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Abstract. We consider tunnelling in systems with a finite conduction bandwidth. A 
physical realization of such a system would be a disrupted semiconductor superlattice 
imbedded in the base of a n-p-n transistor. There it is possible to tune the energy 
of the incoming injected carriers by changing the emitter to  base voltage. Hence the 
calculated transmission coefficient, weighted with the energy distribution of the in- 
jected electrons, bears direct relevance to measured I-V characteristics. The vertical 
transport in the unperturbed miniband is described with a tight-binding model, and 
the disruption, which may arise accidentally, or be fabricated by adjusting the growth 
conditions, is modelled with an additional double barrier. The transmission coeffi- 
cient displays a resonant behaviour as a function of energy. Further, we evaluate the 
transmission coefficient in the case where the region connecting the two superlattices 
couples to dispersionless optical phonons. Optical-phonon-related satellite features 
are identified. Finally, the relation of the calculated effects to recent experiments is 
analysed. 

Resonant tunnelling in semiconductor heterostructures is currently a very active area 
of research. I t  is becoming increasingly clear that  for a quantitative comparison be- 
tween theory and experiment the traditional analysis, based on the pioneering work 
by Tsu  and Esaki [l], is not sufficient because inelastic effects are not accounted for. 
Inelastic effects manifest themselves in several ways: they are required to produce the 
accumulation layer on the emitter side of the barrier structure [ a ,  31, they play a crucial 
role in determining the bistability of a resonant tunnelling diode [4,5],  and features 
related to optical phonon interactions have been identified in the experimental I-V 
curves [6, 71. In addition to  the experimental stimulus, tunnelling in the presence of 
inelastic processes is a problem of fundamental interest, and not surprisingly many 
recent theoretical papers have analysed various aspects of these problems [8-121. In 
particular, the work reported in [8, 101 shares many common features with the present 
study. There are some important differences, however. Our emphasis is t o  include 
explicitly the effects due to finite bandwidth. The  method or Wingreen e2 a1 [8] is 
analytically tractable only in the wide-band limit. Similarly, it  is not easy to see how 
the calculational scheme of Cai e t  a /  [lo] could be modified to take into account a 
finite bandwidth. In addition, this scheme is perturbative (in the phonon coupling) 
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Figure 1. A model of a disrupted superlattice placed in the base of a n-p-n bipo- 
lar transistor [15]. By changing the emitter (region I) to base (region 11) voltage, 
electrons can be injected at different energies in the miniband (indicated by parallel 
lines). The disruption in the superlattice, modelled by a double barrier, supports 
one quasibound state, indicated by the broken line. Resonant tunnelling through the 
disruption occurs when the energy of the injected electron matches the energy of the 
quasibound state. 

while the method due to  Gelfand et a1 [9], which is employed in the present work, can 
easily be evaluated to  any desired numerical accuracy. 

In this letter we study a new resonant tunnelling system, and inelastic effects 
therein: a superlattice with a disruption. The  superlattice is placed in the base of 
a transistor with a ballistic launcher in a structure similar to the ones proposed by 
Capasso and Kiehl [13]. The  experimental situation we envisage is shown in figure 1. 
The  disruption may be caused by either some uncontrollable agent, or by intentionally 
modifying the growth conditions. The  following observations have motivated our 
study. First, coherent transport in a miniband has recently been demonstrated [14,15]. 
Secondly, Gelfand et a1 [9] have recently developed a theoretical framework for inelastic 
tunnelling through a ssngle barrzer within a tight-binding model, where the energy- 
momentum relation is E(p)  = -2 t  cos(pa). We suggest that  this model has direct 
physical relevance to transport in a miniband formed in a superlattice: the parameter 
t is the overlap integral, and in principle it can be obtained from the superlattice 
parameters, and a is the superlattice periodicity. Further, we interpret the parameter 
V,, which Gelfand et a l  [B] view as the height of a tunnelling barrier, as resulting 
from a disruption in the superlattice, which leads to  either a modified site energy, or 
differing overlap integral(s). A single barrier, however, leads to  a smooth behaviour 
in the transmission coefficient; much more dramatic behaviour is found for the double 
barrier considered in this work. We can use the formalism of Gelfand et a1 [9] directly: 
the only generalization required is to use propagators for a double barrier (rather than 
a single barrier), see below. 

The  formalism has been described adequately in the original work by Gelfand et a1 
[9] and here we summarize only the features specific to our work. The  Hamiltonian we 
consider is H,, = H t  +HtJ ( t ) ,  where the static part models the disrupted superlattice, 
and the time-dependent part is the electron-phonon interaction. Explicitly, they are 
given by 

In writing (1) we made the following simplifying approximations (the detailed deriva- 
tion of (1) and other related models will be discussed in a forthcoming full paper) 
which, however, capture the essential physics: (i) the overlap matrix element tij cou- 
ples only nearest-neighbour sites; (ii) the barriers are located a t  sites i = -1, and 
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i = 1, respectively; and (iii) the coupling to  dispersionless optical phonons is opera- 
tive a t  site i = 0 [8,12]. The static transmission coefficient corresponding to  H o  is 
given by 

where A = 2pa, p is the momentum of the incoming plane wave, E = E/2 t ,  and the 
energy-dependent quantity D ( E )  is defined in (4) below. Outside the miniband, i.e. 

> 1, To(E) = 0. The information about the double barrier is contained in the 
Green function G(i,  j ;  E ) ,  and for the present case we need 

(3) 
1 [D(E) - vo(l - C2(€))]2 

D(E) [D(E) - V0]2 - V()T4(€) G( j ,  0; E )  = X ( j ;  E)G(O, 0; 6 )  G(0,O; E )  = - 

where 

and 

D( E ) C ~  ( E )  

x ( j , E )  = D(E) - V0(l - C2(E)) 

Following Gelfand et a1 [9], we expand the scattered wave at  the origin in multiphonon 
components, 

00 03 

$ ' ( j  = 0 , t )  = X ( b t ) " A n  exp[-i(E - n w ) t ]  + E ( b ) " B n  exp[-i(E + nw)t].  (5) 
n=O n = l  

The resulting recurrence relations for the operators A, and B, are formally identical 
to  the ones derived by Gelfand el a1 [9], with (3)-(4) replacing their Green function, 
and are solved in a similar fashion. The details of the solution are deferred to  a fu- 
ture publication; here we only want to  point out that in order to  obtain numerical 
convergence virtual processes of fairly high order (fifth order for the present param- 
eter values) must be included. This suggests that  caution must be exercised when 
employing straightforward perturbation theory. 

The transmitted current can be evaluated from $ ' (O)  for the present three-site 
problem with the result 
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Figure 2. Static transmission coefficient T o ( E )  (broken curve) and the total t rans  
mission coefficient T ( E )  (full curve) as a function of the energy in the miniband 
( - 2 t  < E < a t ) .  The parameters are as follows: Vo = 3.0t, VI = 0.79t and w = 2.5t 
at  T = 0. The inset shows the phonon-related satellite a t  E N Er + w resolved in its 
elastic and inelastic components. 

where E ,  E ( E  - nw)/2t, and the other symbols have the same meaning as in 
[9]. Comparing with the single-barrier result, the only formal differences are the 
appearance of the factors ‘ H ( j ; c ) .  Finally, the transmission coefficient is given as 
T ( E )  = ( j T ( E ) ) / 2 t a d m .  

In figure 2 we show the static transmission coefficient T o ( E ) ,  and the total trans- 
mission coefficient T ( E ) ,  resolved into its elastic and inelastic components. The nu- 
merical values of the parameters are chosen to mimic experimentally realizable super- 
lattices. We direct attention to the following features. (i) Strong resonance in the 
transmission coefficient, with a maximum value of unity, both for the static case, and 
when the phonons are included. The behaviour is in significant contrast to the smooth 
semi-elliptic behaviour found for the single-barrier case with the maximum value [9] 
,sax = [l + ( V o / 2 t ) 2 ] - ’ .  (ii) Renormalization, or shift, in the main resonance when 
the phonon interaction is included. (iii) For the chosen parameter values no cusps 
or singularities are found 191. (iv) A phonon-mediated satellite peak centred approxi- 
mately at  E = E, + U ,  where E, is the main resonance energy. This is in accordance 
with other model studies [8, lo] .  (v) The elastic component of the total transmis- 
sion coefficient (contribution proportional to 1 +Ao in ( 6 ) )  displays a phonon echo at  
E = E, + w. This feature is due to virtual-phonon-mediated coupling to the resonant 
channel. Similar effects in another configuration have recently been reported by Cai 
et a1 [16].  

We now turn to the possible experimental observation of the predicted structure. 
In a recent experiment [15] a clear negative transconductance (NT) is observed when 
the superlattice is placed in the base of an n-p-n bipolar transistor. This behaviour 
can be explained as being caused by conduction through the extended states in a 
miniband. There is, however, a large background current which may arise for a number 
of reasons: thermionic emission over the launching barrier, conduction through tail 
states, or width of the injected electron distribution (both scattering and the range of 
the incoming energies contribute to this width). It is difficult to separate the effects 



Letter t o  the Editor 8729 

due to  miniband conduction alone, i.e. effects discussed in this work. However, it 
seems reasonable to  assume that the background current is a monotonically increasing 
function of the emitter to  base voltage. If this is the case, the current contribution due 
to  miniband conduction must contain some structure: there are two inflection points 
in the experimental I-V curve. These would then reflect a similar structure in the 
miniband transmission coefficients, which is precisely what our calculations indicate. 
While the above interpretation is only preliminary, we stress that  the effects predicted 
in this paper should be more pronounced if one deliberately fabricates a superlattice 
with an embedded double barrier. 

The  simple model described in this letter neglects interactions between the hot 
carriers in the miniband, and the background cold holes in the p-type base. To estimate 
these effects the calculation performed by Levi and Yafet [17] should be repeated with 
the miniband dispersion relation. Further, the transmission coefficient calculated in 
this work should be averaged over the effective incoming energy distribution. Clearly 
more work is required before a quantitative comparison can be given. 

In summary, we have analysed resonant tunnelling between two sections of a super- 
lattice, and shown that sharp features may arise, with associated phonon satellites. 
Recent experiments seem to display features which are consistent with those found 
within our model. 

One of us (PH) gratefully acknowledges the receipt of a Carlsberg Scholar Stipend. 
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