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Signatures of van der Waals binding: A coupling-constant scaling analysis
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The van der Waals (vdW) density functional (vdW-DF) method [Rep. Prog. Phys. 78, 066501 (2015)] describes
dispersion or vdW binding by tracking the effects of an electrodynamic coupling among pairs of electrons and
their associated exchange-correlation holes. This is done in a nonlocal-correlation energy term Enl

c , which permits
density functional theory calculation in the Kohn-Sham scheme. However, to map the nature of vdW forces
in a fully interacting materials system, it is necessary to also account for associated kinetic-correlation energy
effects. Here, we present a coupling-constant scaling analysis, which permits us to compute the kinetic-correlation
energy T nl

c that is specific to the vdW-DF account of nonlocal correlations. We thus provide a more complete
spatially resolved analysis of the electrodynamical-coupling nature of nonlocal-correlation binding, including
vdW attraction, in both covalently and noncovalently bonded systems. We find that kinetic-correlation energy
effects play a significant role in the account of vdW or dispersion interactions among molecules. Furthermore,
our mapping shows that the total nonlocal-correlation binding is concentrated to pockets in the sparse electron
distribution located between the material fragments.
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I. INTRODUCTION

Many-body effects are essential for an accurate description
of materials bonds. Such correlation effects must be accurately
reflected in density functional theory (DFT) as we seek approx-
imate evaluations of ground-state expectation values, 〈T̂ 〉 and
〈V̂ 〉, of operators for the kinetic energy T̂ and for the electron-
electron interaction V̂ . This is clear, for example, because
dispersion or van der Waals (vdW) interactions arise from an
electrodynamical coupling among collective excitations [1–6].
In the Kohn-Sham (KS) scheme [7], for efficient, in principle,
exact DFT calculations, we handle all many-body effects by a
trick. We focus on an independent-particle approximation, the
KS kinetic-energy term TKS, while embedding the difference,
termed the kinetic-correlation energy,

Tc = 〈T̂ 〉 − TKS, (1)

in the exchange-correlation (XC) energy Exc. However, the
kinetic-correlation energy, Eq. (1), can still be unmasked as a
functional Tc[n] of the electron density n(r) using a formally
exact scaling analysis [8–11]. An evaluation of Exc[n] − Tc[n]
is equivalent to correcting 〈V̂ 〉 beyond the Hartree approxi-
mation [8] and thus allows an exploration of many-electron
interaction effects.

The van der Waals (vdW) density functional (vdW-DF)
method for general-purpose DFT calculations relies on truly
nonlocal formulations Exc[n], Refs. [12–20]. The vdW-DF
functional design can be seen as a systematic extension of
the local density approximations (LDA) and of the general-
ized gradient approximation (GGA). In its original and most
commonly used form [15,18], it relies on the same many-
body perturbation theory analysis [5,16] that underpins the
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formulations of PBE [21] and PBEsol [22], and it adheres
to the same fundamental principle, that physics constraints,
including charge [15] and current [6,15] conservation, should
guide the XC functional design [14,23,24]. However, as part
of a rationale for constraint-based GGA, Langreth and Vosko
showed that a gradient-corrected formulation of correlation
cannot naturally account for vdW interactions [5]. The vdW-
DF method overcomes that limitation, noting that electrons and
their associated GGA-type XC holes themselves form dipole
systems with internal dynamics [3,4,6,12,25,26]. The vdW-
DF method tracks screening effects produced by the mutual
electrodynamical coupling of such virtual dipoles. It thus ex-
tends GGA within the vdW-DF framework, capturing screened
dispersion binding [3,4] by summing coupling-induced shifts
in the collective plasmon excitations [1,6].

The vdW-DF method is computationally efficient since the
dispersion-energy gains [6] are evaluated in a truly nonlocal-
correlation energy term Enl

c that is an explicit functional of the
density [15,27]. This is done by using the adiabatic-connection
formula [2,28,29] (ACF) for the exact XC functional to define
an effective dielectric function κ [6,15,20] and by expanding
κ in terms of a plasmon-pole approximation that reflects the
response corresponding to an internal semilocal functional
[6,15,17,23] Ein

xc. In the original general-geometry vdW-DF
[15] and in the recent consistent-exchange vdW-DF-cx [18]
formulations,1 this internal function comprises LDA with
gradient corrections defined by analysis of screened exchange
[5,15,16,19]. The total functional specification [15,18]

EvdW−DF
xc [n] = Ein

xc + Enl
c + δE0

x , (2)

1In the case of vdW-DF2 [17] by a formulation that reflects an
exchange-scaling to the high-density limit.
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generally also contains a cross-over term δE0
x that contains

nothing but gradient-corrected exchange [20,24]. The total
exchange functional Ex is semilocal; the correlation part of the
functional, Ec, comprises LDA correlation ELDA

c (from Ein
xc)

and Enl
c .

An elegant illustration of the many-body physics nature
of vdW binding can be obtained by computing the spatially
resolved component [30,31]

enl
c [n](r) = n(r)

2

∫
r′

�(n(r),∇n(r),n(r′),∇n(r′))n(r′), (3)

of the total vdW-DF nonlocal-correlation energy

Enl
c [n] =

∫
r

enl
c [n](r). (4)

The spatial resolution (4) is a natural extension of how we
normally analyze total-energy contributions arising from the
semilocal components of the XC energy [2,11,15,21]. The
spatially resolved energy (3) is given by the vdW-DF kernel
[15,32] � for which there exist both formal analysis [16] and
an efficient evaluation scheme [27]. With Eq. (3), one can track
and understand binding-induced changes �enl

c (r), for example,
for benzene adsorption on graphene [31]. The mapping con-
firms that the dominant contributions to the vdW binding arise
in the regions of sparse [33] (but not vanishingly low) electron
density between molecules and surfaces [6,14,34–36].

In this paper, we seek a characterization of electron-
electron interaction effects that underpin vdW attraction be-
tween molecules. Many computational descriptions of the vdW
attraction build on a discussion of the electron response and
dielectric function in the physical, fully interacting system
[1,3,4,12–14,25,26,37–50], although the actual response be-
havior is sometimes approximated by an independent-particle
description. The ACF specifies the exact XC functional as
an average over the electron response, denoted χλ, that re-
flects a ramping (0 < λ < 1) of assumed electron-electron
interaction strengths, V̂λ = λV̂ [2,11,28,29,51]. This ACF
view is explicitly maintained in vdW density functionals
[15,19,20,24,52,53], which track the vdW binding produced
by plasmon-energy shifts [1,3] in a KS framework [2,6].
However, the electrodynamical-coupling mechanism for vdW
attraction [3,4] is at work in the physical system, i.e., at
full coupling-constant strength λ = 1. For a more complete
mapping of the nature of vdW attraction [3], we therefore
seek to (a) compute an XC energy, denoted Exc,λ=1[n], that
instead reflects the physical response χλ=1, and (b) extract and
study the component, denoted Enl

c,λ=1[n], that corresponds to
nonlocal-correlation effects in χλ=1.

Our central observation is that such information is directly
available from the vdW-DF functional form, Eq. (2), by
applying the formally exact coupling-constant scaling analysis
[8,9,54] on the vdW-DF method. The formal analysis rests
on density scaling, which provides a complete specification
of the would-be XC energy Exc,λ[n] that reflects the response
function χλ assuming only that the λ-averaged response defines
the specific Exc[n] form; the analysis can be made for a given
problem once we know the self-consistent solution density
n(r). We present details of how to extend the scaling analysis
from semilocal functionals [10,11,55,56] to the truly nonlocal-
correlation term Enl

c [n] of the vdW-DF method.

We note that the formal scaling analysis permits calculations
of the kinetic-correlation energy [8], Eq. (1). For practical
calculations, we present a code, termed PPACF, that computes
the component

T nl
c [n] =

∫
r

tnl
c [n](r), (5)

which is specific to Enl
c [n]. Equation (5) is also combined

with the known coupling-constant scaling analysis for LDA
correlation [8–10,54], for a full specification of the kinetic-
correlation energy

Tc[n] =
∫

r
tc[n](r). (6)

Finally, we rely on the formal equivalence [8]

Exc,λ=1[n] ≡ Exc[n] − Tc[n] (7)

to extract a representation,

Enl
c,λ=1[n] ≡ Enl

c [n] − T nl
c [n], (8)

of the mutual plasmon electrodynamical coupling in the phys-
ical system [1,3,4,6].

As implied in Eqs. (5) and (6), the code also gives us access
to spatially resolved kinetic-correlation energies, tnl

c [n](r) and
tc[n](r), that are consistent with Eqs. (3) and (4) and with
the standard resolution of XC energy contributions. Using
PPACF, we can thus compute and discuss the nature of binding-
induced changes �tc(r), �tnl

c (r), and �enl
c (r) − �tnl

c (r), in
the spatially resolved descriptions. Our PPACF code can
provide this analysis for most versions or variants of the
vdW-DF method [15,17,18,20,57–60]. Here we work with the
consistent-exchange vdW-DF-cx formulation [18,24], which
can effectively be seen as a mean-value evaluation of the
ACF [6].

We find that �tc(r) and �enl
c (r) both contain signatures

of directed binding: the dominant binding contributions are
channeled into pockets. Also, the signatures in �tnl

c (r) and in
�enl

c (r) typically mirror each other, up to a sign. This means
that the concentration of vdW bonding is further enhanced in
the contribution �enl

c (r) − �tnl
c (r) that characterizes the elec-

trodynamical coupling mechanism behind the vdW attraction
[1,3,4,6].

Overall, our results show that there is an important kinetic-
energy nature of vdW binding and confirm that the den-
sity tails, rather than the atomic centers, play the deci-
sive role in setting dispersion forces at binding separations
[6,14,18,31,34–36,61–63]. Our results also suggest that there
exists an orbital-like structure of dispersion binding, although
much weaker than in chemical bonds and originating in dif-
ferent mechanisms [4,6,16]. This observation could be useful
for qualitative discussions of the nature and variation in vdW
forces in materials.

The rest of this paper is organized as follows. Section II
details the coupling constant analysis of the vdW-DF method.
Section III provides computational details. In Sec. IV, we
document signatures of the vdW attraction in both noncovalent
and covalent molecular binding. Section V contains a summary
and discussion. The paper has one appendix.
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II. THEORY

A systematic theory characterization of the screened re-
sponse in a homogeneous and weakly perturbed electron
gas [2,5,28,29,64–66] has led to the definition of a range
of successful constraint-based functionals for the XC energy
Exc and broad use of DFT. We use V̂ to denote the full
electron-electron interaction. We consider the density changes
δn produced by an external field δ�ext, and compute the
electron-gas density response χλ = δn/δ�ext as a function of
the assumed coupling constant λ for an adiabatic turn on of the
many-particle interaction, Vλ = λV . The exact XC energy is
given by the ACF,

Exc = −
∫ ∞

0

du

2π
Tr{χλ(iu)V } − Eself , (9)

which links λ, the (complex) frequency iu, and spatial vari-
ations in the response function χλ to the XC energy. We use
n̂(r) to denote the density operator, and the last term of Eq. (9)
is the electron self-energy Eself = Tr{n̂V }/2.

The exact XC energy can be recast as an electrostatic
interaction [2,28,29]

Exc = 1

2

∫
r

∫
r′

n(r)nxc(r; r′)
|r − r′| (10)

between the electrons and associated, so-called, XC holes
nxc(r; r′). The XC hole reflects a λ average of the response χλ.
An emphasis on the assumed plasmon-nature of the electron
response, a reliance on formal many-body perturbation theory,
and the imposing of additional physics constraints, such as
charge conservation of the XC hole, has led to formulations
of LDA [67,68], of the PBE and PBEsol versions of GGAs
[21,22], and of the vdW-DF method [6,15–17,20,24].

At any given coupling constant λ, the response function
defines an approximation for the exchange-correlation hole

nxc,λ(r,r′ = r + w) = − 2

n(r)

∫ ∞

0

du

2π
χλ(r,r′; iu) − δ(w) .

(11)

The actual XC hole then emerges simply as an average,

nxc =
∫ 1

0
nxc,λ dλ. (12)

Using Eq. (11), it is meaningful to define and discuss also the
coupling-constant dependence of the XC functional:

Exc,λ ≡ 1

2

∫
r

∫
r′

n(r) nxc,λ(r,r′)
|r − r′| . (13)

Same as for the holes, the actual functional, Eq. (10), is given
by an average over 0 < λ < 1,

Exc[n] =
∫ 1

0
dλ Exc,λ[n]. (14)

The behavior of Exc,λ is exclusively set by exchange
effects at λ = 0. This follows because exchange reflects an
independent-particle behavior and, unlike correlation, it is
independent of λ. At the other physical limit, the plasmon
character can be expected to dominate in the response. One
therefore also expects that Exc,λ becomes accurate at λ → 1 if
Eq. (13) reflects a plasmon-based analysis of electron response,

for example, as used in the early LDA formulations [29,67], in
the constraint-based GGAs [21,22], and in vdW-DF-cx [18].

It is instructive to split the XC hole into exchange and
correlation components,

nxc,λ(r,r′) = nx(r,r′) + nc,λ(r,r′), (15)

and to define (at every λ) a spatially resolved correlation term:

ec,λ[n](r) = n(r)

2

∫
r′

nc,λ(r,r′)
|r − r′| . (16)

This term provides a mapping of the total correlation effects
at λ:

Ec,λ[n] =
∫

r
ec,λ(r). (17)

Also, there exists a coupling-constant scaling analysis for LDA
correlation [10,11,54] ELDA

c,λ with spatial resolution

ELDA
c,λ [n] =

∫
r
eLDA

c,λ [n](r). (18)

Accordingly, we isolate a spatially resolved nonlocal-
correlation energy

enl
c,λ[n](r) = ec,λ[n](r) − eLDA

c,λ [n](r), (19)

corresponding to the coupling-constant scaling of the total
nonlocal-correlation energy:

Enl
c,λ[n] =

∫
r
enl

c,λ[n](r). (20)

Equation (3) is the coupling-constant integral of enl
c,λ[n](r).

To map the electrodynamical-coupling nature of vdW at-
traction, we seek to compute the binding-induced changes
�enl

c,λ=1[n](r).

A. Density scaling in the exact XC energy

Coupling-constant scaling analysis [8] is a natural tool for
exploring the nature of both exchange-based GGAs [11,56]
and of vdW-DF-cx. For any given solution density n(r), we
define a rescaled density

n(r) → n1/λ(r) ≡ n(r/λ)/λ3, (21)

and resolve Eq. (14) into λ-specific contributions using the
exact result [8,11,56]

Exc,λ[n] = d

dλ
{λ2Exc[n1/λ]}. (22)

Since there is no λ dependence for exchange, we can recast
Eq. (22) using the correlation-energy density:

ec,λ[n](r) = d

dλ
{λ2ec[n1/λ](r)}. (23)

The scaling results for Exc,λ[n] and ec,λ[n] can be directly
applied to individual components of the XC functional (as they
are linear in the functional expression).

The scaling results, Eqs. (22) and (23), reflect properties
of the χλ approximations that are implicitly made in crafting
the PBE and vdW-DF-cx functionals. The existence of a
well-understood coupling-constant scaling has been used to
rationalize the formulation of the PBE0 hybrid [69] based on
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PBE [11,56]. Noting that a similar rationale exists for the
coupling constant scaling of vdW-DF-cx, some of us have
recently motivated the introduction of correspondingly defined
vdW-DF hybrids, including vdW-DF-cx0, which replace the
vdW-DF-cx exchange component with a fraction of the Fock
exchange [70].

The scaling results, Eqs. (22) and (23), follow from an
analysis of the many-particle wave function ground-state
solution 	min,λ

n corresponding to a specific density n and a
specific strength λV of the electron-electron interaction. The
detailed arguments are given elsewhere. For completeness, we
include a renormalization-type argument for this observation
in Appendix. Here, we simply note that the wave functions
solving the Hamiltonian Ĥ = T̂ + λV + Vext themselves scale
according to

	min,λ
n (r1, . . . ,rN ) = λ3N/2	n1/λ

(λr1, . . . ,λrN ), (24)

and that this formal equivalence is sufficient to establish the λ

scaling [8,11].

B. Access to the kinetic-correlation energy

Below, we drop explicit references to the density functional
nature when working with spatially resolved energy contribu-
tions such as enl

c,λ(r) and enl
c (r), except when specifically needed

for the discussion.
In the KS scheme [7], we nominally focus on computing the

so-called KS kinetic energy2 from single-particle expectation
values,

〈φi |T̂ |φi〉 =
∫

r
t̃i(r), (25)

t̃i(r) = − 1
2φ∗

i (r)∇2φi(r), (26)

for occupied orbitals φi(r). As in the QUANTUM ESPRESSO

package [71], we compute the KS kinetic energy as a spatial
integration

TKS[n] =
∫

r
tKS(r), (27)

over positive definite contributions,

tKS(r) = 1

2

occ∑
i

|∇φi(r)|2, (28)

defined by the set of occupied orbitals. This representation
of the KS kinetic energy is simply related to the summation
t̃occ(r) ≡ �occ

i t̃i(r) over single-particle contributions, Eq. (26).
The descriptions differ only in the inclusion of a Poisson-type
term

tKS(r) = 1
4∇2n(r) + Re{t̃occ(r)} (29)

and give the same total KS kinetic energy, Eq. (27), upon spatial
integration.

We typically compute DFT energies E
A/B/AB
DFT of combined

systems “AB” and of the relevant fragments, “A” or “B,”

2In discussions of DFT, TKS is sometimes called the single-particle
kinetic energy. We prefer the Kohn-Sham label as T̂ is always a single-
particle operator.

to understand binding �EDFT = EA
DFT + EB

DFT − EAB
DFT (with

suitable adjustments in the case of related problems such as
material cohesion). The mean-field electrostatic energy among
electrons, that is, the Hartree term

U [n] = 1

2

∫
r

∫
r′

n(r) n(r′)
|r − r′| , (30)

is one important contribution as it approximates 〈V̂ 〉. For
analysis, we track binding-induced changes like

�U ≡ UA + UB − UAB, (31)

�TKS ≡ T A
KS + T B

KS − T AB
KS (32)

�T nl
c ≡ T nl,A

c + T nl,B
c − T nl,AB

c . (33)

We also track the corresponding expressions for binding-
induced changes in, for example, the total nonlocal-correlation
term �Enl

c . In our discussion, we call such differences binding
contributions.3

Computational results for the binding-induced changes in
the KS kinetic energy �TKS and in the mean-field electrostatic
energy �U [n] often suffice for a characterization of covalent
bonds in molecules and materials [72]. This is because the
combination allows us to characterize and understand orbital
hybridization [72–74]. However, for noncovalent bonds, we
have to look further than changes in TKS. One can generally
sort chemical bonds from knowledge of the average orbital
energy [75]. The average orbital energy is a measure that will,
in principle, reflect all correlation effects, including those that
are manifested in the kinetic energy.

A formal analysis of the DFT variational scheme [8] shows
that

Tc[n] = −Ec[n] +
[
∂Ec[nα]

∂α

]
α=1

, (34)

where α ≡ 1/λ, Refs. [8,11]. Using the density-scaling analy-
sis, it immediately follows that

Tc[n] = Ec[n] − Ec,λ=1[n] = Exc[n] − Exc,λ=1[n]. (35)

A similar equation connects T nl
c [n] and Enl

c [n]. For any given
system (solution density n), we use numerical differentiation
to compute Ec,λ[n] and Enl

c,λ[n] from Eq. (22), and Tc[n] and
T nl

c [n] from Eq. (34).
The electron-electron interaction effects in the physical

systems are now formally available for computation (in the
approximations that define Exc[n]). In particular, we can study
the electrodynamical coupling among plasmons [1,3,4,6] at
λ = 1 since Enl

c,λ=1[n] is available via Eq. (35). This value
Enl

c,λ=1[n] is the nonlocal-correlation part of Exc,λ=1[n], which
by definition, is given by a contour integral of the response

3The wording “binding contribution” is used to describe any compo-
nent of the molecular binding even if, for example, �Tc(r) is negative.
Similarly, we use the word “spatially resolved binding contributions”
to describe binding-induced changes in the spatial variation of, for
example, XC energy terms, like �enl

c (r); Again this term is used
without regards to the sign of the integrated values.
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FIG. 1. Coupling-constant scaling of the vdW-DF-cx exchange
and correlation contributions to the total energy of the N2 molecule.
The solid curve (upper dashed line) shows variation in total XC
term Exc,λ[n] (lack of variation in exchange term Ex,λ[n]) for the
N2 solution electron density n(r). The area of the green (red) regions
is minus the total correlation (exchange) energy, while the area of
the blue region is the so-called kinetic-correlation energy, that is, the
kinetic-energy part of correlation, Tc[n].

χλ=1 evaluated at full electron-electron interaction strength,
Eqs. (11) and (13).

We note in passing that Enl
c,λ=1[n] is also the nonlocal-

correlation part of the electron-electron interaction expectation
value

Enl
c,λ=1[n] = 〈V̂ 〉nl

c ≡ 〈V̂ 〉 − U [n] − Ex[n] − ELDA
c,λ=1[n]. (36)

Since the XC energy functional is defined Exc = 〈V̂ + T̂ 〉 −
TKS − U [n] we can use Eq. (35) for the formal identification

Exc,λ=1[n] = 〈V̂ 〉 − U [n]. (37)

The formal equivalence (36) follows by subtracting the LDA
and gradient-corrected exchange components.

Figure 1 shows (computed results for) the coupling constant
scaling for the XC contribution (solid red curve) to the total
energy of the N2 molecules. The specific scaling results are
here provided for vdW-DF-cx (using the formal derivation of
the scaling for Enl

c detailed in the following section). However,
the behavior is generic and thus similar to what has previously
been reported and discussed for PBE [11,56].

We note that the exchange and correlation components,
Ex and Ec, used for DFT calculations in the KS scheme,
are integrals of the indicated λ variations. The exchange
value traces a horizontal line (dotted curve separating red and
green areas) in Fig. 1. In contrast, the correlation begins at
zero but changes to a significant magnitude at λ = 1. It is
straightforward to verify [11] that the area of the green region
is minus the functional approximation for Ec. Importantly, we
can immediately extract the corresponding kinetic-correlation
energy Tc using Eq. (35), that is, as the area of the blue region
below the Exc,λ variation but above the value of the λ → 1
limit.

C. Coupling-constant scaling and kinetic-correlation energy
in vdW-DF-cx

To compute the kinetic-energy component of vdW binding,
we need only to consider the density scaling for the correla-
tion parts, namely Ec = ELDA

c + Enl
c . Moreover, the coupling

constant scaling for the LDA part, ELDA
c , has previously

been discussed, as it is part of the GGA characterization
[8–11,54–56,76,77].

To explore the coupling-constant scaling of Enl
c , we

first summarize the vdW-DF formulation of this nonlocal-
correlation energy. Any semilocal XC density functional can
be characterized by a local energy-per-particle density

Exc[n] =
∫

r
n(r)εxc[n](r), (38)

where εxc[n](r) is a function of just the local density n(r) and
the scaled density gradient s(r). We further split εxc[n](r) into
exchange and correlation components, εx[n](r) and εc[n](r).
The local variation in the inverse length scale q0 for the
plasmon-pole description can then be expressed as [15,16]

q0(r) = q0x(r) + q0c(r), (39)

q0x(c)(r) = εin
x(c)(r)

εLDA
x (r)

kF (r). (40)

Here, kF = (3π2n)1/3 denotes the local value of the Fermi
wave vector and εLDA

x = −3kF /4π is the energy-per-particle
density in LDA exchange. The nonlocal-correlation energy
[15],

Enl
c = 1

2

∫
r

∫
r′

n(r)φ(r,r′)n(r′), (41)

is computed using a universal-kernel formulation
[15,16,27,32],

φ(r,r′) = �0(d,d ′), (42)

d(r,r′) = |r − r′|q0(r), (43)

d ′(r,r′) = |r − r′|q0(r′). (44)

The universal kernel �0(d,d ′) is tabulated and permits an
efficient numerical evaluation through fast-Fourier transforms
[27]. The generalization to scaling in spin-polarized cases
is also completely specified, since it amounts to a simple
rescaling of the inverse length scale q0, Ref. [19].

For scaling analysis (and coding), it is convenient to in-
troduce r̃ ≡ r/λ as a short hand for the coordinate scaling
and to represent the density variation in terms of rs(r) =
(3/4πn(r))1/3. The local values of the scaled density gradient
are s(r) = |∇n|/(2kF (r)n(r)). The density scaling n(r) →
n1/λ(r) = n(r̃)/λ3 leaves s unchanged and the effect amounts
to computing the changes in Fermi vector and in the LDA corre-
lation components. This is done in terms of the corresponding
scaling rs(r) → λrs(r̃).

Using Fx(s) to denote the exchange-enhancement factor
of Ein

xc, the overall scaling of the inverse length scale can be
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expressed q0[n1/λ(r)] = qλ
0 (r̃), where

qλ
0 (r̃) = Fx(s(r̃))

kF (r̃)

λ
− 4π

3
εLDA

c (λrs(r̃)). (45)

Introducing also

d̃λ ≡ qλ
0 (r̃) (λ|r̃ − r̃′|), (46)

d̃ ′
λ ≡ qλ

0 (r̃′) (λ|r̃ − r̃′|), (47)

we can compute

Enl
c [n1/λ] =

∫
r̃

∫
r̃′

n(r̃) �0(d̃λ,d̃ ′
λ) n(r̃′). (48)

We complete the scaling analysis of Enl
c via Eq. (22) and of

enl
c (r) via Eq. (23). Specifically, we express the scaling of the

nonlocal-correlation energy density

enl
c,λ(r) = d

dλ

{
λ2enl

c [λrs(r̃)]
}
. (49)

For the numerical evaluation, we adopted the scheme proposed
by Román-Pérez and Soler [27] (as implemented in QUANTUM

ESPRESSO) to calculate enl
c [λrs(r̃)]; the calculation is similar to

the calculation of enl
c (r) in Ref. [30]. We note that ec,λ=1(r)

provides a spatial mapping of all nonlocal-correlation effects
that exist in the fully interacting system, as a direct implication
of Eq. (35).

Moreover, as part of this ec,λ=1(r) characterization, we can
now compute the spatially resolved kinetic-correlation energy
tc(r) and nonlocal-kinetic-correlation energy tnl

c (r). First, we
simply add the known [8–10,54] coupling constant scaling of
the LDA correlation-energy density eLDA

c,λ , entering in Eq. (18):

ec,λ(r) = eLDA
c,λ (r) + enl

c,λ(r). (50)

Next, we adapt Eq. (34) to descriptions of energy densities

tc(r) = −ec(r) +
[
∂ec[rs(r̃)/α]

∂α

]
α=1

, (51)

tnl
c (r) = −enl

c (r) +
[
∂enl

c [rs(r̃)/α]

∂α

]
α=1

, (52)

and evaluate the derivatives numerically.
Figure 2 documents the coupling-constant scaling of Enl

c,λ
and explains an approximately linear variation. The top panel
shows the coupling-constant scaling for the ratio q0c/q0x

for typical contributions to the binding of an N2 molecule.
Specifically, starting from the known q0x(n(r)) and q0c(n(r))
values, the panel traces the variation in the XC components
of q0(n1/λ(r)) for conditions that roughly correspond to the
binding region of N2 (red curves) and to electron density tails
of atoms and molecules (blue curves).

The middle panel of Fig. 2 shows the coupling-constant
scaling of Enl

c [n1/λ] (solid curve) for the density of the N2

molecule. We note that the scaling in q0x is exactly offset by
the λ scaling of coordinates in Eqs. (46) and (47). Thus if
we assume that the scaling of q0 = q0x + q0c is set by the
scaling in q0x , there would be no λ dependence in the Enl

c
kernel arguments, d = q0(r)|r − r′| and d ′ = q0(r′)|r − r′|. In
this type of approximations, there is then no scaling in the
corresponding approximations for Enl

c [n1/λ].

FIG. 2. Coupling-constant scaling of the nonlocal correlation
energy functional Enl

c,λ[n] at various density conditions typical of
the N2 molecule. The binding is thus analyzed in terms of values
for the inverse length scales, q0 = q0x + q0c, that specify the vdW-
DF plasmon model. The top panel shows the scaling in the ratio
q0c/q0x at conditions typical for the interatom binding region of the
N2 molecules (for the nonbinding regions outside each atom), red
(blue) solid curves. The set of dashed curves shows a corresponding
characterization for density tails. The middle panel shows the resulting
scaling of Enl

c [n1/λ] (solid curve) with limits discussed in the text. The
bottom panel contrasts the resulting scaling in Enl

c,λ[n] (solid red curve)
against that of LDA correlation (solid grey curve), and as obtained in
two approximations.

The middle panel furthermore shows two potentially rel-
evant such approximations motivated by the analysis of the
typical variations in the q0c/q0x ratio. The first assumes that we
can ignore the influence of the correlation part q0c completely
(giving the green dashed-dotted line); the second assumes that
the ratio q0c/q0x can at any given point r be taken as fixed at the
λ = 1 value (giving the blue dashed curve). The second choice
effectively amounts to simply setting Enl,linear

c [n1/λ] ≡ Enl
c [n].

Neither of them is a good description for Eq. (48). On the other
hand, we add a λ2 weight on Enl

c [n1/λ] when computing Exc,λ,
Eq. (22). We label the second approximation as “linear” since
it leads to Enl

c,λ ≈ λEnl
c [n] and this is sometimes an acceptable

approximation.
The bottom panel of Fig. 2 contrasts the resulting scaling

of the ACF integrand for the nonlocal correlation contribution
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Enl
c,λ[n] against that of the LDA correlation ELDA

c [n]. The panel
also shows (green and blue dashed curves) the scaling that re-
sults by inserting either of the approximations discussed in the
middle panel into Eq. (22). Interestingly, the scaling relevant
for the N2-molecule total energy is found well approximated by
using Enl,linear

c [n1/λ] ≡ Enl
c [n]. The nonlocal-correlation part

of the kinetic energy is just minus the total nonlocal-correlation
binding contribution �Enl

c in such special cases.

III. COMPUTATIONAL DETAILS

We focus our discussion and mapping of many-body
physics effects on results obtained using the vdW-DF-cx
version [18]. In vdW-DF-cx, the total exchange component
in Eq. (2) is picked so that the binding contributions from δE0

x
can generally be ignored [6,18].

The vdW-DF-cx version performs well, on par with or better
than PBE, for characterizations of many bulk, surface, and
interface properties [20,24,78–86]. The vdW-DF-cx version
has proven itself useful also in the description of binding and
function of layered materials, at surfaces, and of molecules
[70,87–105].

Our calculations are based on the plane-wave QUANTUM

ESPRESSO package [71], which already has the consistent
exchange vdW-DF-cx version [18] as well as the rigorous
spin extension of the vdW-DF method [16]. Core electrons
are represented by Troullier-Martins type normal-conserving
pseudo potentials using an 80-Ry wave-function cutoff.

This paper also introduces a post-processing ACF-analysis
code, termed PPACF, which tracks the system-specific coupling
constant variation in Exc[n] (for standard GGA and vdW-DF
versions). The code adapts the post-processing components of
the QUANTUM ESPRESSO package [71], into which PPACF will
also be released.

The PPACF code takes as input the set of QUANTUM

ESPRESSO solution files (available after completion of the
DFT calculations). It outputs the coupling-constant scaling
analysis and the spatial variation in the kinetic-correlation
energy density. For convenience, it also outputs the spatial
variation in the set of XC components.

Our numerical analysis is based on comparing binding-
energy contributions for the various components of the total
DFT description. To discuss the binding “AB” of fragments “A”
and “B,” the PPACF code outputs the spatial variation in all XC
components. The code furthermore uses the coupling-constant
scaling in the spatially resolved correlation terms, ec and enl

c ,
to numerically determine and output (for any given fragment
and for the combined system) the spatial variation in ec,λ=1 and
enl

c,λ=1 as well as in tc,λ=1 and tnl
c,λ=1. We then obtain, for the

(spatially resolved) binding-energy contributions,

�ec,λ=1 = eA
c,λ=1 + eB

c,λ=1 − eAB
c,λ=1, (53)

�enl
c,λ=1 = e

A,nl
c,λ=1 + e

B,nl
c,λ=1 − e

AB,nl
c,λ=1, (54)

�tc,λ=1 = tA
c,λ=1 + tB

c,λ=1 − tAB
c,λ=1, (55)

�tnl
c,λ=1 = t

A,nl
c,λ=1 + t

B,nl
c,λ=1 − t

AB,nl
c,λ=1, (56)

from simple numerical subtractions.

For completeness, the PPACF code outputs the spatial
variation in KS kinetic energy tKS(r) and in a spatially resolved
measure of the full kinetic energy

ttot(r) ≡ tKS(r) + tc(r). (57)

Again, by numerical subtractions, we can then define spatially
resolved kinetic binding energy contributions:

�tKS(r) = tA
KS(r) + tB

KS(r) − tAB
KS (r), (58)

�ttot(r) = tA
tot(r) + tB

tot(r) − tAB
tot (r). (59)

A mapping of the total kinetic energy binding contributions
(59) will, in principle, always change if we base the ttot

definition, Eq. (57), on t̃occ instead of on t̃KS, using Eq. (29).
This is true even if the integral values �TKS and �Ttot remain
the same. Qualitative differences in the resulting total-kinetic-
energy mappings are visible for covalent bonding, but not for
the cases of noncovalent intermolecular interactions that we
have investigated.

The set of top panels of Fig. 3 compares the coupling
constant variation in the contributions �Ex,λ and �Ec,λ to
the H2, N2, and O2 atomization energies, as computed in
vdW-DF-cx. The scaling and the total kinetic-correlation en-
ergy contributions vary significantly between these traditional
molecular binding examples. The total kinetic-correlation
energy contribution to binding �Tc is given by the light blue
area under the scaling curve. The value of �Tc is dominated
by the part that originates from the LDA correlation energy.

The set of bottom panels focus on the coupling-constant
scaling of the nonlocal-correlation contribution to the molec-
ular cohesion. The coupling-constant variation in Enl

c,λ can be
either upward or downward concave because it is only a part
of the kinetic-correlation energy. The upwards and downwards
concave behavior corresponds to positive and negative values
of �T nl

c binding contributions, respectively. The dark-blue
areas indicate the magnitude of this binding contribution.
Reference [106] includes a broad listing and comparisons of
molecular-binding contributions �Enl

c , �Tc, and �T nl
c [106].

The comparison also lists KS binding contributions �TKS,
making it clear that the kinetic-correlation energy can only
play a significant role in the case of intermolecular binding.

In the case of binding in the H2, N2, and O2 molecules,
Fig. 3, we observe that the nonlocal-correlation contribution
to binding is offset by a contribution to the nonlocal part of the
correlation-kinetic energy. As shown in Ref. [106], the same is
true for many intramolecular bonds, Tables SI and SII, and for
all investigated intermolecular interaction cases, Table SIII.

The binding in the total correlation term, �Ec, will be
offset by a negative kinetic-correlation energy contribution
�Tc, as suggested by the virial theorem. However, this need not
hold generally for the nonlocal part of the kinetic-correlation
energy contribution for intramolecular binding, as further
documented in Ref. [106], Tables SI and SII. On the other
hand, a compensation can be expected when the nonlocal part
of the correlation-kinetic energy is a significant component,
such as in most intermolecular interactions.
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FIG. 3. Coupling-constant scaling for the vdW-DF-cx exchange and correlation contributions to the atomization energy of the H2, N2, and
O2 molecules. The bottom panel shows the scaling in the nonlocal-correlation contribution to the molecular bindings. The dark blue area is
here a measure of the magnitude (108, 67, and −99 meV for H2, N2, and O2) of �T nl

c , i.e., the binding contribution arising in the nonlocal part
of the kinetic-correlation energy, Eq. (35).

IV. KINETIC-ENERGY MAPPINGS
OF MOLECULAR BINDING

We analyze and discuss the nature of binding both in H2,
N2, and O2 molecules (having traditional chemical bonds) and
in noncovalently bonded systems (where, in contrast, there is
no pronounced orbital hybridization).

A. Intramolecular interactions

Figure 4 shows that the kinetic-correlation energy is impor-
tant in characterizations of intramolecular binding. The figure
details the spatial variation in the kinetic-correlation binding
energy contribution �tc, in the nonlocal-correlation-kinetic
energy contribution �tnl

c , and in the vdW-DF-cx nonlocal
correlation energy binding contribution �enl

c for the H2, N2,
and O2 molecules.

We note that the magnitude of the variation in �tc is about
an order-of-magnitude smaller than the KS kinetic-energy
binding contribution �tKS(r) (not shown) for these covalently
bonded systems. Nevertheless, there is clear structure in both
�tnl

c (r) and �enl
c (r) and a directed nature or signature of vdW

interactions even in these strongly bonded dimer molecules.
Reference [106], Tables SI and SII, supported by Fig. S1,

provides a broader analysis of such intramolecular bindings.
This is done both for the set of molecules for which a PBE-
based coupling-constant analysis already exists [11,56], and
for the G2-1 benchmark set of molecular atomization energies.
Most of these systems are covalently bonded, meaning that
orbital hybridization plays the decisive role. However, there are

also some G2-1 cases, for example, alkali dimers, where the
nonlocal-correlation energy and the nonlocal part of kinetic-
correlation energy are important. Here, in the main text, we
concentrate on characterizing the binding in H2, N2, and O2.

The O2 kinetic-correlation energy binding contribution �tc
deserves a special discussion. The first O2 panel of Fig. 4 shows
the variation of �tc(r) in a plane that contains the binding axis
in the dimer. This plot has areas of opposite signs and implies a
compensation. However, the overall kinetic-correlation energy
contribution is still negative, �Tc < 0, because the negative
regions, away from the axis, have greater weight as we perform
the spatial integration. The total, negative kinetic-correlation
energy binding contribution is given by the light blue area
shown in the left column in Fig. 3.

The second column of Fig. 4 shows the spatial variation
in the nonlocal-correlation part of the kinetic-energy binding
contribution, �tnl

c (r), for the three molecules. The varia-
tion in �tc(r) (first column) is generally dominated by the
LDA contribution but adjusted by the variation in �tnl

c (r).
The integrated binding contribution from the nonlocal part
of the kinetic-correlation energy �T nl

c can be both nega-
tive or positive (as exemplified by the H2 and N2 cases).
In such positive-�T nl

c cases, the binding contribution from
Enl

c is negative, i.e., the nonlocal-correlation energy is ac-
tually causing a repulsion in these intramolecular binding
cases. Tables SI and SII in Ref. [106] provide a broader
overview of the variation in nonlocal-correlation energy
and kinetic-correlation energy effects that we document for
intramolecular binding.
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FIG. 4. Spatially resolved kinetic-correlation and nonlocal-
correlation energy contributions to the atomization energy for H2,

N2, and O2 molecules. The color map is the energy density in eV/Å
3
.

The first and second columns show maps of the full kinetic-correlation
binding contribution �tc(r) and of the nonlocal-correlation kinetic
energy contribution �tnl

c (r). The third column shows the binding-
energy contribution �enl

c (r) that directly reflects Enl
c .

The third column of Fig. 4 shows a mapping of the
nonlocal-correlation energy contribution to binding, �enl

c (r),
allowing a contrast with the variation documented for �tc(r)
and �tnl

c (r). We find that �enl
c (r) and �tnl

c (r) are here
essentially negative prints of each others. It follows that the
full (λ = 1) nonlocal-correlation energy contribution, given
by �enl

c (r) − �tnl
c (r), remains qualitatively described by the

variation in �enl
c (r) in these cases.

Tables SI and SII in Ref. [106] show that the nonlocal-
correlation energy binding contribution �Enl

c can take either
sign for intramolecular binding. These tables also show that
�T nl

c will typically then have the opposite sign. We therefore
generally expect the �enl

c (r) and −�tnl
c (r) contributions to

mirror each other, as in Fig. 4. The implication is that �enl
c (r)

provides a qualitatively correct mapping of the vdW interaction
in most covalently bonded cases.

Finally, we note that there are exceptions to this general
trend, i.e, cases where �T nl

c and �Enl
c are both negative.

Figures S1 and S2 in Ref. [106], provide additional analysis for
one of these cases, namely P2. In such cases, it is, in principle,
necessary to compute both the �enl

c (r) and the �tnl
c (r)

variation to obtain a complete mapping, �enl
c (r) − �tnl

c (r),
Fig. S2. However, even in these cases, it is still so that �enl

c (r)
and the −�tnl

c (r) are approximately mirrors of each others.
That is, even in P2, there is no change in the qualitative
observations presented above.

B. Intermolecular interactions

Figure 5 compares kinetic-energy binding contributions
�ttot(r), �tKS(r), �tc(r), �tnl

c (r), in noncovalently bonded

systems, i.e., in cases where there is no pronounced orbital
hybridization. The top row shows our vdW-DF-cx based results
for a benzene dimer, a case which is expected to have an
essentially pure vdW (or dispersion) interaction. The bottom
row shows results for a water dimer, a case that is predomi-
nantly hydrogen bonded, while the middle row explores the
mixed-binding benzene-water case.

Table SIII in Ref. [106], supported by Fig. S3, provides a
broader characterization of binding in the S22 benchmark set
of such weakly bonded molecular complexes. In all of theses
cases, the nonlocal-correlation energy contribution �Enl

c is
positive while �T nl

c is negative. As such, the following dis-
cussion is generic.

For reference, the last column of Fig. 5 shows the spatial
variation in the nonlocal-correlation energy binding, �enl

c (r).
This binding plays a decisive role in all cases. It is a core
component of our vdW-DF-cx characterization and it is
important for an accurate description of these molecular
complexes [18]. In the case of dispersion-bonded systems,
the �enl

c (r) contributions are the only sources of cohesion; in
the case of the water dimer and the benzene-water complexes,
there are also significant electrostatic components in the
intermolecular interactions.

The first, second, and third columns of Fig. 5 contrast the
spatial variation in the binding contributions from the total
kinetic energy, from the KS kinetic energy, and from the
kinetic-correlation energy. There are no orbital hybridization
effects in play, but it is important to note that the Enl

c binding
also pushes densities and thus orbitals around. Smaller signa-
tures are therefore retained in the binding contribution from
the KS kinetic energy, �tKS(r).

Contrasting the panels in the first and second column of
Fig. 5, we find that the KS kinetic-energy effects are still the
major source of the variation that we compute for �ttot(r).
Nevertheless, in the case of dispersion-bonded systems, we
find that there are also important contributions from the kinetic-
correlation energy �tc(r). These contributions, shown in isola-
tion in the third column, arise primarily in the intermolecular
region, in areas that have a sparse [33] (but not vanishing)
electron density and small-to-moderate density gradient. We
sometimes refer to these binding parts as a trough [6,18] but
we are then emphasizing the presence of important internal
surfaces within such sparse intermolecular regions [14,33,34].

The enhanced binding contributions from internal sur-
faces reflect the many-electron nature of the vdW prob-
lem. The amplitudes of collective (plasmon) excitations are
themselves enhanced in the sparse surfacelike intermolecular
region and we should then expect larger contributions to the
systematic tracking of the electrodynamical coupling among
plasmons [1–6,14,15,20]. The vdW enhancement can also
be interpreted as reflecting image-plane effects at (internal
or external) surfaces [14,38–40,62,108–110], or as multi-
pole response-effects effects when arising outside molecules
[25,26,34,35,111–113]. In any case, the vdW-DF-cx handling
of screening [1,3,6,15,24] provides mechanisms to track the
expected vdW enhancement in the sparse intermolecular re-
gions, at important internal surfaces [6,14,31,36].

The fourth column of Fig. 5 shows the nonlocal part of
the kinetic-correlation energy, �tnl

c (r). Contrasting the third
and fourth columns makes it clear that the LDA component of
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FIG. 5. Spatial variations in binding contributions for the benzene-benzene dimer (first row, identified as “dispersion”), for the water dimer
(last row, “H bond”), and for the benzene-water complex (middle row, “mixed”). The panels show contours of the binding-energy density,
contrasting the binding contribution arising from the total kinetic energy �ttot (first column), the dominant KS kinetic-energy component �tKS

(second column), the total kinetic-correlation energy �tc (third column), and the nonlocal correlation component of the kinetic correlation
energy �tnl

c (fourth column). The latter is found to closely track the spatial variations in the binding contribution from the nonlocal correlation
energy variation �enl

c (last column).

�tc(r) generally masks the variation in �tnl
c (r). However, the

signatures of the nonlocal kinetic-correlation part dominate in
the spare-density regions for dispersion-bonded systems. The
nonlocal part also remains a nonvanishing part of full kinetic-
correlation energy in the hydrogen-bonded and mixed binding
cases.

Figure 6 shows the computed binding contributions in
the stacked uracil dimer and in the stacking of adenine and
thymine. The top row shows the investigated geometries from
the S22 benchmark set [107]. Figure S4 in Ref. [106] shows the
variation in the kinetic-energy binding contributions for these
systems.

The panels in the bottom two rows of Fig. 6 contrast the
variation in the �enl

c and �enl
c,λ=1 = �enl

c (r) − �tnl
c (r) ac-

counts of the nonlocal-correlation binding. The contributions
are computed for the cuts indicated by the two dashed lines
in the top panels. We find that including the nonlocal part of
the kinetic-correlation energy enhances the binding signatures
found in the �enl

c variation in our mapping of the total nonlocal
correlation binding, shown in the pair of lower panels. The
same is true for the wider set of S22 cases. Comparing the
fourth and fifth columns of Fig. 5, we see that they are
essentially negative prints of each other, i.e., naturally leading
to an enhancement of signatures in �enl

c (r) − �tnl
c (r). For both

inter- and intramolecular interactions the variation, �enl
c,λ=1(r)

can effectively be mapped using either �enl
c (r) or −�tnl

c (r).
We also find that the �enl

c,λ=1(r) signatures are, in effect,
channelled into pockets of binding, Figs. 5 and 6. The dominant
contributions are located in the intermolecular (trough) regions
but concentrated in areas that resemble orbitals. In other
words, we can, in principle, use a similar form of bond-type

characterization for a qualitative discussion of the nonlocal-
correlation binding, drawing on an analogy with discussions
of chemical bonds.

Before using this vdW-bond mapping analysis, below, we
emphasize that this binding is much weaker and that the
concentration of binding (in such intermolecular pathways)
arises for a different physical reason [16] than in chemical
bonds. Chemical binding can exist in the λ → 0 limit (in a
Hartree-Fock description) by orbital hybridization, but that
cannot happen for the nonlocal-correlation (or vdW) binding.
While the inclusion of the Enl

c energy term in DFT calcula-
tions causes density changes, and therefore an electrostatic
signature [16], the total nonlocal-correlation binding reflects,
instead, an energy gain [16] produced by collective exita-
tions, i.e., by plasmons described by the screening properties
[1,4,6,12,14,15,114].

C. Noble-gas complexes

Figure 7 contrasts contributions to the dispersion binding in
the Kr dimer (left column of panels) and the Kr trimer (right
column of panels). The results are presented for the optimal
structure computed in vdW-DF-cx, Table I, and for the vdW-
DF-cx solution density.

The top and middle rows of Fig. 7 compare the spatial vari-
ations in the total kinetic energy and in the kinetic-correlation
energy. The KS kinetic energy effect makes up the larger part in
the �ttot(r) variation because the dispersion interaction leads
to density changes and thus to orbitals shifts. However, we
find that there are also significant �tc(r) contributions arising
between the noble-gas atoms.
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FIG. 6. Spatial variation in nonlocal-correlation binding contribu-
tions to the stacked uracil dimer (left) and to the stacking of adenine
and thymine bases (right). The panels in the first row show a top
view of the configurations; configurations are taken at either the
CCSD(T) or MP2 level, from Ref. [107]. The set of red dashed lines
marks the planes plotted in which we trace the binding contributions.
The panels in the second row show the binding contributions �enl

c

from the nonlocal correlation energy of the vdW-DF-cx functional.
The panels in the third row show the total nonlocal-correlation
binding contribution �enl

c,λ=1 = �enl
c − �tnl

c , i.e., the spatial variation
in the vdW binding of the physical systems, at full electron-electron
interaction.

The variation in the �enl
c (r) binding contributions, bottom

set of panel in Fig. 7, can again be used for a qualitative
discussion of the nature of binding. We find (as also docu-
mented for the dispersion-bond cases investigated above) that
the nonlocal part of the kinetic-correlation energy, �tnl

c (r) (not
shown), reflects the �tc(r) variation (shown in the middle row
of panels) and that −�tnl

c (r) thus mirrors the variation �enl
c (r).

We make two observations about the nature of dispersion
binding in such noble gas complexes, based on Fig. 7. First, the
vdW-DF method describes the binding as arising in the region
between (and not on) the noble-gas atoms. This observation
is consistent with a previous vdW-DF characterization of the
weak Ar2 charge relocations that arise with the inclusion of
the nonlocal correlation term Enl

c , Ref. [16]. However, the
vdW-DF-cx picture of dispersion binding is different from
the London picture that suggests an atom-centred description
[116,117].

Second, the vdW-DF-cx description of binding in the Kr
trimer is not additive, i.e., the vdW-DF-cx account of the Kr
trimer is not merely a sum of dimer contributions. This is
evident in Table I and it also holds when freezing the dimers
at the slightly longer binding separations that characterize the
Kr trimer.

Our discussion of nonadditivity is based directly
on the vdW-DF-cx account of dispersion interactions
at binding separation, Fig. 7. Nonadditivity of vdW
forces [6,34,49,50,111,113,118–126] is often discussed in
the context of a vdW description that is based on

FIG. 7. Spatial variation in contributions to the dispersion binding
of the Kr dimer (left) and of the Kr trimer (right). The mapping is
provided at the vdW-DF-cx results for the optimal structure, Table I.
The top, middle, and bottom pair of panels contrast the spatial
variation in the total kinetic energy �〈T̂ 〉, the kinetic-correlation
energy �Tc, and the nonlocal-correlation energy �Enl

c , respectively.
The nonlocal part of the kinetic-correlation energy, �tnl

c (r) ≈ �tc(r),
mirrors the variation in �enl

c (r).

adding the series of asymptotic C6, C8, . . . coefficients
[25,26,45,47,112,127–132]. However, we choose to instead
utilize the fact that our Kr dimer analysis provides us with
a spatial mapping of the vdW bond in a Kr dimer. This bond
is located symmetrically around the axis between the two Kr
atoms. Comparing then such descriptions to that for the Kr
trimer, we note a shift of the vdW binding towards the center
region.

Figure 8 provides details of this numerical exploration of
the vdW-DF-cx nonadditivity. The figure identifies where the

TABLE I. Bond lengths d and binding energies of noble-gas
dimers and trimers, as computed in vdW-DF-cx for fully relaxed
structures. Experimental reference values, Ref. [115], are listed in
parenthesis when available. The middle column shows our results for
the total binding energy, �E, of the noble-gas complexes. The last
column shows the nonlocal correlation contribution to the binding,
�Enl

c .

d (Å) �E (meV) �Enl
c (meV)

Ne dimer 3.09 (3.09) 10.2 (3.64) 14.0
Ne trimer 3.09 30.2 42.8
Ar dimer 3.99 (3.76) 18.9 (12.3) 25.7
Ar trimer 4.02 55.1 75.4
Kr dimer 4.33 (4.01) 22.1 (17.3) 30.7
Kr trimer 4.35 64.6 90.8
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FIG. 8. Nonadditivity of the nonlocal correlation energy binding
contributions in the Kr trimer. The left panel shows the nonlocal
correlation contribution to the binding energy in the trimer, directly.
The middle panel shows the results of simply making a superposition
of the three dimer nonlocal correlation energy binding contributions
(evaluated with fixed bond lengths as set by vdW-DF-cx optimization
of the Kr trimer). The right panel shows the spatial variation difference
between the actual trimer description and that of the dimer-based
superposition, that is, �(�enl

c ) = �enl,trimer
c − ∑

�enl,dimer′
c .

trimer �enl
c variation differs from the variation in a sum-

of-dimer-�enl
c description. Interestingly, the trimer binding

changes (relative to a sum of dimer contributions), arise in
spatially confined pockets in the low-density, small density
gradient regions. As such, it further signals the importance of
the intermolecular region (of sparse electron distribution) in
the description of molecular and other sparse-matter binding.

V. SUMMARY AND DISCUSSION

We have provided formal analysis and calculations aiming
to deepen the discussion of the nature of vdW interaction
as described in the vdW-DF method. A simple many-body
physics effect underpins the vdW interaction, namely the
mutual electrodynamical coupling of collective excitations
(plamsons) [1,3,4,6,15]. This is an effect that exists in the
fully interacting (physical) many-body system, described by
coupling-constant value λ = 1. The many-body physics effects
manifest themselves both in the expectation value of the kinetic
energy operator T̂ and in the expectation value of the electron-
electron interaction operator V̂ . However, in the standard—and
formally exact—KS scheme for DFT calculations, we work
with KS kinetic energy while incorporating the remainder,
the kinetic-correlation energy Tc, within the formulation of
an explicit XC functional Exc (like PBE or vdW-DF-cx).

We observe that a full characterization of the many-body
physics effects behind the vdW interactions requires us to iden-
tify the XC contributions at λ = 1 and that such information
is available for the vdW-DF by a coupling-constant scaling
analysis [8–11,54–56,77]. The λ = 1 system is nominally
given by an electron-gas response behavior that corresponds,
instead, to the XC functional Exc − Tc. This is one of many
consequences of the analysis presented in Refs. [8,10,11,56].

We present a code, called PPACF, so that we can ex-
tract spatially resolved binding contributions �enl

c,λ=1(r) =
�enl

c (r) − �tnl
c (r) for this description. We also provide this

full-interaction characterization of the nature of the vdW
interaction mechanism [1,3,4,6] for intramolecular binding,

for typical intermolecular binding cases of the S22 benchmark
set [107], and for a Kr cluster.

Overall, our results for weakly bonded systems confirm
that it is the sparse density gradient region between molecules
which dominates the contributions to the vdW interactions
[6,14,18,31,34–36,61]. The vdW interaction is often perceived
and handled as an atom-centered effect, i.e., consistent with the
original London picture of vdW forces [116,117]. However,
as we have also illustrated here, the vdW-DF-cx calculations
reveal a different picture.

The vdW-DF ability to handle binding arising in electron
tails [4,6,12,14] is important, for it naturally leads to an
enhancement of the interaction at binding distances. This is
true even if the asymptotic dispersion forces may be weak
[20]. In the case of extended systems, this enhancement effect
can be interpreted as image-plane effects at external or internal
surfaces [14,31,34,36,38–40,62,109,133,134]. For molecules,
it is more natural to discuss the binding enhancement through
the observation that it is much easier to polarize the electron
distribution in the tails than in high-density regions near the
atom nuclei [3,4,6,12,15,25,26,34,35,61].

We also highlight that the nonlocal-correlation binding
among molecules has signatures, channeled into pockets, i.e.,
concentrated in regions that resemble an orbital structure. The
binding structure, as revealed in �enl

c (r) or in �enl
c,λ=1(r),

shares characteristics that resemble (but is much weaker than)
those found in the KS kinetic-energy account of traditional
chemical binding. This observation is useful for developing the
qualitative discussions of vdW forces. For example, we can use
such bond signatures to document that the vdW-DF-cx account
of the nonlocal-correlation binding in the Kr trimer is not
additive—the binding is not merely a sum nonlocal-correlation
binding contributions in Kr dimers.

Finally, we note that our coupling constant scaling results
allow us to generalize the construction of strictly parameter-
free ACF-based hybrids [9–11,55,56] to a foundation in the
vdW-DF method. Such constructions and the implications for
the use of the vdW-DF-cx0 hybrid [70] is presented in a
forthcoming paper.
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APPENDIX: COUPLING CONSTANT SCALING

The coupling-constant result (22) can be obtained
from a renormalization-group perspective on the ACF.
In the coupling-constant analysis of XC functionals
[8–11,55,56,76,77], we consider a would-be many-body
physics problem specified by the Hamiltonian

Ĥα = T̂ + αV̂ + Vext, (A1)
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where V̂ , again, denotes the operator for full (or actual)
electron-electron interaction, and where Vext is the external
potential, in part set by the nuclei. The formal machinery
of DFT [7,135] works for Ĥα as well as it does for the
actual, physical problem defined by Ĥ = Ĥα=1. In such a
generalized-DFT framework, we use 	min,α

n to denote the
ground-state many-body wave function solution, which at any
given α will be a unique functional of the density variation
n(r), as indicated. Also, 	min

n denotes the ground-state solution
for the physical problem, at α = 1, i.e., the problem for
which we normally employ the DFT construction using a KS
calculational scheme [7].

For any given γ , we can consider the density scaling n(r) →
γ 3 n(γ r), where the choice γ = 1/λ corresponds to the scaling
that was discussed in the main text. The key observation [8] is
that this scaling permits us to formally construct the coupling-
constant scaling in the ground-state many-body wave-function
solutions to Ĥα ,

	min,α
n (r1, . . . ,rN ) = α3N/2	min

nγ
(αr1, . . . ,αrN ), (A2)

for γ = α−1, Ref. [9]. We note that 	min
nγ

is a ground-state so-
lution for the density nγ=1/α . The KS kinetic-energy functional
is defined as [9]

TKS[n] = 〈
�min

n

∣∣T̂ ∣∣�min
n

〉
, (A3)

where �min
n is a Slater-determinant wave function that cor-

responds to the density variation n(r) and minimizes the
expectation value in Eq. (A3).

For any assumed value of α, a generalization of the XC
standard energy functional,

Eα
xc[n] ≡ 〈

	min,α
n

∣∣(T̂ + αV̂ )
∣∣	min,α

n

〉 − TKS[n] − αU [n] ,

(A4)

will permit us to pursue DFT calculations in a generalized
KS scheme, solving the Ĥα problem [2,7,11,76]. In Eq. (A4),
U [n] denotes the mean-field Coulomb interaction among
electrons, Eq. (30). Similar as for the wave functions, we
reserve the subscript-free version Exc[n] to denote the standard
XC energy functional, i.e., relevant for the standard KS scheme
in DFT [7].

Following Refs. [8,11,76], we further define α-specific
density functionals for the expectation values of the electron-
electron interaction,

V α
e−e[n] ≡ 〈

	min,α
n

∣∣V̂ ∣∣	min,α
n

〉
, (A5)

and the expectation value of the kinetic-energy operator,

T α[n] ≡ 〈
	min,α

n

∣∣T̂ ∣∣	min,α
n

〉
. (A6)

At any given density n, it follows that αU [n] = α2U [n1/α],
TKS[n] = α2TKS[n1/α] and that

T α[n] + αV α
e−e[n] = α2

〈
	min

nγ

∣∣(T̂ + V̂ )
∣∣	min

nγ

〉
, (A7)

for γ = 1/α.
Next, we revisit the ACF [2,28,29], Eq. (9), noting that we

might just as well use it to define and compute the α-specific
XC functional

Eα
xc[n] =

∫ α

0
dλ Exc,λ[n]. (A8)

This XC functional can be used in a KS scheme for solving
the Ĥα ground-state problem [2,7,8,76]. The density-scaling
result (A7) implies that such XC energy functional adheres to
a simple scaling result [8,76],

Eα
xc[n] = α2 Exc[n1/α]. (A9)

Finally, the main scaling result for the XC energy functional,
Eq. (22), follows from the renormalization condition, Eq. (A8),
by simple derivation in the assumed value of the coupling
constant in Ĥα .

[1] G. D. Mahan, J. Chem. Phys. 43, 1569 (1965).
[2] D. C. Langreth and J. P. Perdew, Phys. Rev. B 15, 2884 (1977).
[3] K. Rapcewicz and N. W. Ashcroft, Phys. Rev. B 44, 4032

(1991).
[4] A. C. Maggs and N. W. Ashcroft, Phys. Rev. Lett. 59, 113

(1987).
[5] D. C. Langreth and S. H. Vosko, Phys. Rev. Lett. 59, 497 (1987).
[6] P. Hyldgaard, K. Berland, and E. Schröder, Phys. Rev. B 90,

075148 (2014).
[7] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
[8] M. Levy and J. P. Perdew, Phys. Rev. A 32, 2010 (1985).
[9] M. Levy, Phys. Rev. A 43, 4637 (1991).

[10] A. Görling and M. Levy, Phys. Rev. B 47, 13105 (1993).
[11] K. Burke, M. Ernzerhof, and J. P. Perdew, Chem. Phys. Lett.

265, 115 (1997).
[12] Y. Andersson, D. C. Langreth, and B. I. Lundqvist, Phys. Rev.

Lett. 76, 102 (1996).
[13] H. Rydberg, B. I. Lundqvist, D. C. Langreth, and M. Dion,

Phys. Rev. B 62, 6997 (2000).

[14] H. Rydberg, M. Dion, N. Jacobson, E. Schröder, P. Hyldgaard,
S. I. Simak, D. C. Langreth, and B. I. Lundqvist, Phys. Rev.
Lett. 91, 126402 (2003).

[15] M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I.
Lundqvist, Phys. Rev. Lett. 92, 246401 (2004).

[16] T. Thonhauser, V. R. Cooper, S. Li, A. Puzder, P. Hyldgaard,
and D. C. Langreth, Phys. Rev. B 76, 125112 (2007).

[17] K. Lee, È. D. Murray, L. Kong, B. I. Lundqvist, and D. C.
Langreth, Phys. Rev. B 82, 081101 (2010).

[18] K. Berland and P. Hyldgaard, Phys. Rev. B 89, 035412
(2014).

[19] T. Thonhauser, S. Zuluaga, C. A. Arter, K. Berland, E.
Schröder, and P. Hyldgaard, Phys. Rev. Lett. 115, 136402
(2015).

[20] K. Berland, V. R. Cooper, K. Lee, E. Schröder, T. Thonhauser,
P. Hyldgaard, and B. I. Lundqvist, Rep. Prog. Phys. 78, 066501
(2015).

[21] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77,
3865 (1996).

085115-13

https://doi.org/10.1063/1.1696973
https://doi.org/10.1063/1.1696973
https://doi.org/10.1063/1.1696973
https://doi.org/10.1063/1.1696973
https://doi.org/10.1103/PhysRevB.15.2884
https://doi.org/10.1103/PhysRevB.15.2884
https://doi.org/10.1103/PhysRevB.15.2884
https://doi.org/10.1103/PhysRevB.15.2884
https://doi.org/10.1103/PhysRevB.44.4032
https://doi.org/10.1103/PhysRevB.44.4032
https://doi.org/10.1103/PhysRevB.44.4032
https://doi.org/10.1103/PhysRevB.44.4032
https://doi.org/10.1103/PhysRevLett.59.113
https://doi.org/10.1103/PhysRevLett.59.113
https://doi.org/10.1103/PhysRevLett.59.113
https://doi.org/10.1103/PhysRevLett.59.113
https://doi.org/10.1103/PhysRevLett.59.497
https://doi.org/10.1103/PhysRevLett.59.497
https://doi.org/10.1103/PhysRevLett.59.497
https://doi.org/10.1103/PhysRevLett.59.497
https://doi.org/10.1103/PhysRevB.90.075148
https://doi.org/10.1103/PhysRevB.90.075148
https://doi.org/10.1103/PhysRevB.90.075148
https://doi.org/10.1103/PhysRevB.90.075148
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRevA.32.2010
https://doi.org/10.1103/PhysRevA.32.2010
https://doi.org/10.1103/PhysRevA.32.2010
https://doi.org/10.1103/PhysRevA.32.2010
https://doi.org/10.1103/PhysRevA.43.4637
https://doi.org/10.1103/PhysRevA.43.4637
https://doi.org/10.1103/PhysRevA.43.4637
https://doi.org/10.1103/PhysRevA.43.4637
https://doi.org/10.1103/PhysRevB.47.13105
https://doi.org/10.1103/PhysRevB.47.13105
https://doi.org/10.1103/PhysRevB.47.13105
https://doi.org/10.1103/PhysRevB.47.13105
https://doi.org/10.1016/S0009-2614(96)01373-5
https://doi.org/10.1016/S0009-2614(96)01373-5
https://doi.org/10.1016/S0009-2614(96)01373-5
https://doi.org/10.1016/S0009-2614(96)01373-5
https://doi.org/10.1103/PhysRevLett.76.102
https://doi.org/10.1103/PhysRevLett.76.102
https://doi.org/10.1103/PhysRevLett.76.102
https://doi.org/10.1103/PhysRevLett.76.102
https://doi.org/10.1103/PhysRevB.62.6997
https://doi.org/10.1103/PhysRevB.62.6997
https://doi.org/10.1103/PhysRevB.62.6997
https://doi.org/10.1103/PhysRevB.62.6997
https://doi.org/10.1103/PhysRevLett.91.126402
https://doi.org/10.1103/PhysRevLett.91.126402
https://doi.org/10.1103/PhysRevLett.91.126402
https://doi.org/10.1103/PhysRevLett.91.126402
https://doi.org/10.1103/PhysRevLett.92.246401
https://doi.org/10.1103/PhysRevLett.92.246401
https://doi.org/10.1103/PhysRevLett.92.246401
https://doi.org/10.1103/PhysRevLett.92.246401
https://doi.org/10.1103/PhysRevB.76.125112
https://doi.org/10.1103/PhysRevB.76.125112
https://doi.org/10.1103/PhysRevB.76.125112
https://doi.org/10.1103/PhysRevB.76.125112
https://doi.org/10.1103/PhysRevB.82.081101
https://doi.org/10.1103/PhysRevB.82.081101
https://doi.org/10.1103/PhysRevB.82.081101
https://doi.org/10.1103/PhysRevB.82.081101
https://doi.org/10.1103/PhysRevB.89.035412
https://doi.org/10.1103/PhysRevB.89.035412
https://doi.org/10.1103/PhysRevB.89.035412
https://doi.org/10.1103/PhysRevB.89.035412
https://doi.org/10.1103/PhysRevLett.115.136402
https://doi.org/10.1103/PhysRevLett.115.136402
https://doi.org/10.1103/PhysRevLett.115.136402
https://doi.org/10.1103/PhysRevLett.115.136402
https://doi.org/10.1088/0034-4885/78/6/066501
https://doi.org/10.1088/0034-4885/78/6/066501
https://doi.org/10.1088/0034-4885/78/6/066501
https://doi.org/10.1088/0034-4885/78/6/066501
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865


YANG JIAO, ELSEBETH SCHRÖDER, AND PER HYLDGAARD PHYSICAL REVIEW B 97, 085115 (2018)

[22] J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E.
Scuseria, L. A. Constantin, X. Zhou, and K. Burke, Phys. Rev.
Lett. 100, 136406 (2008).

[23] H. Rydberg, Nonlocal correlations in density functional
theory, Ph.D. thesis, Department of Applied Physics,
Chalmers University of Technology, Göteborg, Sweden, 2001,
http://bitmath.se/rydberg/Thesis.

[24] K. Berland, C. A. Arter, V. R. Cooper, K. Lee, B. I. Lundqvist,
E. Schröder, T. Thonhauser, and P. Hyldgaard, J. Chem. Phys.
140, 18A539 (2014).

[25] A. D. Becke and E. R. Johnson, J. Chem. Phys. 123, 154101
(2005).

[26] A. D. Becke and E. R. Johnson, J. Chem. Phys. 127, 154108
(2007).

[27] G. Román-Pérez and J. M. Soler, Phys. Rev. Lett. 103, 096102
(2009).

[28] D. C. Langreth and J. P. Perdew, Solid State Commun. 17, 1425
(1975).

[29] O. Gunnarsson and B. I. Lundqvist, Phys. Rev. B 13, 4274
(1976).

[30] M. Callsen, N. Atodiresei, V. Caciuc, and S. Blügel, Phys. Rev.
B 86, 085439 (2012).
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