curve

: : The insert panel compares the corresponding phonon

transmission probabilitf rsg( ) (calculated for Si/3Ge/Si at

(i=0) and the single-Si/Ge-interface transmissi@wotted
curve. The insert motivates the estimdth by emphasizing
that (a) the thermal single-barrier transport is effectively re-
stricted to incoming Si modes that satisfy the conditi@n
03 10 32 10 32 100 320 1000 (exactly as was found for the TDB transport, Fig.ahd (b)

O [K] the single-interface transmissi¢totted curve approximates
the averagethermal-barrier transmission

10

Thermal-barrier conductance [W/Kcmz]

Conductance ratio

05 1 1 1 1

FIG. 3. Temperature dependence (@erpendiculgr thermal

conductancerrgg (solid curve for a Si/3Ge/Si TSB heterostructure 4757

h . . . 0 _ i=Ge
compared with the Si/Ge-interface Kapitza conductaneg (Trsp(@))~(Tk(w))~Tgce= 5 (4)
= 0gjce (dotted curve The thermal barrier transport is effectively (ZsitZge)

subject to similar severe phase-space restrictienforced by total
internal reflectiom as the single-interface conductance and can thus — - — Si2Ge/Si
be estimatedrrsg(T) ~ ok(T). The insert panel compares the TSB . 1 —— Si/3Ge/Si
phonon transmission probabilitfrsg(w)=Trss(w; aq=0) (solid = I AN Si/4Ge/Si
curve and the single-Si/Ge transmission probabilitptted curve I TN

at zero in-plane momenturg=0. The barrier transmission is seen

GTSB Y

to be essentially eliminated above the frequefwsrtical dashed- 07 W7
dotted ling when the incoming phonon must tunnel across the Ge ~ 2° YBXY
barrier layers. At the same time, the barrier transmis3iggg also thermal
shows clearly defined low-energy phonon Fabry-Perot resonances 15 - barrier A
(similar to those of theTtpg, Fig. 2) produced within the 3Ge &
barrier. The bottom panel documents how the set of lower-energy s
Fabry-Perot resonances produce quantum oscillations in the TSBs 1.0 1
and TDB conductance ratias;sg/ o (solid curve and orpg/ ok 2 0;5
(dashed curve O R
. o .08 — 2,/2,=45
(high-frequency resonant tunneling, Fig. 2, too small to di- : ! : : : :
rectly affect the TDB thermal conductance. -3 1.0 3.2 10 32 100 320 1000

In contrast, | find that the phonon Fabry-Perot resonances O [K]
do produce observable finite-temperature quantization effects
in the TDB and TSB heat conduction, Fig. 3. From the cal-
culated phonon transmission probabilities | determin
(adapting Ref. 14the single-Si/Ge interface and thermal-
barrier conductances

FIG. 4. Robustnesgop panel and enhancemefibottom panel

of the resonant-thermal-transport effects. The figure reports calcu-
Sations of the thermal conductance ratigsg/ ok for both a set of
Si/Ge/Si systems with different numbers of layers in the Ge barrier,
and a fictitiousX/3-Y-monolayerX TSB structure with the signifi-

d2 cantly larger acoustic-impedance rafig/Z,~4.5.18 The top panel
o - 2 q documents that the predicted TSB resonant-thermal-transport effect
K,TSB,TDB > ) . . ) L
m (27r) is robust as the set of different barrier thicknesses produce qualita
tively identical oscillations in the temperature variation of the TSB
5 “’maxdiwh T (0 ag) d7N thermal-conductance ratio. The insert and bottom panels show that
o 27 @ Tk TsBTDBL @ q)| 4@ increasing the ratio of acoustic impedances causes much stronger

m Fabry-Perot resonances in the TSB transmission and an amplifica-

3 tion of the thermal-conductance oscillations with temperature.
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specified by the differences in acoustic impedancesstructuré® X/3Y/X, whereZy/Zy~4.5. The latter change
ZcelZs~1.5:1° Tgi,Ge~O.95. The observation&) and (b) produces a barrier transmissidimsert panel where the
complete the argumeriproof) for the “classical’ thermal- Fabry-Perot resonances cause a much more dramatic devia-

conductance estimatg). tion from the average transmission approximated by the
The bottom panel of Fig. 3 documents that the phonoriong-wavelength single-interface estimat@), (Tx(w))
Fabry-Perot resonances refine the classical estifiattn  ~0.6.

producing resonant-thermal-transport effects. These arise at In summary, | have investigated the phonon transport per-

higher temperatures and in a more general and technologpendicular to the interfaces dfsilicon/triple-germanium-

cally relevant group of structures than the previously inves{ayer/silicon TSB and corresponding TDB structures. |

tigated case of dielectric quantum wires, Ref. 12. Specifidocument a strong suppression of the finite-temperature het-

cally, the bottom panel of Fig. 3 details quantum oscillationserostructure thermal conductanaessg and orpg Which ap-

in the temperature variations for botysg/ oy (solid curveé  proximately are limited by the conductanog of an indi-

andopg/ ok (dashed curve In both structures the thermal- vidual Si/Ge interface. In addition, | predict quantum

conductance oscillations enhance ds-0 where the oscillations in the thermal-conductance ratiogsg/ o and

Trsg(w) andTopg(w) variation increases in relative impor- opg/0ox which arise from phonon Fabry-Perot resonances

tance. trapped in the central barrier or double-barrier region, re-
Finally, Fig. 4 emphasizes that the resonant-thermalspectively.

transport effects are robust against variations in the barrier

thickness and enhance with an increasing ratio of the acous-

tic impedances of the TSB and TDB heterostructures. The Discussions with G. D. Mahan are gratefully acknowl-

figure reports calculations of the thermal-conductance variaedged. This work was supported by the Swedish Foundation
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