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We study the mutual interactions of simple parallel polymers within the framework of
density-functional theorysDFTd. As the conventional implementations of DFT do not treat the
long-range dispersionfvan der WaalssvdWdg interactions, we develop a systematic correction
scheme for the nonlocal energy contribution of the polymer interaction at the intermediate to the
asymptotic separations. We primarily focus on the three polymers, polyethylene, isotactic
polypropylene, and isotactic polyvinylchloride, but the scheme presented applies also more
generally to other simple polymers. From first-principle calculations we extract the geometrical and
electronic structures of the polymers and the local part of their interaction energy, as well as the
static electric response. The dynamic electrodynamic response is modeled on the basis of these static
calculations, from which the nonlocal vdW interaction of the polymers is extracted. ©2005
American Institute of Physics. fDOI: 10.1063/1.1884987g

I. INTRODUCTION

Density-functional theorysDFTd has proven successful
in describing the interaction of dense matter systems, e.g.,
the covalent atomic binding in molecules. However, for
sparse matter systems with regions of small or no density
overlap, the nonlocal van der WaalssvdWd correlations are
important. The vdW interaction is an attractive correlation
force due to instantaneous dipole and multipole interactions
that are mediated by the electric field. The vdW interaction is
presently not included in the traditional DFT implementa-
tions, and has to be corrected for.1–5

The crystals of polyethylene and isotactic polypropyl-
ene, where the polymers are aligned in parallel, represent an
important class of sparse materials. The intramolecular bind-
ings of the polymers are well described with the aid of tra-
ditional DFT, but the intermolecular bindings that keep the
crystals together are dominated by the long-range vdW
interaction.1,6–8 Hence, a systematic correction scheme for
the nonlocal interaction of parallel polymers, consistent with
the DFT framework, is of great importance. Several success-
ful schemes dealing with the interaction of extended objects,
e.g., for the interlayer interaction in graphite9,10 and the
nanotube-nanotube interaction,11,12 have already been devel-
oped; some of them applicable both to objects sufficiently
separated that the electron densities do not overlap and to
objects separated less than the binding distance with
electron-density overlap. This article generalizes the scheme
used for nanotubes11,12 to deal with the long-range interac-
tion of parallel polymers.

As a first step towards eventually treating polymer-
polymer interactions at the typical binding distances of par-
allel polymers, the scheme presented here deals with the

vdW interaction in the intermediate to the asymptotic region,
where the polymers have a negligible electron-density
overlap.

We use traditional DFT calculations to obtain the equi-
librium internalsgeometrical and electronicd structures of the
three polymers: polyethylenesPEd, isotactic polyvinylchlo-
ride sPVCd, and isotactic polypropylenesPPd. PE and PP are
widely used in the industry and have well-described crystal
structures.6,7 These polymers are examples of what we refer
to assimple polymers: polymers that can be treated as linear
chains of relatively small repeated subunits and are compu-
tationally feasible within the framework of DFT. The calcu-
lated geometric structures of these polymers and a compari-
son with other calculation as well as experimental results
will be presented in Sec. II A.

The valence electron density of the polymers is the key
quantity for the calculation of the dispersive polymer-
polymer interaction, with theelectrodynamicresponse of the
polymer modeled on the basis of static DFT calculations of
the valence electron density and the electrostatic response.
This part is described in Secs. III–V.

Finally, the numerical results of the vdW interaction are
presented for the three polymers, and the interaction depen-
dence on the orientations of the polymers will be further
elucidated in terms of simple orientation-dependent expan-
sions.

II. DFT RESULTS AND METHOD

A. Structure determination

The internal geometrical and electronic structures of the
polymers are determined by traditional DFT calculations.
Our subsequent calculations of the van der Waals interaction
are based on this DFT-determined electronic structure. The
DFT implementation used in this article is a plane-wave
code13 with ultrasoft pseudopotentials, and all DFT calcula-
tions are carried out within the generalized gradient approxi-adElectronic mail: kleis@fy.chalmers.se
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mation sGGAd in flavors PW91sRef. 14d or revPBE.15 We
use a 400-eV cutoff of the plane-wave basis set and a 1
31312s13134d Monkhorst–Pack sampling16 of the Bril-
louin zone of our PEsPVC and PPd unit cell. The lengthl of
the unit cell corresponds to the length of the repeated poly-
mer segment. The calculations of the structures of the iso-
lated polymers are carried out in unit cells chosen such that
the polymers are surrounded by at least 10 Å of vacuum in
any direction.

The geometrical structures of both PE and PP have pre-
viously been determined within the DFT framework and our
results agree well with the previous DFT calculations17,18 as

well as experimental data,8,19,20while to our knowledge iso-
tactic PVC has not previously been treated in first-principles
calculations and the isotactic variant is not observed experi-
mentally.

PE is a linear polymer with a repeated segment consist-
ing of two C and four H atoms. PP and PVC, respectively,
have a CH3 group or a Cl atom substituting one quarter of
the H atoms in the PE chain. This asymmetry in PP and in
PVC makes each such substituted PE segment rotates 120°
with respect to the neighboring segments, by which PP and
PVC obtain a 3:1 helical structure. This is shown in Fig. 1.
Thus each unit cell consists of three CH3− or Cl-substituted
PE segments.

The structures are determined by varying the unit-cell
lengthl and at the same time relaxing the atomic positions by
minimizing the local Hellmann–Feynman forces on the at-
oms such that the sum of all forces within the unit cell is less
than 0.05 eV/Å. Data characterizing the calculated and ex-
perimentally observed geometrical structure of the polymers
are given in Table I and the polymers are shown in Fig. 1.

B. Electron density

The DFT calculations of the equilibrium structure also
provide the valence electron density. We use the density to
determine the van der Waals interaction between the poly-
mers at the intermediate to the asymptotic separations of the
polymers. For simplifications in the following we use a va-
lence electron density that is averaged along the polymer
sFig. 1d, but there is no general problem in retaining the full
three-dimensional density, besides an increased computa-
tional cost and the absence of the symmetry-related simpli-
fications discussed later.

This approach of averaging the electron density along
the polymer is reasonable when the polymers have a center-
to-center separationd much larger than a length representing
the typical variation of the polarization along the polymer. It

FIG. 1. The three polymers shown from the top and from the side. The
hydrogen atoms are not shown in order to make the helical structure more
apparent. the gray spheres are carbon atoms and the dark gray spheres are
chlorine atoms. The bottom figures show the corresponding contour plots of
the valence electron density averaged along the chain. The contour lines are
equally spaced by 0.15 e/Å3.

TABLE I. Geometric data characterizing the polymers: the repetition lengthl sunit-cell lengthd, the average
separationdAB of atomsA andB, and the anglec formed by the carbon atoms in the main chain. C* denotes a
carbon atom with an attached subgroup CH3 or Cl, R stands for CH3 or Cl.

dCC

sÅd
dCH

sÅd
dCR

sÅd
cC*CC*

sdegd
cCC*C

sdegd
l

sÅd

PE sPW91d 1.52 1.10 1.10 113.7 113.7 2.55
PE srevPBEd 1.53 1.10 1.10 113.9 113.9 2.57
PE sPBEad 1.52 1.11 1.11 113.0 113.0 2.57
PE sLDAad 1.51 1.11 1.11 114.3 114.3 2.52
PE sx raybd 1.53 1.09 1.09 112±0.8 112±0.8 2.54
PVC sPW91d 1.52 1.10 1.81 115.4 113.3 6.50
PVC srevPBEd 1.53 1.10 1.81 115.5 113.5 6.54
PPsPW91d 1.53 1.10 1.52 117.4 111.5 6.53
PPsrevPBEd 1.54 1.10 1.54 118.3 111.7 6.57
PPsLDAcd 1.52 1.11 1.52 117.5 111.5 6.37
PPsGCcd 1.53 1.10 1.53 117.9 111.8 6.50
PPsexperimentald 116.9d 112.4d 6.50e

aReference 18.
bReference 19, x ray.
cReference 17.
dReference 20, x ray.
eReference 8, x ray.

164902-2 J. Kleis and E. Schröder J. Chem. Phys. 122, 164902 ~2005!

Downloaded 02 May 2005 to 129.16.113.91. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



is applicable to the vdW-interaction calculations at separa-
tions in the intermediate to the asymptotic regime, defined as
the regime where we have no electron-density overlap of the
polymers, neither for the averaged electron density nor for
the full three-dimensional electron densitysdiscussed in Sec.
V Bd. This regime corresponds to separations larger than 8 Å
for PE and 10 Å for PP and PVC, which will be the scope of
this article. As shown in Sec. IV, this greatly simplifies the
computational problem of evaluating the interaction integral
and will prove useful in finding the polarizability properties
along the polymer, as discussed in Sec. III.

III. THE POLYMER ELECTRODYNAMIC RESPONSE

The origin of the vdW interaction is the interaction, me-
diated by electric fields, of local dipoles and multipoles
spontaneously appearing in the electron density of the poly-
mers. Thus the electrodynamic response of the polymers is
essential for the calculation of their vdW interaction. The
dipole-dipole interaction dominates the long-range interac-
tion and we will here neglect the more complex multipole
interactions. The dynamic response is modeled on the basis
of DFT calculations, from which the static polarization as
well as the electron density is obtained. The model contains
a single tunable parameter, which is chosen such as to repro-
duce the static polarizability. From the dynamic response, in
particular, from the polarizabilities, we are able to extract the
attractive vdW interaction.

We model the local dynamic electron response to a local
field by a simple local plasmon-pole model11,21with the bare
susceptibility

x0sr ,r 8;ud = dsr − r 8d
nsr d

u2 + uc
2 , s1d

wherensr d is the electron density at positionr obtained from
DFT andu is related to the frequencyv of the electric field
by u;−iv. All quantities are in hartree atomic units.

In order to remove the divergence at zero frequency and
instead reproduce the static polarization obtained from DFT
calculations we introduce a cut-off frequencyuc. However,
since the model is only an approximation of the response for
nonzero frequencies, the cut-off frequency thus determined
varies with the orientation of the applied field relative to the
polymer. For simplicity we only consider a single cut-off
value, which is chosen such that the angular average of the
model polarizabilities reproduces the average of the DFT-
calculated static polarizabilities. The model of the response
s1d used here may be replaced by a more complicated func-
tional form, but preliminary calculations with more realistic
response models4,22 show that our results are not more sen-
sitive to this choice than to the averaging of the electron
density.23

For convenience we describe all quantities in a Cartesian
coordinate system local to the polymer. The repeated poly-
mer segments are oriented along thez direction, and the ori-
gin in thesx,yd-coordinate system is located at the center-of-
mass line of the polymer.

The local effective susceptibility tensorx, which de-
scribes the locally induced polarization due to an external

applied electric field, is a key quantity for the vdW interac-
tion. The local field and, in turn, the local effective suscep-
tibility are found by requiring that the charge is conserved
under the action of an applied electric field when modeling
the local response by Eq.s1d. This defines a three-
dimensional electrodynamical problem which is to be solved.

Since the electron density is averaged along the polymer,
the electrodynamic problem is effectively reduced to a two-
dimensional one. The translational invariance in thez direc-
tion, along the polymer, leads to the requirement that no
local charge can be induced in thex-y direction due to a field
in thez direction or vice versa. Thus the corresponding com-
ponents of the susceptibility vanish,xxz=xyz=xzx=xzy=0.
Furthermore, the electrodynamic solution requires that the
potential is linear along thez direction, and thus we find the
susceptibility componentxzzsr ;ud=x0sr ;ud.

The components of the effective local susceptibility in
the x-y plane are given by the relation

xabsx,y;udEapp
sad = −

]Fsadsx,y;ud
]b

x0fnsr d;ug, s2d

with indicesa,b=x,y. Fsadsx,y;ud is the electrodynamic po-
tential due to an applied field of magnitudeEapp

sad over the
polymer in thea direction and is given by the charge con-
servation

¹hs1 + 4px0fnsx,yd;ugd ¹ Fsx,y;udj = 0, s3d

with appropriate boundary conditions.
The long-range interaction between polymers can be re-

lated to the interaction of the spatial moments of the macro-
scopic susceptibility. In the asymptotic limit the vdW inter-
action depends only on the frequency-dependent
macroscopic susceptibility

aabsud = LE dxdyxabsx,y;ud, s4d

wherea,b=x,y,z. An explicit expression for the vdW inter-
action in this limit is given in Sec. IV.

Furthermore, since the local effective susceptibility is a
tensor of rank two, we can easily treat rotations of the poly-
mer with respect to the local coordinate system and the ap-
plied fieldsi.e., with respect to the neighboring polymers that
give rise to the electric fieldd. Specifically, if the polymer is
rotated counterclockwise by an angleu about the center of
mass, the local susceptibility transforms asx8=S−1xS where
the rotation operator is simply given as

S= 1cosu − sinu 0

sinu cosu 0

0 0 1
2 . s5d

As an illustrative example we look at the orientation-
dependent polarizability of PE. We choose to orient the poly-
mer such thatu=0 corresponds to the case where the poly-
mer is widest in thex direction, and symmetry dictates that
the off-diagonal components of the polarizability vanish. Us-
ing the above transformation properties of the susceptibility
we get
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axxsud = faxx + ayy + saxx − ayydcos 2ug/2, s6d

in excellent agreement with DFT calculations of the suscep-
tibility at different angles, as shown in Fig. 2.

IV. THE POLYMER-POLYMER van der Waals
INTERACTION

In order to evaluate the vdW interaction for two possibly
different but parallel polymerssoriented along thez direction
and denoted by subscripti =1,2d with center-to-center sepa-
ration d, we introduce two local Cartesian coordinate sys-
tems with the origin in the center of mass of polymeri and
separated a distanced in the x direction.

We emphasize that the polymers are restricted to be par-
allel, but the formalism allows for both free rotation around
the individual polymer axis as well as translation along this
axis.

Now, since all quantities are averaged along the polymer,
the vdW energy per unit length in the dipole approximation
reads24,25

EvdW

L
= −

1

L
E

0

` du

2p
tracehx1T12x2T21j

= −E
0

` du

2p
dx1dy1dx2dy2dsz2 − z1d, s7d

o
a,b,c,d=x,y,z

x1
absr 1dTbcsr 1,r 2dx2

cdsr 2dTdasr 2,r 1d, s8d

whereTij ;¹i¹ jur i −r ju−1 and xi denotes the local effective
susceptibility of polymeri. The integral inz2−z1 can be per-
formed analytically11 and the remaining integrals can be nu-
merically evaluated.

For physical insight and fast computation, it is useful to
make analytic expansions as a function of inverse separation.
This allows us to easily extract forces, find the orientation
where the polymers have maximum or minimum interaction,
and to compare with other calculations. The following nota-
tion is used:

EvdW
snd

L
= −

B5

d5 −
B6

d6 − ¯ −
Bn

dn ,

where the first term describes the polarization-polarization
sa-ad interaction and can be explicitly written as

B5 =
3

256L2E
0

`

duh41a1
xxa2

xx + 16a1
yya2

yy + 9a1
zza2

zz

+ 15sa1
xxa2

zz+ a1
zza2

xxd − 24sa1
xya2

yx + a1
yxa2

xydj. s9d

Higher-order terms involving spatial moments of the suscep-
tibility are just as easily obtained but are cumbersome to
write down. However, by assuming the molecules to possess
cylindrical symmetry the terms up to the ninth order have
been calculated in Ref. 24.

V. NUMERICAL RESULTS AND DISCUSSION

The interaction integrals and expansion coefficients in
Sec. IV are numerically evaluated. For this we need all the
components of the local frequency-dependent effective sus-
ceptibility x. These are found by using the PW91 valence
electron density nsr d in the bare response function
x0fnsr d ;ug. For each frequencyu and each independent di-
rectionsx andy of the applied electric field we then solve for
the electrodynamic potential in Eq.s3d by finite element
methodssFEMsd.

By comparing the staticsu=0d FEM calculation and the
DFT-calculated static susceptibility we determine the cut-off
frequencyuc. For PE the cut-off frequency reproducing on
average the DFT-calculated susceptibility is found to be
uc

PE=0.429 Ha. This certainly reproduces the DFT calcula-
tions to the extent of the accuracy of the FEM,26 as seen in
Fig. 2. The method tends to slightly overestimate the differ-
ence between the maximum and minimum polarizabilities as
calibrated by the DFT determination of the static susceptibil-
ity. However, the small disagreement is acceptable consider-
ing that we use a simple plasmon model for the dielectric
response with a single cut-off frequencyuc.

The threefold rotational symmetry of PP and PVC makes
their susceptibility almost constant under rotation. We find
aPP=0.97 eÅ2/V andaPVC=1.01 eÅ2/V. The corresponding
cut-off frequencies areuc

PP=0.507 Ha anduc
PVC=0.482 Ha.

These calculations permit us to evaluate the vdW inter-
action for the three polymers at the intermediate to the
asymptotic separations. To illustrate the general interaction
for all possible orientations of the polymers, we have evalu-
ated the orientation-dependent expansion coefficients.

Of the three polymers, the PE-PE interaction is the most
influenced by the relative orientation of the polymers. This is
to be expected from the polarization properties of PE, which
are reflected in the orientation-dependent expansion coeffi-
cients. For PE all even terms vanish due to symmetry and the
nonvanishing coefficientsB5 andB7 are shown in Fig. 3. In
the asymptotic limit, described by theB5 coefficient, the
angle dependence is rather lowsabout 3%d. Evaluating
EvdW

s7d su1,u2d for 10-Å separation of PE with PE, we find that
the variation is more pronounceds7%d and the effect grows
as the separation is reduced. However, the general depen-

FIG. 2. The calculated static susceptibilityaxxsud of a segment of PE for
different anglesu. The orientationu=0 corresponds to the situation shown
in Fig. 1 when the electric field is applied in thex direction. The diamonds
are values obtained from DFT calculations and the full line is obtained by
Eq. s6d. The dashed line is found using the plasmon-pole approximation and
solving the electrodynamic equations with finite element methodsFEMd
techniques. The inset shows the graph in full scale.
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dence of the orientations in the intermediate to the semias-
ymptotic regime can be concluded to be rather weak. Fur-
thermore, we observe that the calculated expansion
coefficients are nearly symmetric under the transformation
ui →180−ui.

The success of the expansion of the energy in terms of
inverse separation for PE is evident from Fig. 4 where we
have compared the expansion in inverse separation to the full
two-dimensionals2Dd evaluation of the energy for the orien-
tations of maximum and minimum interactions, respectively.
We see that in the case of maximum interaction the agree-
ment is excellent down to polymer separationd of 10 Å. The
agreement is even better in the case of minimum interaction
when the nearest distance between fragments of the two
polymers is effectively largestsfor a givendd.

The PP-PP and PVC-PVC interactions are even less sen-
sitive to rotations than the PE-PE interaction. We find the
odd-order terms to besindependent of rotationd B5

PVC-PVC

=133 eV Å4, B7
PVC-PVC=6.6 keV Å6, B5

PP-PP=119 eV Å4, and
B7

PP-PP=5.8 keV Å6. Due to the trianglelike shape of PVC
and PP, the even-order terms do not vanish, but in general

these only give small contributions to the interaction energy
se.g., theB6 term contributes maximum 5% of the energy at
10 Åd. Thus the qualitative behavior is well described by the
constantB5 andB7 terms. In Fig. 5 a comparison between the
full numerical expansion for the PP-PP interaction and the
expansion up to the seventh order is given. The curves show
excellent agreement ford.13 Å and fair agreement for
smaller distances. We obtain similar results for the PVC-
PVC interaction.24 Thus we find that the qualitative behavior
in the intermediate to the asymptotic region is well described
in terms of an expansion of the energy in inverse separation.

The inset of Fig. 5 shows the evaluation of the full 2D-
interaction integrals for the three polymers. We see the gen-
eral tendencyEPE,EPP,EPVC which is to be expected from
the polarization properties of the molecules.

A. Cylindrical approximation

The small orientation dependence of the expansion coef-
ficients for the three polymers, along with the approximate
cylindrical symmetry of their length-averaged electron den-
sity sFig. 1d, suggests that their asymptotic interaction can be
roughly described on the basis of the cylindrical-averaged
electron density. This was utilized in Ref. 24 and a compari-
son between the “cylindrical” and the 2D-evaluated expan-
sion coefficients for the three polymers is given in Table II.
We see that the expansion coefficients in the cylindrical ap-
proximation typically underestimate the expansion coeffi-
cients by 15% compared to the 2D-evaluated coefficients.
Much of this difference can be ascribed to the change in

FIG. 3. The orientation-dependent expansion coefficientsB5su1,u2d and
B7su1,u2d for PE, shown as equidistant contours.ui is the rotation angle of
polymer i about its center of mass. The initial positions of the polymers are
indicated by the contours of the averaged charge densities in Fig. 1. The
panels showsad B5

PE-PEseV Å4d and sbd B7
PE-PEseV Å6d, respectively.

FIG. 4. The PE-PE van der Waals interaction energy as a function of sepa-
ration d for the two orientations schematically shown in the inset, corre-
sponding to the minimum and maximum interactions, respectively. The full
lines are the results of the 2D numerical interaction integral, while the dotted
lines show the results for the seventh order expansion ind−1.

FIG. 5. The PP-PP van der Waals interaction energy as a function of sepa-
ration d in different approximations. The full line corresponds to the evalu-
ation of the 2D-interaction integral while the dotted line shows the expan-
sion of the energy up to the seventh order in inverse distance. The inset
shows the PE-PE, PP-PP, and PVC-PVC van der Waals interaction energies
as a function of separationd. All the polymers are oriented as shown by the
density contours in Fig. 1 and separated in thex direction.

TABLE II. Comparison between the expansion coefficients for the full 2D
evaluation and the expansion coefficients where cylindrical symmetry is
enforced.

B5
full

seV/Å4d
B5

cyl

seV/Å4d
B7

full

skeV/Å6d
B7

cyl

skeV/Å6d

PP 119 108 5.8 4.5
PVC 133 112 6.6 5.8
PE sMax. inter.d 47.5 40 0.65 0.76
PE sMin. inter.d 45 40 1.1 0.76
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dielectric model response when the electron density is fur-
ther averaged around the polymer center-of-mass line.

Thus, the cylindrical approximation proves useful for
simple estimates of the magnitude and behaviorseven in the
intermediate regimed of the effective polymer interaction, but
in order to study the behavior in more details we have to
resort to the 2D-evaluated interaction.

B. Length averaging approximation

The comparison of the 2D approximation and the cylin-
drical approximation illustrates the point that any averaging
procedure in general will alter the local dielectric model re-
sponse and in turn the magnitude of the interaction.

In the same manner the length averaging, leading to the
2D approximation, is expected to alter the magnitude of the
interaction compared to the full three-dimensionals3Dd in-
teraction. We have investigated the effect of the length aver-
aging by evaluating parts of the susceptibility for both the
2D- and the 3D-electron densities and estimating the differ-
ence these densities give rise to in the resulting interaction
energy. We find that for our polymers the effects of the av-
eraging procedure are of minor importance in the intermedi-
ate to the asymptotic regime. A more detailed comparison of
the 2D approximation with the 3D interaction will be carried
out in a forthcoming paper.23

VI. COMPARISON WITH OTHER METHODS

The direct comparison to other calculations and mea-
surements of polymer binding energies is difficult because
most results are from polymer crystals where the polymers
are packed at their natural binding distance. The scheme pre-
sented here does not apply at the binding distances in poly-
mer crystals and it is not possible to validate the accuracy of
our approach from experimental data on such polymer crys-
tals. However, for PE it is possible to directly compare our
present calculation for the intermediate to the asymptotic
separations to the asymptotic interaction parameters ex-
tracted from other calculations. This will be described below.

The asymptotic ethane-ethane interaction might be used
to estimate a PE-PE asymptotic interaction by approximating
PE as a long row of ethane molecules. The ethane molecules
are thought of as oriented along thez axis with a repeat
distancel r that equals the length of our unit cell, and by
summing up all the asymptotic ethane-ethane interactions we
obtain an approximate value for theB5 value.

The asymptotic ethane-ethane interaction is on the form
Easymp=−C6/d6 such that

B5

d5 < E
−`

`

dz
C6/l r

2

sÎd2 + z2d6
=

3p

8

C6

l r
2

1

d5 . s10d

The ethane-ethane interaction parameter has previously been
evaluated in an approach similar to ours27 as well as in a
more accurate time-dependent approach.28 Table III shows
the result of this comparison; we see that the asymptotic
interaction estimated this way is in good agreement with our
calculations.

Furthermore, if we focus on PE as being build up of CH2

groups, we can use the parameters typically adopted in force-

field calculations29 and sum up the CH2–CH2 interactions.
This approach gives, as shown in Table III, an asymptotic
interaction parameter slightly largers20%d than our interac-
tion parameters. This difference is fully acceptable, consid-
ering that the force-field parameters are adapted for calcula-
tions at the crystal binding distance, and thus only provide
estimates for the asymptotic interaction parameters.

To sum up, the relatively crude estimates of the
asymptotic interaction parameters described above are in
good agreement with our calculations. The vdW interaction
of parallel polymers from the intermediate distance to their
binding distance will be the scope of a forthcoming paper.

VII. CONCLUSION

We have presented a general approach based on first-
principles electron density calculations for computing the in-
termediate to long-range interactions of parallel, geometri-
cally simple polymers.

We have applied the scheme to polyethylene, isotactic
polypropylene, and isotactic polyvinylchloride, and the inter-
action energy for these polymers has been evaluated. Fur-
thermore, we have found orientation-dependent expansion
coefficients up to the seventh order ind−1, which give a
qualitative description of the orientation-dependent polymer-
polymer interaction, and for PE give quantitative correct val-
ues fordPE.10 Å sdPP.12 Å anddPVC.12 Åd. These ex-
pansions are consistent with other studies in the asymptotic
limit.
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