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1 Introduction

This report describes the implementation of an optimization method, the

so-called simulated annealing method, in

� structure determination of x-ray multilayer mirrors from their re
ec-

tivity curves

� design of multilayer mirrors with maximum re
ectivity at certain en-

ergies or at certain incident angles of an x-ray beam.

The work was carried out during my stay at the European Synchrotron

Radiation Facility (ESRF), Grenoble, in May and June 1992, under the

supervision of and in collaboration with P. H�gh�j and E. Ziegler.

2 A Short Description of the Problem

The re
ectivity of x-rays on a solid is in general very small, but it can be

improved by di�erent means. X-ray multilayers (�gure 1) are arti�cially

produced stacks of materials that possess high re
ectivity due to construc-

tive interference of the re
ected beams at the individual layers. The choice

of materials and the characteristics of each layer decide at which angles and

at which energies of the x-ray beam the re
ectivity will be at maximum.

Multilayers will be used at the storage ring at the ESRF.

Other means to get relatively high re
ectivity for x-rays are the use of

very small incident angles (grazing), and crystal based optics.

The construction of the multilayer structures depends on at which range

of energies the maximum re
ectivity is desired, given a �xed incident an-

gle � of the x-ray beam | or, given a �xed energy of the beam, at which

angles of the incident beam the maximum is desired. This is a design prob-

lem; by varying the structure of the multilayers (e.g. the thickness of the

layers, the roughness at the intersections) the maximum re
ectivity can be

obtained. Another problem consists in infering the structure of an actual

multilayer mirror given its measured re
ectivity curve. This is a structure

determination problem. The design problem is a special case of the structure

determination problem, in that the "experimental" re
ectivity curve is set

to unity over the range of energies or angles where a peak in the re
ectivity

is desired.
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during the search.

Modifying the pure downhill algorithm to allow for some uphill moves

reduces the risk of been trapped in the �rst local minimum; a further search

past the barriers of the local minimum is made possible, without turning the

search algorithm into a random search. The algorithm "simulated anneal-

ing" allows for such uphill moves from the start of the search, and during

the search it reduces the chance of uphill moves.

3 Theoretical Computation of Re
ectivity

Given the structure of a multilayer, a recursive formula involving the Fres-

nel re
ection coe�cients can be used to �nd the theoretical values of the

re
ectivity [5].

The Fresnel coe�cients at the top of the j + 1th layer are given by the

coe�cients at the top of the jth layer and by the optical indices n

j
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at the two interfaces:
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and d

i

is the thickness of the ith layer, � is the wavelength of the incident

beam. With vanishing re
ected amplitude at the substrate the re
ected am-

plitude of the whole multilayer can be found by recursive use of equation (4)
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until the uppermost layer. The re
ectivity for an N -layer structure is then

given by

R = jX

N

j

2

(6)

Roughness of the surfaces of the layers can be taken into account by

multiplying the Fresnel coe�cients (1) and (2) by the Debye-Waller factor

exp(�(4�=�)�

j

sin �

j

) (7)

where �

j

is the roughness.

4 Simulated Annealing

To avoid that a downhill algorithm is trapped in the �rst local minimum

found, the algorithm can be modi�ed to allow for some uphill moves. The

optimization algorithm "simulated annealing" is such an algorithm; it is

based on an analogy of optimization problems with the annealing of physical

systems with many degrees of freedom. To bring a solid to its highly ordered

crystalline ground state, �rst the solid is melted, then the temperature is

lowered until crystallization is reached. The temperature must be carefully

lowered | on one hand the temperature should be slowly lowered near the

crystallization temperature to avoid hardening the solid in a crystalline state

with higher energy than the ground state. However, to save time, quicker

cooling is acceptable right after the melting of the solid.

If the variables in the optimization problem are interpreted as (the posi-

tions of) the particles of the solid, and if the costs of the possible solutions

are interpreted as the energies of the physical system, then the states of the

physical system might, in this analogy, be taken to be the possible solutions

to the optimization problem, the con�guration space. To avoid hardening

of the solid before the ground state is reached corresponds to avoiding the

optimization problem being trapped in a local minimum. The "tempera-

ture" in the optimization problem is the control parameter, a parameter

that controls when uphill moves are allowed.

The analogy can be summarized as follows:
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Physical system Optimization

(solid) problem

annealing  ! simulated annealing

a state of the solid  ! a possible solution

particles (their positions)  ! variables

temperature  ! control parameter

energy  ! cost

sample of di�erent states  ! ensembles

The concept of ensembles will be explained in section 4.4.

With this analogy an optimization algorithm can make use of already

existing algorithms simulating the behaviour of a physical condensed matter

system. The Metropolis algorithm simulates a statistical system in equilib-

rium. It starts from one state ! and searches the con�guration space by

perturbing the present state slightly to get to a new state !

0

. If the energy

of the new state, E(!

0

), is less than the energy of the old state, E(!), the

new state is always accepted, else the new state is accepted with a proba-

bility exp(��E=T ) where �E = E(!

0

) � E(!), and T is the temperature

of the system (T is normalized such that Boltzmann's constant is unity).

The higher the temperature, the greater the probability of accepting a state

with a higher energy.

Simulated annealing is a series of iterations of the Metropolis algorithm

for decreasing values of the control parameter. The basic elements of the

algorithm are:

1. Choose a solution ! in con�guration space to start from

2. Choose a start value of the control parameter T

3. Anneal

(a) Choose a neighbouring solution !

0

(b) Calculate the di�erence in cost �E = E(!

0

)� E(!)

(c) If �E � 0 then accept the new solution !

0

, if �E > 0 then accept

the new solution with the probability exp(��E=T )

(d) Reduce the value of the control parameter T

4. Continue annealing until a stop criterion is reached
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To actually use the algorithm, some parts of the algorithm must be clar-

i�ed. For example, how will the algorithm �nd a "neighbouring" solution,

and what exactly do we mean by "neighbouring"? How fast should the con-

trol parameter be lowered? And what is the stop criterion? I will use the

expression "state" for a solution to the optimization problem, which in our

case will be one of the possible multilayer structures.

4.1 Choice of Neighbourhood

The neighbours of a given state is called the neighbourhood. It is not al-

ways obvious how to choose the neighourhood, and the choice depends on

the nature of the optimization problem. For the same problem, di�erent

choices of neighbourhood structure can give algorithms with very di�erent

e�ciencies. The neighbourhood could be chosen to be the states obtained

by changing one of the variables describing the state, by a certain amount.

Let N (!) be the neighbourhood of !. There are three criterions of the

structure of the neighbourhood:

1. All states have the same number of neighbours

2. !

0

2 N (!) , ! 2 N (!

0

), i.e. if ! is a neighbour of !

0

then !

0

is a

neighbour of !

3. Given two states ! and !

0

it must be possible to get from ! to !

0

in

a �nite number of steps

In traditional simulated annealing the choice of neighbour for the next

attempt is made randomly among the states of the neighbourhood. To-

gether with the three criterions above this ensures that at equilibrium the

distribution of states is a Boltzmann distribution; the probability of being

at a state ! is

p(!) =

e

�E(!)=T

Z(T )

(8)

where Z(T ) is the partition function for the whole set of states in the con-

�guration space. With a Boltzmann distribution the probability of being in

low energy states increases as the temperature is lowered.

4.2 Choice of Cooling Scheme

A commonly used cooling scheme is the exponential cooling scheme

T (t) = T

max

e

�t=a

(9)
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with a a constant, and t "time" passed, i.e. number of iterations executed.

The exponential cooling scheme was �rst suggested by Kirkpatrick et al. in

[6] and has been widely used since then. It is an a priori scheme; the cooling

is set from start and does not depend on the performance of the system

during the annealing. Special cases of a priori cooling schemes are random

search, with a constant in�nitely large control parameter (all attempted

moves will be accepted), and pure downhill search, with control parameter

constantly zero.

Logarithmic cooling has also been suggested:

T (t) =

d

log(t + 1)

(10)

with d a constant. It is the only scheme for which it has been shown [4]

that, given in�nite time, the system will certainly reach the ground state,

but unfortunately the scheme is much too slow for practical purposes.

Other cooling schemes make use of knowledge of the system while an-

nealing, one such cooling scheme will be explained later (thermodynamic

cooling).

In any case a start value of the control parameter (temperature) must be

given before the annealing starts. The value should be large enough to allow

for an almost random search from the beginning, and small enough to avoid

wasting too many iterations. Some cooling schemes are more sensitive to

the start value than others. A condition on the choice of start value could be

that the rate of accepted moves among the attempted moves should exceed

0:8 in the �rst iterations of the annealing.

4.3 Other Considerations

From a simulated annealing point of view the state to start from (step 1 in

the algorithm) should be chosen randomly, but from the point of view of

the application a quali�ed guess is perhaps better as a starting point. If the

start value of the control parameter is large enough it should not matter

which state the algorithm starts from.

Also, a stop criterion for the annealing must be given, since in�nite time

is not available . . . in applications to large problems the available CPU

time most often sets the limit, but also the cost of the current state, or a

modi�cation thereof, can be used to decide when to stop.
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4.4 Modi�cations of the Simulated Annealing Algorithm

Some authors (see for example [9]) de�ne the simulated annealing algorithm

to include several Metropolis steps before each cooling (steps 3.(a){(c) in

the algorithm are repeated a number of times). With more steps before

cooling, the system has a chance to get closer to its equilibrium at the given

temperature; in the analogy to physical systems this should improve the

performance of the algorithm. A simple choice is to have a lower limit of

accepted moves before each cooling.

Instead of starting the algorithm with only one state (one "walker" in

con�guration space), a whole ensemble of states can be chosen [12] (an en-

semble of "walkers"). Each member of the ensemble "walks" the con�gura-

tion space independently of the other "walkers". This allows for a statistical

description of the system during the annealing, quantities like the mean en-

ergy, the variance, and even the heatcapacity of the corresponding physical

system can be evaluated. These quantities can be used during the annealing

| still in the analogy to the physical system | to suggest how fast to cool.

A cooling scheme using the knowledge of the behaviour of the system will

be explained below (thermodynamic cooling).

Even with an a priori cooling scheme and a �xed CPU time available an

algorithm using ensembles should perform better than an algorithm using

a single walker [12]. We did not �nd this to be the case in the problem of

�nding structures of the x-ray multilayer structures, see section 8.

Finally, a very di�erent choice of neighbourhood has been suggested

[10] for problems with a continuous con�guration space, i.e. problems where

the variables that describe a state are continuous variables. The structure

determination of multilayers is a continuous problem: the thicknesses of the

layers are continuous variables. The method uses the vertices of a simplex

in the N -dimensional con�guration space (a simple geometrical �gure with

N + 1 vertices) to search the con�guration space. The di�erence from the

ensemble approach is that with the simplex method, the moves of the N +1

"walkers" are indeed very much correlated, and that the distance a "walker"

covers in con�guration space in one step depends on the costs of the states

of the N other walkers. The simplex approach will be further explained in

section 6.
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5 Thermodynamic Cooling

Using ensembles during the annealing makes a statistical description of the

system possible. At a given temperature each member of the ensemble is in

a certain state ! which has an energy (cost) E(!; T ). Quantities like the

mean energy hE(T )i

ensemble

and the variance of energy �

2

(T )

ensemble

of the

ensemble can be found. If the system is kept at a �xed temperature T it will

eventually relax into the equilibrium distribution at that temperature, with

mean energy hE(T )i

eq

and variance �

2

(T )

eq

. If the system is close enough to

equilibrium we can use the classical theory of equilibrium thermodynamics

on the ensemble. The idea in the thermodynamic cooling scheme is to lower

the temperature in such a way that the mean energy of the ensembles is

held at a �xed number of standard deviations from the equilibrium energy

hE(T )i

ensemble

� hE(T )i

eq

= v�(T )

eq

(11)

where v is a constant (typically in the range 0:01 to 0:5). If the system is

close to equilibrium (v is small) then instead of the standard deviation of

the equilibrium �(T )

eq

we can use the standard deviation of the ensemble

�(T )

ensemble

.

We now want to determine the temperature T such that hE(T )i

eq

satis-

�es (11). But since we do not know the properties of the equilibrium distri-

bution of the system, the form of hE(T )i

eq

as a function of T is unknown.

One way to overcome this di�culty is the following. Let the system relax

almost to equilibrium at one temperature by letting it run a large number

of iterations at a constant temperature T

max

. Then the mean energy of the

ensemble can be used as hE(T

max

)i

eq

, and values of the function hE(T )i

eq

for lower values of T can be found by extrapolating the function. To this

end we need to know the derivative

dE

dT

, where for simplicity I write E for

hE(T )i

eq

. This is the heat capacity C(T ), which can also be written

dE

dT

= C(T ) =

�

2

(T )

eq

T

2

(12)

and again we can replace �(T )

eq

by the one of the ensemble. Simple extrap-

olation gives

dE

dT

'

hE(T

max

)i

eq

� hE(T )i

eq

T

max

� T

(13)

The cooling scheme can be summarized as the following steps:
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Figure 3: Simplex in two and three dimensional space

6 The Simplex Approach to Simulated Annealing

The simplex approach can be applied to optimization problems with con-

tinuous variables, and is described by W.H. Press and S.A. Teukolsky in

[10].

In other neighbourhood structures the variables can only be changed

with a pre-set amount, and possible minima for in-between values of the

variables will never be found. Also, the next attempted neighbour is chosen

with equal probability among all neighbours, this is ine�cient because, even

when a few local downhill moves exist, the uphill moves are almost always

attempted.

The simplex approach is based on a pure downhill search algorithm by

Nelder and Mead, described in [11]. A simplex is a geometrical �gure in N

dimensions consisting of N + 1 vertices, the interconnecting line segments,

and the polygonal faces thus formed. In two dimensions the simplex is a

triangle, in three dimensions a tetrahedron (�gure 3).

When the optimization problem hasN variables, then the simplex method

uses a simplex in N dimensional space, where the N +1 vertices of the sim-

plex are distinct possible solutions to the optimization problem. In our case

the vertices are N +1 di�erent multilayer structures. The algorithm for the

pure downhill simplex method is the following (numbers according to the

numbers in �gure 4):

1. Evaluate the cost of all vertices, note which vertices have the highest,

the second highest and the lowest cost (hereafter called the highest

vertex etc.)

2. Re
ect the highest vertex in the polygonal face spanned by the other

N vertices; this new point x will be tried as a replacement for the

currently highest vertex in the simplex.

3. Evaluate the cost of the new point x. There are three cases:
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(a) If the cost of x is higher than the second highest cost, then the

direction seems to be wrong, and another direction is chosen; the

point y is found at half the distance between the highest point

and the polygonal face mentioned above. Evaluate the cost of y.

i. If the cost of y is lower than the highest cost of the simplex,

then y is accepted as a vertex instead of the highest vertex.

ii. But if the cost of y is higher than the highest cost in the

simplex, then the simplex is contracted around the lowest

vertex.

(b) If the cost of x is neither higher than the second highest cost,

nor lower than the lowest cost, then x is kept as a vertex of the

simplex as a replacement of the highest vertex.

(c) If the cost of the point x is lower than the lowest cost in the

simplex, then the point seems to be in the right direction, and a

new point z is attempted at double the distance from the above

mentioned polygonal face. Evaluate the cost of z.

i. If the cost of the point z is not lower than the lowest cost in

the simplex, then the highest vertex is replaced by the point

x, which had a low cost.

ii. But if the cost of z is lower than the lowest in the simplex,

then z is taken to be a new vertex of the simplex, to replace

the highest vertex.

4. Carry out more steps of the algorithm by starting from 1.

This is how the pure downhill simplex method works; when possible the

method expands the simplex in a direction with lower costs to take larger

downhill steps. The simplex converges to a local minimum. When used in

connection with simulated annealing the simplex should be given a chance to

escape local minima by sometimes accepting new vertices with higher costs.

This is done as follows: to the cost of each vertex in the simplex a random

number is added, a positive, logarithmically distributed random variable,

proportional to the control parameter. Also, whenever the cost of a new

point is evaluated, a similar random number is subtracted from the cost.

This way a new point with a cost higher than the costs of the simplex might

seem to the algorithm to have a lower cost and thus might be accepted as a

new vertex.
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A ready-to-use FORTRAN subroutine for the simulated annealing simplex

method is found in [10] and, with slight modi�cations, as the two last sub-

routines in the print out of the FORTRAN program sasi7 in appendix C.

7 Implementation

As will be clear by now, a number of decisions have to be made before im-

plementing the algorithm simulated annealing. In the limited time available

for this project I could only try out a few combinations of cooling schemes,

neighbourhood structures etc., and even then only relatively short test runs

were possible (time scale in the order of days). The aim was to test the sim-

ulated annealing algorithm used on re
ectivity data, not so much to obtain

the best possible results using all possible tricks. I have tried to keep the

algorithms relatively general.

For structure determination of multilayers the inputs to the algorithm are

the number of layers, the substance and/or the density of the layers and of

the substrate on which the layers are grown, a quali�ed guess of the thickness

d

i

of each single layer and of the roughness �

i

of their surfaces. The thickness

and roughness are taken to be the variables of the simulated annealing, but

other variables could be added, as will be explained later. A maximum and

minimum value of the variables (thickness and roughness) should be given to

avoid wasting time evaluating structures that are not realistic | structures

that can not be produced due to limitations in the actual production phase

(for the design problem) or, for structure determination, structures with

values that are beyond the range of values suggested by other means (e.g.

if a bilayer is found to be of thickness 35

�

A � 3

�

A by experimental methods

there is no need to test a structure with thicknesses 30

�

A and 19

�

A for the

two layers).

The theoretical re
ectivity curve of a given multilayer is calculated using

the equations of section 3, with the Debye-Waller roughness factor. The cost

function is a measure of how well the theoretical re
ectivity curve �ts the

datapoints of the experimental curve. We chose to use the cost function

cost =

1

n

n

X

1

(

R

calc

� R

exp

R

calc

)

2

+ (

R

exp

� R

calc

R

exp

)

2

(14)

where n is the number of datapoints.
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Name of program sasi7 sasi8 sasi9 sasi10

Cooling scheme exponential exponential exponential thermodyn.

Ensembles? simplex single walker ensemble ensemble

Four FORTRAN programs where written, all with the same basic structure,

but with di�erent choices for neighbourhood or cooling scheme (see table).

The choice of neighbourhood structure is important, because the energy

(cost) landscape mainly depends on this. A bad choice might give steep

barriers that the walker can only pass at high temperatures, whereas a

di�erent choice might give a smoother landscape easy to move around in even

at low temperatures. In programs sasi8, sasi9 and sasi10 a neighbour is

found by changing the thickness or the roughness of one (randomly chosen)

layer by a pre-set amount (�� thickness or roughness). To keep the number

of neighbours the same for all states | a criterion for the neighbourhood

structure | the variables are made cyclic; if a move is attempted past the

upper limit of one of the variables then the lower limit is substituted before it

is decided if the move will be accepted. The change in thickness is usually set

to 0:5

�

A, and such a change can give rise to a cost di�erence from almost none

to the order of 10; 000, which is a steep barrier compared to the best cost

found (often of order 1 or 0:1). It seems that such a choice of neighbourhood

structure is not very good, but except for slight modi�cations of it, or the

totally di�erent simplex method, no other choices have been suggested as far

as I know. That is, not if all the thickness and roughness variables should

be allowed to vary independently of each other. A parameter, determining

the likelihood of changing the roughnesses (as opposed to the thicknesses)

when choosing a neighbour, was implemented. If the value of the parameter

is set to 1 only the thickness variables can be changed, and if the parameter

is set to 0:5 the thickness and roughness variables are changed with equal

probability.

In program sasi7 the simplex method has been used, as described in

section 6. Only variables that have a range to vary on (i.e. the maximum

and minimum values are not equal) add to the number of dimensions of the

space in which the simplex moves.

The cooling schemes used where exponential cooling and thermodynamic

cooling. The exponential cooling scheme is easy to implement, and is used

in sasi7, sasi8 and sasi9. The scheme is sensitive to the start value of

the control parameter, and should be chosen such that the accept rate is 0:8

in the beginning. A minimum value of the control parameter is also needed.

This should in principle be close to zero, but to avoid spending too much
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time at the �nal minimum (whether it is the global minimum or a local

minimum) the value should be set such that the accept rate at the end of

the annealing is small but not vanishing.

The thermodynamic cooling scheme was implemented in sasi10 using

the algorithm described in section 5.

Multilayer structures with a realistic � 100 layers will give � 200 vari-

ables to optimize (when both thickness and roughness is to be optimized),

this is a large number of variables, even for the simulated annealing algo-

rithm, and an optimization will take a long time on present day computers.

A way to cut down the number of variables, and thereby the computation

time, is to assume a periodic structure of the layers. This was not done in

any of the four FORTRAN programs, but would be interesting to test.

It is also possible to assume that the thickness of the layers depend on

the position of the layer in the stack, e.g. one could assume that the layers

near the top are thicker than the layers near the substrate, the layers that

only the higher energies of the beam will reach. A functional form of this

dependence with some unknown parameters must be given to the simulated

annealing algorithm, which then optimizes the parameters; the number of

variables of the simulated annealing is the number of unknown parameters

of the function.

8 Results

The aim of the project was to test simulated annealing in structure de-

termination and design of multilayer structures, not to test the methods

of calculating the re
ectivity. Therefore, for most of the structure deter-

mination testruns, the "experimental" re
ectivity curve is actually a curve

calculated from a known structure (unknown to the program, of course),

thereby eliminating possible e�ects arising from the re
ectivity calculations.

Two design problems were tested. They both consist in maximizing the

re
ectivity of a Platinum/Carbon multilayer structure for energies of the

beam in the range 5:7keV to 7:0keV. The number of periods is given to be

12 (25 layers including the substrate), and the incident angle of the beam is

� = 1:53

o

for the �rst problem and � = 1:00

o

for the second problem. For

design no roughness of the interfaces of the layers is assumed.

The � = 1:00

o

problem was run with a single walker (sasi8), with

a simplex (sasi7) and with thermodynamic cooling (sasi10). The three

programs found di�erent optimal structures, but all with almost the same
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re
ectivity in the energy range considered. The best costs found (using

equation (14)) by the three programs were 0:849, 0:906 and 0:941 respec-

tively; the re
ectivity curve found by sasi8 is in appendix B. The numbers

on the y-axis are the log

10

values of the re
ectivity, and in the energy range

considered the re
ectivity of the found structure is between 0:44(= 10

�0:36

)

and 0:66(= 10

�0:18

). These results are better than what a manual �t gives,

and they are certainly less tiresome to obtain.

Most of the design testruns were run with 500; 000 iterations, which

on the machines used took one night. For the programs using exponential

cooling a maximum and a minimum value of the control parameter should

be given. The testruns where the maximum value was set to 10

�1

had

an acceptance rate around 0:8 to start with. The minimum value of the

control parameter was set to 10

�4

, and the acceptance rate at the end of

the testruns was around 0:3. At the testrun with the simplex program the

simplex "collapsed" after few iterations, i.e. the vertices in the simplex all

got the same values of the coordinates except for one coordinate. For the

multilayer structures this means that all the supposedly di�erent structures

making up the vertices of the simplex after a few iterations all got the same

thicknesses except for one layer, in this case layer number �ve. This problem

of a collapsing simplex is not speci�c for the design problem, also in structure

determination the simplex tends to collaps. The problem will be discussed

below.

For the program using thermodynamic cooling the maximum value of

the control parameter should not matter too much, as long as the value

is not set too low. In the light of the acceptance rates found for a single

walker, using 10

�1

as the maximum value, it was decided to use the values 2

and 20 for two testruns of the thermodynamic cooling program. In the �rst

testrun the constant v (see section 5 for explanation) was set to 0:05, but

after almost 500; 000 iterations the algorithm still seemed able to �nd better

structures given more time. v = 0:05 was perhaps too strict a condition,

and v = 0:25 was tried in the next testrun. This, on the other hand, seemed

to be too weak a condition: the temperature does not fall o� monotonously.

Therefore, at later testruns (for structure determination), the constant v is

kept at the value 0:10.

For the incident angle � = 1:53

o

a best cost of 12 was found, the re
ec-

tivity is approximately 0:25. The lower values of the re
ectivity found at

� = 1:53

o

do not surprise, since the re
ectivity of solids at larger angles is

small.

The structure determination was tested on three di�erent Tungsten/
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Silicon structures: a periodic structure with 11 layers (including the sub-

strate), an a-periodic structure with 11 layers, and a periodic structure with

51 layers. All three "experimental" re
ectivity curves, from which the pro-

grams should �nd the multilayer structures, are given by 301 datapoints in

the range of angles � = 0

o

to 3

o

. The energy of the beam is 8keV. The

"experimental" re
ectivity curves to be used at the tests were found from

theoretical multilayer structures without roughness of the interfaces, and

thus in the testruns roughness was not considered. Adding roughness to the

variables in the test is computationally approximately the same as doubling

the number of layers.

The 11 layers periodic structure was tested with the programs sasi8,

sasi7 and sasi10. The single walker, sasi8, �nds the original structure

after 50; 000 iterations in one of the testruns, but gets stuck at a very high

cost after only 34 iterations (!) in another testrun. Also, in the �rst testrun,

the original structure is almost found after approx. 20; 000 iterations, with

only the thickness of one layers o� by 0:5

�

A, and the algorithm wanders o�

in a worse direction from there. This suggests that there is a great deal of

randomness involved in �nding the right structure using the single walker,

and the idea in using ensembles or simplexes is to be more certain to get to

the best structure, though no guarantee is given.

With the time available for tests (approx. 250; 000 iterations per test)

this did not seem to be the case. Neither the ensemble program with expo-

nential cooling (sasi9), the ensemble program with thermodynamic cooling

(sasi10), nor the simplex program (sasi7) �nd the original structure of the

11 layers periodic structure. sasi10 �nds a structure with re
ectivity curve

and cost (2:17) not far from re
ectivity of the original, whereas a random

search after 328; 000 iterations still has not found anything reasonable, the

best cost is 580. A pure downhill search was conducted twice; the program

got stuck at structures with costs 26 and 400 after 400 iterations. No matter

what the hopes for the simulated annealing programs were, at least the pro-

grams prove to be | by far | better than random searches or pure downhill

searches!

One test was run on the 51 layers periodic structure. The original struc-

ture was not found, and it became obvious that to get any reasonable test

results the program would have to run for a longer time than was available.

Whenever the number of layers is increased by a factor n, the time needed

for the re
ectivity calculations is increased by at least a factor n, and the

number of iterations necessary to change each layer a given number of times

(in average) is also increased by a factor n, so that the necessary compu-
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tational time is increased by at least a factor n

2

. A typical test of the 11

layers structure took one night, and a test of the 51 layers structure would

then take a week or two.

Instead the tests were concentrated on the 11 layers a-periodic structure.

None of the testruns found the original structure. The best �t to the re
ec-

tivity curve of the original structure was found by the single walker. The

cost is low (0:124), and the two re
ectivity curves look very similar. The

curves are shown in the second diagram in appendix B, the dark grey curve

is from the original structure, the light grey curve is the best �t. Although

the two re
ectivity curves look almost the same, the multilayer structures

are di�erent:

Original Structure

structure for best �t

(thickness in

�

A) (thickness in

�

A)

substrate 10

8

10

8

layer 1 17:5 17:0

layer 2 43:5 44:5

layer 3 19:0 18:0

layer 4 45:5 46:5

layer 5 15:0 14:5

layer 6 45:5 45:0

layer 7 17:0 18:0

layer 8 44:5 43:0

layer 9 17:0 18:0

toplayer 45:5 48:0

This is a problem not only for the simulated annealing algorithm. That

more multilayer structures give almost the same re
ectivity curves makes it

di�cult to determine the structure from which an experimental re
ectivity

curve originates, no matter which optimization algorithm is used. For the

design of multilayers this is not a problem, all we are interested in is to �nd

one structure that gives the desired re
ectivity.

The testruns using thermodynamic cooling give best �ts with costs 0:617

and 0:738. The re
ectivity curve for the cost 0:738 is shown in the third

diagram in appendix B. Again the dark grey curve is the original, and the

light grey curve is the best �t.

In most of the testruns the program using thermodynamic cooling gives

results not quite as good as the single walker. The temperature is lowered
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according to the behaviour of the members of the ensemble. In all tests an

ensemble of 50 walkers was used, this might not be enough to �nd reliable

statistical quantities. In some of the testruns the temperature falls o� very

slowly and it even rises once in a while. In program sasi10 the temperature

is lowered after each Metropolis step of the ensemble. As mentioned before

more steps might be necessary to let the system get closer to its equilibrium

distribution before each lowering of the temperature. One test was run on

a modi�cation of sasi10 with 10 Metropolis steps of the ensemble before

each cooling step. Still the temperature rose once in a while, but not quite

as often. The best �t was not better than obtained by one Metropolis step

per cooling step. It would be interesting to test a thermodynamic cooling

with more Metropolis steps.

In general the simplex program did not perform very well. In almost

all testruns the simplex collapsed, with only one or two variables not stuck.

Once, in a very long testrun, the simplex collapsed and stayed collapsed for

many iterations but then very slowly began to move, though not enough

to change the best �t. The cause might be rounding errors after many

iterations, a change to higher precision variables in the FORTRAN program

will show if this is the case. But higher precision variables (probably) still

will not prevent the simplex from collapsing. One solution will be to set a

minimum di�erence of the variables of the simplex, e.g. for each layer there

should be a minimum di�erence between the thickness of the thickest and

the thinest of the structures in the simplex. The minimum di�erence should

then decrease with the temperature. I am not sure that this will prevent

the simplex from collapsing, but it is the only solution I can imagine.

The testruns using simplexes did not perform very well because the sim-

plexes collapsed, but even if they had not collapsed, they would probably

have needed more CPU than the other programs to �nd good �ts. This

is because the simplex searches a continuous space, whereas the other pro-

grams only search for (in our tests) half integer values of the thicknesses.

The original structures have half integer values, and thus the tests favourize

the other programs. In a test with real experimental data this would not be

the case, of course.

9 The FORTRAN Programs

For this project �ve FORTRAN programs were written, simulated annealing

in sasi7-10, and graphics, a small program to show diagrams after the
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annealing. The programs sasi7, sasi8 and sasi10 are in appendix C.

Name of program sasi7 sasi8 sasi9 sasi10

Cooling scheme exponential exponential exponential thermodyn.

Ensembles? simplex single walker ensemble ensemble

In this section I will use the term "S.A. variable" about a variable in

the simulated annealing (thickness, roughness), and "FORTRAN variable" or

simply "variable" about a variable in the FORTRAN programs.

A FORTRAN program mlp, written by P. H�gh�j, calculates the re
ectivity

curve for a given multilayer using the method described in section 3. mlp

was taken as a starting point for the implementation of simulated annealing.

sasi8 is the simplest of the four simulated annealing programs, and it was

also the �rst program to be written. The main structure of sasi8 is:

1. read input (everything except experimental re
ectivity curve) (rdfile)

2. anneal: (anneal)

(a) read experimental curve (rddat)

(b) prepare optical constants (optconan or optconen)

(c) for a number of steps do:

choose a neighbour (a multilayer structure) (neighbour)

calculate re
ectivity for neighbour (reflecan or reflecen)

calculate the cost of the neighbour (cost1)

decide if neighbour should be accepted (accept)

move to neighbour if it was accepted

lower the control parameter (cool)

(d) write output (wrtfile)

The S.A. variables are kept in a one-dimensional array thick. The vari-

ables used for the optical calculations are all kept by pointers, that way

the size of the variables does not need to be declared before the program is

compiled and run, and the size can be decided after reading the input �le

(variables delta, beta, theta, energy, cd index). The re
ectivity data are

also kept by pointers, the variables are calcrefl, exprefl, bestrefl.

More S.A. variables can be added by changing the size of the array thick

and the arrays connected to it (bestthick, maxthick etc.).

During the annealing the program will show a diagram with the exper-

imental re
ectivity curve, a curve for the best structure found so far, and
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a curve for the structure the program attempts now, all versus the angle

or energy. The diagram is updated according to the value read from the

input data. The graphs are drawn using a set of subroutines EXPG written

by A. Hammersley, ESRF.

The subroutine cost1 calculates the cost of a given re
ectivity curve

and uses the cost function (14). Two other cost function subroutines are

included (cost2 and cost4), they are not used by the program, but can

be used if cost1 is changed to cost2 or cost4 everywhere except at the

subroutine itself.

sasi9 is similar to sasi8 except that ensembles have been implemented.

thick is now a two dimensional array where each row represents a member

of the ensemble, i.e. one row of thick in sasi9 is the same as the whole

one dimensional array thick in sasi8. The steps 2.(c) in the algorithm are

carried out for each member of the ensemble.

The thermodynamic cooling scheme is implemented in sasi10. A num-

ber of Metropolis steps are carried out at the maximum value of the control

parameter before the annealing takes place. This is done to let the ensemble

approach its equilibrium distribution, as explained in section 5. The max-

imum number of steps is set to 1000 per member of the ensemble, but the

ensemble is considered close enough to equilibrium if in 10 steps the change

in mean energy of the ensemble is less than its standard deviation times the

constant v divided by 10:

�hE(T )i

ensemble

< v�(T )

eq

=10 (15)

In practice the mean energy remains reasonably stable at the last iterations

before (15) stops the search for the equilibrium distribution.

The structure of sasi10 is similar to sasi8 except for the change to

ensembles and for the extra steps needed to get close to the equilibrium

before annealing:
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1. read input (rdfile)

2. anneal: (anneal)

(a) read experimental curve (rddat)

(b) prepare optical constants (optconan or optconen)

(c) �nd equilibrium properties at max. control parameter

(d) for a number of steps do:

for each member of the ensemble do: (step ensemble)

choose a neighbour (neighbour)

calculate re
ectivity for neighbour (reflecan / reflecen)

calculate the cost of the neighbour (cost1)

decide if neighbour should be accepted (accept)

move to neighbour if it was accepted

lower the control parameter (cool)

(e) write output (wrtfile)

In sasi10 the control parameter is changed when all the members of

the ensemble have gone through one iteration. The program can easily be

changed to take more iterations per member before next change of control

parameter. The subroutine cool uses the equations and the algorithm of

section 5 to lower the control parameter.

sasi7 uses the simplex method to choose neighbours. Of the S.A. vari-

ables describing the multilayer structure only actual variables are used in

the simplex, as opposed to variables that are �xed by the input data, e.g.

with �thickness zero, or with the maximum value equal to the minimum

value. Let N be the number of such actual variables. The data is �rst

read to the FORTRAN variable thick, including any �xed variables. The N

actual variables are then transfered to the �rst row of an (N +1)�N -sized

array sim p as the �rst vertex of the simplex, and the array thickconst

keeps track of the correspondance between the multilayer structure and the

dimensions of the simplex space. The N + 1 rows of sim p are the N + 1

vertices of of the simplex, and the start values of the vertices are found by

adding a multiplum of �thickness or �roughness to either the thickness or

the roughness of one of the layers, provided it is not a �xed variable.

The subroutines for the simplex movements are kept as close as possible

to the original subroutines suggested in [10]. To do this, the calculation of

the re
ectivity was moved to a subroutine of the cost evaluation. It does not

alter the way the program calculates the cost, but does make the program

structure look a bit di�erent:
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1. read input (rdfile)

2. get rid of �xed variables

3. anneal: (anneal)

(a) read experimental curve (rddat)

(b) prepare optical constants (optconan or optconen)

(c) prepare a start simplex

(d) for a number of steps do:

call the simplex subroutines (amebsa)

lower the control parameter (cool)

(e) write output (wrtfile)

10 Format of In- and Outdata

An example of an input �le is shown in appendix A. It is essential to keep

the exact format of the input �le. The Input data filename is the name

of the �le containing the datapoints of the experimental re
ectivity curve.

It has four text lines of no importance to the program, and two columns

of numbers: the �rst column contains the x-axis values (energy in eV or

angle in degrees), the second column contains the corresponding values of

the experimental re
ectivity.

The Output data filename is the name of the �le to where the best

structure found will be written at the end of the annealing, along with the

calculated and the experimental re
ectivity, and the Name of .log file

is the �le where the results during the annealing will be written (i.e. the

number of iterations, the control parameter, the best cost so far, the rate of

accepted moves . . . ).

The Number of loops before output to screen at the end of the in-

put �le is the number of iterations run before the graph on the screen is up-

dated and the values are written in the .log �le and on the screen. When

using ensembles the "loop" is one step for each member of the ensemble, and

thus the value should be set accordingly lower than for the program that

uses only a single walker. Likewise the simplex program counts one "loop"

as one call of the amebsa subroutine.

After termination of the simulated annealing program the .log �le can

be inspected using the program graphs, a simple program that gives choices

for the x- and y-axis and draws a graph. A .cgm �le with the graphs can
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be made for later print out (use ralcgm). graphs also uses the graphic

subroutines EXPG.
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