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Theory for structure and bulk modulus determination
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A method for direct evaluation of both lattice parameters, atomic basis, bulk mdBlgil@nd bulk-modulus
pressure derivativ8; of solid materials with complex crystal structures is presented. The explicit and exact
results presented here permit a multidimensional polynomial fit of the total energy as a function of all relevant
structure parameters to simultaneously determine the equilibrium configuration and the elastic properties. The
method allows for inclusion of generéhterna) structure parameters, e.g., bond lengths and angles within the
unit cell, on an equal footing with the unit-cell lattice parameters. The method is illustrated by the calculation
of By and By, for a few selected materials with multiple structure parameters for which data are obtained by
using first-principles density-functional theory.
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[. INTRODUCTION Nevertheless, we here treat the external and internal param-
eters on an equal footing.

Calculations of bulk ground-state properties, such as lat- From theory bulk calculations the total ener(per unit
tice constants, atomic positions, bond lengths, and bulkcell) E(x) is found for a number of structures The elastic
modulus, play an important role in the physics of condensedesponse of typical hard crystalline materials corresponds to
matter*~® Bulk calculations help us to understand, charactersmall deviationséx=x—x® of the structural parameters
ize, and predict mechanical properties of materials in oufrom the equilibrium structura(®). The observation that the
Surroundings, under extreme conditions, as in geological fOI’tota| energy forms a natural potentiﬂiypebsurface in the
mations and Settindsa.nd for industrial application%i.scrys- parameter Space of lattice and internal parametemm_
talline materials come in many different structures and, inyined with the accuracy of present-day bulk-calculation
contrast to isotropic materials, the description of the grounq'nethods(such as density-functional theory, embedded atom
state of crystalline materials may in general need mU|tip|ernethods, or effective-medium thearyhen makes it possible

lattice parameters af‘d an atomic b§5|s. In this paper we d'?() fit the corresponding total-energy variation through the
cuss how to determine the equilibrium structure parameterﬁwuItidimensionaI fit

of a (multiparametercrystalline material while, at the same
time, directly determining the bulk modulus and the bulk
modulus pressure derivative. We argue and show that for 1 1
theoretical structure calculations of multiparameter Systems g (x)=k+ =M, 8x; 0X; + — ;| OX; OX: Ox;+ O(5x)*
this is simpler and more exddhan fitting to(semjempirical 2 U g T

equations of statéEOS, such as the Murnaghan or Birch ()
EOS. In particular, with our direct method there is no need to
first determine the hydrostatic path of the system. We further

discuss how to include the atomic basis in this process in ) o
natural way. second-, and third-rank tensors of fitting constants respec-

In crystalline materials described by a single lattice paively: An addmoonal set of fitting constants are ti€ hid-
rameter(e.g., monatomic cubic phagdse lattice parameter den in 5XZ_X__X( ). The polynomial fit(1) gives a transpar-
is a simple function of the unit-cell volume, and the equilib- €nt description of the materials-structure energy variation
rium volume thus uniquely determines the equilibrium struc-and directly determines the equilibrium structo®’. In this
ture, i.e., the value of the lattice parameter. This is not thédaper we exploit and use the structure calculation, i.e., the
case when multiple lattice parameters characterize the sy#ultidimensional polynomial fit of the total energy) for an
tem and a whole range of lattice-parameter values can forradditional and direct determination of the zero-pressure bulk
the same unit-cell volume. The equilibrium structure of themodulus Bo=—V(x(®)(dp/dV)|,_xo and its pressure de-
material must then be found by fitting and minimizing the rivative B{= — &{V(dp/dV)}/p|«-x©) at zero temperature.
free energy within the multidimensional space of lattice pa- For a general set of structure parameterge expand the
rameters, given the space group of the matéridPRelevant  volume around the equilibrium configuratio® using the
variables describing the atomic basesg., bond lengths or gradient g=VV(X)|,—x@® and the Hessian H
binding anglesmay be included among the parameters, and= H(V(x))|X:X(0)=[{aZV(x)/(&xi&x,-)}ij]X:X(O) of the vol-
the full set of lattice parameters and interifalomic basis  ume. We note that derivatives of the volume with respect to
parameters are collected into the vectorscaled to dimen- the internal parameters vanish, by definition. By providing a
sionless form. The volume of the unit c#(x) depends in a systematic treatment of the structural changes induced by the
simple way on the values of the lattice parameters describingressurep=—JE/dV we extract from the minimum of the
the unit cell, but not on the internal atomic configuration.zero-temperature enthalpy

t controlled accuracy. Herk, M, and y denote zeroth-,
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H(x,p)=E(X)+pV(x) 2 V(x©)
Bfm 3
both the bulk modulus and the bulk modulus pressure derivative

3g'M *HM lg—y; (M~ 'g)i(M 'g)j(Mg),
(gTM—lg)Z

By=V(x(?) 1. (4)

The algorithm outlined above can also be applied to the cormal result(3) is straightforward when one single structural
responding direct determinations of general harm@rifc parametere.qg., the lattice paramete)) defines the crystal-
and anharmonic elastic propertigésuch as the second- and line state. This situation applies for monatomic crystals with
third-order elastic constant;; and Cjj, . simple cubic (s¢), face-centered cubicfcc), and body-
Our results both enhance the theory understanding of theentered cubicbcc) symmetries. Here, the unit-cell volume
crystalline mechanical properties and simplify the desired/(a)=qa® uniquely determines the lattice parameter
testing of theory calculations as they combine the formaknough a dimensionless numbgrwhich depends on the
determination of the crystalline structureg. (1)] and of the crystal symmetry =1, q=1/4, andq=1/2 for sc, fcc, and

elastic propertieEqgs.(3) and(4)]. The equilibrium volume, 1,50 |atices, respectivelyAll that is required are theory cal-

B o copaa eElatons of toa energies or & ange aialues o ceter.
vide simple experimental tests against which we can com '€ both the equilibrium structura, and the equilibrium

(0) i i
pare and calibrate our calculatiols=or example, from Egs. vi)lumev h Thg total energ(;j/ per unflt ceI_E(a) ]Eashln Eq. I
(1) and (2), we can directly identify whichinterna) struc- (1) can then be expressed as a function of the unit-ce

ture parameters soften the bulk modui@sand we may, in  VOIUMEE(V). o o
turn, strengthen the materials by suitable chemical or struc- 1h€ general approach is illustrated by the example in Fig.
tural modification. 1, which shows the total energy as a function of the lattice

Besides the direct relevance of our results for the descripp@rametera for the zinc-blende phase of SiGBC-SiC), as
tion of complex materials, our calculations of bulk structurefound from DFT calculations. A parabola fit to the 15 data
and bulk modulus calculations are also of interest for develpoints closest to the equilibrium value afand a fourth-
opment of pseudo-potential-based density-functional-theorgrder polynomial fit to all data points are shown. Fits using
(DFT) methods and for methods using empirical parameters.
There, a first and critical test of the pseudopotential or the
empirical parameters is whether the calculations predict a
correct materials structure, binding, and elastic properties for
the relevant equilibrium configuration. Present DFT sctipts 2910 |
can automate some pseudopotential testing for simple mate-
rials and symmetries, our formal results generalize such test-
ing of theory accuracy to cases when multiple structural pa-
rameters determine the elastic properties.

The outline of this paper is as follows. In Sec. Il we
discuss the traditional methods of determining the bulk
modulus for single-parameter and multiparameter systems.
In Sec. Il we derive our expressions for the bulk modulus
and the bulk modulus derivative, Eq®) and (4), for the
simple one-parameter problefa.g., monoatomic fcc or bcc
structurey, easily generalized to theparameter problem. In o912 |
Sec. IV we proceed to illustrate and test the algorithm on a
number of monoatomic and diatomic materials based on
first-principle DFT calculations and comparison to experi- . . . .
ments. Comparisons &, andB;, together with the test of 4.2 4.3 4.4 4.5
the lattice and structure parameters themselves, represent the lattice parameter a [A]
typical test of materials-theory accuracy. Section V contains
the conclusion.

-291.1

total energy per unit cell [eV]

FIG. 1. The total energy per unit cdlwo atoms as a function
of the lattice parametex for the 3C polytype of SiC. The circles are
Il. BACKGROUND the data_po_ints obtained from densit_y-fqnctional-theory calcula-
tions. Solid line: Fourth-order polynomial fit as used for the values
A theory determination of the zero-temperature bulkin Table I. Dashed line: Second-order polynomial fit to the 15 cen-
modulus based on either traditional methods.’or our for-  tral data points.
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TABLE I. Bulk properties calculated from density-functional-theory data obtained directly from (Bggand (4) via a fourth-order
polynomial fit (“Present approach); available experimental values, and values from fits to Murnaghan’s and Birch’s equ&iamsl (6)
along the hydrostatic path. For the internal parameter ihSXC we find the following value: Si-C distance along thedirection,
u(Si-C)=0.3752 or bond lengtht o= 1.9031 A.[Experiments fint U(SI-C) ¢xp=0.376@, ({pondexp—1.8998 A] For 4-SiC we find
u(Si-C);=0.188, u(Si-C),=0.1874, u(Si-Si)=0.250@, in good agreement with the calculated values by Baeteal. (Ref. 20,
u(Si-C);=0.188x, u(Si-C),=0.1874, andu(Si-Si)=0.250&. A change of pseudopotentials in Ref. 20 from Bachelet-Hamann-@chlu
type®! to ultrasoft Vanderbilt pseudopotenti#flgyave the following values for the interatomic distance6Si-C),=0.188&, u(Si-C),
=0.187%, andu(Si-Si)=0.250G.

Present approach Experiment Murnaghan Birch

a,[A]l cla By[GPd B) a[A] cla By[GPd Bj By[GPd B, B,[GPd B

Co fcc 3.531 218 4.80 188% 214 4.47 216 4.65
bce 2.817 206 5.09 199.4  4.90 205 4.95

hep 2.500 1.617 223 470 2587 1.623° 190.32 5.07° 217 4.52 219 4.61

SiC T 4.376 213 3.93 4.3596 224°© 4.0f 212 3.87 213 3.91
2H 3.089 1.642 213 3.92 3.0 16419 223" 208 3.74 211 3.86

4H 3.092 3.274 213 3.93 3.0 3.271¢ 212 3.78 213 3.89

C Diamond  3.565 436 371 3.567 4421 4.07) 432 3.72 435 3.70
Si Diamond  5.466 88.7 435 54381 98.8' 4.09% 87.7 4.20 88.3 4.28

%Reference 23.
bReference 24.
‘Reference 25.
dReference 26.
®Reference 27.
'Reference 28.

9Reference 19.
PReference 29.

fReference 30.
JReference 31.
KReference 32.

the traditional Murnaghan equation of stafdntegrated to

give

depend on finite-pressure behavior beyond the pressure gra-
dient atp=0. If we are able to sample our theory system in
a sufficiently dense grid around the zero-pressure structure

BoV
Bo

(V(©/v)Bo
By—1

V(O)B0
Bo—1

the values oy, By, andB| in Egs.(3) and(4) are exact,

and can be related to the corresponding exact determination
of the elastic constants. Fits to empirical EOS may yield
results ofVy, By, andB| that are in good agreement with
experimental observations, but do nmcessarilyensure a
correct determination of the exact quadratic response.

For materials with multiple structure parameters, the pro-
cedure of the traditional approaches further becomes quite
awkward as it must be supplemented by a separate discus-
sion of how the experimental conditions define the relevant
structural constraint at a given volume, the hydrostatic path
x=x(V). Moreover, cross-correlations on thedimensional
energy surface are ignored in traditional fitting procedures.

) , ) These procedures are basically a one-dimensional fit in the
yield, to the eye, curves identical to the fourth-order polyno-,_qimensional space and they are thus more subject to nu-

mial fit and are not shown separately. In Murnaghan's andnerical noise in the data points than our approaches based on
Birch’s equations(5) and (6) the quantitiesBy, By, and  the multidimensional least-squares polynomial fit2
V(©, and in some cases also the cohesive en&gyare A simple multiparameter case illustrates this point. Figure
fitted. Other equations of state traditionally used are mens poth describes the energy surface, Ex, fitted through
tioned in Refs. 1 and 17. DFT calculations for Co, and shows the hydrostatic path
The values of the equilibrium lattice paramesgr and of  \yhich must be determined explicitly in the traditional
Bo and B, obtained from Eqgs(3) and (4) and from the methods:'®*” Our direct approactiEgs. (3) and (4)] does
Murnaghan and Birch fits are included in Table 1. Equationsnot require this explicit determination of the hydrostatic path.
(5) and(6) give bulk moduli and bulk modulus derivatives in Materials like Co, which have a nonideal hexagonal-close-
close agreement with our present direct approach, B3)s. packed(hcp) structure, graphite with its layered structure, or
and (4). the polytypes of SiC(Ref. 2 or alumina® have multiple
We would like to stress that the modBi, and B} are  lattice parameterglus relevant internal degrees of freedom
formally defined as zero-pressure quantities, and in no wayhich are, of course, no longer uniquely specified by the

Emun(V)=—Ep+ 5

or the Birch equation of stafé,integrated to give
9
Egi(V)=—Eotg BoVO[(VO\)23— 1712

9
+ 1—650v<0>{|3g,— A[(VO)v)HR-1]3

+0O[(VOv)2R—174, (6)
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and finally we extract the explicit results for the zero-

1.75 pressure bulk moduluB, and for its pressure derivative,
!
1.70 Bo. R ,
We illustrate the general derivation by focusing on a one-
] dimensional parameter spaggee.g., for the fcc or bcc one-
a5 5 ‘ atomic structure. Then the total energy can be fitted by the
polynomial
1.60 ‘
1.55 1 1
E(x)=k+ EM(X—X(O))Z-F g’y(X—X(O))s-i— f(x—x©)
1,50 '

: . (C)

2.6 2.7

2.5 alAl

wheref(x—x@)=0(x—x(®)* contains higher-order terms.
FIG. 2. Contour plot of the fourth-order polynomial fit to the Co The co<(efficient)5k M( y the) coefficients %ff(x—x(o)) as

hcp total energy, including the hydrostatic path. The hcp unit cell is . .
given by the two independent lattice parametarand c/a. The well as the optimal value of the lattice parameter at zero

0 itti ifi
contour step is 0.025 eV per unit céwo atoms. pressurex‘”’, are the fitting parameters to be specmed_, for
example, by a set of accurate underlying DFT calculations.

At small pressures, i.e., for lattice and internal parameter

volume but depend on the general materials conditions. The,| o5 close to the zero-pressure optimal valuespheerm

hydrostatic path defines the system when subject to uniformy, ye enthalpy is small and can be regarded as a perturbation
pressure(as relevant for the bulk modulus measurements o yhe system. To proceed we introduce a small, nondimen-

o e 7 . . .
The traditional approach¥s'” proceed by implementing this 021 and real paramet&rsuch that we can write the small

cgmplef{( cfc])nséralllilt mdthle equ::tjtu_)n gf state, E? or E(?' pressure ap=\pY) and the lattice-parameter variableas
(6), to fit the bulk modulus and its derivative. Instead, We:X(0)+)\X(l)+)\2x(2)+o()\3). The variablex(®), x@ .

present an explicit determination, Eq®8) and (4), based
directly on Eq.(1) expressed as a function of the underlying
crystalline structural parameters.

are unknown, are functions of the pressure, and must be
found in the following.

The bulk modulus expression requires calculation of the
volume V(x) and its pressure derivative. We write the vol-

Ill. DERIVATION u(rg)e in a Taylor expansion around the zero-pressure solution
x\%) as

Our direct bulk modulus evaluations, E¢3) and(4), are
the results of using the pressuiastead of the volumen a
formal identificz_ation of th_e hydrostatic path and then invol'<-' V(x) = V(x©) + A gx®+ 22 xPg+ i(x(l))ZH) +0(\3)
ing a systematic expansion in small pressure for an explicit 2!
specification 0B, andB(,. Today DFT and other materials- (10
theory bulk calculations are done with high accuracy, and we .
needyonly to vary the lattice parame?ers valueg slightiyVith g=dV/dx|,_xe and H=d*V/dxl,_ o). Here, the
around the optimal structure to approximate the total—energ?{ze)Ssure dependence enters through the variakies
curve by an accurate polynomial fit, E(L). The minimum X+« - - Thepressure derivative of the volume is thus
of the correspondingzero-temperatujeenthalpy (2) can

thus be used to directly specify the physically correct struc- N ox® ax@  ax@
tural configuration at any given pressyreThe set of these =g g + Hx® | +O(\?)
optimal structure-parameter valueg,q.p), traces out the p ap® ap®  gpM)
hydrostatic path which, when parametrizedfyys obtained (13)
by simply solving the equation

y SImpy 9 k and we determine the variables"), x(?), . .. by solving the

condition on the enthalpy given by E):
VH(x,p)=VE(X)+pVV(x)=0. (7)

0=\ (MxP+pBg)+12
We obtain a formal expression for the gendialessure de-
pendenk t_)ulk modulus by taking the derivative along this +0(\3). (12)
hydrostatic path

1
MX®)+ 2 y(xD)2+ pu)HXm)

The identity (12) must hold for every order and we thus
. obtain a formal pressure dependence of the lattice parameter:
(9V(thdro( p) )) (8)

B=—V(Xnyard p))( D

X(l): — p(l)M 7lg’ (13)
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1 lected in Table I. For reference, the experimental values are

X(2)=(P(1))2[ M~*HM ~'g— > M M ‘1gM‘1g] : also included, as well as the bulk moduli from a Murnaghan
(14) and Birch fit along the hydrostatic path.

We have calculated the structure and bulk modulus for

Finally, introducing these solutions into EG.1) we find  three multiparameter systems, as well as for a number of

for A\=0 the isothermal zero-pressure bulk modulus related one-parameter systems: the two-parameter hcp phase
. © of Co, the three-.paramet(éone interna)l wurtzite phase of
B =—V(x(°))<ﬂ) _ V™) (15 SiC (2H), the five-parametefthree internal parameters
° P/ o gM1g’ hexagonal # polytype of SiC, and the one-parameter bcc

and fcc phases of Co, the zinc-blen@€) phase of SiC and
and taking the derivative of V(dV/dp) ! with respect to  the diamond phases of C and Si.
p=xp™ we find atA =0, For the DFT calculations we used the plane-waxeAPO
I P codé with the generalized gradient approximation. For the
3gM""HM "“g—yM " "gM""gM""g _1 calculations of the Bl and 4H polytype of SiC we used 8
(gM~1g)2 ' X8X8 and 8<8x4 k points, respectively, to describe the
(16) Brillouin zone. For all other calculations ¥00x10 k
points were used. A uniform energy cutoff of 400 eV, and a
conservative choice of fast-Fourier transform grid was used.
For each evaluation of the optimal structure we calculated by
DFT a number of data points for the lattice param@jer
approximately within+10% from the expected optimal val-

Bo=V(x(?)

in the case when on@attice) parameter suffices to describe
the unit cell and its atom basis.

The above derivation is straightforwardly generalized to
materials systems in whiahindependent lattice and internal

parameters de_terr_nine the structure and the .bU|k modul_i Eqﬁe(s) of the lattice parametés). In the one-parameter sys-
(3) and(4), which is our main result. Thus, given a multidi- yo ¢ \e calculated 20—30 data points, for the Co hcp struc-
mensmnal fit(1) to the dgta,Bo and B, can be evaluated e 120 data points, for thekR polytype of SIiC 140 data
directly from the expression) and (4). We stress thaBy  sints, and for #-SiC we calculated 7500 data points. The
andBy are evaluated at zero pressure and thus the results a¢&, calculations were spin-polarized, yielding realistic values
exact in spite of the perturbatiol®, depends directly on of the spin polarization over the range of lattice-parameter
the second order aril; on the second and third order coef- yalues considered here.

ficients of the energy fitNI and y). We observe that the The traditional method that involves finding the structural
coefficients off (x—x()) [as defined in Eq9)] do not enter  minimum first, then determining the hydrostatic path, and
the expression for the bulk modul@8) or the pressure de- then from a fit to the hydrostatic path reading off the bulk
rivative of the bulk modulug4). However, their presence modulus and the bulk modulus pressure derivative, in prin-
may improve the fit(9), and thereby affect also the coeffi- ciple needs the same number of total-energy calculations as
cientsM and y, and thusBy andBj,. Internal parameters, the method presented here, but the latter gives numerically
which describe the positions of the atoms within the unit cellmore accurate results. With the same set of total-energy cal-
naturally do not enter the expression of the volume, and thusulations as input(for example, p” data points for an
not the volume derivativeg andH either, but do affecB,  n-parameter systenthe bulk moduli can be calculated either
and By throughM ~1, way. However, finding the local energy variation is more

Higher pressure derivatives of the bulk modulus may beaccurately done by one-dimensional fit to allp" data
found by taking into account the higher orders)fin the  points, as in the present method, than the traditional method
Taylor expansions af and the volume. The pressure deriva- of using p separate rf—1)-dimensional fits each tp("~ 1)
tives will depend on successively higher orders in the poly-data points, followed by one one-dimensional fit to the ap-
nomial fit. The derivation is straightforward if somewhat te- proximate minima of those fits. This last one-dimensional
dious. fit is often semiempiricalMurnaghan, Birch, or similar

Thus, in addition to being conceptually more correct than the
IV. EXAMPLES OF APPLICATIONS traditional method, our method also provides numerically
more accurate results.

As an example of the use of the algorithm for determining  The possibility of treating the external and internal param-
By andBj we evaluate the structure and bulk modulus of aeters collectively is important. For example, the variation of
selection of one- and two-species materials. We fit data obinternal bond length with pressure might be as important for
tained from DFT calculations, described in further detail be-the total energy as the change(@xterna) lattice parameters.
low, to fourth-order polynomials of the form(1) in Often, relaxation of the internal parameters is done with a
n-dimensional space, where=1, 2, 3, or 5. steepest-descent(or simila) search minimizing the

The pseudopotentials used in DFT calculations may bédellmann-Feynman forces to a certain cutoff at fixed lattice
optimized for various purposes, but should generally yieldparameters. Although in practice the atomic relaxation will
consistent and transferable accuracy and results. Here, vedten be a convenient way of obtaining the optimal position
have used some of the predefined pseudopotefitiaishe  of the atoms within the unit cell, the approach has two short-
open-source DFT programAcapo.’® The values that we comings: it introduces a random residual lattice strain, which
find for the lattice constants, fdBy, and forBj, are col- in turn affects the total energy, and further, the Hellmann-
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Feynman forces have a nontrivial dependence on the preser the SiC hexagonal polytypésWe show(a) how to ex-
sure acting on the unit cell and therefore a constant cutoff oploit this polynomial fit for a direct determination of the
the force will not correspond to a constant accuracy of thezero-pressure bulk modulu8, and its pressure derivative
total energy with varying pressure. Thus a better accuracy—B|,, avoiding the calculation of the hydrostatic path and the
and a consistent choice of accuracy—can be obtained byubsequent one-dimensional fit to this path. We further show
treating the lattice and internal parameters on an equal footh) how to consistently include internal parameters, such as
ing. This is here done for thel2 and the 4 polytype of  bond lengths or bonding angles, in the formalism along with
SiC. The results are shown in Table I. For the Murnaghanhe external lattice parameters. In addition, we have evalu-
and Birch values 0B, andB; we need to explicitly calcu- ated these formal results in explicit cases within our ap-
late the hydrostatic patflin (a,c/a,u) and @,c/a,uy,u,,us) proach, based on DFT calculations.
spacé before obtaining the fit. In contrast, we stress that
when using Eqgs(3) and (4) there is no need to explicitly
calculate the hydrostatic path, which is here done purely for ACKNOWLEDGMENTS
illustrational purposes.
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