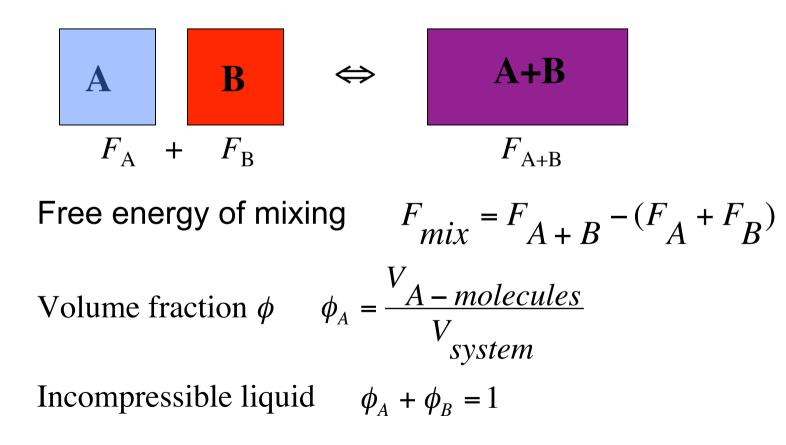
Phase transitions

- Gas-liquid, liquid-solid, liquid-liquid etc.
- Polymer solution-gel
- Glass-crystal
- Separation of liquids
- Nematic-smectic liquid crystal transition
- Self assembly
- Denaturation of proteins

Origin of a phase transition: (at least one)

- order parameter
- 1st order p.t. order parameter changes discontinuously on a continuous change of interaction parameter
 2nd order continuous change

A phase transition involves a decrease of the free energy:


Helmholtz's free energy *F*:

 $F = \bigcup_{\uparrow} TS \leftarrow entropy \qquad Constant T \text{ and } V$ internal energy

Gibb's free energy G:

Constant *T* and *P*

The regular solution model Very simple model - used in a variety of problems in physics

Liquid-liquid unmixing regular solution model Assumptions:

- Molecules occupy lattice sites (z nearest neighbours)
- Probability that site is occupied with A or B molecules is independent on what occupies the neighbours

-Mean field assumption

• Energy is pairwise additive - molecular interaction only between nearest neighbours

$$\mathcal{E}_{AA}, \quad \mathcal{E}_{BB}, \quad \mathcal{E}_{AB}$$

Entropy of mixing (per lattice site)

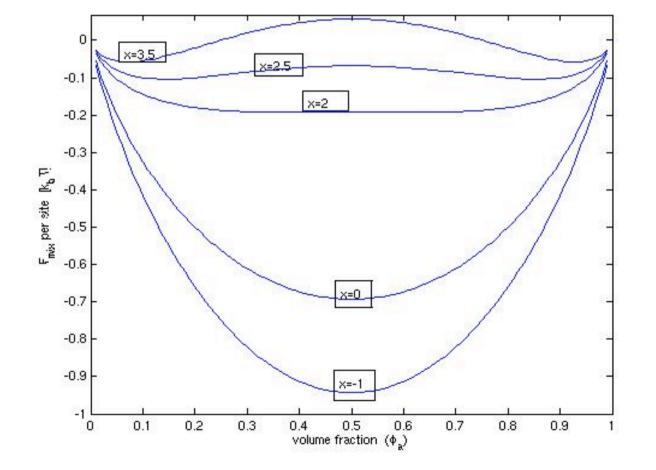
$$S = -k_B \sum_i p_i \ln p_i$$

In the mixed liquid there are only two states for each site. The probabilities are ϕ_A and ϕ_B .

$$S_{mix} = S_{A+B} - (S_A + S_B) = -k_B(\phi_A \ln \phi_A + \phi_B \ln \phi_B)$$

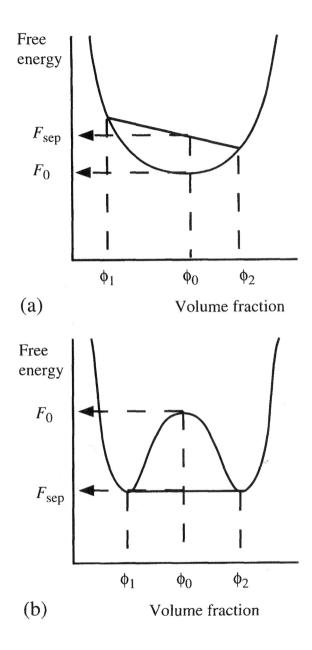
 S_A and S_B are naturally =0

Energy of mixing (per lattice site)

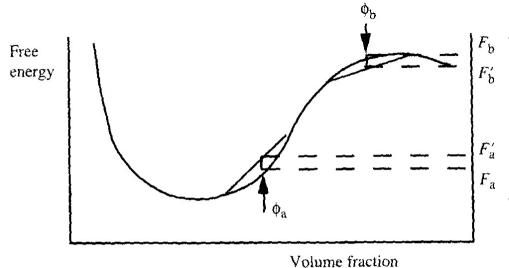

$$U_{mix} = \frac{1}{2} \left(z \phi_A^2 \varepsilon_{AA} + z \phi_B^2 \varepsilon_{BB} + 2z \phi_A \phi_B \varepsilon_{AB} \right) - \frac{1}{2} \left(z \phi_A \varepsilon_{AA} + z \phi_B \varepsilon_{BB} \right) =$$
$$= \frac{z}{2} \left[\left(\phi_A^2 - \phi_A \right) \varepsilon_{AA} + \left(\phi_B^2 - \phi_B \right) \varepsilon_{BB} + 2 \phi_A \phi_B \varepsilon_{AB} \right]$$

Writing:
$$\chi = \frac{z}{2k_BT} (2\varepsilon_{AB} - \varepsilon_{AA} - \varepsilon_{BB})$$

Interaction parameter

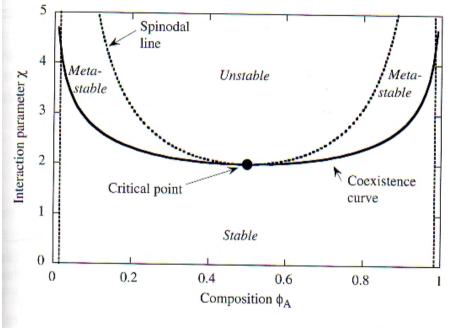

we get:
$$U_{mix} = \chi \phi_A \phi_B$$

Free energy of mixing (per lattice site, in units of $k_B T$)


$$\frac{F_{mix}}{k_{\scriptscriptstyle B}T} = U_{mix} - \frac{S_{mix}T}{k_{\scriptscriptstyle B}T} = \phi_A \ln \phi_A + \phi_B \ln \phi_B + \chi \phi_A \phi_B$$

 $\chi < 2 \min@\phi = 0.5$ $\chi > 2 \max@\phi = 0.5$

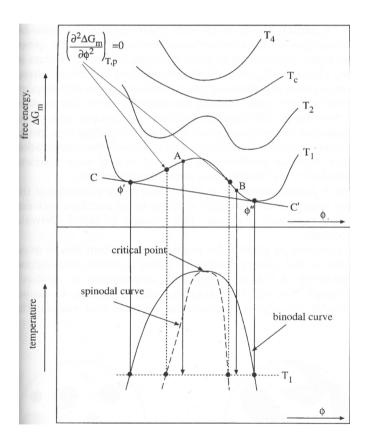
- In (a) the initial composition is stable. Any phase separation leads to increase of *F*.
- In (b) compositions between φ₁ and φ₂ will lower their *F* by separating into these compositions.
- Compositions joined by a common tangent minimise *F*.
 These are called coexisting compositions.
- The locus of these compositions (when χ is changed) is called the coexisting curve or binodal.



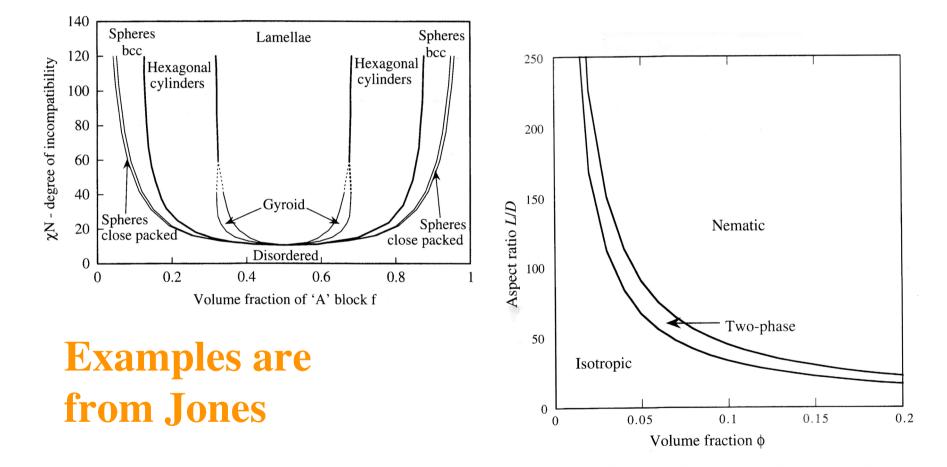
- ϕ_a is stable to small fluctuations, even if not globally stable. ϕ_a is a metastable composition.
- φ_b is unstable to small fluctuations. Phase separates immediately.

A composition is metastable when The locus of this composition as χ is varied is called the spinodal.

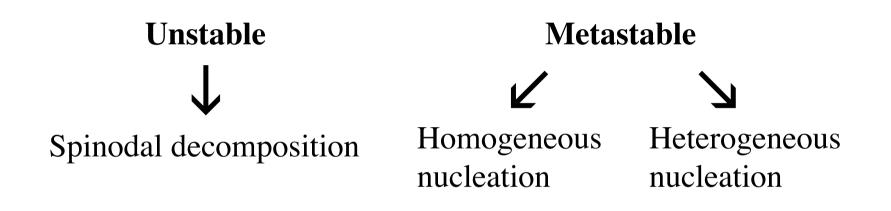
$$\frac{\partial^2 F}{\partial \phi^2} > 0$$


We can now construct a phase diagram

There is a critical temperature, T_c (or χ_c) between temperatures where all compositions are stable and *T* where there exist compositions which will phase separate. This is where the spinodal meets the binodal.


Defined by:
$$\frac{\partial^3 F}{\partial \phi^3} = 0$$

For polymer-solvent mixing use Flory-Huggins theory



- Asymmetric free energy curve.
- Restrictions due to the connectivity of the polymer.
- Internally inconsistent
- See Hamley, "Introduction to soft matter"

Examples of phase diagram

Kinetics of phase separation

Kinetics of phase separation

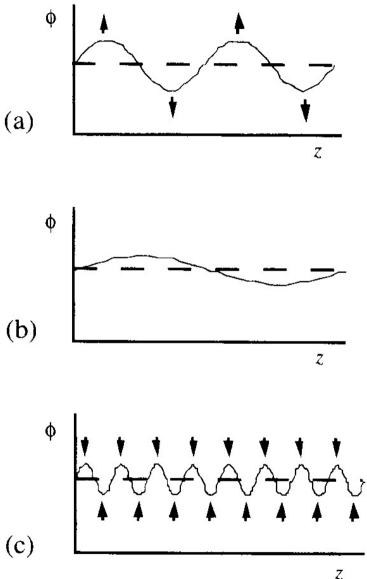
Spinodal decomposition

- Any fluctuation amplifies continuously.
- Material flow from regions of low concentration to regions of high in contrast to normal diffusion.

$$\begin{bmatrix} low \\ \mu \end{bmatrix} \leftarrow \begin{bmatrix} high \\ \mu \end{bmatrix}$$

In equilibrium the **chemical potential** $\mu \propto \frac{\partial F}{\partial \phi}$ has to be uniform.

In metastable region:


$$\frac{\partial^2 F}{\partial \phi^2} > 0 \Longrightarrow \frac{\partial \mu}{\partial \phi} > 0$$

Corresponding to normal diffusion

In unstable region:

$$\frac{\partial^2 F}{\partial \phi^2} < 0 \Longrightarrow \frac{\partial \mu}{\partial \phi} < 0$$

Uphill diffusion

Characteristic length scale of fluctuation

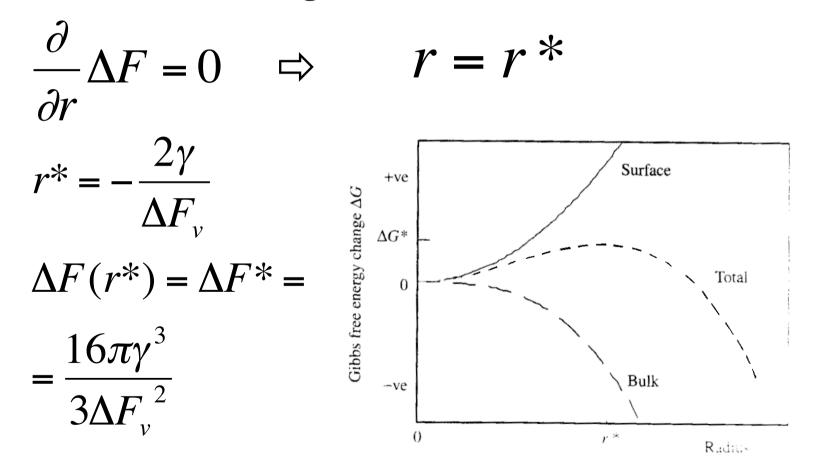
Too long wave length is slow due to diffusion over long distances

Too short wave length yields a high cost in surface energy

Quantative analysis: Cahn-Hilliard

Kinetics of phase separation metastable compounds

- Metastable compounds undergoes the transition through an activated process called nucleation.
- Compounds are stable to small fluctuations but are not in global minima.
- A drop of the coexisting compound must be created by thermal fluctuations even if this increases the free energy.
- This drop, or nucleus, must thereafter grow until the free energy change is negative.


Kinetics of phase separation metastable compounds Homogeneous nucleation

- The activation is due to the creation of an interface with a characteristic surface tension, γ associated with a surface energy.
- There is both a positive and a negative contribution to *F*

$$\Delta F(r) = \frac{4}{3}\pi r^3 \Delta F_v + 4\pi r^2 \gamma$$

Energy change per unit volume on complete separation Surface energy due to interface

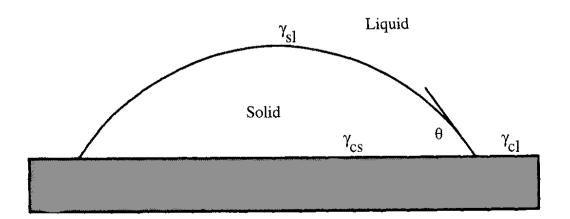
Kinetics of phase separation metastable compounds Homogeneous nucleation


Kinetics of phase separation metastable compounds Homogeneous nucleation

Probability of forming a nucleus which can grow is:

 $P = \exp(-\Delta F * / k_B T)$

typical values gives significant nucleation growth ~10 K below T_m Usually we see crystallisation just Below T_m Why?


> Example is from Jones. Gibbs free energy of liquid-solid transition. same principles apply

Kinetics of phase separation metastable compounds heterogeneous nucleation

 ΔF * is decreased by the presence of an interface. Container edge, dust particle (airplanes...) etc.

$$\Delta F_{he}^{\star} = \Delta F_{ho}^{\star} \frac{(1 - \cos\theta)^2 (2 + \cos\theta)}{4}$$

