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Abstract

On the surface of a vertically oscillating fluid, capillary waves with a clearly discernible
wavelength 4 are formed if the amplitude of the oscillations exceeds a critical value. Particles
sprinkled on the fluid surface are experimentally found to move in an almost Brownian motion
when measured over distances larger than A. We extend earlier studies of the diffusivity to
length scales ranging from 0.14 to 101. We observe a cross-over in the diffusive motion from
a strongly anomalous diffusion below 4, to a motion that is closer to being Brownian above A.
Our observations show that the particle motion is well described by an amplitude-independent
fractional Brownian motion, effective at sizes less than A, convoluted with an amplitude-dependent
fractional Brownian motion, effective on all length scales smaller than the system size. At large
amplitudes our results are in surprising agreement with diffusivity measurements from upper-
ocean studies.

PACS: 47.20.Dr; 47.27.Qb; 05.40.+j; 47.52.+]

The motion of drifters near the sea surface has been a crucial element in probing
oceanic turbulence [1]. Results obtained for the diffusivity by tracking drifters in the
ocean show that the motion is far from being Brownian. In the geophysical dynamical
regime [2], at time scales between roughly 1 day and 10 days and length scales between
roughly 10 and 100km, the drifter motion possesses significant persistence (‘memory’),
which is not present in ordinary Brownian motion.

A similar persistence is observed for floating particles in laboratory experiments at
length and time scales completely different from those of the oceanographic studies.
The experiments reveal an outstandingly complex particle motion [3] that calls for
more detailed studies of the transport properties. One such study was carried out by
Ramshankar, Berlin and Gollub (RBG) [4], who measured the diffusivity for particles
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moving on capillary surface waves generated by the Faraday instability. To obtain
the diffusivity, the particle displacement Ax(t)=x(t + ) — x(¢) over a time T was
measured along an arbitrary axis x for many initiation times ¢. From the resulting
distribution P[A4x(t)] the variance V(t) (mean square distance {[4x(z)]*)) was found,
and the diffusivity D extracted, ¥ (t)=2Dz. For Brownian motion, the diffusivity D is
a constant. RBG however found the diffusion to be slightly anomalous with a time-
dependent diffusivity D(1) that obeys a power law D(t)=A7*~' on time scales larger
than 1s. The value of H was observed to decrease gradually, from H ~0.7 right
above the Faraday instability to the value H = 0.5 (Brownian motion) at large wave
amplitudes. As was pointed out by RBG, anomalous diffusion of this type can be
modelled using a generalization of Brownian motion known as fractional Brownian
motion [5]. We shall return to this point below.

The turbulence observed in surface waves is strongly influenced by the presence of
a dispersion relation w” = gk(1+ 1a?k?) between the wave oscillation frequency (which
equals half the driving frequency) and the wavelength A= 2n/k [6,7]. Here g is the
gravitational acceleration and a is the capillary length of the fluid. At small frequencies
(long wavelengths) the first term dominates, and the waves formed are called gravity
waves (typical of ocean waves). At large frequencies (small wavelengths) the effect of
gravity can be neglected, and the second term dominates. The waves thus formed are
called capillary waves. These are the waves present in our experiment, where the ob-
served wavelength is 4 =2.6+0.1mm and the capillary length is 2 = 3.1mm. Due to the
dispersion relation we may expect that the diffusive behavior changes character at length
scales comparable to A. In this paper, we extend earlier studies of the diffusivity [4]
in order to examine this point in detail. As we shall see, highly non-trivial dynamics
is observed below the wavelength scale. Moreover, our observations of the diffusive
motion are in surprising agreement with upper-ocean studies in the geophysical regime.

We have followed the motion of particles floating on a water surface in a cylindrical
dish which was oscillated vertically so as to create capillary waves. The dish had
an interior diameter of 8.4 cm and a height of 2 cm, and water filled the dish up
to a height of approximately 1 cm. The dish was mounted on a frame fixed to a
Briiel & Kjer vibration exciter type 4809, driven by a sinusoidal signal generated by
a frequency synthesizer SRI model DS 345, operating at a frequency f = 260Hz. At this
frequency the wavelength was observed to be A =2.6+0.1mm. The vibration amplitude
o/ of the vertical oscillations is proportional to the voltage applied to the exciter, and
this voltage was the actual control parameter in the experiments. The particles used
were mushroom spores, chosen because of their small mass and size (approximately
50 um), and their strong resistance to being wetted by water, assuring that they will
float. A CCD camera recorded the images of the particles on a VCR tape, and the
output of the VCR was fed into a frame grabber board in a personal computer. At
vibration amplitudes &/ right above the critical amplitude <7, at which surface waves
are first formed, a square pattern with moving defects is observed. However, when
& is increased to 10% or more above o7, the defects dominate and the wave pattern
becomes random in appearance.
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Fig. 1. Variance V' (mean square distance ([4x(t)]?)) obtained along one coordinate axis as a function of the
time interval t. From below, ¢ =10.05,0.13,0.24,0.34.0.65,0.86, and 1.06. The dashed top lines are straight
lines with slopes 1.6 and 1.0, respectively.

The horizontal positions of the particles were measured at 20 ms intervals, and in
each of two orthogonal coordinate directions the variance V(1) was calculated for
time intervals t ranging from 20 ms to approximately 5000 ms, limited by the fact
that the particles eventually move outside the camera window (which is circular with
a radius of 3 cm = 70% of the dish radius). The variance was obtained for seven
different amplitudes of vibration (Fig. 1). In terms of the reduced control parameter
e=( — o)/ ., we consider ¢=0.05, 0.13, 0.24, 0.34, 0.65, 0.86, and 1.06. For
each value of ¢, the variance was calculated from a sample of ~ 1000 particle tracks,
each having ~ 100 observation points separated by 20 ms in time. For both ¢ large
and t large, the sample was somewhat smaller, giving rise to noisy fluctuations, see
Fig. 1. The obtained distribution of displacements, P[A4x(1)], did not differ in the two
orthogonal directions, indicating that there was no preference for any spatial direction
in the horizontal plane.

We find that all seven curves in Fig. 1 show a cross-over at an e-dependent time
7= 1.(¢), with one power-law behavior for large times, ¥ (t)=247*", and a sieeper
power-law behavior V(t)~ %% at small time scales. At £=0.05 and ¢=0.13 the
curve bends towards a smaller slope at very small distances. This bending, how-
ever, is a consequence of the uncertainty in position caused by the finite
pixel size.

First we notice that the cross-over is located where 2V (1)~ A% (recall that V' only
refers to the displacement in one direction). In Fig. 2 the cross-over time 7. is shown
as a function of &. We find that t. falls off exponentially with &. Furthermore, as ¢
approaches zero, the value of 7. tends to a constant 7. ~600 ms. We find this time to
be much smaller (a couple of magnitudes) than the time it takes the mushroom spores
to diffuse the distance /=2.6 mm when no surface waves are present. The transition
at ¢ =0 where wave oscillations emerge is thus associated with a significant jump in
the diffusivity.
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Fig. 2. The cross-over time 7.(¢), determined from Fig. 1.
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Fig. 3. The exponent H characterizing the long-time behavior, as a function of ¢. Diamonds are our mea-
surements of the slopes (2H) in Fig. 1 for large time scales. Triangles are measurements by Ramshankar
et al. [4]).

Next, consider the long-time behavior at lengths larger than the wavelength. In
accordance with the measurements by RBG [4] we find that the exponent 2H for
the variance decreases with ¢ with the most anomalous diffusion at low ¢ (2H =1.26
for ¢ =0.05), while Brownian diffusion (2H = 1.0) is obtained at the largest oscillation
amplitude, ¢ = 1.06. The dependence of the exponent H on ¢ is shown in Fig. 3. Also
shown are the values of H obtained by RBG (although indirectly obtained as a rough-
ness exponent). The decrease of H with ¢ towards H = % appears to be slower in our
experiment.

We find the pre-factor A = A(¢) in the diffusivity to be roughly a factor of two larger
than the amplitudes found by RBG (Fig. 4). We believe this is due to the larger size
of particles used by RBG (diameter 100—200 pm, compared to our mushroom spores
of size ~50um). The pre-factor seems to grow exponentially with ¢. From the relation
24(e)[1e(&)]*H¥) ~ (4%/2), the exponential dependence follows as a consequence of the
exponential decay of the cross-over time 7, with ¢ (since H(¢) is a slowly varying
function of ¢). In analogy with 7., a significant change in 4 is expected at ¢=0.

At short time scales, corresponding to length scales shorter than the wavelength, the
slopes 2H; are found to be larger than 24, the latter being the exponent characterizing
the long-time behavior. We find that 2H; decreases from ~ 1.9 to 1.6 in the range of ¢
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Fig. 4. Amplitude A(z) of the diffusivity D(1) = At?"~!. The unit of 4 is [4]= mm? s—2# _ Diamonds are
our measurements, triangles are measurements by Ramshankar et al. [4].
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Fig. 5. The curves from Fig. 1 are collapsed into one scaling function, by means of a rescaling of time. See
the text for details.

studied. Moreover, the ratio of the exponents for short and long time scales, y = H;/H,
is very close to being a constant, i.e. independent of ¢. We find y=1.55 £ 0.05. This
result suggests that the ¢ dependence can be removed by a proper rescaling of the
time. In Fig. 5, a surprisingly good data collapse is obtained for the seven curves of
Fig. 1 by rescaling time, T — 7’ = [t/7(¢)]*/**). Fig. 5 shows that the variance is an
¢-independent function of the rescaled time, V' = f(t’). The scaling function f reflects
the cross-over in the dynamical behavior at f(1)=/4%/2. We have f(z')~ 1" below
the cross-over (y=1.55 4 0.05), and f(7')~ 1’ above.

The separation of the cross-over from the ¢-dependence is further emphasized by plot-
ting the variance V for the various ¢ values versus the variance for a particular ¢ value,
using the reduced time t/7.(¢) as the parameter (Fig. 6). We have chosen ¢ =1.06 as
the reference (having ordinary Brownian motion at T > 7). As is observed, there is no
sign of 4; all curves are straight lines. The slopes are 2H(¢) [since 2H (e = 1.06) = 1.0].
We stress that the approach toward Brownian motion as the amplitude is increased is
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Fig. 6. The variance V for ¢=0.05 (dashed line), ¢=0.24 (dotted line), and ¢=0.65 (dash-dotted line),
plotted versus the variance for ¢ = 1.06. using the reduced time t/7c(¢) as the parameter. For comparison, a
line of slope 1 is shown (unbroken line).

not an effect of a correlation length ¢ that gradually decreases from the system size
to the wavelength. This would give rise to a cross-over at ¢, and there is no sign of
such a length scale in our measurements.

Fig. 6 illustrates the deviations from Brownian motion at long time scales, and
it clearly shows the &-dependent persistence or ‘memory’ possessed by the parti-
cles on all time scales studied. This behavior can be modelled by a so-called frac-
tional Brownian motion, which is a generalized form of Brownian motion. In ordinary
Brownian motion the displacement Ax(t)=x(z+1)—x(t) is characterized by a Gaussian
distribution, P(s)~ exp(—s?), with s = Ax(t)/t"". For fractional Brownian motion, the
Gaussian-distributed quantity is s’ = Ax(t)/t", where H # % This immediately intro-
duces infinite-time correlations. While for ordinary Brownian motion, two successive
displacements x(¢) — x(¢ — 71) and x(¢ + 12) — x(¢) are independent, one finds that
this is not so for fractional Brownian motion. The correlation between two successive
displacements is

C(t),12) = < [x(t) —x[St —0)] x(t + 12}3 -x(t)]>

T I3}

: Vi {{Ix(t + 12) = x(t = 1)) = ([x(t + ) = x(OF)

- 2(11‘[2

—{[x(r) = x(t = 7))}

[(t1 + 1) — o — 3"]
(tit2)?
For 7 =1, = At, we have C o« 22 -2, which is non-zero for H # } and is independent

of the size of the time interval A¢ considered, indicating the strong memory of all past
displacements.

(1)
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Fig. 7. Simulation of a fractional Brownian motion with a cut-off time introduced at 7/4r = 600.

From Eq. (1) we can also calculate the correlation between two displacements sep-
arated in time by 7 > At,

Co e <[x(t + 4ty —x(8)] [x(t + T + At) — x(¢ + T)]>
T At AtH

— At%{—ﬂx(t 4+ T) = x(t 4+ At + T + A1) — x(t + T)])
+ <[x(l Ty —x()][x(t + T + At) — x(t + T)])}

T 2H At 2H A[ 2H
(L) {_H(p?) f(1+%) }
T 2H -2
~HQH - 1) (A—t) : (2)

A cut-off time for the memory of the fractional Brownian motion can be intro-
duced. At time scales larger than this cut-off time, the motion again becomes ordinary
Brownian. In Fig. 7 the variance is computed for a fractional Brownian motion with
H =0.8 and a ‘memory’ time limit of 7/4r=600. As is observed, the cross-over from
fractional to ordinary Brownian motion at 7/A4r~ 600 is apparent in the variance.

The strong resemblance between Figs. 7 and 5 suggests that the diffusion may
be modelled by a convolution of two fractional Brownian motions: an g-independent
motion effective below the wavelength (Fig. 5), convoluted with an e-dependent motion
which is effective on all length scales smaller than the system size (Fig. 6). In physical
terms, the former may result from turbulent eddies of size less than the wavelength,
while the latter results from turbulent eddies of all sizes less than the system size.
One may speculate that our way of plotting the data can be useful in a more general
context of turbulence, e.g. where the Reynolds number replaces &.

Our observations of particle trajectories may be compared with upper-ocean studies
of drifter motion. In the geophysical regime corresponding to time scales between
roughly 1 day and 10 days, and length scales between roughly 10 and 100 km, drifter
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diffusion has been studied in the North Atlantic [8-10]. From the observations they
find a fractional Brownian drifter motion with a well-defined exponent 2H, = 1.5. The
same exponent (2H, = 1.4-1.6) is found from data obtained for drifters in the Kuroshio
extension (oceanographic location off the coast of Japan) [1]. For scales larger than
100-200km [2], the dynamics is essentially governed by Rossby waves [11] and zonal
flows, and a cross-over to ordinary Brownian motion is observed with exponent 2H = 1.
Thus, the diffusion may be modelled by a fractional Brownian motion effective below
roughly 100 km.

It is noteworthy that the value of H, does not vary geographically, and that the
value is the same as the value of H; found in our laboratory experiment at large wave
amplitudes. There the motion also exhibits a cross-over from fractional to ordinary
Brownian motion. This suggests that the exponent 2/, =2H; =1.4-1.6 is intrinsic to
the eddy turbulence governing near-surface motion at a variety of scales, ranging from
several km in the upper-ocean to mm scales in capillary ripples.

In summary, measurements of the diffusivity in capillary waves suggest that the
turbulent surface motion can be modelled by a convolution of a fractional Brownian
motion, generated by eddies of the size of the wavelength or less, with another frac-
tional Brownian motion, effective on all length scales smaller than the system size. At
large wave amplitudes, the latter motion approaches ordinary Brownian motion. In this
case, the diffusive motion changes from a fractional Brownian motion with exponent
2H; =1.6 on small length scales to ordinary Brownian motion with 2H =1 on large
length scales. These exponents are identical to those found in upper-ocean studies,
where the cross-over is observed at 100 km scales, not mm scales.

We have profited greatly from discussions with W. Goldburg. This work was sup-
ported by the Novo-Nordisk Foundation and by the Danish Natural Science Research
Council.
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