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Introduction

The central issue of this thesis is the di�usion of tracers in weak turbulence.

Speci�cally, we consider the motion of particles in capillary surface waves and in

the complex Ginzburg-Landau equation.

There are two possible descriptions of uid dynamics, the Eulerian and the

Lagrangian. In the more common Eulerian description the focus is on the motion

at a particular location. A set of dynamical variables, e.g. the uid velocity,

entropy, characterizes the uid dynamics at this position. The entire ow is

described through a set of dynamical �elds.

In contrast, the Lagrangian description emphasizes the dynamics of the so-

called uid elements, that is, small volume elements of the liquid ow. Specifying

the detailed motion of the set of such elements also provides a complete speci�ca-

tion of the uid dynamics. The Lagrangian description of uid dynamics can be

experimentally visualized by adding particle tracers, which are assumed to follow

the path of the displaced uid elements.

We study the di�usion of single particles and of pairs of particles. In principle,

the motion of one particle and the motion of pairs of particles should yield the

same information, since they are measured as tracers in the same background

�eld. However, little is know theoretically about the relation between the two

types of measurements, and it is therefore of interest to study both single-particle

motion and the relative motion of pairs of particles. Measurements of the relative

motion of pairs emphasizes the ow on length scales at or below the distance of

the two particles, whereas the single-particle motion is a�ected by ows on all

length scales.

In turbulence the wavenumber scales at which the energy enters the system

(at the source) and the wavenumber scales at which the energy leaves the system

(at the sink) are well separated. The range in-between is called the inertial range,

and it is assumed that energy cascades through this range from the source to the

sink in a manner independent of the actual composition of the source and the
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4 Introduction

sink.

As opposed to fully developed turbulence, weak turbulence is characterized by

the presence of small-amplitude homogeneous-background waves. In the theory

of weak turbulence the nonlinearity of the background waves is assumed to be

small. This enables an expansion of the system in the parameter of the small

nonlineary, which leads to a truncation of the otherwise in�nite hierarchy of

correlation functions in turbulence theory. Such are the systems we consider

here.

This thesis is based on work that was partially reported in the following �ve

papers:

Paper I E. Schr�oder, J. S. Andersen, M. T. Levinsen, P. Alstr�m, and W. I. Gold-

burg, Relative Particle Motion in Capillary Waves, Phys. Rev. Lett. 76,

4717 (1996).

Paper II G. Huber, E. Schr�oder, and P. Alstr�m, Self-di�usion and relative

di�usion in defect turbulence, Physica D 96, 1 (1996).

Paper III E. Schr�oder, M. T. Levinsen, and P. Alstr�m, Fractional Brownian

Motion of Particles in Capillary Waves, preprint [to appear in Physica A

239 (1997)].

Paper IV O. T�ornkvist and E. Schr�oder, Vortex Dynamics in Dissipative Sys-

tems, Phys. Rev. Lett. 78, 1908 (1997).

Paper V A. E. Hansen, E. Schr�oder, P. Alstr�m, and M. T. Levinsen, Fractal

Particle Trajectories in Capillary Waves, Imprint of Wavelength, preprint

(submitted for publication).

The thesis is organized as follows. The �rst four chapters are related to dif-

fusion measurements of particles in surface waves in the Faraday experiment.

Chapter 1 describes the setup of the Faraday experiment and explains how the

particle positions are measured. Chapter 2 introduces the relative di�usivity

and discusses some of the many de�nitions thereof. The major part of the chap-

ter contains the particle-pair data analysis. In Chapter 3 the theory of weak

turbulence is described and from this we derive a prediction which is compared

to the particle-pair measurements. Chapter 4 is concerned with the di�usion of

individual particles in the Faraday experiment.
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The theme of the two last chapters is di�usion and vortex motion in the

complex Ginzburg-Landau (CGL) equation. Chapter 5 contains a short intro-

duction to the CGL equation and a description of di�usion measurements in the

CGL equation. In Chapter 6 we derive an expression for the vortex velocity in

the CGL equation. The Papers I{V are reproduced at the end of the thesis.

I wish to thank my collaborators, my colleagues, and my friends and family

near and far for much appreciated inspiration, help, and encouragement during

my time as a student at the Niels Bohr Institute and as a visitor at Boston

University. I am grateful to all of you | tusind tak!

This thesis is in submitted in partial ful�llment of the requirements of the

Ph.D. degree in Physics at University of Copenhagen. The work was supported

by the Danish Natural Science Research Council (SNF) and by the Fulbright

Commission.



Chapter 1

Di�usion in Surface Waves

In the following four chapters we investigate the motion of particles on uid sur-

faces. We describe measurements in the Faraday experiment, introduced below,

of particles moving in capillary waves, and we compare the Faraday measurements

to theoretical predictions and to oceanographic and atmospheric measurements.

This chapter concentrates on the Faraday experiment. The experiment is

described, the necessary notation for the ensuing data analysis is introduced,

and a short discussion of capillary and gravitational surface waves is given. The

experiment described in the following chapters is reported in Papers I, III, and V.

1.1 The Faraday Experiment

A simple, yet enticing, experiment is the vertical vibration of a uid, on which

surface waves may form if the amplitude of vibration exceeds a certain critical

value. The surface waves created by such vertical vibrations were �rst studied

by Faraday [2] in 1831 and by Lord Rayleigh in 1883 [3]. They observed that if

the vibration amplitude A exceeds some critical amplitude A

c

, standing waves

will form on the surface. The waves will exhibit a standing wave square pattern;

see Fig. 1.1. This instability of the surface is of the parametric type; in this

case the frequency of the standing waves is half the driving frequency. When

the amplitude A is slightly increased, the surface pattern becomes somewhat

disordered by the occurrence of moving defects. These defects result from the

transverse amplitude modulational (TAM) instability. For water this happens

at such a small increase of A that, in reality, a perfect square pattern, like the

one shown in Fig. 1.1 where the uid is ethanol, is not seen. The waves obey

a dispersion relation, which relates the wave frequency to their wavelength. In

6



1.1 The Faraday Experiment 7

Figure 1.1: The Faraday experiment. Square pattern formed by the capillary

waves right above the critical vibration amplitude A

c

. In this case the uid was

ethanol, and the driving frequency was 400 Hz. By O. Klembt Andersen, J.

Sparre Andersen, and M. Stoklund Johansen.

our experiment the external conditions are such that the waves formed have a

small wavelength. This means that they obey the dispersion relation for capillary

waves. A short discussion of capillary and gravitational waves is given at the end

of this chapter.

When increasing A to 10% or more above A

c

, nonlinear wave interactions

become important and the defects dominate. The wave pattern becomes random

in appearance, however, on time averaging the motion of the surface over many

oscillation periods, the square pattern remains discernible [4]. This indicates that

the long-range correlations of the capillary waves are not destroyed. The ow is

spatio-temporally chaotic, not fully turbulent. Most of our measurements were

in this region.

Since measurements are relatively easily made in this system, it has become

an important system in many respects. For studying pattern formation [5], the

aspect ratio can be varied by varying the driving frequency, and the amplitude

A, which acts as the control parameter around the instability, can be tuned

by changing the voltage applied to the vibrator (see below). The surface wave

pattern can be seen by eye, and can be measured by shadow graphs [6]. The
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pattern formation is not yet fully understood from a theoretical point of view

[7, 8, 9].

Also, since the system exhibits spatio-temporal chaos, it is of considerable

interest to measure particle motion on the surface. This motion can be quite

complex, as observed by Ramshankar, Berlin, and Gollub (RBG) [10, 11]. In-

spired by their measurements of single particle motion and of spreading of dye

on the surface of capillary waves in the Faraday experiment we measured both

single particle motion and relative motion, i.e. the motion of one particle as seen

from another particle.

1.2 Experimental Setup

In the following, a short description of the setup for recording particle motion in

the Faraday experiment is given. The aim is to give a description as seen from

a theoreticians point of view. A more detailed description of the experimental

setup can be found in Ref. [12].

The container used to store the uid is a cylindrical dish with an interior

diameter of 8:4 cm and a height of 2 cm, �lled with water up to a height of

approximately 1 cm. The container is �xed to a vibration exciter, which is driven

by a sinusoidal signal originating from a frequency synthesizer; see Fig. 1.2. The

amplitudeA of the vibrations is proportional to the voltage applied to the exciter,

and this applied voltage is the actual control parameter in the experiments. The

driving frequency is 260 Hz, which gives the standing waves a frequency of 130 Hz

and a wavelength � = 2:6 mm.

For the di�usion measurements, oating particles are sprinkled on the surface.

The particles used are mushroom spores. They were chosen because of their

low mass density and small size (approximately 50 �m), and, more importantly,

because they strongly resist being wetted by water, assuring that they will oat.

When light is shone at a small angle at the surface the particles reect the light,

and images of the particles can be recorded by a charge-coupled device (CCD)

camera. The light sources are placed so as to minimize the reection from the

waves, but not all such unwanted reections can be eliminated at this stage.

The images from the CCD camera are recorded on a VCR tape. The images

are later fed into a frame grabber board in a personal computer by replaying the

VCR tape, while letting the computer �nd and store the position of some of the

particles at time intervals of 20 ms. To allow for particle positions to be recorded
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Figure 1.2: The Faraday experiment. Schematic drawing of the experimental

setup for the recording of particle images.

in the computer memory the VCR tape has to be replayed at a reduced speed of

about one-�fth of the data recording rate.

As a start, the tracking program arbitrarily selects four bright spots in an

image. As noted above, some of these spots may be reections from the waves

instead of particles. However, many of these wave reections have less intensity

than the reections from the particles, and may therefore be excluded by raising

the threshold intensity for identifying a particle. For each of the four particles

thus found in one image, the next horizontal coordinate (x(t

i

); y(t

i

)) is identi�ed

by searching a box of side length approximately 4 mm, centered on the prior

coordinate (x(t

i�1

); y(t

i�1

)) [where t

i

� t

i�1

= �t = 20 ms, the time between

two images]. If the program fails to �nd a particle within this box, the track is

ended, and the program randomly chooses another particle to track. If more than

one particle appears in the search box, the program chooses the one closest to

the prior position. Particle tracks consisting of less than 100 time steps (= 2 s)

are discarded. This way, the remaining reections from the waves are excluded,

because they usually do not appear in more than a few subsequent images.

The lengths of the particle tracks are limited by the size of the camera window

(circular with a radius of 3 cm � 70% of the dish radius) and by the fact that

at the reduced speed the VCR automatically stops after a time corresponding to

approximately 3000{5000 time steps

1

. Furthermore, particle tracks that at some

1

This restriction can be removed with the use of a su�ciently fast personal computer that
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point become separated by a distance smaller than or comparable to the pixel

size are discarded, because the tracks measured after that point can be the track

from either particle, leading to an ambiguity in the analysis. The size of a pixel

is � 0:1 mm in the x-direction and � 0:3 mm in the y-direction. The longest

tracks that were measured consist of the order of a few thousand data points.

In terms of the reduced control parameter � � (A � A

c

)=A

c

we measured

the particle trajectories for the seven values � = 0:05, 0.13, 0.24, 0.34, 0.65,

0.86, and 1.06. At the value � = 0:05 the square pattern is no longer clearly

visible, but there are hints of a pattern, whereas at � = 1:06 the system is closer

to being (fully) turbulent. In the range between these extremes, the system

is spatio-temporal chaotic with a length scale. For each vibration amplitude

approximately 1000 particle tracks were recorded. From these, we analysed the

single particle motion and the relative motion. Similar measurements of single

particle motion were reported in Ref. [10], but at smaller vibration amplitudes

(� = 0:04 to 0.4) and with larger particles (diameter 2-4 times larger).

1.3 Notation and Tools

Thus having obtained a number of particle tracks at several vibration amplitudes,

we can proceed with a statistical analysis of the data. As mentioned in the

Introduction, it is of interest to study both the dynamics of single particles and

the relative motion of pairs of particles. We study the horizontal motion of

particles on the uid surface, and neglect the small vertical motion resulting from

the vertical motion of the waves. We are interested in the statistical properties

of the motion, and experimental realisations of the averaging procedures must

be introduced. These will be discussed here, while further data analysis of the

particle motion will be discussed in later chapters.

At this point, it is worthwhile to de�ne some of the notation that will be used

below and in later chapters. The horizontal position of the ith particle at time t is

given by r

i

(t) = (x

i

(t); y

i

(t)), and the distance traveled in e.g. the x-direction in a

given time interval � is �x

i

(� ) = x

i

(t+ � )�x

i

(t). The di�erence vector between

the two particles i and j is given by R

ij

(t) = r

j

(t) � r

i

(t); see Fig. 1.3. The

indices will often be omitted. The time unit between two images, the sampling

time, is �t = 20 ms, which is the shortest time scale available in this experiment.

can track the particles at the real-time speed of the VCR tape. This was not possible at the

time of processing the data, but it may become possible in the near future.
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S

S

Sw

C

C

C

CW

R

ij

(t)

R

ij

(t+�t)

Trajectory

of particle i

Trajectory

of particle j

6

U

Figure 1.3: Illustration of the relative coordinate R

ij

. �t = 20 ms is the time

interval between two images of the particles.

Any other time interval (usually an integer multiple of �t) is generally denoted

by � or s�t.

An example of a particle trajectory obtained in the Faraday experiment is

shown in Fig. 1.4. The area shown is approximately 15% of the area covered by

the camera window (and about 7% of the uid surface). The spatial resolution

of the particle positions is limited by the pixel size. This is seen as a raggedness

of the trajectory in Fig. 1.4. The resolution of the trajectory is better in the x-

direction than in the y-direction, a consequence of the pixel size in the y-direction

being about three times that of the x-direction. A particle is smaller than a pixel.

For the single particle motion, we employ the following averaging method. It

involves a summation over the N particle tracks that where measured for a given

value of the control parameter �, and a summation over all possible subdivisions

of each track. The average of some function g reads

hg[�x(� )]i =

1

N

N

X

k=1

�t

T

k

� �

(T

k

��)=�t

X

s=1

g [x

k

(s�t+ � )� x

k

(s�t)] (1.1)

The duration of the kth particle track is T

k

, which is an integer multiple of the

sampling time �t.

The variance of particle displacements in one direction, i.e. the quantity

V (� ) = h[x(t + � ) � x(t)]

2

i, is calculated for each of the seven values of �. We

�nd that for length scales larger than the wavelength � the variance grows almost
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Figure 1.4: The Faraday experiment. The trajectory of a particle at control

parameter � = 0:34. The coordinate system is translated to have origo at the

starting point of the particle trajectory.

linearly with the time interval � , as would be expected for Brownian motion. The

smaller length scales have a powerlaw dependence with an exponent of approxi-

mately 1:55. However, values of the exponents (for large and small length scales)

show some dependence on �. This dependence will be investigated theoretically

in a later chapter.

By studying the motion of pairs of particles, as opposed to single particles,

other aspects of the ow are illuminated. In this experiment, we consider pairs

of particles that at some point in time are `close' together, and we follow their

relative motion. According to Richardson [1], the particles will move apart at a

rate that increases as the distance between the particles grows. For this reason,

we are interested in the motion of the particles after they were `close'. We let the

condition for two particles being `close' be that their relative distance is 4 mm or

less (although at least a pixel size apart); see Fig 1.5. We measure the rate, at

which they drift apart, through the relative di�usivity hdR

2

=dti

~

R

, where R = jRj

is their separation. The average is over all occurrences of particle pairs where the

separation R is in the interval

~

R � � to

~

R + � with � = 0:5 mm. The index

~

R

will be left out when it is clear from the context which averaging scheme is used.

This is the case in most parts of this text.
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Figure 1.5: The Faraday experiment. The trajectory of one particle as viewed

from another particle (relative coordinates), at control parameter � = 0:24. The

track starts when the two particles are su�ciently close together [here: at distance

vector R = (�0:47 mm;�1:31 mm)]. The length of the relative track is 640 units

of �t, i.e. almost 13 s.

We use �(R

2

)=�t as an experimental measure of this relative di�usivity.

This measure also expresses the di�erence in the longitudinal particle velocity

�v

jj

(R) = �v � (R=R)

�(R

2

)

�t

=

(R(t) + �v�t)

2

�R

2

(t)

�t

= 2R � �v + (�v)

2

�t: (1.2)

where �v = dR=dt is the velocity di�erence of the two particles. It is necessary

that �t be small enough to assure that the term (�v)

2

�t is negligible compared

to the �rst term 2R � �v. We checked that this condition of small �t is satis�ed

for the chosen value of �t = 20 ms, by varying �t.
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1.4 Surface Waves

In the experiment reported here, particles di�use on surface waves. The surface

waves are governed by a dispersion relation. In general, the dispersion relation

connecting the wave frequency ! and the wavelength � = 2�=k for surface waves

is

!

2

(k) = k[g + �k

2

=�] tanh(kh) = kg[1 +

1

2

a

2

k

2

] tanh(kh): (1.3)

Here g is the local gravitational acceleration, � is the surface tension coe�cient,

� is the uid density, and a =

q

2�=(�g) is the capillary length of the uid [13].

h is the mean depth of the uid. We shall not be concerned with shallow water

waves in this work. For a deep uid (h!1) the relation simpli�es to

!

2

(k) = k[g + �k

2

=�] = kg[1 +

1

2

a

2

k

2

] (1.4)

In the experiment considered here, with wave frequency !=(2�) = 130 Hz and

wavelength � = 2�=k = 2:6 mm, the capillary length is a = 3:1 mm when

determined from Eq. (1.4).

For long wavelengths, i.e. for small wave numbers, the gravitational force on

the displaced uid (displaced away from the at surface, equilibrium) acts as

the restoring force of the wave. In that case, the �rst term in (1.4) dominates.

Such waves are called gravity waves. In the opposite case of short wavelengths,

the e�ect of gravity can be neglected, and the restoring force due to the surface

tension dominates, i.e. the second term of (1.4) dominates. For these waves,

called capillary waves, the dispersion relation is

!

2

(k) = �k

3

=� : (1.5)

These are the waves present in our experiment: a short check of (1.4) shows

that the second term is almost an order of magnitude larger than the �rst term.

Notice that in both cases the dispersion relation is expressed as a power law.

Gravity waves are found e.g. at the surface of the oceans, excited by winds

blowing over the surface. For water, capillary waves have wave lengths less than

� 4 mm [14].



Chapter 2

Relative Particle Motion

This part of the thesis is concerned with di�usion measurements on capillary

waves and theoretical interpretations thereof. The following chapter is an intro-

duction to Paper I and an extension of some of the work described therein. We

discuss relative di�usion, and we report the results from relative di�usion in the

Faraday experiment.

2.1 Di�usion

Tracers are assumed to follow the path of the uid element they displace, thus vi-

sualizing the motion of the uid. The tracer dynamics therefore yields important

information about the underlying uid motion.

The motion of a particle with respect to a �xed coordinate system in a tur-

bulent ow | or simply in a \disordered" ow | is a�ected by eddies of all sizes

in the ow. Think of the motion of a balloon in the atmosphere. This balloon

will be shoveled back and forth by the local wind gusts, but it will also on a long

time scale be carried along with the trade winds. Consequently, the position of

the balloon is a�ected by eddies of the smallest and the largest length scale alike.

In contrast, di�usion based on the separation of two particles only depends on

eddies smaller than or of the size of the separation. Relative di�usion measures

the average rate of separation between pairs of particles. Consider an example

of two balloons released into the atmosphere at a small separation. They will be

individually a�ected by the wind gusts blowing in the vicinity of their respective

position, changing their separation. But their relative position will not be a�ected

by the trade winds passing by, because they will cause both balloons to change

their positions roughly the same distance, simultaneously.

15



16 Relative Particle Motion

Richardson [1] was among the �rst to realize this important di�erence in

the nature of the di�usion measurements. He found that the rate at which the

particles move apart grows with the separation. The assumption is, as in the

balloon-pair example above, that for a particular particle separation the eddies

that contribute to the motion of the particles are those smaller than the separa-

tion. The growing separation rate can then easily be understood when considering

that the further the particles are apart, the larger is the range of eddy sizes that

contribute to their relative velocity. Thus, relative di�usion is an accelerating

process until the particles are so far apart that they move independently [15].

Note that here the term \eddy" is not restricted to a simple rotary motion

of a certain mass of liquid. Rather, in the spirit of Ref. [16], the term applies to

patches of uid on a certain scale (the \eddy size") that are correlated and have

similar velocities. This is a rather weak de�nition, but it su�ces for the current

presentation.

Whether absolute di�usion (self-di�usion, di�usion of single particles) or rela-

tive di�usion (di�usion of pairs of particles) is measured, the underlying velocity

�eld is the same, and it would be reasonable to expect that there be a close rela-

tionship between the results obtained in the two types of measurement. However,

such a relationship has not been found in a theoretical form, except for special

cases, e.g. for very short di�usion times [17]. Therefore, in addition to the ab-

solute di�usion, the properties of relative di�usion are important.

In this chapter our measurements of relative di�usion in the Faraday exper-

iment are reported. A discussion of the results in connection to the predictions

of the theory of weak turbulence is presented in the next chapter. Absolute (or

self-) di�usion is covered in a succeeding Chapter.

2.2 Relative Di�usion

The particle separation R is an important parameter for relative di�usion. How-

ever, there seems to be a lack of consensus on which quantity, derived from the

separation, should be studied. The choice is often inuenced by the selection of

variables can actually be measured in a particular experiment. A few examples

of di�usivity de�nitions will be given here.

Richardson [1] studied a cloud of particles and de�ned a neighbor concentra-

tion q(R; t) so that q(R; t)dR is the number of particles having neighbors at a
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distance between R and R + dR, i.e. q is de�ned as

q(R; t) = lim

L

1

;L

2

!1

Z

L

2

�L

1

�(x; t)�(x+R; t)dx

Z

L

2

�L

1

�(x; t)dx

(2.1)

where �(x) is the particle concentration at position x. He de�ned a neighborhood

di�usivity F (R) from the di�usion equation as a measure of the rate of change

of separation,

@q(R; t)

@t

=

@

@R

"

F (R)

@q(R; t)

@R

#

: (2.2)

In the case where the average change in separation hR(t) � R(0)i is much less

than the initial separation R(0) the neighborhood di�usivity for R(0) can be

approximated by

F (R(0)) =

h[R(t)�R(0)]

2

i

2t

(2.3)

where the average is over all pairs that are released at the �xed distance R(0)

apart. Richardson found that the neighborhood di�usivity increases as F (R(0)) /

R(0)

4=3

for atmospheric turbulence. This has been named the \Richardson 4/3

law".

The Kolmogorov theory (K41) of three-dimensional turbulence [18], which

came after Richardson's 1926 paper, gave strong support to Richardson's 4/3 law.

The K41 theory predicts that h�v

jj

(R)

n

i / R

�

n

with �

n

= n=3 in the inertial range

of three-dimensional locally isotropic and homogeneous turbulence. The K41-

scaling �ts well with Richardson's 4/3 law F (R(0)) / R(0)h�v

jj

(R)i / R(0)

1+1=3

.

Note, however, that the system we consider is a (quasi-) two-dimensional sys-

tem. Similar to the K41-scaling for three-dimensional turbulence, numerical and

experimental evidence [19] suggests that hdR

2

=dti / R

2

for two-dimensional tur-

bulence, i.e. hR

2

i / exp(t=t

�

) where t

�

is some characteristic time scale.

Grossmann discusses the ambiguity in de�ning a di�usivity in Ref. [20]. He

chooses to de�ne the di�usivity as

K =

1

6

dh[R(t) �R(0)]

2

i

dt

(2.4)

with an average over pairs with �xed initial separation. Hinze [17] and Batch-

elor [15] agree on de�ning a relative di�usion, or relative dispersion, as hR

2

(t)i

and a relative di�usion coe�cient as

1

2

dhR

2

(t)i

dt

(Hinze) or

dhR

2

(t)i

dt

(Batchelor). (2.5)
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Morel and Larcheveque [21] study large-scale two-dimensional atmospheric

turbulence using balloons distributed over the Southern Hemisphere at a con-

stant level. They consider a relative di�usion rate like (2.5), but in addition they

also consider the velocity variance h(dR(t)=dt)

2

i. The balloons were released

in groups, and their positions were measured by a satellite. The positions of

the balloons were measured at two successive orbits of the satellite. Morel and

Larcheveque �nd that h�(R

2

)=�ti / R

2

and hR

2

i / exp[ t=(1:35 days)], in accor-

dance with the Kolmogorov-like result for two-dimensional turbulence, which was

mentioned above. Hentschel and Procaccia [22] also consider a relative di�usion

rate like (2.5), and the velocity variance h(dR(t)=dt)

2

i.

Stommel [16] studies oats that were released in pairs in the ocean. The oats

were followed over a large range of scales (length scales 10 cm to 1000 km and

time scales 3 s to 3 days), and the velocity variance h(�R(t)=�t)

2

i was found with

an ensemble average over pairs of equal initial separation. He de�nes a relative

di�usivity as h(�R(t)=�t)

2

i�t which he �nds to be proportional to R

4=3

.

Okubo [23] studies the spreading of dye in the upper ocean at time scales

from a few hours to a month. He �nds that the average distance of dye patches

grows as hR

2

i / (�t)

2:3

. This implies [24] that the relative di�usivity in the

Hinze/Batchelor de�nition (2.5) is dhR

2

i=dt / (�t)

1:3

/ R

1:3(2=2:3)

= R

1:1

, which

is far from the turbulence result R

2

.

As a �nal example we mention that Ramshankar and Gollub [11] studied

the spreading of dye on capillary waves in the Faraday experiment. They found

the fractal dimension of the contours of constant dye concentration to be d

f

=

1:40 � 0:05. Via a theory by Constantin and Procaccia [25] this result yields an

exponent �

abs

for hj�v

jj

(R)ji / R

�

abs

which is �

abs

= 2d

f

� 3 = �0:2 � 0:1; see

also Paper I.

It should be clear from these examples that an abundance of relevant de�ni-

tions exist! However, on long time scales where R(t) is likely to be much larger

than R(0), most of the de�nitions boil down to more or less the same quan-

tity. The choice of expression for this quantity is not essential, as long as care is

taken when comparing to other measurements or predictions. We chose to study

the relative di�usion coe�cient (sometimes also called the relative di�usivity) as

given by the expression

*

dR

2

(t)

dt

+

~

R

(2.6)
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Figure 2.1: Relative di�usion. Sample size N(R) of measurements at control

parameter � = 0:24.

implemented by using the �nite di�erence

�(R

2

)

�t

=

R

2

(t+�t)�R

2

(t)

�t

(2.7)

as already discussed in Chapter 1.

We are interested in the behavior of dR

2

(t)=dt and its moments as a function of

R. We therefore only need the relative particle tracks chopped up in steps with

information about the separations R(t) and R(t + �t) at two succeeding time

steps. The average h � i

~

R

is over all such bits of tracks for which the separation

at the �rst of the two time steps is

~

R � � < R(t) <

~

R + �. Note, though, that

all particle pairs considered have an initial separation R(0) less than some small

length scale (here: 4 mm). A particle pair can thus contribute more than once to

the average, namely once every time the separation is within

~

R � �. Figure 2.1

shows the number N(R) of track pieces with separation R. The number depends

on the separation, only few pairs reached a separation larger than 30 mm.

2.3 Moments of the Relative Di�usivity

We analyzed the distribution function P (dR

2

=dt) of the di�usivity and the mo-

ments of the distribution. Some of the results are reported in Paper I. Below
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Figure 2.2: Relative di�usivity distribution P (dR

2

=dt) (semi-logarithmic scale)

for R = 3 mm (open triangles), R = 6 mm (�lled triangles), and R = 14 mm

(circles); � = 0:24. The error bars are of the size of the symbols.

I summarize the main results of Paper I with regards to the Faraday experi-

ment, and I introduce results that were not reported in Paper I. The rescaled

distribution function P (dR

2

=dt) is also the rescaled distribution function for the

longitudinal velocity di�erence �v

jj

(R). This follows from the relation dR

2

=dt '

2R �v

jj

(R) and from the fact that the averages are taken for �xed separation R.

The relation between their moments follows easily, as we shall see.

The Figure 2.2 shows the distribution function P (dR

2

=dt) for separations

R = 3, 6, and 14 mm, all at control parameter � = 0:24. The distributions are

normalized, horizontally translated by their mean value hdR

2

=dti, and rescaled

by their standard deviation

�(R) =

*"

dR

2

dt

�

*

dR

2

dt

+#

2

+

1=2

: (2.8)

We �nd that the distributions consistently have their maximum to the left of the

mean. This is in contrast to fully developed turbulence in three dimensions, for

which the maximum is to the right of the mean (the third moment is negative).

The mean value in our experiment is an order of magnitude smaller than the stan-

dard deviation, a fact that unfortunately make the statistical errors signi�cant.

The distribution function P (dR

2

=dt) changes with R, from being Gaussian-like
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Figure 2.3: Relative di�usion. Mean value hdR

2

=dti versus R (double-logarithmic

scale). From below, � = 0:05, 0.13, 0.24, 0.34, 0.65, 0.86, and 1.06.

(but skew) at large separations (R = 14 mm), to having signi�cant tails at small

separations (R = 3 mm), which also happens for three-dimensional turbulence

[26]. These claims will be more evident below when the moments of P (dR

2

=dt)

are considered.

The two �rst moments of P (dR

2

=dt) were discussed in Paper I, i.e. the mean

value hdR

2

=dti and the variance �(R)

2

= h[R

2

=dt � hR

2

=dti]

2

i. In Figure 2.3,

the mean value is shown as a function of R on a double-logarithmic scale for the

seven values of � ranging from 0.05 (lower line) to 1.06 (upper line). We �nd that

the mean value increases with separation R. In other words, the rate at which the

particles move apart increases with growing separation as Richardson predicted

for atmospheric turbulence, although not at the same rate. As explained in

Paper I, if we assume a power-law behavior hdR

2

=dti / R

�

, we �nd that the

exponent is � = 0:9 � 0:15 (with a tendency to decrease with �) for this spatio-

temporal chaotic system. This is in contrast to the value � = 2 expected for two-

dimensional turbulent systems and in contrast to the atmospheric measurements

by Morel and Larcheveque [21]. We also note that the exponent � = 0:9�0:15 is in

reasonable agreement with the exponent 1:1 that was found in the aforementioned

dye-spreading measurements by Okubo [23]. However, the averaging process in

Okubo's work is carried out for �xed time, not �xed separation as in our case.
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Figure 2.4: Relative di�usion. The exponent of hdR

2

=dti / R

�

versus the control

parameter �. No exponent is given for � = 1:06 because a slope cannot be de�ned

for this value in Figure 2.3.

The measured values of the exponent � are shown in Fig. 2.4. For the largest

control parameter � = 1:06 a slope cannot be de�ned from Fig. 2.3. The statistical

errors of the mean hdR

2

=dti are estimated to be �(R)=

q

N(R), which are shown

as error bars for � = 1:06 in Fig. 2.3, with similar error bars for the other � values.

For large values of R the size of the ensemble is small (see Fig. 2.1), and the data

points have large error bars.

We also measured the absolute �rst moment hjdR

2

=dtji = 2Rhj�v

jj

Rji /

R

�

abs

+1

and found that �

abs

is very close to zero and slightly positive. We see

that this is close to the result �

abs

= �0:2� 0:1 predicted by the theory of Con-

stantin and Procaccia when using the dye spreading results of Ramshankar and

Gollub; see the previous pages.

The second central moment of P (dR

2

=dt) is represented by the standard de-

viation �(R); see Fig. 2.5. For each value of � the data are �tted rather well by a

straight line, �(R) / R

�

2

=2

. For � < 0:4 we �nd �

2

= 2:26 � 0:06, and for larger

values of �, �

2

approaches 2; see Fig. 2.6.

The values of the �rst and second moment exponents � and �

2

allow us to

compare our results to the oceanographic measurements by Stommel. As noted

in Paper I the relation to Stommel's result is �

2

� � = 4=3, which is in good
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Figure 2.5: Relative di�usion. Standard deviation �(R) versus R (double-

logarithmic scale). From below, � = 0:05, 0.13, 0.24, 0.34, 0.65, 0.86, and 1.06.
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Figure 2.6: Relative di�usion. The exponent of �
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(R) / R

�

2

versus the control

parameter �.
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agreement with our measurements; �

2

� � = 1:25 � 0:1 .

The higher order moments of the relative di�usivity distribution

�

n

(R) =

*"

dR

2

dt

�

*

dR

2

dt

+#

n

+

(2.9)

were also examined, although not all the results were reported in Paper I. Here

�

2

(R) = �

2

(R) is the variance. We also examined the third absolute central

moment

�

3

(R) =

*
�

�

�

�

�

dR

2

dt

�

*

dR

2

dt

+
�

�

�

�

�

3

+

(2.10)

which is plotted in Fig. 2.7 along with �

n

(R) for n = 3, 4, 5, 6, 7, and 8.

Again assuming power-law behaviors �

n

(R) / R

�

n

and �

3

(R) / R

�

abs

3

we can

�nd exponents for some of the moments, as we did in Paper I. We �nd �

abs

3

=

3:37� 0:06, �

4

= 4:37� 0:06, and �

6

= 6:2� 0:1 for � = 0:24; see also Table 2.1.

With the data we have available it is not possible to determine the exponents for

moments higher than �

6

(R) by the usual moments-versus-R plots, and even the

exponents that we did determine were di�cult to obtain, due to the uctuations

at large separations. Finding higher order moments involves measuring the rare

events that make up the tails of the probability distribution function, the higher

order moments are therefore very sensitive to statistical errors.

A by-now standard \trick" to obtain more accurate values of the exponents of

such moments is the method of extended self-similarity (ESS) [27, 28]. The idea

is the following. In three-dimensional turbulent ow at low Reynolds number

the spatial range in which one can determine the exponent �

3D

n

of the velocity

moment

Dh

�v

3D

jj

�

D

�v

3D

jj

Ei

n

E

/ R

�

3D

n

(2.11)

is small. The dissipation scale in the small-R end and the integral range in

the large-R end set the limits. In order to determine the exponents with more

accuracy one plots the moments against a reference moment, usually the third

moment. The third moment grows linearily with R above the dissipation scale,

by a rigid theoretical prediction (K41) [18, 29]. Plotting the moments versus the

reference moment has the e�ect of removing some of the arbitrary structure that

shows up as e.g. humps in a particular set of measurements. This then yields

lines that are more straight in a doubly logarithmic plot over a longer range and

from these lines the ratios of the exponents to the reference exponent are found

Dh

�v

3D

jj

�

D

�v

3D

jj

Ei

n

E

/ R

�

3D

n

/

�

h

�v

3D

jj

�

D

�v

3D

jj

Ei

3

�

�

3D

n

=�

3D

3

(2.12)
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Figure 2.7: Relative di�usion. The higher order central moments. From the top:

�

3

(R), and �

n

(R) for n = 3, 4, 5, 6, 7, 8, all at � = 0:24.

where �

3D

3

= 1. Plotting the moments versus the reference moment also removes

the dependence of the measured exponents on the Reynolds number of the ow.

Often the third absolute moment is substituted for the third moment because

absolute moments are less a�ected by noise than their non-absolute counterparts,

and because the third moment and the third absolute moment are very close to

being linearly proportional in most measurements.

The method of ESS does not immediately apply to our system. We study

a spatio-temporally chaotic system, not a fully developed turbulent system, and

furthermore our system is not three-dimensional but (quasi-) two-dimensional.

Still, we may hope to gain insight by employing the method of ESS to our data.

First, we would like to perhaps eliminate the humps that are clearly present

in our data (see the small humps in Fig. 2.7 around R = 11 mm and at larger sep-

arations). This would make a more precise determination of ratios of exponents

possible. We need to determine one moment as a reference moment by other
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means, though, because no rigid theoretical predictions exist for any of the mo-

ments in our system

1

. Since the di�usivity is the primary quantity we measured

we choose to carry through the analysis for the moments of di�usivity, not for

the moments of velocity di�erence. We choose to use the third absolute moment

�

3

(R) as a reference moment, with �

abs

3

= 3:37 � 0:06, because this reference

moment turned out to give the best results. The results of plotting the moments

�

n

(R) against �

3

(R) are described below.

Second, we would like to be able to think of our control parameter � as a

parameter similar to a Reynolds number, because varying � determines how much

the moving defects dominate the system, i.e. how \random" the system is. For

� to be useful as such a parameter, the plots of moments-versus-moments must

conceal the e�ect of �. In Figure 2.8 we plot �

2

(R) = �

2

(R) versus �

3

(R) for all

available values of �. We see that indeed the e�ect of varying � does not appear

in the plot, all points fall on the same straight line, except a few points of the

� = 0:65 measurements. The plot therefore supports the idea of � as a sort of

`Reynolds number' for the system.

In Figure 2.9 we plot the moments �

n

(R), for n even, as functions of the third

absolute moment �

3

(R) in a double-logarithmic plot. We have

�

n

(R) / R

�

n

/ �

3

(R)

�

n

=�

abs

3

: (2.13)

We see that for all the moments shown the data can be �tted to power laws with

exponents �

n

=�

abs

3

. We also �tted �

n

(R) versus �

3

(R) to power laws for n = 12

to 18, although those plots are not shown here. The exponents �

n

=�

abs

3

found

by this ESS-like method are listed in Table 2.1. It is clear from comparing the

usual �

n

(R)-versus-R plot in Fig. 2.7 to the ESS-like plot in Fig. 2.9 that the

latter removes some of the arbitrary structure in the data and makes it possible

to determine power laws with more accuracy and for even higher moments than

the usual plot does.

The moments of the relative di�usivity yield via the relation dR

2

=dt = 2R �v

jj

(R)

the corresponding moments of the longitudinal velocity di�erence

Dh

�v

jj

�

D

�v

jj

Ei

n

E

= 2

�n

R

�n

�

n

(R) / R

�

n

(2.14)

where �

n

= �

n

� n, and similar for �

3

(R).

For fully developed turbulence in three dimensions, K41 predicts that the ex-

ponents of the velocity moments are linearly proportional to n, �

3D

n

= n=3. By

1

For strongly turbulent two-dimensional systems experimental and numerical evidence sug-

gests that �

2

= 2 (�

2

= 4) [19], but our system is not strongly turbulent.
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Figure 2.8: Relative di�usion. Double-logarithmic plot of the moment �

4

(R)

versus the absolute moment �

3

(R) for all available values of �. Filled triangles:

� = 0:05; open diamonds: � = 0:13; open triangles: � = 0:24; �lled diamonds:

� = 0:34; circles: � = 0:65; crosses: � = 0:86; pentagons: � = 1:06.
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Figure 2.9: Relative di�usion. Double-logarithmic plot of the moments �

2

(R) =

�

2

(R) (circles), �

4

(R) (�lled triangles), �

6

(R) (open triangles), �

8

(R) (�lled di-

amonds), and �

10

(R) (open diamonds), plotted versus �

3

(R). The graphs are

shifted by 10

10�n

in order to enhance visibility. The broken lines have slopes

(from above) 0:68, 1:32, 1:85, 2:4, and 2:9 and the control parameter is � = 0:24.
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n �

n

�

n

= �

n

� n �

n

=�

abs

3

2 2:26 � 0:06 0:26 � 0:06 0:68 � 0:01

3 2:8� 0:2 �0:2� 0:2 0:9� 0:1

3 (abs) 3:37 � 0:06 0:37 � 0:06 1

4 4:37 � 0:06 0:37 � 0:06 1:32 � 0:02

6 6:2� 0:1 0:2 � 0:1 1:85 � 0:05

8 | | 2:40 � 0:05

10 | | 2:9� 0:1

12 | | 3:5� 0:1

14 | | 4:0� 0:2

16 | | 4:6� 0:3

18 | | 4:9� 0:5

Table 2.1: Relative di�usion. Summary of the exponents found for the various

moments of di�usivity at � = 0:24. The ratio �

n

=�

abs

3

is measured from an ESS-

like plot similar to Fig. 2.9. A dash means `not measured'.

taking intermittency e�ects into account �

3D

n

deviates from the = n=3 behavior.

With a parabola being the lowest correction to a linear dependence it is predicted

that �

3D

n

should lie on a parabola that passes through origo and (3; 1). Experi-

mentally it is found that for small values of n this is a reasonable �t, but since �

3D

n

does not have a maximum the exponents must deviate from the parabola for high

values of n. In Rayleigh-Bernard ow, where �

RB

3

6= 1, it has been found [30] that

the ratios �

RB

n

=�

RB

3

follow the same parabola as for fully developed turbulence.

However, these experiments are all rather di�erent from ours, and a priori we do

not expect our exponents to follow the same curve.

In Figure 2.10 we plot the di�usivity exponents �

n

=�

abs

3

as functions of the

moment order n. We see that �

n

is not linearly proportional to n, because if it

were, we would have �

n

=�

abs

3

= n=3. This is clearly not the case in Fig. 2.10.

With the parabola �t of fully developed turbulence in mind it is tempting to aim

at a parabola �t for our �

n

= �

n

+n. We �nd that the exponents �

n

=�

abs

3

indeed

�t reasonably well to a parabola. This means that �

n

=�

abs

3

= (�

n

� n)=(�

abs

3

� 3)

also �ts to a parabola, but a very di�erent parabola than for fully developed

turbulence and Rayleigh-Bernard ow.

Finally, we study theR-dependence of the ratios �

3

(R)=�(R)

3

and �

n

(R)=�(R)

n

for n = 3, 4, and 6; see Fig. 2.11. These ratios are often used to characterize

a distribution, in particular the skewness S = �

3

(R)=�(R)

3

, the kurtosis K =

�

4

(R)=�(R)

4

� 3, and the hyper-atness F = �

6

(R)=�(R)

6

. For a Gaussian dis-
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Figure 2.10: Plot of the values of �

n

=�

abs

3

from Table 2.1. The unbroken line is

the linear line n=3, the broken line is a parabola �t that passes through origo and

(3; 1).

tribution S and K are both zero. The Gaussian values �

3

(R)=�(R)

3

= 2

q

2=� '

1:60, �

4

(R)=�(R)

4

= 3, and �

6

(R)=�(R)

6

= 15 are shown as dotted lines in

Fig. 2.11. For all values of � we �nd that the ratios �

n

(R)=�(R)

n

and �

3

(R)=�(R)

3

decrease with R towards the Gaussian values. We attribute this decay to the

presence of side humps on the distribution P (dR

2

=dt); see Fig. 2.2. These humps

are positioned furthest out (in terms of standard deviations) at small distances

R. The kurtosis K measures how `peaked' the distribution is, compared to the

Gaussian distribution. The positive K shows that the distribution in Fig. 2.2 is

more peaked than a Gaussian distribution.

We see that due to the relation (2.14) the ratios in Fig. 2.11 are also the

similar ratios for the velocity di�erences. In fully-developed three-dimensional

turbulence the skewness of the velocity distribution is negative. We notice that

the skewness of the velocity distribution in the Faraday experiment is positive.

This is connected to the fact that the distribution function in Fig. 2.2 has its

maximum to the left of the mean value.
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Figure 2.11: Relative di�usion. Moment ratios �

3

(R)=�(R)

3

(diamonds) and

�

n

(R)=�(R)

n

for n = 3 (�lled triangles), 4 (circles), and 6 (open triangles) at

� = 0:24. The data is cut o� at R > 15 at which the skewness = �

3

(R)=�(R)

3

becomes smaller than 3

q

15=N(R), which three times the standard deviation of

the skewness in a Gaussian distribution. The dotted lines indicating the Gaussian

values seem to be approached at large distances.



Chapter 3

Theory of Weak Turbulence

This chapter is devoted to a short review of the theory of weak turbulence (TWT),

also called weak wave turbulence, and to a comparison between the predictions

arising from TWT and the measurements that we performed on oating particles

in the Faraday experiment. As will become clear towards the end of this chapter,

the relevant quantity to study is the second moment hj�v(R)j

2

i of the velocity

di�erences. When introducing the most relevant points of TWT, I shall be fairly

general, making few assumptions on the type of waves involved. Eventually,

though, I will concentrate on deep-water capillary waves.

The main reference used in this chapter is the book by Zakharov, L'vov, and

Falkovich [31]. There are a number of confusing misprints in the �rst edition of

Ref. [31], and I will point out the misprints when relevant. However, I cannot

give any guarantee that I did not introduce other misprints!

This chapter is organized as follows. First, the Hamiltonian of the system and

its expansion in small nonlinearities are introduced. This involves introducing

rather general (from a capillary-waves point of view) canonical variables and a

wave occupation number. Then follows a short discussion on the derivation of

the kinetic equations for the wave occupation number, and the solutions of the

kinetic equations. This is a short review of Ref. [31], although I keep more terms

in my presentation than is done in Ref. [31]. At this point, the Hamiltonian

formalism is re-formulated in terms of physical quantities of surface waves. The

interaction coe�cients that appear in the Hamiltonian are given for capillary and

gravity waves. Then follows a derivation of the wave-number dependence of the

wave density n(k) for capillary waves, from which I obtain a prediction on the

second moment hj�v(R)j

2

i. Finally, the prediction is compared to our data.

32
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3.1 Hamiltonian Formalism

Fully developed turbulence is also called \strong turbulence" to distinguish it

from from \weak turbulence". The TWT describes turbulent systems that have

a linear approximation of small-amplitude background waves and in which the

level of nonlinearity is a small parameter. The coupling of interacting modes is

expressed through the dispersion relation !(k), which is assumed to be the only

characteristic that distinguishes waves in di�erent media, whether it be ferromag-

nets or uids. In contrast to weak turbulence there exists no small parameter

in fully developed turbulence around which to expand, and it is impossible to

obtain a consistent linearization.

For the Hamiltonian formulation the (small) wave amplitudes may be repre-

sented by a set of (small) complex variables a(r; t) and a

�

(r; t), which are related

to the canonical variables of coordinate and momentum. The complex variables

can be chosen such that when expanding the Hamiltonian H in a power series of

their Fourier transforms [denoted a(k) and a

�

(k)]

H = H

2

+H

int

; H

int

= H

3

+H

4

+H

5

+ : : : ; (3.1)

the dispersion relation is the coe�cient of the second order term

H

2

=

Z

!(k) a(k) a

�

(k) dk (3.2)

and all information about the wave interactions is contained in the higher order

terms H

int

. The third order term is given by the expression

H

3

=

1

2

Z

[V (k

1

;k

2

;k

3

) a

�

(k

1

) a(k

2

) a(k

3

) + c.c.]

� �(k

1

� k

2

� k

3

) dk

1

dk

2

dk

3

+

1

6

Z

[U(k

1

;k

2

;k

3

) a

�

(k

1

) a

�

(k

2

) a

�

(k

3

) + c.c.]

� �(k

1

+ k

2

+ k

3

) dk

1

dk

2

dk

3

(3.3)

(note the missing complex conjugation in the �rst term of Ref. [31, Eq. (1.1.24a)]).

The interaction coe�cients are symmetric with respect to interchange of argu-

ments separated with a comma, e.g. V (k

1

;k

2

;k

3

) = V (k

1

;k

3

;k

2

). The fourth

order term is given by
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H

4

=

1

4

Z

W (k

1

;k

2

;k

3

;k

4

) a

�

(k

1

) a

�

(k

2

) a(k

3

) a(k

4

)

� �(k

1

+ k

2

� k

3

� k

4

) dk

1

dk

2

dk

3

dk

4

+

Z

[G(k

1

;k

2

;k

3

;k

4

) a(k

1

) a

�

(k

2

) a

�

(k

3

) a

�

(k

4

) + c.c.]

� �(k

1

� k

2

� k

3

� k

4

) dk

1

dk

2

dk

3

dk

4

+

Z

[R

�

(k

1

;k

2

;k

3

;k

4

) a(k

1

) a(k

2

) a(k

3

) a(k

4

) + c.c.]

� �(k

1

+ k

2

+ k

3

+ k

4

) dk

1

dk

2

dk

3

dk

4

: (3.4)

The third order term describes three-wave processes. The decomposing of one

wave into two and the merging of two waves into one is described by the V -term,

and the U -term describes the mutual creation (from vacuum) or annihilation of

three waves. The fourth order term likewise describes the possible four-wave

processes.

In general, the �rst term in the expansion of the interactionH

int

will dominate

the dynamics and all higher order terms can safely be ignored. However, if the

three-waves processes do not allow for the decay process

!(k

1

+ k

2

) = !(k

1

) + !(k

2

) (3.5)

then the term H

4

is large compared to H

3

and must be retained. Four-wave

processes are (almost [31, Chap. 1]) always permitted and thus an expansion

up to at most the fourth order will (almost) always be su�cient. Dispersion

relations that satisfy condition (3.5) are said to be of the decay type. The con-

dition expresses momentum conservation k

1

+ k

2

= k

3

and energy conservation

!(k

1

)+!(k

2

) = !(k

3

) in (one wave)$(two waves) processes. Energy-momentum

conservation in processes of mutual annihilation and creation of three waves is

expressed through the condition

!(k

1

) + !(k

2

) + !(�k

1

� k

2

) = 0 (3.6)

and it requires that negative-energy waves are permitted.

For isotropic media with a power-law dispersion-relation ! / k

�

the condition

(3.5) has solutions for � > 1. Thus capillary waves are of the decay type and

gravity waves are of the nondecay type.

For nondecay dispersion relations the third order term H

3

is unimportant,

and it is convenient to perform a canonical transformation of the variables a and



3.2 Kinetic Equations 35

a

�

that eliminates the third order H

3

and brings the fourth order on the form

H

4

=

1

4

Z

T (k

1

;k

2

;k

3

;k

4

) a

�

(k

1

) a

�

(k

2

) a(k

3

) a(k

4

)

� �(k

1

+ k

2

� k

3

� k

4

) dk

1

dk

2

dk

3

dk

4

: (3.7)

Here it has been assumed that only (two waves)$(two waves) processes are

allowed by the energy-momentum conservation, and terms corresponding to all

other four-wave processes have been eliminated.

3.2 Kinetic Equations

Below, I introduce the wave occupation number n(k; t) and show how the kinetic

equations for the wave occupation number are derived. The kinetic equations

for three-wave and for four-wave processes are the most important equations in

TWT.

The canonical equation of motion in terms of the complex wave amplitudes is

i

@a(k; t)

@t

=

�H

�a

�

(k; t)

: (3.8)

For small nonlinearities (i.e. for small wave amplitudes) the expansion of H is

dominated by the �rst term H

2

(� H

int

), which is the term describing the linear

theory. Thus the linear-theory (the \free-�eld") canonical equation of motion

yields

i

@a(k; t)

@t

=

�H

2

�a

�

(k; t)

= !(k)a(k; t) (3.9)

which shows us that, for the case of free �elds, the time evolution of the �eld

a(k; t) = ja(k; t)j exp(�i '(k; t)) solely changes the phase of the �eld, leaving the

amplitude constant in time,

a(k; t) = ja(k)j exp(�i !(k) t) : (3.10)

When weak nonlinearities are included in the description, an additional | slower

| dynamics of both the amplitude and the phase of the �elds is introduced.

The fast part of the phase dynamics, which hardly a�ects the dynamics of the

amplitudes, is assumed to be close to random. It can be removed by ensemble

averaging, leaving only the slower dynamics stemming from the nonlinearities.
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For a free �eld, the ensemble averaging thus removes any dynamics. The �rst

two non-vanishing free-�eld correlators are

ha(k

1

; t)a

�

(k

2

; t)i = hja(k

1

)j ja(k

2

)j exp(�if!(k

1

)� !(k

2

)g t)i

= n(k

1

) �(k

1

� k

2

) (3.11)

which de�nes the wave occupation number n(k) for the free �elds, and

ha

�

(k

1

; t) a

�

(k

2

; t) a(k

3

; t) a(k

4

; t)i

= n(k

1

)n(k

2

) [�(k

1

� k

3

)�(k

2

� k

4

) + �(k

1

� k

4

)�(k

2

� k

3

)] : (3.12)

The free-�eld wave occupation number n(k) has no time dependence. The wave

occupation number for weak nonlinearities is de�ned equivalently, but it will in

general have a (slow) time dependence and the correlators (e.g. ha(k

1

; t)a(k

2

; t)i

and ha(k

1

; t)a(k

2

; t)a

�

(k

3

; t)i) do not necessarily vanish. The aim is to obtain an

equation of motion for n(k; t), and then afterwards to solve it for n(k; t).

3.2.1 Derivation of Three-Wave Kinetic Equation

In decay systems the term H

3

dominates the interaction Hamiltonian H

int

. For

these systems the equation of motion becomes

i

@a(k; t)

@t

� !(k)a(k; t)

=

�H

3

�a

�

(k; t)

=

Z

�

1

2

V (k;k

1

;k

2

) a(k

1

) a(k

2

) �(k � k

1

� k

2

)

+ V

�

(k

1

;k;k

2

) a(k

1

) a

�

(k

2

) �(k

1

� k � k

2

)

+

1

2

U(k;k

1

;k

2

) a

�

(k

1

) a

�

(k

2

) �(k

1

+ k

2

+ k)

�

dk

1

dk

2

: (3.13)

Notice that I have retained the U -term, which was left out in Ref. [31, Chap. 2].

If ! does not satisfy the condition (3.6), but only the decay condition (3.5), the

U -term can be eliminated by a canonical transformation. I will keep the U -term

in the derivation of the three-wave kinetic equation below.

From the equation of motion above the time-derivative of n(k; t) is derived

to the lowest non-trivial order. For brevity, let a

j

= a(k

j

; t), !

j

= !(k

j

), V

k12

=
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V (k;k

1

;k

2

) and similar for U . The idea is to express @n=@t through correlators of

more �elds (I avoid the term \higher order correlators" since that may be confused

with the expansion in terms of the nonlinearity), ideally by free-�eld correlators

if they exist. It turns out, as we shall see, that @n=@t is expressed via three-wave

correlators; three-wave correlators vanish in the free-�eld approximation, so we

need to �nd the three-wave correlators to the next non-trivial order. This means

that we must �nd the equation of motion for the three-wave correlators. This is

the path followed in Ref. [31], although they leave out the U term. I will here

follow the same path, keeping track of the U -contributions.

First, to �nd the derivative @n=@t we use the equation of motion (3.13) for

a

k

0

and a

�
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(3.14)

where the following correlators were introduced

J

123

�(k

1

� k

2

� k
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) = ha
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2

a

3

i (3.15)
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and

K

123

�(k
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+ k
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�

3

i : (3.16)

Thus the time derivative of n(k; t) can be written

@

@t

n(k; t) = Im
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This constitutes the start of a hierarchy in which correlators are expressed in

terms of more-�eld correlators. To close the hierarchy we must approximate the

many-�eld correlators, in this case by the free-�eld approximation. As noted

above, the correlation functions J and K vanish in the free-�eld approximation.

To obtain a non-trivial result we must therefore go to next order to �nd non-

vanishing J and K, i.e. we must determine J and K from their equations of

motion. The equations of motion for J and K are found by almost identical

methods. The expression for @J=@t is found in Ref. [31] for a H

3

that does not

contain a U -term. It is easily con�rmed that the expression does not change

when the U -term is included in H

3

. Here below I will show how to derive the

equation of motion for K and how to solve the equation. The result is expressed

in terms of four-wave correlators, some of which are non-vanishing even for free

�elds. It is therefore su�cient to use the free-�eld approximation of the four-wave

correlators. The non-vanishing four-wave correlators are of the form ha

�

a

�

aai,

given by Eq. (3.12). Proceeding as for Eq. (3.14) we �nd
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2
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�
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) : (3.18)

The four-wave correlators that were used do not depend on time, but since it

is merely an approximation to use the free �elds even at this recursive step, the

n(k)'s may have a slow time dependence. Ignoring this dependence for a moment,

the equation to solve is

f�i

@

@t

� (!

1

+ !

2

+ !

3

)gK

123

(t) = U

�

123

(n

2

n

3

+ n

1

n

3

+ n

1

n

2

) � C (3.19)

where C is a constant. The equation has the solution

K

123

(t) = �

C exp(i(!

1

+ !

2

+ !

3

)t)

!

1

+ !

2

+ !

3

+

C

!

1

+ !

2

+ !

3

: (3.20)

When this solution is inserted into the equation of motion for n(k; t), Eq. (3.17),

the �rst term may be neglected due to its oscillating character at t > 0. For the

second term we make use of the Cauchy formula [32, App. A-2]

Z

f(x)

x� x

0

� i"

dx = P

Z

f(x)

x� x

0

dx� i�

Z

�(x� x

0

)f(x)dx (3.21)

with the pole at x� x

0

� !

1

+ !

2

+ !

3

. This, and similar results for J

123

, �nally

lead to the three-wave kinetic equation
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� I(k; t) (3.22)

with f

k12

� n

1

n

2

�n

k

n

1

�n

k

n

2

and g

k12

� n

1

n

2

+n

k

n

1

+n

k

n

2

(note: the second

term has wrong sign in [31, Eq. (2.1.12a)]). I(k; t) is called the collision integral.

For capillary waves a canonical transformation can remove the U -term in H

3

and

the third term above vanishes, as in Ref. [31].
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3.2.2 The Four-Wave Kinetic Equation

For four-wave interactions described by the Hamiltonian (3.7), the kinetic equa-

tion is derived similarly [31]

@n(k; t)

@t

=

�

2

Z

jT
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j

2

f
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�(k+ k

1
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)

� �(!
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+ !
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(3.23)

where f

k123

� n

2

n

3

(n

1

+ n

k

)� n

1

n

k

(n

2

+ n

3

). The four-wave kinetic equation is

relevant for gravity waves.

3.3 Application to Surface Waves

To connect the above rather formal formulations to the problem of the motion

of surface waves, the starting point is the usual: The uid is described by the

Navier-Stokes equation and the continuity equation

@v

@t

+ (vr)v = �

rp

�

� �r� (r� v) (3.24)

@�

@t

+r � (�v) = 0 (3.25)

Here v(r; z; t) is the uid velocity at position (r; z), p(r; z) is the pressure, �(r; z)

is the uid density, and � is the kinematic viscosity. The system is described in a

laboratory frame coordinate system that has the horizontal coordinates r = (x; y)

and the vertical coordinate z. The vertical coordinate is zero at the equilibrium

position of the uid surface, and the bottom of the uid is at z = �h.

We assume that the uid is incompressible, that it is inviscid on the length

scales considered here, that it has a free surface, and that it is irrotational (vortic-

ity free), thus allowing for a (three-dimensional) ow potential �(r; z; t) related

to the (three-dimensional) ow velocity by v(r; z; t) =r�(r; z; t). The deviation

of the uid surface from the equilibrium position z = 0 is given by �(r; t). Since

we will be concerned with the surface motion, we introduce the restriction of �

to the uid surface z = �(r; t) by 	(r; t) � �(r; �(r; t); t). The uid density is

�(r; z; t) = �

0

�(� � z), which expresses the obvious fact that the uid density

is zero above the surface [z > �(r; t)] and constant (incompressible) below. It is

known [9, 31] that under these assumptions the uid is a Hamiltonian system in
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which the surface elevation �(r; t) and the (surface) ow potential 	(r; t) act as

canonical variables

@�(r; t)

@t

= �

�H

�	(r; t)

(3.26)

@	(r; t)

@t

=

�H

��(r; t)

(3.27)

where the Hamiltonian is given by

H =

�

0

2

Z Z

�

�h

jr�(r; z; t)j

2

dz dr + �

Z

�

q

1 + jr

?

�j

2

� 1

�

dr +

g�

0

2

Z

j�j

2

dr:

(3.28)

The subscript \?" denotes the horizontal components, and � is the coe�cient of

surface tension.

We would like to have the continuity equation (3.25) expressed as a condition

on the surface. Eq. (3.25) can be rewritten as

0 =

@�

@t

+r � (�v) = �

0

�(� � z)

"

@�

@t

+r

?

� � v

?

� v

z

#

: (3.29)

At the surface, the condition reads

@�

@t

+r

?

� � v

?

= v

z

or

@�

@t

=

 

�

@�

@x

;�

@�

@y

; 1

!

� v (3.30)

which simply states that the velocity of the surface along its normal is the same as

the component of the uid velocity along the same direction, at the same point,

the normal vector being

^

N =

(�r

?

�; 1)

q

1 + jr

?

�j

2

(3.31)

given in the (r; z) coordinates.

The Fourier transforms of �(r; t) and 	(r; t) are

1

	(k; t) =

1

2�

Z

	(r; t) exp(�ik � r)dr (3.32)

and

�(k; t) =

1

2�

Z

�(r; t) exp(�ik � r)dr (3.33)

1

In Ref. [31] the volume factor in front of the integral is de�ned di�erently.
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and they are related to the previously introduced complex wave amplitudes a(k; t)

and a

�

(k; t) via

�(k; t) =

s

�(k)

2�

0

[a(k; t) + a

�

(�k; t)] (3.34)

	(k; t) = �i

1

q

2�

0

�(k)

[a(k; t)� a

�

(�k; t)] (3.35)

where �(k) = !(k)=(g + �k

2

=�

0

) [not to be confused with the wavelength �].

For deep-water capillary waves (decay-case) the interaction coe�cients in the

expansion of the Hamiltonian are [33, 34]
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(3.36)

and
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2
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=
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(3.37)

with suitable numerical factors in front (which depend on, among other elements,

the coe�cients used in front of Fourier transforms, normalizations, etc. There

does not seem to be any convention on these matters in this �eld, not even in

papers that have common authors). Notice that V is invariant with respect to

the change k

1

$ k

2

, and U is invariant with respect to any permutation of its

arguments, as expected from the expression for H

3

(Eq. (3.3)).

For deep-water gravity waves (non-decay case) the interaction coe�cient has

the behavior [31, Chap. 1]

T (k; k

1

; k

2

; k

3

) =

k

3

�

f [

~

k

1

;

~

k

2

;

~

k

3

; cos �

k1

; cos �

k2

; cos �

k3

] (3.38)
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where

~

k

j

� k

j

=k. The full expression for T is lengthy. The expression can be

found e.g. in Ref. [34] or as a number of factors and terms in Ref. [31, Chap. 1].

3.4 Solution to the Kinetic Equation

Having obtained the equation of motion for the wave occupation number n(k; t)

for three-wave and four-wave interactions in Eqs. (3.22) and (3.23), the next step

is to solve for n(k; t).

The interaction Hamiltonian H

int

describes the interaction of the waves. Ex-

ternal e�ects, like dissipation and forcing, must be added `by hand' by modifying

the kinetic equation

@n(k; t)

@t

= I(k; t) + �(k)n(k; t) (3.39)

where �(k) describes all external e�ects. As an example, viscous damping of

waves is described by �(k) = �2�k

2

[33].

The wave occupation number n(k; t) is related to the Fourier transform "

�

(k; t)

of the energy density E in the weakly nonlinear limit through the lowest order

Hamiltonian H

2

E = hH

2

i =

Z

!(k)ha(k; t)a

�

(k; t)idk =

Z

!(k)n(k; t)dk =

Z

"

�

(k; t)dk :

(3.40)

Energy and momentum must be conserved in the wave interactions. The rate

of change of the energy density dE=dt as a result of the wave interaction, is

described via the term in the kinetic equation that refers to the elementary wave

interactions | the collision integral I(k; t) | by the equation

@

@t

Z

"(k; t)dk =

Z

!(k)I(k; t)dk = 0 (3.41)

where "(k; t) refers to the part of the energy density that is due to the wave

interactions. This relation allows for a continuity equation for "(k; t)

r � p(k; t) +

@"(k; t)

@t

= 0 (3.42)

where the energy density ux in k space is r � p(k; t) = �!(k)I(k; t).

We are looking for stationary solutions to the kinetic equations. From the

kinetic equation with external e�ects (3.39) we see that stationarity implies

I(k; t) + �(k)n(k; t) = 0 : (3.43)
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In regions where there are no external e�ects (when �(k) � 0) this reduces to

I(k; t) = 0. Thus in the inertial range we are looking for solutions to I(k; t) = 0

that match the sources and sinks at the ends of the inertial range.

The systems we consider (mainly capillary waves, but also gravity waves) are

isotropic systems. For those, the integrals in the energy density are

E =

Z

E(k)dk =

Z

(2k)

d�1

�"(k)dk =

Z

(2k)

d�1

�!(k)n(k; t)dk (3.44)

in d-dimensional space. We are looking for stationary solutions of the form

n(k) = Ak

�s

0

(3.45)

that have a constant ux of energy with respect to the wave numbers k, P = P (k).

Locality in the inertial range is the assumption that only eddies of similar spatial

extensions interact strongly. This leads to a constant ux of energy in k-space in

the inertial range, being the size of the rate of dissipation at large k-scales. The

energy ux satis�es, in the isotropic case,

d

dk

P (k) = �

@

@t

E(k) = �(2k)

d�1

�!(k)

@n(k; t)

@t

= �(2k)

d�1

�!(k)I(k; t) : (3.46)

(Note the misprint in [31, Eq. above (2.2.19)]) and at the border to the dissipative

range the energy ux satis�es, from Eq. (3.43),

d

dk

P (k) = �(k)E(k) (3.47)

(Note the misprint in [31, Eq. (2.2.19)]).

From here I concentrate on decay systems, i.e. systems that are described

by the three-wave interaction (3.3). We assume that the dispersion law and the

interaction coe�cient are scale invariant

!(�k) = �

�

!(k) (3.48)

V (�k; �k

1

; �k

2

) = �

m
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) : (3.49)

The interaction coe�cient may be written in terms of a dimensionless function F

jV (k;k
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2m
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;

k

2

k

!

(3.50)

From the scale invariance of the dispersion law, Eq. (3.48), it follows that the

dispersion law is a power function !(k) = �k

�

. We see that this includes the
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case of capillary deep-water waves, which have � = 3=2, � =

q

�=�, m = 9=4,

and V

0

= (�=�

3

)

1=4

.

By integrating Eq. (3.46) from zero to

~

k one �nds

P (

~

k) = ��

Z

~

k

0

(2k)

d�1

!(k)I(k)dk (3.51)

We take a closer look at the collision integral I(k; t), given by (3.22). The inte-

gral involves the interaction coe�cient V , the wave occupation numbers n, and

�-functions of the wave vectors and of the frequencies. The occupation numbers

n that we are searching for are isotropic, and in an isotropic system the coe�cient

V is invariant with respect to rotations, so the only angular dependence in the

collision integral is in the wave-vector �-functions �(k�k

1

�k

2

) and �(k

1

�k�k

2

)

(I assume that the U -term in (3.22) has been removed by a transformation). The

angular part of the �rst term in the collision integral becomes
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(3.52)

where �

1

(�

2

) is the angle between k and k

1

(k and k

2

). The integral expresses

the fact that the three vectors k, k

1

, and k

2

must form a triangle in order for the

integral not to vanish. For the �xed values of k, k

1

, and k

2

and with angles in the

range [0; �], only one set of angles

~

�

1

and

~

�

2

lets the three vectors form a triangle.

The integral gives for two-dimensional systems �
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�1=2

, which is the inverse area of the parallelogram

spanned by the vectors k and k

1

(not the inverse area of the triangle, as claimed

in [31]; also note the absolute value). The generalization to d dimensions is

�

d

� k

d

.

Returning to the expression for the energy ux (3.51) we rewrite the k-integral

as an integral in !-space

P (

~

k) = ��

Z

~

k

0

(2k)

d�1

!(k)I(k)dk

= �

Z

~!

0

!I(!)d! (3.53)

where I(!) is de�ned as
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(3.54)

Here f

k12

and V

k12

are now to be considered as functions of !

k

, !

1

, and !

2

. By

using the scale invariance of the interaction coe�cient (3.50) and the fact that

�

d

� k

d

we �nally �nd an expression for the energy ux
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(3.55)

where a(d; �;m; s

0

) is a non-dimensional constant. We are looking for solutions

for which the energy ux P is constant in

~

k-space. We must therefore require

that the exponent of

~

k be zero, thus s

0

= d + m and P = aA

2

V

2

0

. The wave

occupation number (3.45) is then

n(k) =
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aV

2

0

!

1=2

k

�m�d

; (3.56)

and for capillary waves (m = 9=4, d = 2, and V

0

= (�=�

3

)

1=4

)

n(k) =

 

P

2

�

3

a

2

�

!

1=4

k

�17=4

: (3.57)

A more careful derivation (see e.g. Ref. [31]) yields

n(k) = 8�

 

4P

2

�

3

�a

2

!

1=4

k
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(3.58)
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3.5 Comparison to Faraday Experiment

The theory of weak turbulence enables us to calculate the second moment of the

relative particle velocities hj�v(R)j

2

i. Summing up from the previous sections,

the (deep-water) capillary waves have the dispersion relation ! =

q

�=� k

3=2

and

the wave occupation number

n(k) = 8�

 

4P

2

�

3

�a

2

!

1=4

k

�17=4

(3.59)

where a is a non-dimensional constant given by an integral that has not been

computed. To avoid confusion between the particle velocities v already de�ned

in previous chapters, and the uid velocity and its components de�ned in this

chapter, the uid velocity is renamed to u for the remainder of this chapter.

The uid velocity at the �xed point (r; z) is u = (u

?

(r; z); u

z

(r; z)) = r�,

with � being the bulk velocity potential. With the particles acting as tracers

of the uid motion on the surface, the particle velocity that we measure in the

experiment is the horizontal component of the uid velocity u at the surface, i.e.

at variable vertical position z = �(r; t) so that v(r) = u

?

(r; z = �). We would

like to be able to express the particle velocity in terms of the surface potential

	(r) = �(r; z = �), and we assume that we can approximate the particle velocity

by

v(r) = u

?

(r; z = �) = (r

?

�(r; z))j

z=�

�r

?

�(r; z = �) =r

?

	(r) (3.60)

thus neglecting the r dependence of �(r; t).

The second moment of the relative particle velocities can be written as

hj�v(R)j

2

i = h[v(r +R)� v(r)]

2

i

= 2

h

hjv(r)j

2

i � hv(r +R) � v(r)i

i

(3.61)

where we have used ensemble averaging. To evaluate the second term, we make

use of the connection (3.35) between the Fourier component 	(k) and the com-

plex Fourier components a(k) and a

�

(k). We �nd the velocity scalar product

v(r +R) � v(r)

=

1

2�

Z

v(k) � v(�k) exp(�ik �R) dk

=

1

2�

Z

(ik)(�ik)	(k)	(�k) exp(�ik �R) dk
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=

1

2�

Z

(�k

2

)

2�(k)

fa(k)� a

�

(�k)gfa(�k)� a

�

(k)g exp(�ik �R) dk (3.62)

We need to ensemble average the scalar product (3.62). In our experiment we

average over certain particles only, namely the particles that at some point in time

are close to other particles. Even with this rather special ensemble we expect the

random phase approximation, which is used to eliminate the fast phases of the

�elds a, to be valid.

Although correlators like ha(k)a(�k)i do not necessarily vanish when small

nonlinearities are present, as they would for free �elds, those correlators are

small compared to the correlator ha(k)a

�

(k)i = n(k), and their contribution can

be neglected. The velocity correlator can then be calculated as

hv(r +R) � v(r)i

= �

1

4�

Z

k

2

�(k)

f�ha(k)a

�

(k)i � ha

�

(�k)a(�k)ig exp(�ik �R) dk

=

1

4�

Z

k

2

�(k)

fn(k) + n(�k)g exp(�ik �R) dk

=

1

2�

Z

k

2

�(k)

n(k) exp(�ik �R) dk (3.63)

where I made use of the isotropy in capillary waves and in gravity waves, n(k) =

n(k). For deep-water waves the factor �(k) is

�(k) =

!(k)

g + �k

2

=�

=

k

!(k)

(3.64)

and in the case of deep-water capillary waves (k �

q

g�=�)

�(k) =

r

�

�

k

�1=2

(3.65)

The second moment of the velocity di�erences, Eq. (3.61), then becomes

hj�v(R)j

2

i =

1

�

Z

k

Z

2�

�=0

k

3

n(k)

�(k)

n

1� e

�ikR cos �

o

d� dk

= 32

 

4P

2

� �

a

2

!

1=4

Z

k

Z
�

2

�=0

k

3

k

�17=4

k

�1=2

f1� cos(kR cos �)g d� dk

= 32

 

4P

2

� �

a

2

!

1=4

R

�1=4

Z

s

u

s=s

l

Z �

2

�=0

s

�3=4

f1� cos(s cos �)g d� ds

(3.66)



3.5 Comparison to Faraday Experiment 49

s

�1=2

f1� J

1

(s)g

s

�3=4

f1� J

0

(s)g

J

0

(s)

s

403020100

1

0.8

0.6

0.4

0.2

0

-0.2

-0.4

Figure 3.1: The Bessel functions J

0

(s) and J

1

(s), damped by inverse powers of s.

where the upper and lower bounds on s are s

u

� Rk

max

� 2�R=� and s

l

�

Rk

min

= 2�R=L � 0, with L (� R) being the system size. The integrand is zero

in the limit s! 0 (see also Fig. 3.1 and Eq. (3.68) below).

The Bessel functions (of the �rst kind) have the integral representation

J

�

(z) =

2(z=2)

�

�(� +

1

2

)�(

1

2

)

Z �

2

0

(sin �)

2�

cos(z cos �)d� ; (3.67)

and the �-integration over the second term in the integrand may therefore be

expressed by the zeroth Bessel function

Z �

2

0

cos(s cos �)d� =

�

2

J

0

(s) : (3.68)

Thus the second moment of the velocity di�erences can be written as

hj�v(R)j

2

i = 16�

 

4P

2

� �

a

2

!

1=4

R

�1=4

Z

s

u

0

s

�3=4

f1� J

0

(s)g ds : (3.69)

For large s, the second term is small compared to the �rst term and can be

neglected, illustrated in Fig. 3.1. Therefore, in the second term the upper limit

of the integral can be replaced by in�nity. Then the second moment of the velocity
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curve). In this �t we �nd b(� = 0:13) = 0:66 and b(� = 0:24) = 0:62.

di�erences becomes

hj�v(R)j

2

i

= 16�

 

4P

2

� �

a

2

!

1=4

R

�1=4

�

Z

s

u

0

s

�3=4

ds�

Z

1

0

s

�3=4

J

0

(s) ds

�

= 16�

 

4P

2

� �

a

2

!

1=4

R

�1=4

 

4s

1=4

u

� 2

�3=4

�(1=8)

�(7=8)

!

= 64�

 

8�P

2

� �

a

2

�

!

1=4

 

1 �

�

R

�

�

�1=4

1

8�

1=4

�(1=8)
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!
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8�P

2

� �

a

2

�

!

1=4

 

1 � b

�

R

�

�

�1=4

!

(3.70)

with

b �

1

8�

1=4

�(1=8)

�(7=8)

� 0:649 : (3.71)

There may be a ambiguity in the non-dimensional part of the factor in front of

the expression, because it depends on e.g. how the volume factors in the Fourier
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transformation are de�ned and whether or not the de�nitions are consistent in

all results cited. The Bessel integral is found in e.g. Ref. [35, Eq. (6.561.14)].

Our measurements yield the longitudinal velocity di�erences �v

jj

(R). As-

suming that the longitudinal velocity di�erences behave as the vector velocity

di�erences,

hj�v(R)j

2

i � hj�v

jj

(R)j

2

i ; (3.72)

we can compare the prediction (3.70) to our data. In Figure 3.2 we plot the

longitudinal velocity moment hjdR

2

=dtj

2

i=R

2

= 4hj�v

jj

(R)j

2

i as a function of R,

along with a �t to the form (3.70), for the two �-values for which we have the

most pair measurements.

Here we use the non-central moments, as opposed to Paper I where we used

the central moments because they were more easily available to us at that time.

Because the mean value is an order of magnitude smaller than the second moment,

it essentially does not matter whether central moments are used, as can also be

seen by comparing the �gures here with the upper inset of Figure 3 in Paper I. In

any case, we �nd that our observations are consistent with the prediction, with

b � 0:6 �tted from the experiment. In Chapter 2 we found that the exponent

characterizing a power-law behavior of hj�v

jj

(R)j

2

i was �

2

� 2 = 0:26 (although

this value was found for the central moment). We note that the TWT predicts an

R-dependent exponent (in other words, it predicts that hj�v

jj

(R)j

2

i does not follow

a power-law, as we see in Eq. (3.70)) that vanishes for very large separations R

and has a small positive value in the range of R values studied in the experiment;

see Figure 3.3. The TWT predicts the \exponent" 0.26 at separation R � 7 mm.

It is di�cult to distinguish whether the power laws of Chapter 2 or the TWT �t

(3.70) is the right description of the experimental data. The TWT �t assumes

that the energy ux P is constant in k-space, this does not take intermittency

into account.

The only �-dependent quantity in the prefactor of the �t (3.70) is P . From

the �t in Fig. 3.2 we �nd P (� = 0:24) � (2:4 � 0:4)P (� = 0:13); the energy ux

grows with �.

Finally, I consider the case of deep-water gravity waves. We cannot obtain

gravity waves in our Faraday experiment with the present equipment, hence I

cannot test the predictions obtained. However, new equipment may make it

possible in the near future to create gravity waves, in which case the predictions

should be tested.

For deep-water gravity waves the derivation of the second velocity moment
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The dashed line at 0:26 is the exponent we found from the Faraday experiment

in Chapter 2.

follows along the same lines as for capillary waves, although care must be taken

to avoid divergencies. There are two isotropic solutions to the kinetic equation of

the wave occupation number [31, 34]. The �rst solution corresponds to a constant

ow P of energy to the short-wave region, like the capillary waves solution (3.59).

The wave occupation number is

n(k) = B

1

k

�4

=

 

P�

2

a

1

!

1=3

k

�4

(3.73)

where a

1

is a non-dimensional constant not yet computed. The second spectrum

carries a constant ux Q of wave action towards the long-wave region

n(k) = B

2

k

�23=6

=

 

Q

2

g�

4

a

2

2

!

1=6

k

�23=6

(3.74)

where the non-dimensional constant a

2

is not yet determined either. The integrals

leading to a, a

1

, and a

2

are found in Ref. [31]. Both spectra (3.73) and (3.74) agree

with experiments, but the experiments do not allow to distinguish between the

two [31]. The �(k)-factor is in the case of gravity waves �(k) = k=!(k) =

q

k=g.

First, I derive the second velocity moment for systems with the spectrum of

constant energy ux (3.73). Starting from the expression found in the above
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derivation for capillary waves one has

hj�v(R)j

2

i = 2

Z

k

3

n(k)

�(k)

f1 � J

0

(kR)gdk

= 2R

�1=2

B

1

g

1=2

Z

s

u

0

s

�3=2

f1� J

0

(s)gds

= 2R

�1=2

B

1

g

1=2

n

�2

h

s

�1=2

f1� J

0

(s)g

i

s

u

0

�(�2)

Z

s

u

0

s

�1=2

J

1

(s) ds

�

(3.75)

where I integrated by parts and took advantage of the relation dJ

0

(s)=ds =

�J

1

(s). The �rst term vanishes in the lower limit. In the second term the upper

limit s

u

may be replaced by in�nity, due to the damped oscillatory character of

s

�1=2

J

1

(s). I �nd

hj�v(R)j

2

i = 2R

�1=2

B

1

g

1=2

(

�2s

�1=2

u

+

p

2

�(3=4)

�(5=4)

)

= 2

 

8g

3

�

3

P

2

�

4

�

3

a

2

1

!

1=6

 

�1 + c

1

�

R

�

�

1=2

!

(3.76)

where

c

1

=

p

�

�(3=4)

�(5=4)

� 2:396 : (3.77)

This relation can be tested against gravity waves data the same way we tested

the capillary result against data from the Faraday experiment.

By using the same method and the same considerations about the limits of the

integrals, I �nd the velocity moment for systems with the spectrum of constant

wave action ux (3.74)

hj�v(R)j

2

i = 6B

2

g

1=2

R

1=3

(

�s

�1=3

u

+ 2

�1=3

�(5=6)

�(7=6)

)

= 3

 

4g

2

Q��

2

�a

2

!

1=3

 

�1 + c

2

�

R

�

�

1=3

!

(3.78)

where

c

2

= �

1=3

�(5=6)

�(7=6)

� 1:782 : (3.79)

A simple plot of the two moments (3.76) and (3.78) shows that if the pre-factor

in both cases is left to be �tted, an experimental test must provide separation

data for two decades or more in order to see any signi�cant di�erence in the two

moments, thus distinguishing between the two spectra (3.73) and (3.74).



Chapter 4

Self-di�usion in Capillary Waves

The di�usion of particle pairs in the Faraday experiment was described in the

previous chapters. This chapter describes the self-di�usion of particles, i.e. the

single particle di�usion. First the data analysis is presented, with emphasis on

the variance of the displacements projected onto one horizontal direction. Then

I introduce the concept of fractional Brownian motion, a generalization of the

ordinary Brownian motion, and I discuss the modeling of the particle motion by

a convolution of two fractional Brownian motions. Finally the fractal dimension

of the trajectories is measured.

4.1 Introduction

In measurements of the oceanic circulation the motion of drifters is considered

to be a good approximation of the motion of the uid elements [36]. The drifters

can be buoys oating on the surface or submerged oats drifting at an approxi-

mately constant level below the surface. Often the drifters are tracked by position

measurements from satellites.

Drifter motion has been studied in the North Atlantic by several groups, e.g.

by the authors of Refs. [37, 38, 39]. They �nd that on time scales between roughly

1 day and 10 days, and on length scales between roughly 10 km and 100 km, the

drifters move in a far from Brownian motion. They �nd that the variance of the

motion in one of the horizontal directions x scales with time as a power law with

an exponent 1.5, h[x(t+ � ) � x(t)]

2

i / �

1:5

, and not with the Brownian motion

exponent 1. Other observations [36], at the Kuroshio extension o� the coast of

Japan, yield an exponent between 1.4 and 1.6. For scales larger than 100 km

to 200 km [36] the dynamics is essentially governed by Rossby waves and zonal

54
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ows [40], and the motion crosses over to Brownian motion. Also, the fractal

dimension D � 1:3 for the drifter trajectories has been determined [39, 41, 42]

based on the `yardstick method' [43].

We study the motion of drifters in a laboratory system. The basis of the

present data analysis was the VCR tape that was also used for the analysis of

relative di�usion, but naturally more particle tracks can be extracted when we

do not impose the restriction that the particles must make up pairs (`pairs' are

particles that at some point in time are `close'), and the statistics is clearly better.

We �nd for the absolute motion that the character of the particle motion cru-

cially depends on whether the length scale is larger or smaller than the wavelength

�. At length scales larger than � the motion is close to being Brownian motion,

but at length scales smaller than � the motion changes character. Also, the char-

acter of the motion depends on the vibration amplitude A, expressed through

the control parameter � = (A � A

c

)=A

c

. The motion is more Brownian-like the

larger the vibration amplitudes are, i.e. for more disordered surfaces.

The analysis and the interpretation of the self-di�usion experiment are re-

ported in Papers III and V. Below I give an introduction to the two Papers and

summarize the main results. For details, please refer to Papers III and V.

More data is becoming available at the time of writing. Gaining access to

more data may lead to new insights into the experiment. We plan to analyse the

extended data set in the near future, this means that the interpretation of the

experiment is ongoing work. The following data analysis is based on the old data

set, as are Papers III and V.

4.2 Data Analysis

As discussed in Chapter 1, we measure the horizontal positions r(t) = (x(t); y(t))

of the particles at time intervals �t = 20 ms. The position is more accurately

determined in the x-direction than in the y-direction, due to the smaller pixel

size (� 1 mm in the x-direction and � 3 mm in the y-direction). A major part

of the following data analysis and discussion uses the projection of the motion

onto one direction, as is common in the literature. It is thereby assumed that the

motion in two arbitrary orthogonal directions can be considered to be indepen-

dent. The better x-direction accuracy in our experiment suggests that we should

concentrate on the motion in this direction, which indeed we do. We found only

little di�erence in the behavior of the motion in the two directions, besides the
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di�erence in accuracy.

A previous study by Ramshankar, Berlin, and Gollub (RBG) [10] reports

measurements of di�usion of particles in the Faraday experiment. They found

that the di�usivity D, as measured from the second moment (variance)

V (� ) = h[x(t+ � )� x(t)]

2

i = 2D� ; (4.1)

was time dependent with D(� ) = A�

2H�1

, for time intervals exceeding 1 s. The

exponent H decreased from H ' 0:7 right above the critical vibration amplitude

A

c

, to H = 0:5 for larger vibration amplitudes corresponding to the control

parameter � � 0:4. This is the same H-value as for ordinary Brownian motion

(constant di�usivity D). A di�usivity that depends on the time-interval has

the e�ect that the length traveled in one time interval depends on the length

traveled in previous time intervals. This I shall return to in Section 4.3 below.

RBG pointed out that motion with exponent 0 < H < 1 can be modeled by a

generalization of Brownian motion known as fractional Brownian motion (fBm).

We extended the studies by RBG to larger vibration amplitudes and smaller

time scales. Like for the relative-di�usion measurements, we study the particles

at vibration amplitudes corresponding to the control-parameter values � = 0:05,

0.13, 0.24, 0.34, 0.65, 0.86, and 1.06. It is worth noting that the size of the

particles we used (50 �m) was less than that of the particles used by RBG (100-

200 �m). Although ideally the particles can be considered as perfect tracers that

follow the motion of the immediately neighboring uid elements, the particle size

may have an e�ect on how well the particles actually act as tracers. Typical

particle tracks are shown in Figure 4.1 for three di�erent vibration amplitudes.

From the measured particle tracks, we �rst studied the second momentV (� ) =

h[�x(� )]

2

i of the displacements �x(� ) = x(t + � ) � x(t) for the seven di�erent

vibration amplitudes; see Figure 4.2. There is a slight mean drift of the particles,

which we did not take into account in Fig. 4.2. However, the e�ect of the drift is

small (it accounts for less than a few percent change in �x(� ) in all cases) and it

will be neglected. The mean drift appears because the particles are measured in

a somewhat o�-center area of the container; reections of the light on the water

surface prevent centered measurements.

The curves in Fig. 4.2 all have a cross-over between two di�erent power-

law behaviors at the �-dependent time �

c

(�). The time �

c

(�) corresponds to a

distance equal to the wavelength, V (�

c

) ' �

2

=2 (recall that this refers to the

displacement in one of the two independent directions, hence the one-half). The
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Figure 4.1: (Previous page) Trajectories of particles for various values of the

control parameter �. Top: � = 0:05, the length of the track is 1106 time steps

(� 22 s). Middle: � = 0:34, the length of the track is 579 time steps (� 12

s). Bottom: � = 1:06, the length of the track is 243 time steps (� 5 s). The

measured positions are connected by straight lines. The coordinate systems are

all translated to have origo at the starting point of the particle trajectory, and

the scale is the same in the three graphs.

change in behavior at scales corresponding to the wavelength � is backed up by

the preliminary analysis of the extended data set, which for the fourth (central)

momentM

4

(� ) also shows a cross-over at the length scale �, the value ofM

4

at

the cross-over being the expected �

4

=2, see Fig. 4.3.

Returning to the variance V (� ) shown in Figs. 4.2, we see that the exponent

2H characterizing the change in the large time-scale variance V (� > �

c

) = 2A�

2H

is smaller than the exponent 2H

�

for the short time-scale variance V (� < �

c

) =

2A

�

�

2H

�

. For large �, i.e. for very disordered surfaces (� = 1:06), the behavior

at long time scales � is Brownian-like with 2H = 1. For less disordered surfaces

(smaller �) the di�usion is anomalous with values of 2H > 1; see Table 4.1,

and also Fig. 3 of Paper III. This is in accordance with the RBG results, except

that in their experiment a Brownian-like motion is reached for smaller vibration

amplitudes, � ' 0:3. The pre-factor A(�) is approximately a factor of two larger

than the pre-factor found by RBG. This di�erence is probably due to the larger

particle size used in the experiments by RBG.

At small time scales, corresponding to length scales shorter than �, we �nd

that the exponent 2H

�

decreases from 2H

�

' 1:9 to 1.55 in the range of � studied.

For very short time scales the curves of � = 0:05 and 0.13 tend to bend towards a

smaller slope. It happens at time scales � less than 2�t = 40 ms, corresponding

to x-direction displacements of less than � 0:11 mm. Keeping in mind that

the pixel size in the x-direction is � 0:1 mm, we interpret the bending as a

consequence of the uncertaincy in position caused by the pixel size. This is further

veri�ed by the fact that the short-times bending in the y-direction happens for

times corresponding to distances that are larger, namely � 0:17 mm, and the

y-direction pixel size is � 0:3 mm.

For a single power-law like V (� ) = 2A(�)�

2H(�)

it is always possible to rescale

the time scale � of one curve (#2) to make it collapse with another curve (#1),
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Figure 4.2: Self-di�usion. Variance along one coordinate axis as a function of the

time interval � . From below, � = 0:05, 0.13, 0.24, 0.34, 0.65, 0.86, and 1.06.
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the extended data set. From below � = 0:13, 0.34, and 0.86.
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� H(�) 1=H(�) D(�)

0:05 0:63 1:59 1:65

0:13 0:59 1:69 1:72

0:24 0:57 1:77 1:76

0:34 0:55 1:82 1:81

0:65 0:54 1:87 1:89

0:86 0:53 1:87 1:95

1:06 0:50 2:00 2:00

Table 4.1: Self-di�usion. The values of the exponents H(�), 1=H(�), and D(�)

obtained by rescaling.

by rescaling the time variable in curve #2 as

� !

 

A(�
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A(�

1
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)
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2

=H

1

: (4.2)

This stems from the obvious fact that two linear curves can be made to collapse

by a rescaling. It is, however, not clear a priori that curves made up of two

power-laws can be rescaled to collapse above and below the cross-over point.

This requires that the following four equations be ful�lled

A(�
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which shows that the ratio  � H

�

(�)=H(�) of the slopes of a curve must be

independent of �, i.e. constant across the range of curves. It also shows that if

this is so, then plotting a curve using the rescaled time ~� = (�=�

c

)

2H

will make

the curve collapse with the curve having upper exponent 2H = 1.

We found that for our data, the ratio  is very close to being constant, with

 = 1:55 � 0:05. We plotted the variance by rescaling the time � ! ~� =
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Figure 4.4: Self-di�usion. Collapse of the variance curves of Fig. 4.2 into one

scaling function, by a rescaling of the time interval � .

(�=�

c

(�))

2H(�)

, and thus removed the �-dependence. The resulting excellent data

collapse of the variance is shown in Fig. 4.4; it shows that the variance is an

�-independent function of the rescaled time V = f(~� ). The scaling function

f reects the cross-over in the dynamical behavior at f(1) = �

2

=2. We have

f(~� ) � ~�



below the cross over, and f(~� ) � ~� above.

Next, we plot the variance V for various values of � versus the variance for a

particular � value, using the reduced time �=�

c

(�) as the parameter. Note that

this is not an `extended self-similarity' plot in the sense of Chapter 2, because

it is not a plot of higher order moments versus a lower order moment at a �xed

value of �. Rather it is a plot only of second order moments for various values

of �.

However, such a plot still serves to remove some common structure of the

curves, in this case the cross-over, in order to study the nature of the curves

separated from the mentioned structure. Here, we want to study the deviation

from Brownian motion by attempting to remove the cross-over. We have chosen

� = 1:06 as the reference; see Fig. 4.5. We see that there is no sign of the

cross-over in each curve, all curves are straight lines with slope 2H(�) [because

2H(� = 1:06) = 1].
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Figure 4.5: Self-di�usion. The variance V for � = 0:05 (dashed line), � = 0:24

(dotted line), and � = 0:65 (dash-dotted line), plotted versus the variance for

� = 1:06, using the reduced time �=�

c

(�) as the parameter. For comparison, a

line of slope 1 is shown (unbroken line).

We note that even though the ocean waves and the waves in our laboratory

experiment are maintained by di�erent mechanisms, we nevertheless see a similar

behavior of the tracers in the two systems. Below a certain length scale, which is

� 100 km for oceanographic measurements and 2.6 mm for our capillary waves,

the motion is far from Brownian and the variance of x grows with time with an

exponent � 1:5. Above that length scale, the motion is much closer to being

Brownian.

4.3 Fractional Brownian Motion

For Brownian motion, the variance of the particle displacement grows linearly

with time and de�nes a di�usion coe�cientD from V (� ) = 2D� . However, as we

see in our experiment, the motion of the particles does not always follow Brownian

motion. One de�nes a time-dependent di�usion coe�cient D(� ) = A�

2H�1

with

0 < H < 1, to describe the particle self di�usion.

Such behavior may be described by fractional Brownian motion (fBm), a

generalization of ordinary Brownian motion [44, 43, 45]. In ordinary Brownian

motion (without mean drift) the displacement �x(� ) has a Gaussian distribu-

tion, P (�) � exp(��

2

), with � = �x(� )=�

1=2

. For fractional Brownian motion,
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the Gaussian-distributed quantity is �

0

= �x(� )=�

H

, where H 6= 1=2. This in-

troduces correlations whose extensions in time are in�nite, as we shall see below.

For ordinary Brownian motion, two successive displacements x(t)� x(t� �

1

)

and x(t+ �

2

)� x(t) are independent, but for fractional Brownian motion this is

not so. The correlation between two successive displacements is

C(�

1

; �

2

) =

h[x(t)� x(t� �

1

)] [x(t+ �

2

)� x(t)]i

h[�x(�

1

)]

2

i

1=2

h[�x(�

2

)]

2

i

1=2
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h[x(t)� x(t� �

1
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2

)� x(t)]i
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)

H
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4A(�
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)
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n

h[x(t+ �

2

)� x(t� �
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i

� h[x(t+ �

2

) � x(t)]

2

i � h[x(t)� x(t� �

1

)]
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o
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(�

1

+ �

2

)

2H

� �

2H

1

� �

2H

2

2(�

1

�

2

)

H

: (4.8)

For �

1

= �

2

= �t, we have C(�

1

; �

2

) = 2

2H�1

� 1, which is non-zero for H 6= 1=2

and is independent of the size of the time interval �t considered. The sign of

C(�t;�t) changes according to whether H < 1=2 (C negative) or H > 1=2 (C

positive). Hence if H < 1=2, a positive displacement is likely to be followed

by a negative displacement (this is called `anti-persistence'), whereas H > 1=2

implies that a positive displacement is likely to be followed by another positive

displacement (`persistence').

Using the correlator for successive separations, Eq. (4.8), we compute the

correlation between two displacements that are separated in time by T � � ,

C

T

(�; � ) =

h[x(t+ � )� x(t)] [x(t+ T + � )� x(t+ T )]i

h�x(� )

2

i

=

1

2A�

2H

f�h[x(t+ T )� x(t+ � )][x(t+ T + � )� x(t+ T )]i

+ h[x(t+ T )� x(t)][x(t+ T + � )� x(t+ T )]ig

=

1

2

�

T

�

�

2H

(

�2 +

�

1 �

�

T

�

2H

+

�

1 +

�

T

�

2H

)

' H(2H � 1)

�

T

�

�

2H�2

(4.9)



64 Self-diffusion in Capillary Waves

For H = 1=2 the correlation is zero for any separation in time T > 0. For other

values of H (within 0 < H < 1) the correlation is non-zero for �nite T=� and

only vanishes as T=� !1. Consequently, the size of one displacement depends

on any previous displacement a time T away, except | of course | for ordinary

Brownian motion. As found for successive displacements, the sign of the time

separated correlator C

T

changes according to whether H < 1=2 or H > 1=2

for displacements that are separated in time. Thus a positive displacement in

the past will make it more likely that the present displacement will be negative,

resp. positive, the likelihood being weighed by the factor (T=� )

2H�2

. The factor

(T=� )

2H�2

decreases with separation in time, making less recent displacements

less important, but not unimportant.

Numerically implementing motion with correlations between time-separated

displacements is problematic for large time separations. A simple scheme for

modeling fractional Brownian motion is described in Ref. [45, Chap. 9]. In this

scheme, a time step is associated with a Gaussian distributed variable, and a

displacement is inuenced by the previous M displacements via an average over

the M Gaussian distributed variables, weighed by a factor that decreases with

the time separation T , the factor being (T=�t)

H�1=2

� (T=�t � 1)

H�1=2

. For

time separations T larger than M �t the displacements become uncorrelated.

We utilize this scheme to model a fBm with a cut-o� time at T = M �t. On

time scales smaller than M �t the motion is fractional Brownian, but on time

scales larger thanM �t the motion crosses over to ordinary Brownian. Figure 4.6

shows the variance for at numerically modeled fBm with exponent H = 0:8 and a

`memory' time limit of T=�t = 600. As we would expect, the double-logarithmic

curve crosses over from a fBm behavior with slope 2H = 1:6 to the ordinary

Brownian motion slope 1 at T=�t ' 600.

This resembles the behavior of the scaling function f(~� ), compare Figures 4.4

and 4.6. It suggests that the di�usion may be modeled by a convolution of two

fractional Brownian motions:

(i) An �-independent motion that has a cut-o� near the time scale � (�) (which

corresponds to the length scale �, therefore the cut-o� is also �-independent).

This fBm has exponent H

�

= 1:55=2, and is represented by the scaling func-

tion f(~� ).

(ii) An �-dependent motion, featured in Fig. 4.5, that does not have any cut-o�

below the scale of the system size. This fBm has exponent H varying from

0:5 at � = 1:06 to 0:63 at � = 0:05, the exponents shown in Table 4.1.
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Figure 4.6: Simulation of a fractional Brownian motion with at cut-o� time at

T=�t = 600.

In physical terms, the former may result from turbulent eddies of size less than

the wavelength, while the latter results from turbulent eddies of all sizes less than

the system size, here with the term `eddy' used as in Chapter 1.

As a digression, I mention that another type of `memory' cut-o� for fBm has

been introduced, see e.g. Ref. [46]. The fBm power spectrum S(!) � !

�(2H+1)

,

where ! is the frequency, is modi�ed by adding a cut-o� a such that

S(!) � (a

2

+ !

2

)

�(H+1=2)

: (4.10)

When Fourier transforming (4.10) back into t-space the correlations will decay

as exp(�at) for large t. The cut-o� preserves correlations at time scales t� 1=a

and removes correlations at time scales t� 1=a.

4.4 Fractal Dimension of Trajectories

As another way to analyse the particle trajectories we determined the fractal

dimension of the particle trajectories using the `yardstick' method [43]. The

exponent H for fractional Brownian motion is related to the fractal dimension as
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we shall see below. Here, however, we �nd the fractal dimension directly from

the trajectories.

The trajectories were de�ned by a linear interpolation between successive data

points, and all trajectories of each control parameter � were translated such as to

obtain one long trajectory.

The length of the trajectory was measured at di�erent length scales `, by

counting the number N(`) of sticks of length ` needed. The fractal dimension D

is formally de�ned by [43]

D = lim

`!0

lnN(`)

ln(1=`)

(4.11)

which implies that N(`) � `

�D

. For fractional Brownian motion the fractal

dimension is D = minf1=H; dg where d is the dimension in which the fBm takes

place.

We note that for �nding the fractal dimension we consider the trajectories in

their full two-dimensional form, whereas in the previous sections, including the

Section 4.3 on fBm, we considered the projection of the horizontal motion onto

one direction. Assuming that the projections onto the two orthogonal directions

x and y are independent, the fBm arguments carry through with the variance

h�x(� )

2

+�y(� )

2

i = 4D(� )� and D(� ) = A�

2H�1

. For persistent (0:5 < H < 1)

fBm we therefore expect D = 1=H, and D = 2 for ordinary Brownian motion.

Fig. 4.7 reports N(`), normalized by the number of sticks used at length scale

�, versus the length scale ratio `=�. Like the variance curves, also the N(`)

curves can be collapsed by a rescaling `!

~

` = `

D(�)=2

to obtain an �-independent

curve; see the inset of Fig. 2 in Paper V. The curve crosses over from a power

D

�

= 1:30 � 0:05 to D = 2, ordinary Brownian motion behavior. The fractal

dimension D(�) is obtained from the rescaling of the individual curves, and is

given in Table 4.1. TheD(�) found is in good agreement with the estimate 1=H(�),

and so is D

�

= 1=H

�

. We also note that for the oceanographic measurements

cited in the introduction to this chapter the fractal dimension is also � 1:3, and

the relation D = 1=H also holds for those measurements.

There are other tools for analyzing particle trajectories than those considered

here. Several of these are employed in Ref. [10], e.g. the power spectra of the

trajectories, the roughness of the trajectories, and the correlations (4.8) of past

and future displacements. Also trapping times and ight times of the particles

can be studied. Each of the tools highlights a certain aspect of the motion.

We chose to concentrate on the mean square displacement and on the fractal



4.4 Fractal Dimension of Trajectories 67

`=�

N

(

`

)

=

N

(

�

)

310.30.1

10

1

0.1

Figure 4.7: Self-di�usion. The number N(`) of yardsticks needed to measure the

particle trajectories on scale `, normalized to the number used at ` = �, and

with the scale ` measured in units of the wavelength �. The curves show N(`)

for � = 0:05, 0.13, 0.24, 0.34, 0.65, 0.86, and 1.06 (steepest curve).

dimension of the trajectory.

On a �nal note, one may wonder why we did not notice any change in the

behavior of the relative di�usion around the particle separation R � �. But this

is easily understandable | when computing the relative moments as functions

of the separation R we collected the measurements in bins [R � �;R + �[ with

� = 0:5 mm. We therefore only have two bins below the wavelength � = 2:6 mm,

at R = 1� 0:5 mm and at 2� 0:5 mm. In combination with the relatively small

number of measurements in each bin (� 3000; see Fig. 2.1), this is hardly enough

to see any change in behavior. A �ner bin partition at small R scales would

result in more points below the scale �, but it would also increase the statistical

error. Thus from our relative di�usion data we can neither con�rm nor exclude

the possibility that the behavior of the relative motion changes around the length

scale �.



Chapter 5

The Complex

Ginzburg-Landau Equation

The theme of the following two chapters is the extensively studied [47, 48, 49,

50, 51, 52] Ginzburg-Landau equation with complex coe�cients. It derives as an

amplitude equation of a reaction-di�usion system at and right after a bifurcation

from a steady state into a stable, periodic orbit (a Hopf bifurcation) [48]. It is

also studied in its own right as a simple, yet very interesting spatially extended

oscillatory system.

This chapter is a short introduction to the equation. The equation has become

a �eld of study in itself, and here I will merely mention some of its main char-

acteristics. Towards the end of the chapter I describe a numerical simulation of

particles moving in a complex Ginzburg-Landau �eld. The results were reported

in Paper II. The next chapter is concerned with the derivation of an equation

of motion for vortices in two- and three-dimensional systems modeled by the

complex Ginzburg-Landau equation. These results are reported in Paper IV.

5.1 Introduction

The Complex Ginzburg-Landau (CGL) equation is given by the following expres-

sion

d

dt

A = P (A;A

�

)A+ br

2

A (5.1)

whereA = jAj exp(iS) is a complex �eld and the function P is given by P (A;A

�

) =

�� ajAj

2

. The coe�cients a, b, and � are complex numbers. In two-dimensional

systems the equation supports traveling plane wave solutions [48, 50]

A = F exp(ik � r � i!t) (5.2)

68
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x
y

Figure 5.1: One-armed spiral vortex of the CGL �eld A = jAje

iS

in a two-

dimensional system. The height of the surface depicts the amplitude jAj. The

spiraling curves are contour lines of the phase S (isophase lines). The phase

change between two thin lines is �=2.

for which the squared amplitude is F

2

= (�

R

� b

R

k

2

)=a

R

and the frequency

! =

a

I

a

R

(�

R

� b

R

k

2

) + b

I

k

2

� �

I

(5.3)

where a

R

� Re(a), a

I

� Im(a), etc. The permitted wave numbers satisfy the

relation f�

R

� b

R

k

2

g=a

R

> 0. The homogeneous solution A = F exp(�i!t) is a

special case of (5.2).

Equation (5.1) also permits solutions in which A has phase singularities (de-

fects). In two space dimensions these are isolated points around which the phase

S changes by multiples of 2�. At these points the amplitude jAj vanishes, so that

the complex �eld A remains single valued; see Figure 5.1. In the vicinity of an

isolated defect the phase is of the form [53, 50, 48]

S =  (r) + n'� !t (5.4)

in polar coordinates (r; '), where n is an integer. For a �xed phase S this is the

equation for jnj-armed spirals rotating at an angular frequency !=n where

! =

a

I

a

R

(�

R

� b

R

k

2

1

) + b

I

k

2

1

� �

I

(5.5)
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provided that the coe�cient of the real part of the nonlinearity a

R

does not

vanish. Far from the vortex center the spiral approaches the form of a plane

wave with wave number k

1

� lim

r!1

 

0

(r) and lim

r!1

jAj =

q

(�

R

� b

R

k

2

1

)=a

R

.

The asymptotic wavenumber k

1

of the spiral satis�es f�

R

� b

R

k

2

1

g=a

R

> 0. It

is uniquely determined by the coe�cients a, b, and � but an analytic expression

has not been found.

Close to the defect, the radial dependence of the phase �eld may be approxi-

mated by the expansion

 (r) = d

2

r

2

+ d

4

r

4

+ : : : (5.6)

and the radial dependence of the amplitude

jA(r)j = g

0

r

jnj

+ g

2

r

jnj+2

+ : : : (5.7)

By inserting these expansions into a polar coordinates version of (5.1) the coe�-

cients of (5.6) may be found, the �rst of which is

d

2

=

�(! + �

I

)b

R

+ �

R

b

I

4(jnj+ 1)jbj

2

=

(b

I

� a

I

=a

R

)(�

R

� b

R

k

2

1

)

4(jnj+ 1)jbj

2

(5.8)

where the last equality requires that a

R

6= 0.

In three spatial dimensions the defects become one-dimensional strings, or

�laments, and the spirals generalize to scroll waves [54, 55] which look like sheets

wound around a �lament. The �laments may be closed or open (in which case

they end on the system boundary) and of arbitrary shape. A �lament is a con-

nected string of zeros of the �eld A.

The integer n is the winding number (vorticity) of the vortex. In two space

dimensions, the sum of the winding numbers of the vortices in the system (or more

generally, the total phase gradient) is a constant, which depends on the genus

g (`number of handles') of the two-dimensional surface as 2(1 � g) (from the

Gauss-Poincar�e's theorem). The vortices are created and annihilated in pairs of

opposite winding number, thereby conserving the total winding number. We use

periodic boundaries in the numerical simulations, in that case obviously g = 1

and the total winding number is zero. Note that some authors use the term

`winding number' for the total winding number of the system [56].

Vortices of winding number jnj > 1 are unstable and break down into n

vortices, each with a winding number sign(n) [53, 57]. The core of the vortex

is the region where the amplitude jAj deviates signi�cantly from its asymptotic

value; see Figure 5.1.
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Figure 5.2: The phase diagram for the two-dimensional CGL equation for � > 0.

The vortices have a Benjamin-Feir (/Absolute/convective) instability above the

Benjamin-Feir (/Absolute/Eckhaus) instability line. The �lled and the open

circle are the parameter values used in Fig. 5.3. The star is the set of parameters

used for Fig. 5.9. The Eckhaus instability line and the absolute instability line

are adapted from Ref. [50].

The CGL equation encompasses a number of interesting special cases. When

a, b, and � are purely imaginary, the CGL equation coincides with the nonlinear

Schr�odinger equation. The latter equation is a model for type-II superconductors

when substituting the gradient in Eq. (5.1) by r + 2ieA=(�hc) [58, 59]. There,

A is the vector potential, 2e is the charge of a Cooper pair, and jAj

2

is the local

density of the superconducting electrons.

The nonlinear Schr�odinger equation also describes the quantum dynamics of

superuid

4

He and is known in that context as the Ginzburg-Pitaevskii-Gross

equation (GPG) [60]. The vortex solution of the GPG equation describes the cir-

culation of the superuid around strings of normal-phase uid. jAj

2

corresponds

to the superuid mass density and the phase gradient rS is proportional to the

velocity of the superuid.

Furthermore, by employing the Madelung transformation [61] the nonlinear

Schr�odinger equation transforms into the hydrodynamic equations for an inviscid

and incompressible uid (the Euler equations). To see this, consider the CGL
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equation (5.1) with imaginary coe�cients

d

dt

A = i

~

P (jAj

2

)A+ ib

I

r

2

A (5.9)

where the function

~

P takes on real values, e.g.

~

P (jAj

2

) = �

I

� a

I

jAj

2

. The real

and imaginary parts of Eq. (5.9) lead to

djAj

2

dt

= �2b

I

r � (jAj

2

rS) (5.10)

dS

dt

=

~

P (jAj

2

) + b

I

r

2

jAj

jAj

� b

I

(rS)

2

: (5.11)

For uids that are vorticity-free except at isolated points one may introduce a

ow potential such that the uid velocity is the gradient of the potential. When

we choose the ow potential 2b

I

S, i.e. the uid velocity v = 2b

I

rS, and the mass

density � = jAj

2

we �nd that Eq. (5.10) corresponds to the continuity equation

for the ow

d�

dt

= �r(�v) : (5.12)

Note that the time derivative d=dt is taken at a �xed point in space, it is not

the substantial derivative D=Dt = d=dt+ v � r at a (material) point that moves

along with the uid at velocity v. The Euler equation with an applied forcing f

and a pressure p is

dv

dt

+

1

2

r(v

2

) = �

rp

�

+ f : (5.13)

For a conservative force f = �rU the equation can be rewritten in terms of the

ow potential 2b

I

S

2b

I

dS

dt

+

1

2

(2b

I

rS)

2

= �

Z

dp

�

� U : (5.14)

Taking

Z

dp

�

+ U = �2b

I

~

P (�)� 2b

2

I

r

2

p

�

p

�

(5.15)

the uid equations are thus connected to the nonlinear Schr�odinger equation.

However, there is one important di�erence between the nonlinear Schr�odinger

equation and uids: the vorticity (winding number) of the vortices in the non-

linear Schr�odinger equation is quantized (integer), whereas the vorticity of uid

vortices can take on any value.
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For purely real coe�cients a, b, and � the CGL equation reduces to the

nonlinear heat equation, and with a real �eld A = A

�

to the `Landau-Ginzburg'

equation of phase transitions.

It is easily con�rmed that the number of real adjustable parameters in the

coe�cients of Eq. (5.1) may be brought down to two by the following rescaling

of time t, space r, and the complex �eld A

t!

~

t = �

R

t r !
~
r =

s

�

R

b

R

r A!

~

A =

s

a

R

�

R

exp(�i�

I

t)A (5.16)

whereby Eq. (5.1) may be written

d

d

~

t

~

A =

~

A� (1 + i�)j

~

Aj

2

~

A+ (1 + i�)r

2

~r

~

A (5.17)

with the coe�cients � = a

I

=a

R

and � = b

I

=b

R

. In the rescaled coordinates, the

frequency of rotation is ! = �k

2

1

+ �(1 � k

2

1

) and the coe�cient of the lowest

order term in  (r) is

d

2

=

�! + �

4(jnj+ 1)(1 + �

2

)

=

(� � �)(1 � k

2

1

)

4(jnj+ 1)(1 + �

2

)

: (5.18)

The asymptotic wavenumber is limited by k

2

1

< 1 and depends on � and � only.

By a complex conjugation of Eq. (5.17) we see that studying the �eld A and

parameters (�; �) corresponds to studying A

�

and parameters (��;��). Due

to this symmetry, it is therefore su�cient to study the Eq. (5.17) in e.g. the

parameter range � > 0.

5.1.1 Stability

The spiral vortices and the traveling plane-waves are not stable for all values of

� and �. Discussions of the stability are given in e.g. Refs. [47, 50, 52]. Here only

a short resume will be given.

To study the stability of the traveling plane waves, we add a perturbation �

to the traveling plane-wave solutions of Eq. (5.17) A = (F + �) exp(ik � r � i!t).

We restrict the analysis to longitudinal perturbations

� = �

+

(t) e

iq�r

+ �

�

(t) e

�iq�r

(5.19)

where qjjk. By inserting the perturbed solution into the CGL equation (5.17)

and keeping terms to linear order in �, a linear system of di�erential equations

is obtained

@

t

0

@

�

+

�

�

�

1

A

= L

0

@

�

+

�

�

�

1

A

(5.20)



74 The Complex Ginzburg-Landau Equation

with the matrix

L =

0

B

@

�(1 + i�)F

2

+ (1 + i�)(�2k � q � q

2

) �(1 + i�)F

2

�(1� i�)F

2

�(1� i�)F

2

+ (1� i�)(2k � q � q

2

)

1

C

A

(5.21)

For small q = jqj the eigenvalue with the largest real part is

�(q) = ivq�D

jj

q

2

+O(q

3

) (5.22)

where v = 2(� � �)k and D

jj

= 1 + �� � 2(1 + �

2

)k

2

=(1 � k

2

). The linear

analysis therefore predicts that the traveling plane waves may become unstable

if their wavenumber k is such that D

jj

(k) < 0. We see that the homogeneous

solution A = F exp(�i!t) thus is stable in the range of parameters (�; �) for

which D

jj

(0) = 1 + �� > 0. The line 1 + �� is called the Benjamin-Feir line (see

Figure 5.2).

The spiral vortices approach plane waves with wavenumber k

1

far from their

center, so this analysis should also apply reasonably well to the vortices. The

wavenumber k

1

is determined by the values of � and �. The analysis thus

divides the � � � parameter plane by the lines D

jj

[k

1

(�; �); �; �] = 0 into re-

gions where vortices are (Eckhaus) unstable and a region where the vortices are

(Eckhaus) stable; see Fig. 5.2 where only the upper half plane is shown. The vor-

tices are Eckhaus unstable above the `Eckhaus' line in Fig. 5.2, which is where

D

jj

[k

1

(�; �); �; �] = 0.

However, the spirals emit waves with the group velocity

@!

@k

1

=

@

@k

1

(� + (� � �)k

2

1

) = 2(� � �)k

1

= v(k

1

) : (5.23)

Thus the perturbation drifts away, and the vortex may be absolutely stable,

even though it was found to be convectively (Eckhaus) unstable. The wavenum-

bers k

0

1

for which the drift v is not enough to transport the perturbation away

are the wavenumbers at which the perturbations make the spiral vortices break

down. Again taking notice of the fact that the values of � and � determine the

asymptotic wavenumber k

1

(�; �), this leads to a line in the ��� parameter half-

plane below which spiral vortices are (absolutely) stable, and unstable above, see

Fig. 5.2.

When the vortices are stable, i.e. below the line in Fig. 5.2 termed `Absolute',

they organize in a cell structure with the spiral vortices at the centers of the cells,
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and with shock lines in the amplitude jAj at the border to the neighboring spiral

vortices; see the right panel in Fig. 5.3. There may also be vortices (jAj = 0)

at the intersections of the shocks, so-called `edge vortices'. Whereas the overall

structure of the system is �xed, the edge vortices are not totally �xed. It is not

clear whether the edge vortices are very slowly relaxing to a �xed state. For this

reason this regime in the � � � plane is called a vortex glass. Above the line

`Absolute', the defects have little or no spiral structure in the phase S; see the

left panel of Fig. 5.3. The defects move around and are created and annihilated

pairwise. This region of the �� � plane is called defect turbulence. The density

of defects is much larger in the defect turbulent regime than in the vortex glass

regime even for close values of � and �.

5.2 Numerical Simulations

In order to study the Complex Ginzburg-Landau equation (5.17) numerically, we

simulated the equation on a coupled map lattice [62]. This is an often used

method for simulating the CGL equation, another being the pseudo-spectral

Fourier method. We consider the equation in two space dimensions with dis-

crete time variables on a two-dimensional square-lattice (i.e. the spatial variables

are also discretized), and the �eld A is allowed to take on a continuum of values.

The integration is split into two mappings, a nonlocal map that integrates the

nonlocal part of the CGL equation (5.17)

dA

dt

= (1 + i�)r

2

A (5.24)

(henceforth the tildes in Eq. (5.17) are omitted) and a local map

dA

dt

= A� (1 + i�)jAj

2

A : (5.25)

The local and nonlocal parts are integrated separately and with di�erent time

steps [63]. Let �

0

denote the nonlocal time steps, � the local time steps, and their

ratio � � �

0

=� (< 1). Integrating the two parts with di�erent time steps is

equivalent [63] to rescaling A!

�

A =

p

� A and changing the local part (5.25) to

d

�

A

dt

= �

�

A� (1 + i�)j

�

Aj

2

�

A (5.26)

which, by considering the real and imaginary part, can be written in terms of the

amplitude j

�

Aj and the phase S of

�

A

d

dt

j

�

Aj = �j

�

Aj � j

�

Aj

3

(5.27)
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S(r; t) S(r; t)

jA(r; t)j jA(r; t)j

Figure 5.3: The CGL equation. The left panel shows a snapshot the phase S(r; t)

(top) and the amplitude jA(r; t)j (bottom) at the parameter values (�; �) =

(1;�2). The right panel shows the glassy regime at parameter values (�; �) =

(0:4;�2). The color coding for S(r; t) goes from red (S � 0) via green (S � �)

to blue (S � 2�). For jA(r; t)j the color coding goes from blue for jAj = 0 to red

for jAj = jAj

max

.



5.2 Numerical Simulations 77

d

dt

S = ��j

�

Aj

2

: (5.28)

In practice we usually choose the local time step � to be �ve times the nonlocal

time step �

0

; � = 0:2.

The solution to the non-local map (5.24)

�

A(r; t+ �

0

) = expf�

0

(1 + i�)r

2

g

�

A(r; t)

�

�

1 +

�

0

m

(1 + i�)r

2

�

m

�

A(r; t) (5.29)

is discretized by using a linear interpolation at the four nearest neighbor sites for

the Laplacian [63]

r

2

�

A(r; t) �

1

4

X

n.n.

f

�

A(r

n.n.

; t)�

�

A(r; t)g (5.30)

where n.n. means `nearest neighbor sites'. Taking m = 5 has proven su�cient.

In some of the numerical simulations we improved the approximation (5.30) by

including the four next-nearest neighbor sites, but it did not seem to inuence

the performance of the program.

We �nd the solution to the local part by straightforward integrations, �rst of

Eq. (5.27), and then of Eq. (5.28) with the solution to (5.27) inserted. The result

is

j

�

A(r; t+ � )j =

p

� j

�

A(r; t)j

q

�(� )� + f1 � �(� )gj

�

A(r; t)j

2

(5.31)

S(r; t+ � ) = S(r; t)�

�

2

ln

(

1 +

1� �(� )

��(� )

j

�

A(r; t)j

2

)

(5.32)

where �(� ) � exp(�2�� ); see also Ref. [64]. By inserting the numerical values of

the nonlocal solution (5.29) into the local solution (5.32) the system is advanced

one (local-part) time step � .

The simulations were performed on square lattices with 128�128 to 512�512

sites and with a �xed time step ratio � = 0:2. The boundary conditions are

periodic. When defects are present in the system, we usually normalize the

output numerical value of jAj (not the value of jAj within the program) such that

the maximum value at the lattice, at a given time, is jAj = 1 (and the minimum

value is zero). Hence it is not important to keep track of the various rescalings

of A. In most cases we use random initial conditions with A chosen at random

within the unit circle. The numerical simulations were performed at a Connection

Machine-2 (Uni-C, Denmark) and at a workstation.
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5.3 Di�usion in the CGL Equation

In Paper II we studied particle motion in the background of defect turbulence.

Previous studies have considered the motion of a scalar �eld in the one- and two-

dimensional Kuramoto-Sivashinsky equation [65, 66]. We studied the background

defect turbulence described by the complex Ginzburg-Landau equation (5.17)

d

dt

A = A� (1 + i�)jAj

2

A+ (1 + i�)r

2

A (5.33)

(where I again omitted the tildes). We de�ned the particle velocity as propor-

tional to the gradient of the phase of A

v =

dr

dt

= �rS(r; t) (5.34)

where r(t) = re

i'

is the particle position. The coe�cient � 2 R is an adjustable

parameter. � can be interpreted as a mobility parameter because it is the co-

e�cient relating the �eld rS to the `drift' velocity v. In the GPG (nonlinear

Schr�odinger) equation the velocity (5.34) with � = 2b

I

would be an approxima-

tion of the superuid velocity far from the strings of normal uid (the vortex

cores) and the particles introduced via Eq. (5.34) would be tracers of the super-

uid. Here, however, we allow the particle to move close to the vortex where the

phase gradient diverges and the superuid-velocity approximation is not valid.

Also, the coe�cients of the CGL equation are not purely imaginary. The physical

interpretation of the particle velocity scheme (5.34) is therefore less obvious than

for the superuid case.

The particle with velocity (5.34) has no inertia in this scheme, the equation of

motion being purely dissipative. We are interested in the trajectories and in the

statistics of the particle motion when the underlying �eld is turbulent. However,

for the sake of illustration, we �rst consider a particle that moves in a glassy state

of the CGL system, where the inuence of the defects is clearly discerned and

understood.

For an isolated vortex, the phase gradient points towards the vortex center,

except in the area close to the center. There, the gradient lines spiral around

the center counterclockwise for vortices of positive winding number (n = 1), and

clockwise for negative winding number (n = �1); see Fig. 5.4. Therefore, a

particle with � > 0 is attracted to the vortex (no matter the sign of the winding

number), and the particle will spiral towards the center. In contrast, a particle

with � < 0 will be repelled by the vortex. In a vortex glass, such particles will
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Figure 5.4: The CGL equation. The phase gradient rS(r) in the region around

the center of a negative winding number vortex (n = �1). The x- and y-values

are lattice site numbers.

move as far as possible from any vortex, which means that they will get trapped

at the junction of three domain walls. This argument does not take edge vortices

into account.

We now study the motion of the particles in the turbulent regime of the

CGL equation. More speci�cally, we look at a system with 128 � 128 lattice

sites with the parameter values (�; �) = (1;�2). The defect-turbulent regime

is characterized by moving vortices and the creation and annihilation of vortex

pairs. A particle with � > 0 is also in this regime attracted to the vortices and

tries to move with them. However, if � is su�ciently small, the particle velocity

is too small to follow the vortex motion. Even if � is large enough for the particle

to follow the motion of a vortex, it will not follow the vortex forever. The vortex



80 The Complex Ginzburg-Landau Equation

will eventually get annihilated by a vortex of opposite winding number, and the

particle will �nd another vortex and follow the motion of that vortex.

Close to the center of a vortex we can approximate the phase �eld S(r) at

small time scales in the turbulent regime (time scales small enough that the

vortices hardly move) by the phase �eld of an isolated vortex (5.4), in polar

coordinates (r,')

S(r; '; t) = �!t+ n' +  (r) (5.35)

where the r-dependence is (see Eq. (5.6))

 (r) = d

2

r

2

+ d

4

r

4

+ : : : (5.36)

Thus the particle velocity is, in polar coordinates

v = �rS(r; t)

= � (
^
r@

r

S +

^
'

r

@

'

S)

= (
^
r� @

r

 (r) +
^
'

�n

r

) (5.37)

which we integrate to lowest order in r to obtain the particle position r(t) = re

i'

as a function of time

r(t) = r

0

e

2�d

2

t

(5.38)

'(t) = '

0

�

n

4r

2

0

d

2

�

e

�4�d

2

t

� 1

�

(5.39)

This con�rms the spiraling motion of the particle close to the vortex center. In

our numerical simulations, we interpolated the phase gradient at the o�-lattice

particle position from four �rst-order gradients at the four nearest lattice sites.

The simulated particles spiral towards the vortex center, as we predicted from the

gradient of the phase (Fig. 5.4) and from the particle motion at a �xed isolated

vortex, but the spiraling motion is eventually replaced by a circulating motion

around the center due to the �nite lattice spacing. This is illustrated in Figs. 5.5

and 5.6, where we plot a particle trajectory for the parameter � = 10. With

� = 10 the particle gets trapped at moving vortices, but once in a while the

vortex disappears, and the particle �nds and sticks to another vortex. For �gures

corresponding to other values of �, I refer to Figure 3 in Paper II.

As in the case of the experiment on self-di�usion of particles in surface

waves (described in previous chapters) we studied the distribution of particle
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Figure 5.5: The CGL equation. Particle trajectory for � = 10 in the turbulent

regime (�; �) = (1;�2). The trapping of the particle by the vortices is clearly

seen as a circular motion. The duration of the trajectory is t = 300 (30000 time

steps of size � = 0:01). We let the system achieve a steady-state vortex density

before recording the trajectory.

t

x

(

t

)

300250200150100500

30

20

10

0

Figure 5.6: The CGL equation. Position in x-direction versus time t for the

trajectory in Fig. 5.5.
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displacements in the CGL equation. We found the second moment h(�r)

2

i =

h[r(t+�t)� r(t)]

2

i as a function of �t for various values of �. Results for � = 1,

10, 100, and �1:2 are shown in Figure 5.7.

We �nd that at small, positive �, where the particle does not get trapped

at vortices, the motion crosses over from ballistic motion [h(�r)

2

i / (�t)

2

] at

small time scales, to Brownian di�usion h(�r)

2

i = D�t at large time scales. This

de�nes a di�usion coe�cientD, which does not depend on the time scales consid-

ered, unlike the di�usion coe�cient for fractional Brownian motion (Chapter 4).

Note that the di�usion coe�cient D de�ned here is twice the di�usion coe�cient

de�ned in Chapter 4.

For larger values of positive � the particles spend a large fraction of the

time being trapped at vortices. In that case, the motion is ballistic at very

small time scales, but the change to Brownian motion at large time scales is

more complicated than that for small �. The h(�r)

2

i { �t curves show a local

maximum (a `hump') at a time scale that corresponds to approximately half a

period in the motion around a vortex (Fig. 5.7). Thus, our interpretation is that

the local maximum of the curve arises because the distance of half a circulation

is the furthest the particle gets on short time scales. The local minimum is at the

time scale that corresponds to one full circulation. The di�usion on long time

scales mainly describes the particle motion between the vortices. We �nd that

the di�usion is suppressed because the particles spend time being trapped at the

vortices, and the trapping limits the di�usion to that of the vortex motion.

Particles with negative � do not circulate the vortices. Instead, they aim

at positioning themselves furthest from the neighboring vortices

1

. At small j�j

they do not quite succeed in getting there before the con�guration of vortices

has changed, and their motion resembles that of particles with small positive

�. For larger, negative � the particles do succeed in following their optimal

position between the vortices most of the time. Their motion therefore traces the

dynamics of the phase �eld, without the small time scale circulation.

This is further emphasized in Fig. 5.8. The �gure shows the di�usion coe�-

cient D as a function of �. For small j�j we �nd that D / �

2

. The appropri-

ate physical picture in this case is that of a particle being kicked about by an

underlying random vector �eld. In this picture, the di�usion coe�cient is the

squared drift velocity hv

2

i = �

2

hjrSj

2

i times the typical collision time, which

1

Strictly speaking, the particles follow the downward slope of the phase gradient, and the

`optimal' (stable, if the vortex con�guration were frozen instantaneously) position of a particle

may not be exactly the position furthest in space from the vortices.
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Figure 5.7: The CGL equation. The second moment of the particle displacements

h(�r)

2

i versus the time interval �t for � = 1 (small circles), � = 10 (diamonds),

and � = 100 (big circles). Inset: h(�r)

2

i versus �t for � = �1:2.
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Figure 5.8: The CGL equation. The self-di�usion coe�cient D as a function of

the parameter j�j. � < 0: triangles, � > 0: circles.

gives D / �

2

.

At large j�j, the particle di�usion is limited to that of the underlying �eld, as

already discussed. But the underlying �eld is not a�ected by the presence of the

particle, thus D = D

field

is independent of �, as seen in Fig. 5.8.

We also measured the relative motion of pairs of particles, in a manner similar

to the measurements in the Faraday experiment. We measured the relative dif-

fusion �(R

2

)=�t, where R is the separation of the two particles. We found that

the probability density function of the relative di�usion, shown in Figure 6(a)

of Paper II, falls o� exponentially. The probability density function is certainly

not a Gaussian distribution. A similar result was found for the Faraday relative

motion, Chapter 2. For a further discussion of the relative motion in the CGL

equation, along with consequences of adding a scalar �eld to the CGL equation,

I refer to Paper II.

5.4 Phase turbulence

Up until here I have concentrated on the solutions to the CGL equation that con-

tain defects. Another set of interesting solutions are those that are perturbations
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of the homogeneous solution A = F exp(�i!t). The homogeneous solution is un-

stable for 1+�� < 0, i.e. above the Benjamin-Feir line in Fig. 5.2. Close above the

Benjamin-Feir line a perturbative analysis in the small parameter 1 + �� yields

an equation for the modi�ed phase � to third order in 1 + �� [48, 67, 68, 69]

@

t

� = 
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2

r

2

�+ 
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2
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2
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(1)

4

r

4

� (5.40)

where the coe�cients are given by
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2

) : (5.41)

Eq. (5.40) is the Kuramoto-Sivashinsky equation, which has chaotic solutions.

The corresponding behavior of the CGL systems is named `phase turbulence'.

Note, though, that Eq. (5.40) is obtained as a perturbation in the small parameter

1+��, and it is therefore only valid close to the Benjamin-Feir line. The start of

creation of defects will destroy the phase turbulence. One therefore expects phase

turbulence to be limited approximately to the region between the Benjamin-

Feir line and the line of absolute instability; see Fig. 5.2. Phase turbulence has

previously been investigated in the one-dimensional CGL equation [67, 70, 71, 68],

and only recently in two dimensions [72].

We simulated the CGL equation without initial defects for a limited number

of values (�; �) both within and outside of the regions in the ��� plane in which

there is reason to believe [72] that phase turbulence exists in �nite systems. At

small values of j�j (around � � �2) we did not see any phase turbulence that

did not either break down into defect turbulence (see Fig. 5.9) or relax to the

homogeneous state. At a larger value of j�j [at (�; �) = (0:5;�3:5)] we saw a

phase-turbulent state that did not break down or relax within the period of time

that we studied the state (1:17 � 10

6

time steps of size � = 0:1). However, we did

not pursue a very systematic investigation of these states at values of j�j > 2,

and it is di�cult to say anything very conclusive from these simulations at high

j�j.
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Figure 5.9: Break down of phase turbulence. Snapshots of the phase S(r; t) in

the two-dimensional CGL equation at parameters (�; �) = (0:78;�2). The color

scale goes from red at the minimum via green to blue at the maximum value

of S. For all pictures except the top left picture this means that red is S � 0,

green is S � �, and blue is S � 2�. Top left: Phase turbulence. Top right:

Vortices (defect turbulence) have appeared in the lower left corner of the system

and have started to spread. This is 1200 time steps after the �rst picture. Bottom

left: Defect turbulence has spread further. 4200 time steps after the �rst picture.

Bottom right: 7000 time steps after the �rst picture. The whole system is defect

turbulent except a small fraction close to the middle of the picture. This small

area will become defect turbulent after a few more steps. The system size is

256 � 256 lattice sites, and the size of one time step is � = 0:1. The system was

started from a state with A chosen randomly within the ring 0:5 < jAj < 1 in

the complex plane, and with periodic boundary conditions.



Chapter 6

Vortex Motion in the Complex

Ginzburg-Landau Equation

In this chapter we study the motion of defects, or �laments, in the complex

Ginzburg-Landau equation for the complex �eld A = jAj exp(iS). The evolution

of a system with vortices may be described in terms of the motion of the defects

(located at points where jAj = 0), along with values of the �elds jAj and S

at positions away from the defects or �laments. There appears to be two very

di�erent approaches to this problem. In one approach the aim is to �nd an exact

expression for the velocity of the defects given by the unknown global �elds. In

the other approach the defect velocity is found in an approximation, but expressed

through known �elds. Here we take the �rst approach, whereas a number of other

people [73, 74] have taken the second approach.

Below, we describe a few of the previous derivations of the vortex motion in

the complex Ginzburg-Landau equation and in related equations. Following this,

the local coordinate system at the vortex is introduced, and �nally the vortex

velocity expressed through the �eld A is derived. This chapter is an extension of

the Paper IV.

6.1 Introduction

We study the defects of the complex Ginzburg-Landau equation (5.1)

d

dt

A = P (A;A

�

)A+ br

2

A (6.1)

where A = jAj exp(iS) is a complex �eld, the function P is given by P (A;A

�

) =

� � ajAj

2

, and a; b; � are complex coe�cients. We note that only defects with

87
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winding numbers n = �1 are stable [53, 57]. However, for the sake of generality

we keep n as an unknown integer throughout our derivation.

The evolution of a system with vortices may be described in terms of the

motion of the defects, or �laments, along with values of the �elds jAj and S at

positions away from the defects or �laments. These �elds include the e�ect of

any boundaries and other defects. Such a separation into collective coordinates

and �eld variables is non-trivial, and the work described here comprises the �rst

exact treatment of this kind for a dissipative system.

The motion of a vortex is a�ected by modi�cations in the �eld A due to the

presence of other vortices or system boundaries. If the vortices are assumed to

form a dilute system, i.e. one where the defects are well separated, the inuence

of variations in the amplitude jAj of the complex �eld may be neglected, since jAj

will assume its asymptotic value at distances much smaller than the inter-defect

distance. In the Ginzburg-Pitaevskii-Gross equation (GPG, see Chapter 5 and

Ref. [60]) for superuids this corresponds to the incompressible approximation.

Under this assumption, the interaction between vortices can be described entirely

by the phase S.

In this approximation Rica and Tirapegui [75] (and in a slightly di�erent form

also Ref. [76]) have derived the equation of motion in two space dimensions for

the position of the kth defect X

k

(t) in terms of the portion of the phase S due

to other defects, �

(k)

(x) � S � n

k

'

k

, where tan'

k

= (y � Y

k

)=(x �X

k

). Their

result (for jn

k

j = 1 and b

R

= 1, but here generalized to any value of n

k

and b

R

) is

_

X

k

�

dX

k

dt

= 2b

I

r�

(k)

� 2b

R

n

k

jn

k

j

^
z �r�

(k)

; (6.2)

where
^
z =

^
x �

^
y is normal to the plane. The �rst term, proportional to the

gradient, is that found by Fetter [77] in the GPG limit corresponding to b

R

= 0,

b

I

= �h=(2m) and states that the vortex moves with the local superuid velocity.

The second term is the perpendicular Peach-Koehler term [78] �rst found in

this context by Kawasaki [79]. When the system of spiral vortices cannot be

approximated by a dilute system the expression (6.2) for the defect velocity is no

longer valid but will acquire additional terms.

We shall take a completely general approach in which the amplitude jAj is

allowed to vary. This will enable us to determine the exact motion of a defect

also when another defect is located an arbitrarily small distance away, i.e. even

when the vortex cores overlap. It will also provide the exact motion of a defect

which is arbitrarily near a system boundary. For �laments in a three-dimensional
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system our treatment will furthermore correctly incorporate interactions with

other segments of the same �lament.

The corresponding problem for a relativistic scalar �eld theory was solved by

Ben-Ya'acov [80]. His derivation was based strictly on a covariant world-sheet

formalism that cannot be applied to a non-relativistic theory. In the GPG case

the system is conservative and the motion of the defects can be derived from

a Lagrangian. The CGL equation, on the other hand, describes a dissipative

system, and one is compelled to pursue a direct derivation of the defect equation

of motion, as we do here.

6.2 Derivation of the Vortex Velocity

We may generalize the CGL equation (6.1) by admitting any continuous function

P (A;A

�

) for which the equation has vortex solutions. The details of P do not

enter the following derivation of the vortex velocity. We consider the Eq. (6.1)

in three spatial dimensions. The motion in a two-dimensional system can be

found from the three-dimensional problem as the special case of straight, aligned

vortices.

Let the position of the �lament � of a vortex be given at time t by X(s; t),

where s is the arclength coordinate along �. We de�ne a local coordinate system

along the string as follows [81]. At each point along the string the unit tangent

vector T = @X=@s, the unit normal vector N , and the binormal vector B =

T �N form an orthonormal frame so that any position x in a neighborhood of

the string can be expressed as x = X(s; t) + xN (s; t) + yB(s; t); see Fig. 6.1.

The coordinate representation (s; x; y) is unique for x < 1=� but becomes singular

when x reaches or exceeds the radius of curvature 1=�.

Along the string, the transport of the unit vectors is given by the Frenet-Serret

equations [81]

@T

@s

= �N ;

@N

@s

= ��T + �B;

@B

@s

= ��N ; (6.3)

where � is the curvature and � is the torsion of the string. Let us further introduce

the local polar coordinates r, ' de�ned by x = r cos', y = r sin'. In terms of

these coordinates, the gradient and Laplacian take the forms

r = TH +
^
r

@

@r

+
^
'

1

r

@

@'

(6.4)
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Figure 6.1: The local coordinate systems that follow the �lament. The torsion

� (s; t) is the change of the binormal B along the curve, j� (s; t)j = j@B=@sj.
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r

2

= H

2

+

@

2

@r

2

+

1

r

@

@r

+

1

r

2

@

2

@'

2

�

�

1� �r cos'

 

cos'

@

@r

� sin'

1

r

@

@'

!

(6.5)

with the operator

H =

1

1� �r cos'

 

@

@s

� �

@

@'

!

: (6.6)

We now proceed to �nd the velocity

_

X(s; t) of the �lament �. Because this

string of zeros of the function A has no transverse extension and is a feature of

a solution of an underlying local �eld theory, its motion should be determined

from the behavior of the �elds jAj and S in an in�nitesimal neighborhood of

the �lament. It will be su�cient to study the �elds within a distance " �

min(d; 1=�), where d is the shortest distance to another string segment

1

. This

condition ensures uniqueness of the coordinate representation.

The phase �eld S is multi-valued and satis�es S(s; r; '+2�; t)�S(s; r; '; t) =

n 2� for 0 < r < ". Let us therefore split S = �+ � in such a way that � contains

all multi-valued contributions to the phase and depends on time only through the

position of the �lament �. For a straight (or two-dimensional) isolated vortex

one may choose � = n'. A consistent description of the multi-valued phase of

an arbitrarily shaped vortex �lament requires, however, a global realization such

as the Biot-Savart integral,

r� =

n

2

Z

�

dX �

x�X

jx�Xj

3

� n

�

1

r

+

�

2

cos'

�

^
'�

n�

2

ln�rB + regular: (6.7)

This expression contains logarithmic divergencies as r ! 0, as well as functions

of the azimuthal angle ' that are multi-valued at r = 0 [82]. We therefore absorb

in � any part of S that is non-di�erentiable at r = 0.

Similarly, we maywrite jAj = Rw, where lnR depends on the �lament position

and contains all contributions to ln jAj that are non-di�erentiable at r = 0.

For a straight isolated vortex one may choose R = r

jnj

. Thus � and lnw are

di�erentiable and it follows that the time derivatives

_

� and _w are �nite for r < ".

1

The shortest distance from a �xed string segment at X

k

(s; t) on the kth vortex to another

string segment at X

l

(s

0

; t) is de�ned as the smallest non-zero value of jX

k

(s; t) �X

l

(s

0

; t)j, as

l and s

0

are varied, that corresponds to a local minimum with respect to s

0

.
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We remark that the choice of � and R is not unique, since S and jAj are invariant

under two independent local symmetries

�! �+ �; �! � � � ; R! Rf; w ! wf

�1

; (6.8)

where � and ln f are di�erentiable.

With these de�nitions the real and imaginary parts of Eq. (6.1) lead to the

two equations

d

dt

(lnR+ lnw) = Re(P ) + b

R

Q

1

� b

I

Q

2

; (6.9)

d

dt

(� + �) = Im(P ) + b

I

Q

1

+ b

R

Q

2

; (6.10)

where

Q

1

= r

2

lnR +r

2

lnw + (r lnR +r lnw)

2

� (r�+r�)

2

(6.11)

Q

2

= r

2

�+r

2

� + 2(r lnR +r lnw) � (r�+r�): (6.12)

The time derivative d=dt in Eqs. (6.9) and (6.10) is to be evaluated in the lab

frame. It is related to the time derivative @=@t in a frame following the local

segment of the �lament in such a way that s, x and y are constant by

d

dt

= �(

_

X + x

_

N + y

_

B) � r+

@

@t

(6.13)

In general, global expressions for r� and r lnR will include singularities at

r = 0 of the type demonstrated by Eq. (6.7). We therefore write

r� = f

1

^
r +

�

n

r

+ f

2

�

^
' + �

1

T (6.14)

and

r lnR =

 

jnj

r

+ f

3

!

^
r + f

4

^
' + �

2

T ; (6.15)

where

f

i

(r; '; s; t) = g

i

('; s; t) + h

i

('; s; t) ln�r +O(r) (6.16)

and O(r) denotes any terms that vanish as r ! 0. It can be easily con�rmed

from these equations that @�=@t, @�=@s, @(lnR)=@t, @(lnR)=@s, �

1

and �

2

have

well-de�ned �nite limits as r ! 0 by looking at the form of the gradient in the
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local coordinate system (6.4). We require that r� and r lnR be integrable (for

0 < r < "), and that they satisfy the following condition near the �lament:

r��

n

jnj

T �r lnR = C(s; t) +O(r) : (6.17)

The arbitrary vector C corresponds to a choice of gauge in Eq. (6.8). In the

symmetric gauge R = r

jnj

, � = n' for a straight (or two-dimensional) isolated

vortex we have C = 0. A more general derivation allows for powers of the

logarithm ln�r and factors of r in r�, r lnR and on the right-hand side of

Eq. (6.17). However, this does not a�ect the expression for the vortex velocity,

so here we use Eqs. (6.16) and (6.17) for clarity.

Since � and lnw are di�erentiable, the singularities of r� and r lnR at r = 0

must satisfy Eqs. (6.9) and (6.10) order by order with

Q

1

= r

2

lnR + (r lnR)

2

+ 2r lnR � r lnw

� (r�)

2

� 2r� � r� + regular (6.18)

Q

2

= r

2

�+ 2r lnR � r� (6.19)

+ 2r lnR � r� + 2r lnw � r�+ regular: (6.20)

This last condition together with Eq. (6.17), leads to the coupled nonlinear system

r lnR � u+ b

R

q

1

� b

I

q

2

= regular (6.21)

r� � u+ b

I

q

1

+ b

R

q

2

= regular ; (6.22)

where

q

1

= r

2

lnR + (r lnR)

2

� (r�)

2

; (6.23)

q

2

= r

2

�+ 2r lnR � r� (6.24)

and

u =

_

X + 2b

R

 

r lnw +

n

jnj

T �r�

!

� 2b

I

 

r��

n

jnj

T �r lnw

!

(6.25)

and where we used the general vector formulaA�(B�C) = �C �(B�A). We note

that the following terms in the expressions for the time derivatives are regular:

(x

_

N + y

_

B) � r lnR = (g

4

('; s; t)r+ h

4

('; s; t)r ln�r)B �

_

N

+ r�

2

(cos'

_

N + sin'

_

B) � T +O(r

2

) (6.26)
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and

(x

_

N + y

_

B) � r� = (n+ g

2

('; s; t)r + h

2

('; s; t)r ln�r)B �

_

N

+ r�

1

(cos'

_

N + sin'

_

B) � T +O(r

2

) (6.27)

where we used the fact that

_

A �B = �

_

B �A for orthogonal unit vectors A and B.

We see that u is regular, and the singularities of Eqs. (6.21) and (6.21) are

found in q

1

, q

2

, r lnR and r�. Inserting the expressions (6.14{6.16) into these

equations gives

q

1

= @

r

f

3

+

1

r

@

'

f

4

�

 

jnj

r

+ f

3

!

� cos'

1 � �r cos'

+ f

4

� sin'
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+ f

2
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+

2jnj+ 1

r

f

3

+ f

2

4
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2

1

�

2n

r

f

2
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2

2

+ �

2

2
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2

1

+H�
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= f��jnj cos'+ h

3

+ g

0

4

+ (2jnj+ 1)g

3

� 2ng

2

g r

�1

+ fh

0

4

+ (2jnj+ 1)h

3

� 2nh

2

g r

�1

ln�r +

n

h

2

3

+ h

2

4

� h

2

1

� h

2

2

o

(ln�r)

2

+ f�h

4

sin'� �h

3

cos'+ 2g

3

h

3

+ 2g

4

h

4

� 2g

1

h

1

� 2g

2

h

2

g ln�r

+ regular (6.28)

q

2

= @

r

f

1

+

1

r

@

'

f

2

� f

1

� cos'

1 � �r cos'

+

�

n

r

+ f

2

�

� sin'

1 � �r cos'

+

2jnj + 1

r

f

1

+ 2f

1

f

3

+

2n

r

f

4

+ 2f

2

f

4

+ 2�

1

�

2

+H�

1

= f�n sin'+ h

1

+ g

0

2

+ (2jnj+ 1)g

1

+ 2ng

4

g r

�1

+ fh

0

2

+ (2jnj+ 1)h

1

+ 2nh

4

g r

�1

ln�r + 2 fh

1

h

3

+ h

2

h

4

g (ln�r)

2

+ f�h

2

sin'� �h

1

cos'+ 2g

1

h

3

+ 2g

3

h

1

+ 2g

2

h

4

+ 2g

4

h

2

g ln�r

+ regular (6.29)

where the time, arclength, and angular dependence of the coe�cients g

i

and h

i

is not explicitly shown.

The integrability condition on � and lnR

@

'

@

r

� = @

r

@

'

� and @

'

@

r

lnR = @

r

@

'

lnR (6.30)
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provides four �rst-order di�erential equations that relate the functions g

i

and h

i

g

2

+ h

2

= g

0

1

; h

2

= h

0

1

g

4

+ h

4

= g

0

3

; h

4

= h

0

3

(6.31)

The condition (6.17) furthermore provides four algebraic relations, with C =

C

1

N + C

2

B + C

3

T ,

g

1

+

n

jnj

g

4

= C

1

cos'+ C

2

sin'

g

2

�

n

jnj

g

3

= �C

1

sin'+ C

2

cos' (6.32)

h

1

+

n

jnj

h

4

= 0; h

2

�

n

jnj

h

3

= 0

We now return to the coupled system (6.21) and (6.22). Cancellation of terms

of order r

�1

leads to two equations for the perpendicular components of u, with

u

?

= u

1

N + u

2

B,

0 = jnju

1

cos'+ jnju

2

sin'+ b

R

$

1

� b

I

$

2

(6.33)

0 = �nu

1

sin' + nu

2

cos'+ b

I

$

1

+ b

R

$

2

(6.34)

where $

1

and $

2

are expressed in terms of g

i

and h

i

as

$

1

= ��jnj cos'� 2ng

2

+ g

0

4

+ (2jnj + 1)g

3

+ h

3

(6.35)

$

2

= �n sin'+ (2jnj+ 1)g

1

+ h

1

+ g

0

2

+ 2ng

4

: (6.36)

By using the relations (6.31) and (6.32) the coe�cients g

i

and h

i

can be

eliminated from the expressions for $

1

and $

2

, e.g.

g

0

2

=

n

jnj

g

0

3

� C

1

cos'� C

2

sin'

=

n

jnj

g

4

+

n

jnj

h

4

� C

1

cos'� C

2

sin'

= �g

1

� h

1

(6.37)

and

2ng

4

+ 2jnjg

1

= 2jnj(C

1

cos'+ C

2

sin') (6.38)

which brings $

2

on the form

$

2

= �n sin'+ 2jnj(C

1

cos'+ C

2

sin') (6.39)
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and similarly

$

1

= ��jnj cos' + 2n(C

1

sin'� C

2

cos') : (6.40)

The perpendicular components of u are then uniquely determined in terms of C

u

?

= b

I

[2C

1

N + (�

n

jnj

+ 2C

2

)B] + b

R

[(�+ 2

n

jnj

C

2

)N � 2

n

jnj

C

1

B]

= b

I

[�

n

jnj

B + 2C

?

] + b

R

[�N � 2

n

jnj

T �C] (6.41)

It is always possible to set the tangential velocity, which is void of physical mean-

ing, to zero by a time-dependent reparametrization s ! s(t). The exact result

for the velocity of the vortex �lament is then, by use of the de�nition of u in

Eq. (6.25),

_

X = b

I

 

�

n

jnj

B + 2(r

?

� +C

?

)� 2

n

jnj

T �r lnw

!

+ b

R

 

�N � 2r

?

lnw � 2

n

jnj

T � (r� +C)

!

; (6.42)

where ( )

?

= �T � [T � ( )] and the �elds on the right-hand side are to be

evaluated at the �lament position X(s; t). The exact two-dimensional result is

obtained as �! 0.

The value of

_

X is independent of the choice of gauge for R and �. Indeed,

substituting C from Eq. (6.17) into Eq. (6.42) we obtain the manifestly invariant

expression

_

X = lim

r!0

"

b

I

 

�

n

jnj

B + 2r

?

S � 2

n

jnj

T �r ln jAj

!

+ b

R

 

�N � 2r

?

ln jAj � 2

n

jnj

T �rS

!#

: (6.43)

in which the �lament velocity is written in terms of gradients of the amplitude

and phase of the original complex �eld A. The function P (A;A

�

) does not enter

explicitly in the expressions (6.42){(6.43) for the velocity. However, since A

near the �lament is determined by the di�erential equation (6.1), the velocity

nevertheless depends indirectly on P .

In the coupled system (6.21) and (6.22) the coe�cients of the r

�1

ln�r and

(ln�r)

2

terms vanish by virtue of Eqs. (6.31) and (6.32). In the general derivation,

where we allow for powers of logarithms in r�,r lnR and on the right-hand side
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of Eq. (6.17), the cancellation of the coe�cients of r

�1

ln�r and (ln�r)

m

, m � 1,

implies that the right-hand side of Eq. (6.17) must be regular, and the vortex

velocity is unchanged.

The velocity of the central �lament of a vortex gets contributions from the cur-

vature � of the �lament and from local gradients of the amplitude jAj and phase

S of the complex �eld. A cylindrically symmetric solution A = �(r) exp[i( (r)+

n' � !t)], for which � = jAj � r

jnj

and  

0

(0) = 0, contributes nothing to the

velocity and corresponds to a straight (or two-dimensional) isolated vortex at rest

with respect to the lab frame. Non-zero gradient contributions appear as a result

of deviations from cylindrical symmetry in jAj and S. In a symmetric gauge with

C = 0, these deviations are represented by w and �. The asymmetries arise from

the presence of other vortices, system boundaries, or (in three dimensions) other

segments of the same �lament, causing the vortex to move.

In the C = 0 gauge the expression (6.42) reproduces a variety of results

obtained previously for special cases. For � = 0 and r lnw � 0 it reduces to

Eq. (6.2) that corresponds to a two-dimensional dilute system [75]. In the GPG

limit b

R

= 0 the expression (6.42) coincides with that derived by Lee [83], who

used a di�erent method to �nd the velocity. For b

I

= 0, Eq. (6.1) describes the

nonlinear di�usion of two uid components with identical di�usion constants. In

this limit the contribution to

_

X from curvature, b

R

�N , agrees with the result of

Ref. [55].

The expressions (6.42){(6.43) for the velocity are exact also for an arbitrarily

small distance between �laments. This makes the formulation well suited for the-

oretical or numerical investigations of local vortex interactions, such as crossing,

merging and intercommutation, in which the vortex cores overlap [84, 85]. We

caution that the GPG equation does not provide a realistic model for the core of

a superuid vortex, since there the core width is comparable to interatomic dis-

tances. For magnetic ux vortices in a superconductor, however, the core width

is much larger and a classical description is justi�ed. Such vortices are solutions

of Eq. (6.1) with the substitution r ! r + 2ieA=(�hc), where A is the vector

potential and 2e is the charge of a Cooper pair. The corresponding �lament

velocity is easily obtained by adding 2eA=(�hc) to r� in Eq. (6.42) or to rS in

Eq. (6.43) [83].
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