Electron-electron scattering in far-infrared quantum cascade lasers

Per Hyldgaard* and John W. Wilkins
Department of Physics, 174 West 18th Avenue, Ohio State University, Columbus, Ohio 43210-1106
(Received 20 November 1995)

A large depolarization shift indicates a strong nonequilibrium intersubband electron-electron scattering (Γ) in tunneling structure. For a far-infrared subband separation Δ~10 meV, the rate Γ scales with the upper-subband occupation and is never significantly reduced by screening. Despite this nonradiative decay a finite population inversion can be maintained. Finally, the applied bias changes the wave-function symmetry so as to cause a dramatic variation of the electron-electron scattering rate.

In the quantum cascade laser 1 a nonequilibrium current injection exclusively into the upper subband of a multiple-level tunneling structure provides a finite intersubband population inversion and actual lasing (at midinfrared frequency ω~300 meV). This seminal achievement culminates a search begun in 1971 with the proposal by Kazarinov and Suris 2 and soon after the groundbreaking work by Esaki and Tsu. 3 There is also a considerable interest in the far-infrared (or Terahertz) regime and we mention in particular the observation 4 of spontaneous intersubband emission in superlattices excited by a current flow. Adapting the quantum-cascade-laser design 1 we presently investigate the population inversion in a tunneling structure with far-infrared subband separation, Δ~11 meV.

The prospect of such far-infrared stimulated emission is raised by the small intersubband decay, 1/τ~0.03 meV, observed 5 at temperatures T=50 K and at weak optical pumping. 6 This small decay is possible because the optical-phonon frequency (ΩLO~36 meV in GaAs) exceeds the subband separation, Δ~11 meV, and optical-phonon emission processes are inhibited 5 at temperatures below the activation energy ΩLO, Δ=25 meV.

We find, however, that the current injection results in a strong nonequilibrium electron-electron intersubband scattering (Γ) which we evaluate for a complete upper-subband occupation below the emitter chemical potential. This scattering Γ is never significantly reduced by screening and, unlike the near-equilibrium electron-electron scattering, 7 is not inhibited by the Pauli exclusion (as we can assume population inversion.) In this letter we (1) identify a simple scaling of the nonequilibrium electron-electron scattering rate (Γ) with the upper-subband occupation, (2) predict a very strong intersubband decay ~2Γ~1.0 meV for an upper-subband sheet density N_L~10^{11} cm^{-2} comparable to that in the midinfrared quantum cascade laser 1 (3) demonstrate that a smaller population inversion density (~0.17×10^{11} cm^{-2}) can be maintained at a moderate tunneling current density, and finally (4) predict for the electron-electron scattering a dramatic bias dependence arising from the so-called quantum-confined Stark effect. 8

A far-infrared quantum-cascade-laser design. The bottom panel of Fig. 1 illustrates the intersubband scattering (Γ) between two upper-subband electrons [E_2+E_i(k)] to two lower-subband electrons [E_1+E_i(k)]. For the current-injected upper-subband occupation density n_2 the lower-subband occupation n_1 results from the net nonradiative decay n_2 Γ_{nr}.

The subband occupation densities are determined from the two-level rate equation involving additional tunneling rates 9 —Γ_0, Γ_1— illustrated in Fig. 1:

\[
\frac{dn_2}{dt} = (N_L-n_2)\Gamma_0 n_1 n_2 \Gamma_1,
\]

There is no current injection into the lower subband because the lower band edge of the emitter is raised above E_1. The steady-state solution of Eq. (1) thus yields n_2 = N_L (1 - Γ_{nr}/Γ_1), and population inversion requires Γ_2~Γ_1. The lower-level escape rate Γ_1~0.5 meV is significantly larger than the decay rate 1/τ~0.03 meV measured under a weak optical pumping. 6 Here we investigate the far-infrared quantum-cascade-laser scattering to test if population inversion can be maintained. 10

Effective Coulomb interaction. The characteristic in-plane momentum transfer q~√2m_e Δ together with the zero-frequency background dielectric constant ԑ_0 provides a natural scaling of the effective Coulomb interaction (e^2/ԑ_0 q^2 Δ)U(q), where U(q) is a dimensionless matrix element introduced below. For the screened U(q) and unscreened U^0(q) matrix element we find (a) a moderate q variation, (b) a correspondingly moderate dependence on an effective Thomas-Fermi wave vector q_{TF}, and (c) a numerical value of U^0(q=0) that can be estimated from experiments. 5

The screened effective dimensionless matrix element is defined

U(q) = U_L U(q) = 2π \int dx_2 \int dx_1 \Psi_2(x_2) \Psi_1(x_1) q \phi(x_1)(x_2)

\times \exp(-\sqrt{q^2+q_{TF}^2}/\sqrt{\phi(x_1)(x_2)}).

(2)
in terms of the resonant-level wave functions12 and Thomas-Fermi wave vector q_{TF}. The unscreened interaction matrix element $U^0(q)$, the $q_{\text{TF}}\rightarrow 0$ limit of (2), is finite at $q=0$. The moderate variation of $U^0(q)$, namely $U^0(q_{\Delta})\approx U^0(0)/4$, can be deduced analytically for a square quantum well with infinite barriers. That the screening is ineffective in modulating the nonequilibrium electron-electron scattering follows directly from the observation $U(q) = U^0(\sqrt{q^2 + q_{\text{TF}}^2})$ because the estimated Thomas-Fermi screening wave vector remains smaller than the characteristic momentum transfer,11 $q_{\text{TF}} < q_{\Delta}$.

Finally, the strength of the effective nonequilibrium electron-electron interaction is evident from the observed3 large equilibrium depolarization shift13,14 $\Delta^*-\Delta \approx 2$ meV of the absorption peak, Δ^*, from the far-infrared subband separation $\Delta \approx 11$ meV at sheet density $N_s \approx 10^{11}$ cm$^{-2}$. In particular, neglecting the coupling to other quantum levels, we have11,14

$$\left(\Delta^*\right)^2 - \Delta^2 = 2N_s(e^2/\epsilon_0\Delta) U^0(q = 0).$$

For a finite occupation density $n_2 \leq N_{s}\approx N_{s}\approx 10^{11}$ cm$^{-2}$ we thus expect the strong interaction $N_s(e^2/\epsilon_0\Delta) U^0(0) \approx 2$ meV.

Scaling of electron-electron scattering. We use the Fermi golden rule15 to evaluate the total rate Γ for two (opposite-spin16) upper-subband electrons to decay to subband E_1. For complete upper-subband occupation (i.e., $n_2 = N_{s}$) at zero temperature we obtain Γ as a sum over the in-plane momentum transfer q of the squared matrix element $|U(q)|^2$ weighted by the phase-space contribution $|P(q)|$ introduced below. Because, however, $|U(q)|^2$ exhibits only a moderate q variation and because the scattering phase space is dominated by the contribution at q_{Δ}, we can approximate17

$$\Gamma \approx \frac{\text{Ry}^*}{\pi} \left| \frac{\mu_2}{\Delta} \right| |U(q_{\Delta})|^2 I_p(\mu_2/\Delta),$$

where

$$I_p(\mu_2/\Delta) = \int dq \frac{q}{k_{\mu_2}} P(q) = I_p(0) = 0.785$$

represent a dimensionless integrated phase-space measure essentially independent of μ_2/Δ.

The top panel of Fig. 2 verifies linear-in-μ_2 scaling of Γ, as expressed in Eqs. (4) and (5). For the unscreened interaction the linear scaling is nearly exact and closely approximated by $\text{Ry}^*/\pi^2(\mu_2/\Delta)|U^0(q_{\Delta})|^2 I_p(0)$. For the screened rate ($q_{\text{TF}} > 0$), there is some deviation arising from the increasing screening of squared matrix element $|U(q)|^2$. At most, that screening causes a factor of 2 reduction even at $\mu_2 > \Delta$.

To explain the central result Eq. (4) we consider the phase-space contribution at momentum transfer q (see also Ref. 15),

$$N_s^2 \mu_2^{-1} P(q) = \frac{1}{2} \sum_{k'k} \Theta(\mu_2 - E_i(k))$$

$$\times \Theta(\mu_2 - E_i(k')) 2\pi \delta(E_i - E_i).$$

The displayed one-half factor arises because we only consider direct scattering between opposite-spin electrons.16 The energy difference, $E_i - E_i$, between the final and initial state depends on q and on the initial in-plane momenta, k and k'. In Ref. 11 we show that the weighted dimensionless phase-space contribution, $(q/k_{\mu_2})^2 P(q)$, (a) has the domain $-1 \leq q/k_{\mu_2} - \sqrt{1 + (q_{\Delta}/k_{\mu_2})^2} \leq 1$, (b) is always strongly peaked at the characteristic momentum transfer q_{Δ} with constant maximum value $(q_{\Delta}/k_{\mu_2})^2 P(q_{\Delta}) = 8/(3\pi^2)$, and consequently, (c) results in an almost μ_2/Δ-independent integrated phase-space measure, $I_p(\mu_2/\Delta) = I_p(0)$.

The key observation is (b), which follows from the assumed quadratic subband dispersion, $E_i(k)$. Specifically, at
FIG. 2. Top panel shows the approximate scaling, solid curve, with electron occupation \(\mu_2/\Delta \) of unscreened (screened) nonequilibrium scattering rate \(\Gamma \), dashed–single-(double-) dotted curve. Screening causes at most a factor of 2 reduction of \(\Gamma \) even at \(\mu_2/\Delta \). The interaction matrix elements are evaluated at \(V_{\text{sym}} \) where the rate \(\Gamma_{22-21} \) dotted curve, essentially vanishes. Bottom panel demonstrates \(19 \) that a finite population inversion (left axis) \(n_2-n_1 \approx 0.17 \times 10^{10} \text{ cm}^{-2} \) can be maintained at a moderate current density (right axis) \(J = e \Gamma_e(N_L-n_2) \) despite the strong intersubband scattering. Note, however, that the population inversion quickly saturates and eventually decreases, whereas the current density \(J \approx e N_L(1-n_2/N_L) \) shows a faster-than-linear increase with \(\mu_2/\Delta \).

The characteristic momentum transfer, \(q = q_{\Delta} \), the \(\delta \)-function argument, \((E_f-E_i) \), in Eq. (6) reduces to \((q_\Delta(k_y-k_y^i)/m^*_{e}) \), where we have chosen the \(y \) direction to be parallel to the in-plane momentum transfer. The phase-space contribution, Eq. (6), then scales as \(m^*_{e}k^3_{y}/q_{\Delta} \) and (upon extracting \(N^2_L \mu_2^{-1} \varepsilon m^*_{e}k^3_{2} \)) we arrive at the constant value \((q_{\Delta}/k_{\mu_2})P(q_\Delta) = 8/(3\pi) \).

A finite population inversion. The bottom panel of Fig. 2 estimates the population inversion \(n_2-n_1 \) (left axis) and the current density \(J = e \Gamma_e(N_L-n_2) \) (right axis). These estimates are based on the steady-state solution of Eq. (1) using the simple assumption

\[
\Gamma_{\text{sc}}(n_2) = \Gamma_{\text{sc}} + \frac{2}{N_L} \left(\frac{n_2}{N_L} \right) \frac{Ry^*}{\pi} \frac{\mu_2^2}{\Delta} |U^0(q_{\Delta})|^2 |I_p(0)|, \tag{7}
\]

for the total intersubband decay rate at voltage drop \(V_{\text{sym}} \). We assume \(1 \) in Eq. (7) the total single-electron decay rate \(\Gamma_{\text{sc}} \) bounded by the value, \(\Gamma_{\text{sc}} = 0.03 \text{ meV} \), measured \(2 \) at weak optical pumping and \(T = 50 \text{ K} \). The estimate, \(\Gamma_{\text{sc}}(n_2) - \Gamma_{\text{sc}} \) for the electron-electron decay results as follows. The scattering \(2 \gamma_{22-21} \) can be neglected at \(V_{\text{sym}} \). The scattering \(\Gamma \) removes electrons at a time but is reduced by the partial upper-subband distribution \(f_2(k) = (n_2/N_L) \Theta(\mu_2 - E_i(k)) \). Finally, we approximate the resulting electron-electron decay \(2(n_2/N_L)\Gamma \) by the scaling result (solid curve in top panel) for \(\Gamma \).

The current injection in the midinfrared quantum cascade laser \(1 \) maintains a population inversion \(n_2 - n_1 \approx 10^{11} \text{ cm}^{-2} \) which requires \(\mu_2 \approx 5 \text{ meV} \) and \(\Gamma_e > \Gamma_{c2} \). In the present far-infrared structure the resulting strong decay \(2 \Gamma_e \approx 1.0 \text{ meV} \) would eliminate such a population inversion. Nevertheless, Fig. 2 demonstrates \(19 \) that a smaller population inversion, \(n_2 - n_1 \approx 0.17 \times 10^{10} \text{ cm}^{-2} \) can be maintained at current densities comparable to the midinfrared quantum cascade laser. \(1 \)

However, also note the population inversion, \(n_2 - n_1 \), quickly saturates and eventually decreases whereas the current density, \(J = e \Gamma_e(N_L-n_2) \), shows a faster-than-linear increase with \(\mu_2/\Delta \). A choice of \(\Gamma_e > \Gamma_{c2} \approx 1.0 \text{ meV} \) (not shown) does not increase the maximum population inversion and causes a strongly nonlinear rise of the current with \(\mu_2/\Delta \). The electron-electron scattering thus forces a non-trivial optimization of \(\Gamma_e/\Gamma_{c2} \) and \(\mu_2/\Delta \).

FIG. 3. Dramatic voltage-drop variation (top panel) of electron-electron scattering rates, \(\Gamma \) and \(\gamma_{22-21} \), explained (bottom panel) by the quantum-confined Stark effect \(3 \) on the wave-function overlap and symmetry. The bias dependence of \(\Gamma_e \) and \(\gamma_{22-21} \) reflects the wave-function–symmetry dependence of the characteristic matrix element \(|U(q_{\Delta})|^2 \) and \(|U_{22-21}(q_{\Delta}/\sqrt{2})|^2 \), respectively. In particular, the matrix element \(U(q_{\Delta}) \) and thus \(\Gamma_e \) enhance at \(V_{\text{sym}} \) because of the increased wave-function overlap. In contrast, the matrix element \(U_{22-21}(q_{\Delta}/\sqrt{2}) \) and thus \(\gamma_{22-21} \) are strongly reduced close to \(V_{\text{sym}} \) but increase dramatically when, for \(V \neq V_{\text{sym}} \), the wave-function symmetry is lost. Finally, the upper panel shows the combined electron-electron scattering rate, \(2\Gamma + \gamma_{22-21} \), which also exhibits a significant wave-function–symmetry variation.
Wave-function-symmetry dependence. The bottom panel of Fig. 3 shows the so-called quantum-confined Stark effect\(^1\) of the bias voltage on the subband separation and on the wave-function overlap and symmetry.\(^2\) The minimal subband separation occurs at voltage drop \(V_{sym}\) (vertical dotted line). The dipole matrix element, \(|\langle \Psi_2 | x | \Psi_1 \rangle|\) (solid curve), enhances at \(V_{sym}\) with the increased wave-function overlap. In contrast, the center-of-charge separation, \(|\langle \Psi_2 | x | \Psi_2 \rangle\rangle - (\langle \Psi_1 | x | \Psi_2 \rangle)\rangle\) (dashed curve) vanishes at \(V_{sym}\) but rapidly changes with \(V-V_{sym}\), a variation reflecting the loss of wave-function inversion symmetry.

The top panel of Fig. 3 shows the dramatic voltage-drop dependence of both scattering rate \(\Gamma\) (solid curve) and of \(\Gamma_{2-21}\) (dashed curve).\(^\dagger\) This variation reflects the wave-function-symmetry dependence of the characteristic matrix elements for a constant ratio \(\mu_2/\Delta = 1/2\); see Eq. (4) (cf. Ref. 17). In particular, the matrix element \(U(q_{x})\), containing an even number of upper-level wave functions, can never be zero, and in fact enhances at \(V-V_{sym}\). In contrast, the characteristic matrix element \(U_{22,21}(q_{x}/V^2)\), containing three upper-level wave functions, must vanish close to \(V_{sym}\) (due to the near-exact wave-function inversion symmetry), but increases rapidly with the finite charge inversion symmetry. Finally, the top panel of Fig. 3 shows the total electron-electron decay, \(21' + \Gamma_{2-21}\), which also depends significantly on the wave-function-inversion symmetry. Ensuring an upper-subband current injection at \(V\neq V_{sym}\), may thus enhance the population inversion beyond the value, \(n_2 - n_1 = 0.17 \times 10^{11} \text{ cm}^{-2}\), estimated in Fig. 2.

The authors appreciate useful discussions with F. Capasso, S. P. Hershfield, G. D. Mahan, R. A. Smith, C. J. Stanton, and at UCSB with J. R. Allen, Jr., K. Craig, J. Heyman, M. Sherwin, and K. Unterrainer. We thank ITP, QUEST, and Material Research Laboratory at UCSB for their kind hospitality and the use of computer facilities during our visit. This work was supported by the Danish Natural Science Research Foundation and by the Office of Naval Research.

\(\dagger\) Present address: Solid State Division, Oak Ridge National Lab, P.O. Box 2008, Oak Ridge, TN 37831.

\(9\) We estimate \(E\) \(\approx\) \(2.0\) meV for the structure shown in Fig. 1.

\(10\) The strong nonequilibrium electron-electron scattering may also affect the study [see, for example, A. N. Korotkov, D. V. Averin, and K. K. Likharev, Phys. Rev. B 49, 7548 (1994)] of possible continuous Bloch oscillations in a two-level tunneling structure.

\(12\) We thank Dr. B. Galdrikian for kind permission to use his Schrödinger-solver code.

\(15\) The rate \(\Gamma\) is defined by \(\{\{\{\{\{\{N_f\}f\}f\}f\}f\}f\}f\}f\}f\) \(= \Sigma_g (\epsilon_g / e g_d)^3 U(q)^2 N_f^2 \mu_2^2 P(q)\) with phase-space contribution \(N_f^2 \mu_2^2 P(q)\) listed in Eq. (6).

\(16\) We assume for the same-spin scattering that the moderate variation of \(U(q)\) causes the direct and exchange contribution to approximately cancel.

\(17\) We also evaluate (for \(n_2 = N_f\)) the scattering \(\Gamma_{2-21}\) between two-subband \(E_2\) electrons of which only one decays to subband \(E_1\). This rate can be approximated as Eq. (4) but with a different characteristic matrix element \(U_{22,21}(q_{x}/V^2)\) (defined by three upper-level wave functions) and phase-space measure (Ref. 11) \(I_{2-21} - (\mu_2/\Delta)\). There is no scaling of \(\Gamma_{2-21}\) because the Pauli exclusion (within subband \(E_2\)) restricts the phase space \(I_{2-21}\) for \(\mu_2/\Delta < 1/2\); see Ref. 11.

\(18\) The intersubband decay due to impurity, interface defect, and acoustic-phonon scattering remains at temperature \(T < 50\) K strictly bounded by the experimental value \(1/\tau = 0.03\) meV. We estimate the decay due to thermally activated optical-phonon emission bounded at \(10^{-3}\) meV for \(T > 25\) K.

\(19\) We take \(\Gamma_{1,2} = 0.51(1.01)\) meV (estimated at \(V_{sym}\)) and use \(\Gamma = \Gamma_{c,2}/4\).

\(20\) J. Faist, F. Capasso, A. L. Hutchinson, L. Pfeiffer, and K. W. West, Phys. Rev. Lett. 71, 3573 (1993); this paper reports and explains the corresponding voltage-drop dependence of the optical selection rules.