
Phase transitions

• Gas-liquid, liquid-solid, liquid-liquid etc.
• Polymer solution-gel
• Glass-crystal
• Separation of liquids
• Nematic-smectic liquid crystal transition
• Self assembly
• Denaturation of proteins



Origin of a phase transition: (at least one)
- order parameter
1st order p.t. order parameter changes

discontinuously on a 
continuous change of 
interaction parameter

2nd order continuous change



 A phase transition involves a decrease
of the free energy:

Helmholtz’s free energy F:
F=U-TS

Gibb’s free energy G:
G=H-TS
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The regular solution model 
Very simple model - used in a variety of
problems in physics

A B A+B⇔

FA FB FA+B+
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 Liquid-liquid unmixing regular solution model
Assumptions:

• Molecules occupy lattice sites (z nearest
neighbours)

• Probability that site is occupied with A or B
molecules is independent on what occupies the
neighbours
-Mean field assumption

• Energy is pairwise additive - molecular interaction
only between nearest neighbours
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Entropy of mixing (per lattice site)
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S = "kB pi ln pi
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In the mixed liquid there are only two states for each site.
The probabilities are φA and φB.
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Energy of mixing (per lattice site)
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Free energy of mixing (per lattice site, in units of kBT)
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• In (a) the initial composition is
stable. Any phase separation
leads to increase of F.

• In (b) compositions between φ1
and φ2 will lower their F by
separating into these
compositions.

• Compositions joined by a
common tangent minimise F.
These are called coexisting
compositions.

• The locus of these compositions
(when χ is changed) is called the
coexisting curve or binodal.



• φa is stable to small
fluctuations, even if not
globally stable. φa is a
metastable composition.

• φb is unstable to small
fluctuations. Phase
separates immediately.

A composition is metastable when
The locus of this composition as
χ is varied is called the spinodal.
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We can now construct a
phase diagram

There is a critical temperature,
Tc (or χc) between temperatures
where all compositions are
stable and T where there exist
compositions which will phase
separate. This is where the
spinodal meets the binodal.

Defined by:
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For polymer-solvent mixing
use Flory-Huggins theory

• Asymmetric free energy
curve.

• Restrictions due to the
connectivity of the
polymer.

• Internally inconsistent
• See Hamley,

“Introduction to soft
matter”



Examples of phase diagram

Examples are
from Jones



Kinetics of phase separation

Unstable Metastable

   
Spinodal decomposition Homogeneous

nucleation
Heterogeneous
nucleation



Kinetics of phase separation

• Any fluctuation amplifies
continuously.

• Material flow from regions
of low concentration to
regions of high in contrast
to normal diffusion.

Spinodal
decomposition low

conc.
high
conc. ⇐



In equilibrium the chemical potential
has to be uniform.
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In metastable region: Corresponding to
normal diffusion

In unstable region:

Uphill diffusion



Characteristic length
scale of fluctuation

Too long wave length is
slow due to diffusion over
long distances

Too short wave length yields
a high cost in surface energy

Quantative analysis: Cahn-Hilliard



Kinetics of phase separation -
metastable compounds

• Metastable compounds undergoes the
transition through an activated process called
nucleation.

• Compounds are stable to small fluctuations
but are not in global minima.

• A drop of the coexisting compound must be
created by thermal fluctuations even if this
increases the free energy.

• This drop, or nucleus, must thereafter grow
until the free energy change is negative.



Kinetics of phase separation -
metastable compounds

• The activation is due to the creation of an
interface with a characteristic surface tension,
γ associated with a surface energy.

• There is both a positive and a negative
contribution to F
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Kinetics of phase separation -
metastable compounds
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Kinetics of phase separation -
metastable compounds

! 

P = exp("#F * /k
B
T)

Probability of forming a nucleus which can grow is:

Homogeneous nucleation

Example is from Jones. 
Gibbs free energy of 
liquid-solid transition.
same principles apply

typical values gives significant
nucleation growth ~10 K below Tm
Usually we see crystallisation just 
Below Tm  Why? 



Kinetics of phase separation -
metastable compounds

! 

"F * is decreased by the presence of an interface.
Container edge, dust particle (airplanes…) etc.

heterogeneous nucleation
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