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Electron-electron scattering in far-infrared quantum cascade lasers
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A large depolarization shift indicates a strongnequilibriumintersubband electron-electron scatter{hy
in tunneling structure. For a far-infrared subband separaierti0 meV, the ratd’ scales with the upper-
subband occupation and is never significantly reduced by screening. Despite this nonradiative decay a finite
population inversion can be maintained. Finally, the applied bias changes the wave-function symmetry so as to
cause a dramatic variation of the electron-electron scattering rate.

In the quantum cascade laser nonequilibrium current top panel of Fig. 1 illustrates the intersubband scattefihg
injection exclusively into the upper subband of a multiple-between two upper-subband electroits, { E; (k)] to two
level tunneling structure provides a finitgersubbanchopu-  lower-subband electronsEf +E,(k)]. For the current-
lation inversion and actual lasin@t midinfrared frequency injected upper-subband occupation density the lower-
w~300 me\J. This seminal achievement culminates a searctsubband occupation, results from the net nonradiative de-
begun in 1971 with the proposal by Kazarinov and Suris cay nyl',.
soon after the groundbreaking work by Esaki and I$here The subband occupation densities are determined from
is also a considerable interest in the far-infrafed Tera- the two-level rate equation involving additional tunneling
hert? regime and we mention in particular the observation rateS—T, Iy, andI',—illustrated in Fig. 1:
of spontaneous intersubband emission in superlattices ex-

cite_d by a current ro_w. Ad_apting the quantym-_casca_de-l_aser % =(N_ = n)Te—n,T =N,
desigrt we presently investigate the population inversion in a dt
tunneling structure with far-infrared subband separation, (1)
A~11 meV. dm e oT
The prospect of such far-infrared stimulated emission is ar N2t Ml

raised by the small intersubband decay;<13.03 meYV,
observed at temperaturesT<50 K and at weak optical There is no current injection into the lower subband because
pumping® This small decay is possible because the opticalthe lower band edge, of the emitter is raised abovg, .
phonon frequency(), ;~36 meV in GaAg exceeds the sub- The steady-state solution of Eq(1) thus vyields
band separationA~11 meV, and optical-phonon emission n,—n;«N, (1-I',/I'.;), and population inversion requires
processes are inhibitédt temperatures below the activation I';;>T",. The lower-level escape ral&;~0.5 meV is sig-
energy(), o—A~25 meV. nificantly larger than the decay raterd&/0.03 meV measured
We find, however, that the current injection results in aunder a weak optical pumpirfg-ere we investigate the non-
strongnonequilibriumelectron-electron intersubband scatter-equilibrium electron-electron scattering to test if population
ing () which we evaluate for a complete upper-subbandnversion can be maintained.
occupation below the emitter chemical potential. This scat- Effective Coulomb interactiomhe characteristic in-plane
tering I' is never significantly reduced by screening and, unmomentum transfe, = V2m* A together with the zero-
like the near-equ”ibrium electron-electron Scatteﬁﬁg,not frequency background dielectric Consta—ﬂprovides a natu-
inhibited by the Pauli exclusiofes we can assume popula- ra| scaling of the effective Coulomb interaction
tion inversion) In this letter we(1) identify a simple scaling (€?/€,93)U(q), whereU(q) is a dimensionless matrix ele-
of the nonequilibrium electron-electron scattering réf®  ment introduced below. For the screenedq) and un-
with the upper-subband occupatid@) predict a very strong  screenedu®(q) matrix element we finda) a moderateq
intersubband decay-21'~1.0 meV for an upper-subband yariation, (b) a correspondingly moderate dependence on an
sheet densityV; ~10"* cm™2 comparable to that in the mid- effective Thomas-Fermi screenfignave vectorgye, and
infrared quantum cascade ladet3) demonstrate that a (c) a numerical value oU%(q=0) that can be estimated
smaller population inversion densitf~0.17<10" cm™®  from experiments.
can be maintained at a moderate tunneling current density, The screened effective dimensionless matrix element is
and finally (4) predict for the electron-electron scattering a defined
dramatic bias dependence arising from the so-called
quantum-confined Stark effett.

A far-infrared quantum-cascade-laser desigine bottom U(q)EUZlﬂ(q)zzwf dxzf dx; W 5(X2) W 1(X5) 0,
panel of Fig. 1 shows the schematics of the far-infrared op-
tically active tunneling structure presently investigated. We xext — a2+ a2 x. — x: /a2 + a2
assume the tunneling is independent of the electron energy in P Va™F Grelxe=xi)/ VA g
the plane of the heterostructure Iaij;(k):kZ/Zm’e‘ . The XWo(x)W1(X4), (2)
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in terms of the resonant-level wave functiéhand Thomas- the absorption pealy*, from the far-infrared subband sepa-

Fermi wave vectore. The unscreened interaction matrix rationA~11 meV at sheet density;~10"* cm™2 In particu-

elementU®(q), thegr—0 limit of (2), is finite atq=0. The  lar, neglecting the coupling to other quantum levels, we

moderate variation of)°(q), namelyU°(q,)~U%0)/4, can  have'4

be deduced analytically for a square quantum well with infi-

nite barriers. That the screening is ineffective in modulating (A*)%~ A?=2AN4(e% €00,)U°%(q=0). )

the nonequilibrium elect.ron-electrogl sczzaltterlzng follows d"For a finite occupation density,<N, ~N.~10 cm2 we

rectly from the observatioJ(q)=U"(vq“+q7) because s expect the strong interactioN, (e%/eyq,)U%0)=<2

the estimated Thomas-Fermi screening wave vector remaingey

smaller than the characteristic momentum transfegy Scaling of electron-electron scatteringle use the Fermi

<Qa- _ o golden rulé® to evaluate the total ratel' for two
Finally, the strength of the effective nonequilibrium  (opposite-spitf) upper-subband electrons to decay to sub-

electron-electron interaction is evident from the obsetvedpang E,. For complete upper-subband occupatiGre.,

large equilibrium depolarization shift!* A* —A~2 meV of n,=N,) at zero temperature we obtaihas a sum over the

in-plane momentum transferof the squared matrix element
Electron—electron scattering [|U(q)|?] weighted by the phase-space contributid¥(d)]

introduced below. Because, howewer(q)|? exhibits only a

moderateq variation and because the scattering phase space

2T\ i WY is dominated by the contribution aty,, we can
I/‘? approximaté’

Ez-
Ry* [ 2
A=Ez—E1 A I~—5 (I [U(an)[P1p(p2/A), (4)
qa=(2me*A)1/2 :
By o where
qa q
™1 Fae=Vem/Las - Ip(uzlA)= | (o P(@)~16(0)=0.785  (5)
Mo Mo
T I represent a dimensionless integrated phase-space measure es-
T §° sentially independent of,/A.
NL\PS_‘ ——° _ | LT =34+ 3Te The top panel of Fig. 2 verifies linear-jm, scaling ofT,
¢Lﬁ):)\ C Es— as expressed in Egel) and(5). For the unscreened interac-
\I,sl(x)_/_>_c_ __::?‘___:'_ 'El'_" Tey tion the linear scaling is nearly exact and closely approxi-
A mated by R{/m(u,/A)|U%(q,)|?16(0). For the screened
rate (g7=>0), there is some deviation arising from the in-
» 9 ) w— ¥R creasing screening of squared matrix elemjghtq)[>. At
Digital g L Y Digital - -
Al(g:-aAs ‘E GaAs % GaAs c‘:,‘; All(g}lazs mosZ that screening causes a factor of 2 reduction even at
S < < M2—2-
< <ﬁ\ < To explain the central result Eq4) we consider the
phase-space contribution at momentum trangfésee also
|30I 85 25I 73 I30| Ref. 15,

! Les [A] !

1

NEuy 'P(a)=5 2 O(uo—E(K)

FIG. 1. Schematic(bottom panel of far-infrared quantum- kK
cascade-laser desigand (top pane) of nonequilibrium electron- XO(u—Ey(k"))2mS(Er—Ej).  (6)
electron scatterind’. The hypothetical tunneling structure com-
prises an asymmetric double-quantum-well regisarrounded by  The displayed one-half factor arises because we only con-
the n-doped(left/right) emitter/collector leads. A moderate voltage sider direct scattering between opposite-spin electfdmae
dropV=(u_— ug)/e~20 mV ensures a current injectidiy exclu-  energy differencelz;—E; , between the final and initial state
sively into upper resonant levél, and fast tunneling escape rates depends om and on the initial in-plane momentk,andk’.
I'c; andI'c; out of levelsE; and E;, respectively. Bottom panel |n Ref. 11 we show that theveighteddimensionless phase-
shows tunneling potential and resonant levels at voltage WgR  space contribution, q/k ,)P(@), (@ has the domain-1
with (@) minimal subband separatiod=E,—E,) and (b) near- gq/kﬂz_ m‘%gl, (b) is always strongly peaked

exact inversion symmetry of corresponding wave functiogh$(x) h h . ith
and¥3(x). The three pairs of opposite transition arrows in the top":lt the characteristic momentum transtgg with constant

panel illustrate the nonequilibrium scatterifigpetween two upper- Mmaximum - value 5 /k,,)P(q,)=8/(37), and conse-

subband electrons which both decay to sublandAs indicated by — quently,(c) results in an almosk,/A-independent integrated
the pair of solid arrows, the scatterifigoccurs with the character- phase-space measutg(u,/A)~1p(0).

istic momentum transfeq, = /2m; A and on average with no en- The key observation igb), which follows from the as-

ergy transfer. sumed quadratic subband dispersi&p(k). Specifically, at
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FIG. 2. Top panel shows the approximate scaling, solid curve,

with electron occupatiop,/A of unscreenedscreeneginonequilib-
rium scattering ratel’, dashed-singlédouble) dotted curve.
Screening causes at most a factor of 2 reduction @fen atu,=A.

The interaction matrix elements are evaluatedvgj, where the

rate’ I',, ,;, dotted curve, essentially vanishes. Bottom panel

demonstraté$ that a finite population inversion(left axis)

n,—n;=0.17x10" cm™? can be maintained at a moderate current

density (right axis J=el'¢(N_—n,) despite the strong intersub-

band scattering. Note, however, that the population inversio
quickly saturates and eventually decreases, whereas the current d

sity J=eN_(1—n,/N;) shows a faster-than-linear increase with
/.Lz/A

the characteristic momentum transfer q, , the 5function
argument, E(—FE;), in Eq. (6) reduces to a(ky
- k§)/m;§), where we have chosen tlgedirection to be par-
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FIG. 3. Dramatic voltage-drop variatigtop panel of electron-
electron scattering rateE,and’ I', ,,, explainedbottom panelby
the quantum-confined Stark efféain the wave-function overlap
and symmetry. Bottom panel identifigg,, (vertical dotted lingas
the voltage drop with minimal subband separati@ash-dotted
curve. Observe that the dipole matrix elemefsolid curve is

r{1early constant, whereas the center-of-charge separéimshed

curve vanishe&’ at V. The bias dependence &fand 'y, .
reflects the wave-function-symmetry dependence of the characteris-
tic matrix elementU?(q,)|? and |U3; »1(q,/v2)|% respectively.

In particular, the matrix elemeti(q,) and thud’ enhance aV¥,
because of the increased wave-function overlap. In contrast, the
matrix element),; ,{(0,/v2) and thud’,, .,; are strongly reduced
close toVg,, but increase dramatically when, f&f# Vg, the
wave-function symmetry is lost. Finally, the upper panel shows the

allel to the in-plane momentum transfer. The phase-spaceéombined electron-electron scattering ratB;+2'5, ,,, Which also

contribution, Eq.(6), then scales asj kzzlqA and (upon
extractingN; u, txmgk: ) we arrive at the constant value

(Aa/k,,)P(qy)=8/(3m).

A finite population inversionThe bottom panel of Fig. 2
estimates the population inversiop—n; (left axis) and the
current densityJ=el'((N, —n,) (right axig. These esti-
mates are based on the steady-state solution of lEaqising
the simple assumption,

ny| Ry*
N w”
for the total intersubband decay rate at voltage dvQp,,.
We assum® in Eq. (7) the total single-electron decay rate
I'..bounded by the value, #+0.03 meV, measurédit weak

optical pumping and =50 K. The estimatel,(n,)—I'. for
the electron-electron decay results as follows.

M2

A

Fo(ng)=Tget2 |U0(qA)|2|P(0)v (7)

exhibits a significant wave-function-symmetry variation.

—E,(k)). Finally, we approximate the resulting electron-
electron decay 2(,/N,)I" by the scaling resul¢solid curve
in top panel for I'.

The current injection in the midinfrared quantum cascade
laset maintains a population inversiom,~N, ~10"* cm 2
which requiresu,~5 meV andl';>T",. In the present far-
infrared structure the resulting strong decdy=2..0 meV
would eliminate such a population inversion. Nevertheless,
Fig. 2 demonstraté3 that a smaller population inversion,
n,—n;=0.17x10" cm 2 can be maintained at current den-
sities comparable to the midinfrared quantum cascade jaser.

However, also note the population inversiom,—n,
quickly saturates and eventually decreases whereas the cur-
rent density,J=el'(N,(1—n,/N,), shows a faster-than-
linear increase withu,/A. A choice of I'.>T",~1.0 meV

The(not shown does not increase the maximum population in-

scattering’ 'y, .,; can be neglected alsym- The scattering  version and causes a strongly nonlinear rise of the current
I' removes two electrons at a time but is reduced by thevith w,/A. The electron-electron scattering thus forces a non-
partial upper-subband distributiof,(k)=(n,/N, )X O (u, trivial optimization of I'o/T";, and u,/A.
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Wave-function-symmetry dependentae bottom panel upper-level wave functions, must vanish closevg,,, (due
of Fig. 3 shows the so-called quantum-confined Stark &ffectto the near-exact wave-function inversion symmpetbyt in-
of the bias voltage on the subband separation and on thereases rapidly with the finite charge separatiolf &tV
wave-function overlap and symmefy.The minimal sub- Finally, the top panel of Fig. 3 shows ttetal electron-
band separation occurs at voltage diég,, (vertical dotted  electron decay, P+T',, .»;,, which also depends significantly
line). The dipole matrix element(W,|x|¥y)| (solid curve,  on the wave-function-inversion symmetry. Ensuring an
enhances &V, with the increased wave-function overlap. ynper-subband current injection %t Veym, May thus en-
In contrast, the center-of-charge separatiqW,|X|¥;)  hance the population inversion beyond the value,
—(\If1|x|‘l'1>.(dashed curve vanishes atV,,, but rapidly n,—Nn,~0.17< 10" cm 2, estimated in Fig. 2.
changes withV—V,,, a variation reflecting the loss of
wave-function inversion symmetry. . . . .
The top panel of Fig. 3 shows the dramatic voltage-drop The authors appreciate useful discussions Wlt.h F. Ca-
dependence of both scattering rdte(solid curve and of ~Passo, S. P. Hershfield, G. D. Mahan, R. A. Smith, C. J.
Ty, , (dashed curvel’ This variation reflects the wave- Stanton, and at UCSB with J. R. Allen, Jr., K. Craig, J. Hey-
function-symmetry dependence of the characteristic matrignan, M. Sherwin, and K. Unterrainer. We thank ITP,
elements for a constant ratjp,/A=3; see Eq.(4) (cf. Ref. =~ QUEST, and Material Research Laboratory at UCSB for
17). In particular, the matrix elemert(q,), containing an  their kind hospitality and the use of computer facilities dur-
even number of upper-level wave functions, can never béng our visit. This work was supported by the Danish Natural
zero, and in fact enhances\ét=V,,. In contrast, the char- Science Research Foundation and by the Office of Naval
acteristic matrix element),,,{(q,/v2), containing three Research.

*Present address: Solid State Division, Oak Ridge National Lab, internal field~V/Lqg at V~20 mV. The moderate variation in
P.O. Box 2008, Oak Ridge, TN 37831. [c1¢2 can be negated by a small change in the barrier thickness.
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