
IMAGE PROCESSING (RRY025)

LECTURE 13

IMAGE COMPRESSION - I

1

Need For Compression

• 2D data sets are much larger than 1D. TV and movie data

sets are effectively 3D (2-space, 1-time).

• Need Compression for both transmission and storage.

• Applications

- JPEG on internet

- Picture telephones/video conferencing

- Large image data bases (in US FBI stores 20 million finger-

prints)

2

Types of Compression

• Applications to storage and transmission essentially the same.

Although in the latter case may have to worry about trans-

mission channel errors.

• Lossless compression is information preserving. - so is per-

fectly reversible. But often achievable compression is only

modest (5:1 for grayscale images). Useful for permanent stor-

age.

• Lossy compression does not preserve information. Can not

be exactly reversed. Can get high compression, i.e. 20:1.

Most useful for ’throw-away’ applications such as browsing a

web page.

3

Sources of Compression

• Compression works by removing redundancy from data.

– Coding Redundancy. Lossless. Give common values short

codes and uncommon values long codes.

– Interpixel Redundancy. Lossless/Lossy. Adjacent pixel

values are highly correlated, so they don’t send independent

information.

– Psychovisual Redundancy. Lossy. Not all (high spatial

frequency) information is perceived by eye/brain so don’t

transmit.

• A highly redundant image (uniform gray) is highly compress-

ible. Characterised by one number. Random pixel-to-pixel

uncorrelated noise with uniform distribution is incompress-

ible.

4

General Compressor/Decompressor

MAPPER QUANTISER
ENCODER

SYMBOL

INVERSE
MAPPER

SYMBOL
DECODER

COMPRESSOR

DECOMPRESSOR

Mapper. Converts to a new (more compressible) image

representation. i.e. take difference between pixels, convert to

run lengths, or do a cosine transform.

Quantiser. Really a ’re-quantiser’. Take pixel values rep-

resented by 8 bits, lose accuracy and represent with 6 bits,

therefore compress by factor 8/6 = 1.33. always lossy.

Symbol Encoder. Encode common symbols with short

codes and uncommon ones with long codes lossless

The decompresser consists of an inverse symbol encoder and

inverse mapper. There is no inverse quantiser since that step

is lossy and irreversible.

5

Symbol Coder

• Encode separately each of the pixel values. Give common

pixel values short codes, rare values long codes. Coder and

decoder use same ’codebook’.

LEVEL

PROBABILITY
OF GRAY

VALUE

GRAY LEVEL

x

P(x)

0 255

GIVE SHORT CODES
e.g. 1010

GIVE LONG CODES
e.g 10010011010101

• If the codeword for gray level value x has N(x) bits then the

mean number of bits per pixel of compressed data

Nmean =
255∑

o
P (x)N(x)

For the right codebook we can get Nmean < 8 and hence

compression.

6

Coding Theorem

• ’Shannons Noiseless Coding Theorem’ - it is possible to en-

code without distortion a sequence of single symbols of en-

tropy H1 per symbol with a code using H1 + η bits/symbol

where η is arbitrarily small and where H1 is;

H1 = −

L−1∑

x=0

P (x)Log2P (x)

where L is the number of gray levels and P (x) the probability

of each gray level.

• The theorem however does not tell us how to construct the

codebook. A simple way to approximate to it is via Huff-

man coding, where input pixel values of fixed length (say

8bits/pixel) are mapped to a variable length codewords.

How do we know when the code for one pixel ends? Send-

ing special combinations of bits to indicate pixel boundaries

reduces compression. Instead make codewords uniquely de-

codable.

7

Huffman Coding

Construct according to the following rules.

• Arrange the symbol probabilities, P (x) in decreasing order

and consider them as leaf nodes on a tree.

• While there is more than one node:

- Merge the two notes with smallest probability to form a

new node whose probability is the sum of the merged nodes.

- Arbitrarily assign 1 or 0 to each pair of branches into a node

(often assign 1 to the branch to the larger probability, but it

doesn’t matter)

• create the code for each symbol by reading sequentially from

the root node to the leaf node.

8

• An example Huffman code for an image with 8 gray levels.

x
value -decimal

Gray level

Value-binary
Gray level

0 000 0.25

P(x)
Probability

2 010 0.21

1 001 0.15

3 011 0.14

4 100 0.0625

5 101 0.0625

7 111 0.0625

6 110 0.0625

0.125

0.125 0.250

0.29

0.46

0.54 1.00

Huffman
Code

00

10

010

011

1100

1101

1110

1111

0 0

10

1

1

0

1

0

1

0

1

0 1

• This is uniquely decodeable sequence because the first n

bits of any length m Huffman code (where n < m) never

equals another Huffman code. Can transmit coded data

as a bit stream with no gaps.So the transmitted sequence

110000101101101111011 can be uniquely decoded as

1100/00/10/1101/10/1111/011/

or

4 0 2 5 2 6 3

9

• For the above example we have

x Input Prob Huffman Code Code Length

P(x) N(x)

0 000 0.25 00 2

2 010 0.21 10 2

1 001 0.15 010 3

3 011 0.14 011 3

4 100 0.0625 1100 4

5 101 0.0625 1101 4

7 111 0.0625 1110 4

6 110 0.0635 1111 4

• After encoding the mean length per pixel is

Nmean =
7∑

x=0

P (x)N(x) = 2.79

bits/pixel compared to original 3bits/pixels. Theoretical op-

timum for single symbol encoding is the entropy H1 = 2.781

bits/pixel.

10

Huffman Coding-Notes

• Obviously both coders and decoders must use same code-

book.

• Codebooks either can be ’hardwired’ into codecs as part of

the standard (e.g Group 3 and 4 FAXm JPEG etc) (most

common) OR

• Can transmit codebook first - but this reduces compression

OR

• Can start with a default codebook and both transmitter and

receiver can adapt using some algorithm a improved code-

book as the symbols are decoded.

• Above basis of Lempel-Ziv-Welch (LZW) compression. Used

in GIF and PNG image compression formats as well as unix

Compress, gzip etc. For a signal with stationary statistics

can show such universal compression approaches optimum

lossless compression if signal of to H bits/pixel.

11

Multi-pixel Coding

• In a 8bit image, each of the possible 256 graylevels has its

own, variable length Huffman code, - data rate approaches

single pixel entropy H1.

• If adjacent pixels are correlated (as they always are in inter-

esting images) can encode groups of 2 or more pixels, giving

each a unique code. Exploits interpixel and coding redundacy

• Consider first encoding pairs of pixel values. There are now

2562 possible ’symbols’. Based on probabilites of these ’sym-

bols’ can calculate a two pixel entropy of H2 bits/symbol.

• If no correlation between pixels, no benefit, H2 measured in

bits/symbol is twiceH1 in bits/symbol. In terms of bits/pixel

have same value and maximum lossless compression ratio

same. However if pixels intercorrelated. H2 in bits/pixel can

be less than H1 in bits/pixel, can increase compression.

12

• As the number of pixels jointly coded, n, goes to infinity we

asymptotically obtain an estimate of the signal entropy H =

Hn, which depends on the statistics of interpixel correlation.

H bits/pixel is the theoretical limit for any type of lossless

compression in a signal (Shannon).

Entropy
per pixel

Number of Pixels
per coded symbol

1 2 3 4 5 6

H1

H2

H3
H4 H5 H6

H

13

Quantiser

• Consider as a lossy alternative to entropy coding. Because

it is lossy can achieve higher compression, but is not re-

versible(!)

• Go from fixed length binary number for each pixel value

(say 8 bits) to another fixed length value (say 4 bits), and so

compress by factor of 2.

• Simplest approach is just to remove 4 least significant bits

from input value. Less distortion introduced if we convert

pixels to 4-bit code words with unevenly distributed decision

levels. Make decision levels closer together for regions where

the image histogram peaks (p 368 of G & W).

LEVEL

PROBABILITY
OF GRAY

0

VALUE

GRAY LEVEL

x

P(x)

2551101

0001

0000

1111

0111
0110

0010
0011

1110

1100
1011
1010
1001
1000

0101
0100

44-bit Code values

14

• Given the pixel probabilities we have a requantisation table

given below,

Gray levle

Input Range Input Range Code value Reconstruction

(decimal) (8bit binary) (4 bit Binary) value

0 - 55 00000000 - 01100101 0000 27

56 - 70 01100110 - 10000110 0001 63

71 - 80 10000111 - 10100000 0010 76

.......

etc, etc, etc

• We therefore have a compression of a factor of 2, although

with a loss of image information. Choosing ranges for the

requantisation based on the pixel histogram (narrow range

at peak in histogram) however minimises errors.

• Theories exist on how for a given compression and image

histogram to choose the decision levels and reconstruction

values to minimise error.

15

Mapper

• We will discuss this more fully in the next lecture. Will

consider both waveform and transform coders.

• Waveform encoders work in the the image domain. Simplest

type, form difference between present pixel and the last one,

then can quantise and entropy code this quanitity. Get more

compression because the difference image has lower entropy.

• Will also discuss more complex predictive coding methods

and run length coding.

• Transform coders use general transforms to another domain

e.g. cosine or wavelet transforms used in JPEG and JPEG2000.

Discuss JPEG in detail, since it uses psycho-visual redun-

dancy, cosine transform, run-length coding and Huffman cod-

ing.

• In last lecture (if we have time) we will discuss briefly video

compression (MPEG).

16

Simple Transformer - Pixel Difference Coding

• On each line of image form predictor of next pixel value based

on previous pixels on a line f̄n by some rule. The simplest

predictor is f̄n = fn−1, the last pixel value. Both transmitter

and receiver use same rule.

• Transmit not fn but the pixel error en = fn − f̄n. If the

predictor is simply the previous pixel values we encode pixel

differences.

• Since pixels next to each other are usually highly correlated

small differences are common. Histogram of differences is

highly peaked and low entropy. Can often create an efficent

entropy code for en, get good lossless compression.

17

+

+

PredictorPredictor

Decoder
+

-

Predictor

Transmitter Receiver

u(n) e(n)

u(n)
-

u’(n)

Coder

18

