Timetables for the Black Hole course, January - March 2004

Jan 19 Mon	15:15-17:45: room FL13 (1st lecture) Infinitesimal distances on a plane and on a sphere. The meric. Coordinate transformations. Covariant and contravariant vectors and tensors. Tensor algebra. Rasing and lowering indicies. Einstein's summation convention.
Jan 21 Wed	10:00-12:00 room FL72 (2nd lecture) Parallel transport. Covariant derivative. Geodesic lines. Frenet's formulae.
Jan 26 Mon	15:15-17:45 room FL13 (3rd lecture) Curvature. Riemann and Ricci tensors and their geometrical meaning. Intrinsic and extrinsic curvature. Examples: sphere, cyllinder.
Jan 28 Wed	10:00-12:00 room FL72 (4th lecture) Minkowski spacetime. Spacelike, timelike and null curves. Observers. Measurements. Lorentz transformations. Uniformly accelerated observer.
Feb 02 Mon	15:15-17:45 room FL13 (5th lecture) General spacetime. Geodesic deviation. Einstein's principle of equivalence. Gravitational field.
Feb 04 Wed	10:00-12:00 room FL72 (6th lecture) Matter. Stress-energy tensor. Killing vectors. Conservation laws.
Feb 09 Mon	15:15-17:45 room FL13 (7th lecture) Einstein's field equations. Schwarzschild equations. The Schwarzschild metric. Circular motion of particles and photons in the Schwarzschild metric.
Feb 11 Wed	10:00-12:00 room FL72 (8th lecture) The effective potential. Epicyclic frequencies. Peryhelion of Mercury advance.
Feb 16 Mon	15:15-17:45 room FL13 (9th lecture) Non-static spacetimes. The Kerr metric. Ergosphere. Dragging of inertial frames. The Penrose process.
Feb 18 Wed	10:00-12:00 room FL72 (10th lecture) Conformal transformations. Optical geometry. Centrifugal force paradox.
Feb 23 Mon	15:15-17:45 room FL13 (11th lecture) This lecture will be given by Rickard Jonsson Kruskalization. The horizon. The singularity. Cosmic censorship.
Feb 25 Wed	10:00-12:00 room FL72 (12th lecture) This lecture will be given by Hans Westman The area of horizon theorem. Quantum effects. Hawking radiation.
Mar 01 Mon	15:15-17:45 room FL13 (13th lecture) Astrophysical black holes. Other compact objects: neutron stars and white dwarfs. Stellar mass black holes. Supermassive black holes. Primodial black holes. Black hole in our Galaxy centre.
Mar 03 Wed	10:00-12:00 room FL72 (14th lecture)

Accretion disks around black holes. Shakura-Sunyeav, slim, thick disks. Adafs. A review of the most challenging problems in black hole astrophysics.