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A large depolarization shift indicates a strongnonequilibriumintersubband electron-electron scattering~G!
in tunneling structure. For a far-infrared subband separationD;10 meV, the rateG scales with the upper-
subband occupation and is never significantly reduced by screening. Despite this nonradiative decay a finite
population inversion can be maintained. Finally, the applied bias changes the wave-function symmetry so as to
cause a dramatic variation of the electron-electron scattering rate.

In the quantum cascade laser1 a nonequilibrium current
injection exclusively into the upper subband of a multiple-
level tunneling structure provides a finiteintersubbandpopu-
lation inversion and actual lasing~at midinfrared frequency
v;300 meV!. This seminal achievement culminates a search
begun in 1971 with the proposal by Kazarinov and Suris2

soon after the groundbreaking work by Esaki and Tsu.3 There
is also a considerable interest in the far-infrared~or Tera-
hertz! regime and we mention in particular the observation4

of spontaneous intersubband emission in superlattices ex-
cited by a current flow. Adapting the quantum-cascade-laser
design1 we presently investigate the population inversion in a
tunneling structure with far-infrared subband separation,
D'11 meV.

The prospect of such far-infrared stimulated emission is
raised by the small intersubband decay, 1/t&0.03 meV,
observed5 at temperaturesT&50 K and at weak optical
pumping.6 This small decay is possible because the optical-
phonon frequency~VLO'36 meV in GaAs! exceeds the sub-
band separation,D'11 meV, and optical-phonon emission
processes are inhibited5 at temperatures below the activation
energyVLO2D'25 meV.

We find, however, that the current injection results in a
strongnonequilibriumelectron-electron intersubband scatter-
ing ~G! which we evaluate for a complete upper-subband
occupation below the emitter chemical potential. This scat-
teringG is never significantly reduced by screening and, un-
like the near-equilibrium electron-electron scattering,7 is not
inhibited by the Pauli exclusion~as we can assume popula-
tion inversion.! In this letter we~1! identify a simple scaling
of the nonequilibrium electron-electron scattering rate~G!
with the upper-subband occupation,~2! predict a very strong
intersubband decay;2G'1.0 meV for an upper-subband
sheet densityNL'1011 cm22 comparable to that in the mid-
infrared quantum cascade laser,1 ~3! demonstrate that a
smaller population inversion density~;0.1731011 cm22!
can be maintained at a moderate tunneling current density,
and finally ~4! predict for the electron-electron scattering a
dramatic bias dependence arising from the so-called
quantum-confined Stark effect.8

A far-infrared quantum-cascade-laser design.The bottom
panel of Fig. 1 shows the schematics of the far-infrared op-
tically active tunneling structure presently investigated. We
assume the tunneling is independent of the electron energy in
the plane of the heterostructure layersEi(k)5k2/2me* . The

top panel of Fig. 1 illustrates the intersubband scattering~G!
between two upper-subband electrons [E21Ei(k)] to two
lower-subband electrons [E11Ei(k)]. For the current-
injected upper-subband occupation densityn2 the lower-
subband occupationn1 results from the net nonradiative de-
cayn2Gnr .

The subband occupation densities are determined from
the two-level rate equation involving additional tunneling
rates9—Ge , Gc1, andGc2—illustrated in Fig. 1:

dn2
dt

5~NL2n2!Ge2n2Gc22n2Gnr ,

~1!
dn1
dt

5n2Gnr2n1Gc1 .

There is no current injection into the lower subband because
the lower band edgefL of the emitter is raised aboveE1.
The steady-state solution of Eq.~1! thus yields
n22n1}NL~12Gnr/Gc1!, and population inversion requires
Gc1.Gnr . The lower-level escape rateGc1;0.5 meV is sig-
nificantly larger than the decay rate 1/t'0.03 meV measured
under a weak optical pumping.6 Here we investigate the non-
equilibrium electron-electron scattering to test if population
inversion can be maintained.10

Effective Coulomb interaction.The characteristic in-plane
momentum transferqD5A2me*D together with the zero-
frequency background dielectric constante0 provides a natu-
ral scaling of the effective Coulomb interaction
(e2/e0q D

2 )U(q), whereU(q) is a dimensionless matrix ele-
ment introduced below. For the screenedU(q) and un-
screenedU0(q) matrix element we find~a! a moderateq
variation,~b! a correspondingly moderate dependence on an
effective Thomas-Fermi screening11 wave vectorqTF , and
~c! a numerical value ofU0(q50) that can be estimated
from experiments.5

The screened effective dimensionless matrix element is
defined

U~q![U21,21~q!52pE dx2E dx1C2~x2!C1~x2!qD

3exp~2Aq21qTF
2 ux22x1u!/Aq21qTF

2

3C2~x1!C1~x1!, ~2!
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in terms of the resonant-level wave functions12 and Thomas-
Fermi wave vectorqTF . The unscreened interaction matrix
elementU0(q), theqTF→0 limit of ~2!, is finite atq50. The
moderate variation ofU0(q), namelyU0(qD)'U0~0!/4, can
be deduced analytically for a square quantum well with infi-
nite barriers. That the screening is ineffective in modulating
the nonequilibrium electron-electron scattering follows di-
rectly from the observationU(q)5U0(Aq21qTF

2 ) because
the estimated Thomas-Fermi screening wave vector remains
smaller than the characteristic momentum transfer,11 qTF
,qD .

Finally, the strength of the effective nonequilibrium
electron-electron interaction is evident from the observed5

large equilibrium depolarization shift13,14 D*2D'2 meV of

the absorption peak,D* , from the far-infrared subband sepa-
rationD'11 meV at sheet densityNs'1011 cm22. In particu-
lar, neglecting the coupling to other quantum levels, we
have11,14

~D* !22D252DNs~e
2/e0qD!U0~q50!. ~3!

For a finite occupation densityn2&NL;Ns'1011 cm22 we
thus expect the strong interactionNL(e

2/e0qD)U
0~0!&2

meV.
Scaling of electron-electron scattering.We use the Fermi

golden rule15 to evaluate the total rateG for two
~opposite-spin16! upper-subband electrons to decay to sub-
band E1. For complete upper-subband occupation~i.e.,
n25NL! at zero temperature we obtainG as a sum over the
in-plane momentum transferq of the squared matrix element
@uU(q) u2# weighted by the phase-space contribution [P(q)]
introduced below. Because, however,uU(q) u2 exhibits only a
moderateq variation and because the scattering phase space
is dominated by the contribution atqD , we can
approximate17

G'
Ry*

p2 S m2

D D uU~qD!u2I P~m2 /D!, ~4!

where

I P~m2 /D![E dq

km2

q

km2

P~q!'I P~0!50.785 ~5!

represent a dimensionless integrated phase-space measure es-
sentially independent ofm2/D.

The top panel of Fig. 2 verifies linear-in-m2 scaling ofG,
as expressed in Eqs.~4! and~5!. For the unscreened interac-
tion the linear scaling is nearly exact and closely approxi-
mated by Ry* /p2~m2/D!uU0(qD)u

2I P(0). For the screened
rate ~qTF.0!, there is some deviation arising from the in-
creasing screening of squared matrix elementuU(q) u2. At
most, that screening causes a factor of 2 reduction even at
m25D.

To explain the central result Eq.~4! we consider the
phase-space contribution at momentum transferq ~see also
Ref. 15!,

NL
2m2

21P~q!5
1

2 (
kW ,kW8

U„m22Ei~k!…

3U„m22Ei~k8!…2pd~Ef2Ei !. ~6!

The displayed one-half factor arises because we only con-
sider direct scattering between opposite-spin electrons.16 The
energy difference,Ef2Ei , between the final and initial state
depends onq and on the initial in-plane momenta,kW andkW8.
In Ref. 11 we show that theweighteddimensionless phase-
space contribution, (q/km2)P(q), ~a! has the domain21
<q/km2

2A11(qD /km2
)2<1, ~b! is always strongly peaked

at the characteristic momentum transferqD with constant
maximum value (qD /km2

)P(qD)58/(3p), and conse-
quently,~c! results in an almostm2/D-independent integrated
phase-space measure,I P(m2/D)'I P(0).

The key observation is~b!, which follows from the as-
sumed quadratic subband dispersion,Ei(k). Specifically, at

FIG. 1. Schematic~bottom panel! of far-infrared quantum-
cascade-laser designand ~top panel! of nonequilibrium electron-
electron scatteringG. The hypothetical tunneling structure com-
prises an asymmetric double-quantum-well region5 surrounded by
the n-doped~left/right! emitter/collector leads. A moderate voltage
dropV[(mL2mR)/e;20 mV ensures a current injectionGe exclu-
sively into upper resonant levelE2 and fast tunneling escape rates

9

Gc1 and Gc2 out of levelsE1 andE2, respectively. Bottom panel
shows tunneling potential and resonant levels at voltage dropVsym
with ~a! minimal subband separation~D[E22E1! and ~b! near-
exact inversion symmetry of corresponding wave functions,C1

s(x)
andC2

s(x). The three pairs of opposite transition arrows in the top
panel illustrate the nonequilibrium scatteringG between two upper-
subband electrons which both decay to subbandE1. As indicated by
the pair of solid arrows, the scatteringG occurs with the character-
istic momentum transferqD5A2me*D and on average with no en-
ergy transfer.
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the characteristic momentum transfer,q5qD , thed-function
argument, (Ef2Ei), in Eq. ~6! reduces to (qD(ky
2ky8)/me* ), where we have chosen they direction to be par-
allel to the in-plane momentum transfer. The phase-space
contribution, Eq.~6!, then scales asme* km2

3 /qD and ~upon

extractingNL
2m2

21}me* km2

2 ! we arrive at the constant value

(qD /km2
)P(qD)58/(3p).

A finite population inversion.The bottom panel of Fig. 2
estimates the population inversionn22n1 ~left axis! and the
current densityJ5eGe(NL2n2) ~right axis!. These esti-
mates are based on the steady-state solution of Eq.~1! using
the simple assumption,

Gnr~n2!5Gse12S n2NL
D Ry*

p2 S m2

D D uU0~qD!u2I P~0!, ~7!

for the total intersubband decay rate at voltage dropVsym.
We assume18 in Eq. ~7! the total single-electron decay rate
Gsebounded by the value, 1/t'0.03 meV, measured5 at weak
optical pumping andT550 K. The estimate,Gnr~n2!2Gse for
the electron-electron decay results as follows. The
scattering17 G22→21 can be neglected atVsym. The scattering
G removes two electrons at a time but is reduced by the
partial upper-subband distributionf 2(k)[(n2/NL)3U„m2

2Ei(k)…. Finally, we approximate the resulting electron-
electron decay 2(n2/NL)G by the scaling result~solid curve
in top panel! for G.

The current injection in the midinfrared quantum cascade
laser1 maintains a population inversionn2'NL;1011 cm22

which requiresm2'5 meV andGe@Gc2. In the present far-
infrared structure the resulting strong decay 2G'1.0 meV
would eliminate such a population inversion. Nevertheless,
Fig. 2 demonstrates19 that a smaller population inversion,
n22n1*0.1731011 cm22 can be maintained at current den-
sities comparable to the midinfrared quantum cascade laser.1

However, also note the population inversion,n22n1 ,
quickly saturates and eventually decreases whereas the cur-
rent density,J5eGeNL(12n2/NL), shows a faster-than-
linear increase withm2/D. A choice ofGe@Gc2'1.0 meV
~not shown! does not increase the maximum population in-
version and causes a strongly nonlinear rise of the current
with m2/D. The electron-electron scattering thus forces a non-
trivial optimization ofGe/Gc2 andm2/D.

FIG. 3. Dramatic voltage-drop variation~top panel! of electron-
electron scattering rates,G and17G22,21, explained~bottom panel! by
the quantum-confined Stark effect8 on the wave-function overlap
and symmetry. Bottom panel identifiesVsym ~vertical dotted line! as
the voltage drop with minimal subband separation~dash-dotted
curve!. Observe that the dipole matrix element~solid curve! is
nearly constant, whereas the center-of-charge separation~dashed
curve! vanishes20 at Vsym. The bias dependence ofG andG22→21
reflects the wave-function-symmetry dependence of the characteris-
tic matrix elementuU2(qD)u

2 and uU 22,21
2 (qD/&)u2, respectively.

In particular, the matrix elementU(qD) and thusG enhance atVsym
because of the increased wave-function overlap. In contrast, the
matrix elementU22,21(qD/&) and thusG22→21 are strongly reduced
close toVsym but increase dramatically when, forVÞVsym, the
wave-function symmetry is lost. Finally, the upper panel shows the
combined electron-electron scattering rate, 2G1G22→21, which also
exhibits a significant wave-function-symmetry variation.

FIG. 2. Top panel shows the approximate scaling, solid curve,
with electron occupationm2/D of unscreened~screened! nonequilib-
rium scattering rateG, dashed–single-~double-! dotted curve.
Screening causes at most a factor of 2 reduction ofG even atm25D.
The interaction matrix elements are evaluated atVsym where the
rate17 G22→21, dotted curve, essentially vanishes. Bottom panel
demonstrates19 that a finite population inversion~left axis!
n22n1*0.1731011 cm22 can be maintained at a moderate current
density ~right axis! J5eGe(NL2n2) despite the strong intersub-
band scattering. Note, however, that the population inversion
quickly saturates and eventually decreases, whereas the current den-
sity J5eNL(12n2/NL) shows a faster-than-linear increase with
m2/D.
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Wave-function-symmetry dependence.The bottom panel
of Fig. 3 shows the so-called quantum-confined Stark effect8

of the bias voltage on the subband separation and on the
wave-function overlap and symmetry.20 The minimal sub-
band separation occurs at voltage dropVsym ~vertical dotted
line!. The dipole matrix element,u^C2uxuC1&u ~solid curve!,
enhances atVsym with the increased wave-function overlap.
In contrast, the center-of-charge separation,^C2uxuC2&
2^C1uxuC1& ~dashed curve! vanishes atVsym but rapidly
changes withV2Vsym, a variation reflecting the loss of
wave-function inversion symmetry.

The top panel of Fig. 3 shows the dramatic voltage-drop
dependence of both scattering rateG ~solid curve! and of
G22→21 ~dashed curve!.17 This variation reflects the wave-
function-symmetry dependence of the characteristic matrix
elements for a constant ratiom2/D51

2; see Eq.~4! ~cf. Ref.
17!. In particular, the matrix elementU(qD), containing an
even number of upper-level wave functions, can never be
zero, and in fact enhances atV5Vsym. In contrast, the char-
acteristic matrix elementU22,21(qD/&), containing three

upper-level wave functions, must vanish close toVsym ~due
to the near-exact wave-function inversion symmetry!, but in-
creases rapidly with the finite charge separation atVÞVsym.

Finally, the top panel of Fig. 3 shows thetotal electron-
electron decay, 2G1G22→21, which also depends significantly
on the wave-function-inversion symmetry. Ensuring an
upper-subband current injection atVÞVsym, may thus en-
hance the population inversion beyond the value,
n22n1'0.1731011 cm22, estimated in Fig. 2.
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