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Theory for structure and bulk modulus determination
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A method for direct evaluation of both lattice parameters, atomic basis, bulk modulusB0, and bulk-modulus
pressure derivativeB08 of solid materials with complex crystal structures is presented. The explicit and exact
results presented here permit a multidimensional polynomial fit of the total energy as a function of all relevant
structure parameters to simultaneously determine the equilibrium configuration and the elastic properties. The
method allows for inclusion of general~internal! structure parameters, e.g., bond lengths and angles within the
unit cell, on an equal footing with the unit-cell lattice parameters. The method is illustrated by the calculation
of B0 andB08 for a few selected materials with multiple structure parameters for which data are obtained by
using first-principles density-functional theory.
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I. INTRODUCTION

Calculations of bulk ground-state properties, such as
tice constants, atomic positions, bond lengths, and b
modulus, play an important role in the physics of conden
matter.1–6 Bulk calculations help us to understand, charac
ize, and predict mechanical properties of materials in
surroundings, under extreme conditions, as in geological
mations and settings,7 and for industrial applications.6,8 Crys-
talline materials come in many different structures and,
contrast to isotropic materials, the description of the grou
state of crystalline materials may in general need multi
lattice parameters and an atomic basis. In this paper we
cuss how to determine the equilibrium structure parame
of a ~multiparameter! crystalline material while, at the sam
time, directly determining the bulk modulus and the bu
modulus pressure derivative. We argue and show that
theoretical structure calculations of multiparameter syste
this is simpler and more exact9 than fitting to~semi!empirical
equations of state~EOS!, such as the Murnaghan or Birc
EOS. In particular, with our direct method there is no need
first determine the hydrostatic path of the system. We furt
discuss how to include the atomic basis in this process
natural way.

In crystalline materials described by a single lattice p
rameter~e.g., monatomic cubic phases! the lattice paramete
is a simple function of the unit-cell volume, and the equili
rium volume thus uniquely determines the equilibrium stru
ture, i.e., the value of the lattice parameter. This is not
case when multiple lattice parameters characterize the
tem and a whole range of lattice-parameter values can f
the same unit-cell volume. The equilibrium structure of t
material must then be found by fitting and minimizing t
free energy within the multidimensional space of lattice p
rameters, given the space group of the material.2,5,10Relevant
variables describing the atomic basis~e.g., bond lengths o
binding angles! may be included among the parameters, a
the full set of lattice parameters and internal~atomic basis!
parameters are collected into the vectorx, scaled to dimen-
sionless form. The volume of the unit cellV(x) depends in a
simple way on the values of the lattice parameters describ
the unit cell, but not on the internal atomic configuratio
0163-1829/2003/68~6!/064112~7!/$20.00 68 0641
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Nevertheless, we here treat the external and internal par
eters on an equal footing.

From theory bulk calculations the total energy~per unit
cell! E(x) is found for a number of structuresx. The elastic
response of typical hard crystalline materials correspond
small deviationsdx5x2x(0) of the structural parameter
from the equilibrium structurex(0). The observation that the
total energy forms a natural potential~hyper!surface in the
parameter space of lattice and internal parametersx, com-
bined with the accuracy of present-day bulk-calculati
methods~such as density-functional theory, embedded at
methods, or effective-medium theory!, then makes it possible
to fit the corresponding total-energy variation through t
multidimensional fit

E~x!5k1
1

2
Mi j dxidxj1

1

3!
g i j l dxidxjdxl1O~dx!4

~1!

at controlled accuracy. Herek, M, and g denote zeroth-,
second-, and third-rank tensors of fitting constants resp
tively. An additional set of fitting constants are thex(0) hid-
den indx5x2x(0). The polynomial fit~1! gives a transpar-
ent description of the materials-structure energy variat
and directly determines the equilibrium structurex(0). In this
paper we exploit and use the structure calculation, i.e.,
multidimensional polynomial fit of the total energy~1! for an
additional and direct determination of the zero-pressure b
modulusB052V(x(0))(]p/]V)ux5x(0) and its pressure de
rivative B0852]$V(]p/]V)%/]pux5x(0) at zero temperature.

For a general set of structure parametersx we expand the
volume around the equilibrium configurationx(0) using the
gradient g5¹V(x)ux5x(0) and the Hessian H
5H(V(x))ux5x(0)5@$]2V(x)/(]xi]xj )% i j #x5x(0) of the vol-
ume. We note that derivatives of the volume with respec
the internal parameters vanish, by definition. By providing
systematic treatment of the structural changes induced by
pressurep52]E/]V we extract from the minimum of the
zero-temperature enthalpy
©2003 The American Physical Society12-1
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H~x,p!5E~x!1pV~x! ~2!
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B05
V~x(0)!

gTM 21g
~3!

and the bulk modulus pressure derivative
B085V~x(0)!
3gTM 21HM 21g2g i j l ~M 21g! i~M 21g! j~M 21g! l

~gTM 21g!2
21. ~4!
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The algorithm outlined above can also be applied to the c
responding direct determinations of general harmonic11,12

and anharmonic elastic properties13 such as the second- an
third-order elastic constantsCi j andCi jk .

Our results both enhance the theory understanding of
crystalline mechanical properties and simplify the desi
testing of theory calculations as they combine the form
determination of the crystalline structure@Eq. ~1!# and of the
elastic properties@Eqs.~3! and~4!#. The equilibrium volume,
the crystallographic parameters, and the bulk modulus,
scribing the material’s resistance to hydrostatic stress,
vide simple experimental tests against which we can co
pare and calibrate our calculations.14 For example, from Eqs
~1! and ~2!, we can directly identify which~internal! struc-
ture parameters soften the bulk modulus~3! and we may, in
turn, strengthen the materials by suitable chemical or st
tural modification.

Besides the direct relevance of our results for the desc
tion of complex materials, our calculations of bulk structu
and bulk modulus calculations are also of interest for dev
opment of pseudo-potential-based density-functional-the
~DFT! methods and for methods using empirical paramet
There, a first and critical test of the pseudopotential or
empirical parameters is whether the calculations predic
correct materials structure, binding, and elastic properties
the relevant equilibrium configuration. Present DFT script15

can automate some pseudopotential testing for simple m
rials and symmetries, our formal results generalize such t
ing of theory accuracy to cases when multiple structural
rameters determine the elastic properties.

The outline of this paper is as follows. In Sec. II w
discuss the traditional methods of determining the b
modulus for single-parameter and multiparameter syste
In Sec. III we derive our expressions for the bulk modu
and the bulk modulus derivative, Eqs.~3! and ~4!, for the
simple one-parameter problem~e.g., monoatomic fcc or bcc
structures!, easily generalized to then-parameter problem. In
Sec. IV we proceed to illustrate and test the algorithm o
number of monoatomic and diatomic materials based
first-principle DFT calculations and comparison to expe
ments. Comparisons ofB0 andB08 , together with the test o
the lattice and structure parameters themselves, represen
typical test of materials-theory accuracy. Section V conta
the conclusion.

II. BACKGROUND

A theory determination of the zero-temperature bu
modulus based on either traditional methods1,16,17or our for-
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mal result~3! is straightforward when one single structur
parameter~e.g., the lattice parametera) defines the crystal-
line state. This situation applies for monatomic crystals w
simple cubic ~sc!, face-centered cubic~fcc!, and body-
centered cubic~bcc! symmetries. Here, the unit-cell volum
V(a)5qa3 uniquely determines the lattice parametera
through a dimensionless numberq which depends on the
crystal symmetry (q51, q51/4, andq51/2 for sc, fcc, and
bcc lattices, respectively!. All that is required are theory cal
culations of total energies for a range ofa values to deter-
mine both the equilibrium structurea0 and the equilibrium
volumeV(0). The total energy per unit cell,E(a) @as in Eq.
~1!#, can then be expressed as a function of the unit-
volumeE(V).

The general approach is illustrated by the example in F
1, which shows the total energy as a function of the latt
parametera for the zinc-blende phase of SiC~3C-SiC!, as
found from DFT calculations. A parabola fit to the 15 da
points closest to the equilibrium value ofa and a fourth-
order polynomial fit to all data points are shown. Fits usi

FIG. 1. The total energy per unit cell~two atoms! as a function
of the lattice parametera for the 3C polytype of SiC. The circles are
the data points obtained from density-functional-theory calcu
tions. Solid line: Fourth-order polynomial fit as used for the valu
in Table I. Dashed line: Second-order polynomial fit to the 15 c
tral data points.
2-2



lu

5

THEORY FOR STRUCTURE AND BULK MODULUS . . . PHYSICAL REVIEW B 68, 064112 ~2003!
TABLE I. Bulk properties calculated from density-functional-theory data obtained directly from Eqs.~3! and ~4! via a fourth-order
polynomial fit ~‘‘Present approach’’!, available experimental values, and values from fits to Murnaghan’s and Birch’s equations~5! and~6!
along the hydrostatic path. For the internal parameter in 2H-SiC we find the following value: Si-C distance along thec direction,
u(Si-C)50.3752c or bond length,bond51.9031 Å. @Experiments find19 u~Si-C!exp50.3760c, (,bond)exp51.8998 Å] For 4H-SiC we find
u~Si-C!150.1880c, u(Si-C)250.1874c, u(Si-Si)50.2500c, in good agreement with the calculated values by Baueret al. ~Ref. 20!,
u(Si-C)150.1881c, u(Si-C)250.1874c, andu(Si-Si)50.2500c. A change of pseudopotentials in Ref. 20 from Bachelet-Hamann-Sch¨ter
type21 to ultrasoft Vanderbilt pseudopotentials22 gave the following values for the interatomic distances:u(Si-C)150.1880c, u(Si-C)2
50.1875c, andu(Si-Si)50.2500c.

Present approach Experiment Murnaghan Birch
a0 @Å# c/a B0 @GPa# B08 a0 @Å# c/a B0 @GPa# B08 B0 @GPa# B08 B0 @GPa# B08

Co fcc 3.531 218 4.80 188.9a 214 4.47 216 4.65
bcc 2.817 206 5.09 199.4 4.90 205 4.9
hcp 2.500 1.617 223 4.70 2.507b 1.623b 190.3a 5.07c 217 4.52 219 4.61

SiC 3C 4.376 213 3.93 4.3596d 224e 4.0f 212 3.87 213 3.91
2H 3.089 1.642 213 3.92 3.079g 1.641g 223h 208 3.74 211 3.86
4H 3.092 3.274 213 3.93 3.073d 3.271d 212 3.78 213 3.89

C Diamond 3.565 436 3.71 3.567i 442i 4.07j 432 3.72 435 3.70
Si Diamond 5.466 88.7 4.35 5.431i 98.8i 4.09k 87.7 4.20 88.3 4.28

aReference 23. gReference 19.
bReference 24. hReference 29.
cReference 25. iReference 30.
dReference 26. jReference 31.
eReference 27. kReference 32.
fReference 28.
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the traditional Murnaghan equation of state,16 integrated to
give

EMurn~V!52E01
B0V

B08
F ~V(0)/V!B08

B0821
11G2

V(0)B0

B0821
~5!

or the Birch equation of state,17 integrated to give

EBir~V!52E01
9

8
B0V(0)@~V(0)/V!2/321#2

1
9

16
B0V(0)$B0824%@~V(0)/V!2/321#3

1O@~V(0)/V!2/321#4, ~6!

yield, to the eye, curves identical to the fourth-order polyn
mial fit and are not shown separately. In Murnaghan’s a
Birch’s equations~5! and ~6! the quantitiesB0 , B08 , and
V(0), and in some cases also the cohesive energyE0, are
fitted. Other equations of state traditionally used are m
tioned in Refs. 1 and 17.

The values of the equilibrium lattice parametera0, and of
B0 and B08 obtained from Eqs.~3! and ~4! and from the
Murnaghan and Birch fits are included in Table I. Equatio
~5! and~6! give bulk moduli and bulk modulus derivatives
close agreement with our present direct approach, Eqs~3!
and ~4!.

We would like to stress that the moduliB0 and B08 are
formally defined as zero-pressure quantities, and in no w
06411
-
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s

y

depend on finite-pressure behavior beyond the pressure
dient atp50. If we are able to sample our theory system
a sufficiently dense grid around the zero-pressure struc
the values ofV0 , B0, andB08 in Eqs. ~3! and ~4! are exact,
and can be related to the corresponding exact determina
of the elastic constants. Fits to empirical EOS may yie
results ofV0 , B0, andB08 that are in good agreement wit
experimental observations, but do notnecessarilyensure a
correct determination of the exact quadratic response.

For materials with multiple structure parameters, the p
cedure of the traditional approaches further becomes q
awkward as it must be supplemented by a separate dis
sion of how the experimental conditions define the relev
structural constraint at a given volume, the hydrostatic p
x5x(V). Moreover, cross-correlations on then-dimensional
energy surface are ignored in traditional fitting procedur
These procedures are basically a one-dimensional fit in
n-dimensional space and they are thus more subject to
merical noise in the data points than our approaches base
the multidimensional least-squares polynomial fit~1!.2

A simple multiparameter case illustrates this point. Figu
2 both describes the energy surface, Eq.~1!, fitted through
DFT calculations for Co, and shows the hydrostatic p
which must be determined explicitly in the tradition
methods.1,16,17 Our direct approach@Eqs. ~3! and ~4!# does
not require this explicit determination of the hydrostatic pa
Materials like Co, which have a nonideal hexagonal-clo
packed~hcp! structure, graphite with its layered structure,
the polytypes of SiC~Ref. 2! or alumina,6 have multiple
lattice parameters~plus relevant internal degrees of freedom!
which are, of course, no longer uniquely specified by
2-3



Th
or
ts
s

e

ng

k
lic
-
w
tl
rg

uc

is

o-
,

e-
-
the

.

ero
for
s.
ter

tion
en-
ll

be

the
l-
tion

s
eter:

o
ll i

ELENI ZIAMBARAS AND ELSEBETH SCHRÖDER PHYSICAL REVIEW B68, 064112 ~2003!
volume but depend on the general materials conditions.
hydrostatic path defines the system when subject to unif
pressure~as relevant for the bulk modulus measuremen!.
The traditional approaches16,17proceed by implementing thi
complex constraint in the equation of state, Eq.~5! or Eq.
~6!, to fit the bulk modulus and its derivative. Instead, w
present an explicit determination, Eqs.~3! and ~4!, based
directly on Eq.~1! expressed as a function of the underlyi
crystalline structural parameters.

III. DERIVATION

Our direct bulk modulus evaluations, Eqs.~3! and~4!, are
the results of using the pressure~instead of the volume! in a
formal identification of the hydrostatic path and then invo
ing a systematic expansion in small pressure for an exp
specification ofB0 andB08 . Today DFT and other materials
theory bulk calculations are done with high accuracy, and
need only to vary the lattice parameters values sligh
around the optimal structure to approximate the total-ene
curve by an accurate polynomial fit, Eq.~1!. The minimum
of the corresponding~zero-temperature! enthalpy ~2! can
thus be used to directly specify the physically correct str
tural configuration at any given pressurep. The set of these
optimal structure-parameter values,xhydro(p), traces out the
hydrostatic path which, when parametrized byp, is obtained
by simply solving the equation

¹H~x,p!5¹E~x!1p¹V~x!50. ~7!

We obtain a formal expression for the general~pressure de-
pendent! bulk modulus by taking the derivative along th
hydrostatic path

B52V„xhydro~p!…S ]V„xhydro~p!…

]p D 21

, ~8!

FIG. 2. Contour plot of the fourth-order polynomial fit to the C
hcp total energy, including the hydrostatic path. The hcp unit ce
given by the two independent lattice parametersa and c/a. The
contour step is 0.025 eV per unit cell~two atoms!.
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and finally we extract the explicit results for the zer
pressure bulk modulusB0 and for its pressure derivative
B08 .

We illustrate the general derivation by focusing on a on
dimensional parameter spacex, e.g., for the fcc or bcc one
atomic structure. Then the total energy can be fitted by
polynomial

E~x!5k1
1

2
M ~x2x(0)!21

1

3!
g~x2x(0)!31 f ~x2x(0)!

~9!

where f (x2x(0))5O(x2x(0))4 contains higher-order terms
The coefficientsk, M, g, the coefficients off (x2x(0)), as
well as the optimal value of the lattice parameter at z
pressure,x(0), are the fitting parameters to be specified,
example, by a set of accurate underlying DFT calculation

At small pressures, i.e., for lattice and internal parame
values close to the zero-pressure optimal values, thepV term
in the enthalpy is small and can be regarded as a perturba
of the system. To proceed we introduce a small, nondim
sional and real parameterl such that we can write the sma
pressure asp5lp(1) and the lattice-parameter variable asx
5x(0)1lx(1)1l2x(2)1O(l3). The variablesx(1), x(2), . . .
are unknown, are functions of the pressure, and must
found in the following.

The bulk modulus expression requires calculation of
volume V(x) and its pressure derivative. We write the vo
ume in a Taylor expansion around the zero-pressure solu
x(0) as

V~x!5V~x(0)!1lgx(1)1l2S x(2)g1
1

2!
~x(1)!2H D1O~l3!

~10!

with g5dV/dxux5x(0) and H5d2V/dx2ux5x(0). Here, the
pressure dependence enters through the variablesx(1),
x(2), . . . . Thepressure derivative of the volume is thus

]V~x!

]p
5g

]x(1)

]p(1)
1lS g

]x(2)

]p(1)
1

]x(1)

]p(1)
Hx(1)D 1O~l2!

~11!

and we determine the variablesx(1), x(2), . . . by solving the
condition on the enthalpy given by Eq.~7!:

05l~Mx(1)1p(1)g!1l2S Mx(2)1
1

2
g~x(1)!21p(1)Hx(1)D

1O~l3!. ~12!

The identity ~12! must hold for every order and we thu
obtain a formal pressure dependence of the lattice param

x(1)52p(1)M 21g, ~13!

s

2-4
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x(2)5~p(1)!2H M 21HM 21g2
1

2
M 21gM 21gM21gJ .

~14!

Finally, introducing these solutions into Eq.~11! we find
for l50 the isothermal zero-pressure bulk modulus

B052V~x(0)!S ]V

]p D
x5x(0)

21

5
V~x(0)!

gM21g
, ~15!

and taking the derivative of2V(]V/]p)21 with respect to
p5lp(1) we find atl50,

B085V~x(0)!
3gM21HM 21g2gM 21gM21gM21g

~gM21g!2
21,

~16!

in the case when one~lattice! parameter suffices to describ
the unit cell and its atom basis.

The above derivation is straightforwardly generalized
materials systems in whichn independent lattice and interna
parameters determine the structure and the bulk moduli E
~3! and~4!, which is our main result. Thus, given a multid
mensional fit~1! to the data,B0 and B08 can be evaluated
directly from the expressions~3! and ~4!. We stress thatB0

andB08 are evaluated at zero pressure and thus the result
exact in spite of the perturbation.B0 depends directly on
the second order andB08 on the second and third order coe
ficients of the energy fit (M and g). We observe that the
coefficients off (x2x(0)) @as defined in Eq.~9!# do not enter
the expression for the bulk modulus~3! or the pressure de
rivative of the bulk modulus~4!. However, their presenc
may improve the fit~9!, and thereby affect also the coeffi
cientsM and g, and thusB0 and B08 . Internal parameters
which describe the positions of the atoms within the unit c
naturally do not enter the expression of the volume, and t
not the volume derivativesg andH either, but do affectB0

andB08 throughM 21.
Higher pressure derivatives of the bulk modulus may

found by taking into account the higher orders ofl in the
Taylor expansions ofx and the volume. The pressure deriv
tives will depend on successively higher orders in the po
nomial fit. The derivation is straightforward if somewhat t
dious.

IV. EXAMPLES OF APPLICATIONS

As an example of the use of the algorithm for determin
B0 andB08 we evaluate the structure and bulk modulus o
selection of one- and two-species materials. We fit data
tained from DFT calculations, described in further detail b
low, to fourth-order polynomials of the form~1! in
n-dimensional space, wheren51, 2, 3, or 5.

The pseudopotentials used in DFT calculations may
optimized for various purposes, but should generally yi
consistent and transferable accuracy and results. Here
have used some of the predefined pseudopotentials18 of the
open-source DFT programDACAPO.15 The values that we
find for the lattice constants, forB0, and for B08 , are col-
06411
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lected in Table I. For reference, the experimental values
also included, as well as the bulk moduli from a Murnagh
and Birch fit along the hydrostatic path.

We have calculated the structure and bulk modulus
three multiparameter systems, as well as for a numbe
related one-parameter systems: the two-parameter hcp p
of Co, the three-parameter~one internal! wurtzite phase of
SiC (2H), the five-parameter~three internal parameters!
hexagonal 4H polytype of SiC, and the one-parameter b
and fcc phases of Co, the zinc-blende~3C! phase of SiC and
the diamond phases of C and Si.

For the DFT calculations we used the plane-waveDACAPO

code15 with the generalized gradient approximation. For t
calculations of the 2H and 4H polytype of SiC we used 8
3838 and 83834 k points, respectively, to describe th
Brillouin zone. For all other calculations 10310310 k
points were used. A uniform energy cutoff of 400 eV, and
conservative choice of fast-Fourier transform grid was us
For each evaluation of the optimal structure we calculated
DFT a number of data points for the lattice parameter~s!
approximately within610% from the expected optimal va
ue~s! of the lattice parameter~s!. In the one-parameter sys
tems we calculated 20–30 data points, for the Co hcp st
ture 120 data points, for the 2H polytype of SiC 140 data
points, and for 4H-SiC we calculated 7500 data points. Th
Co calculations were spin-polarized, yielding realistic valu
of the spin polarization over the range of lattice-parame
values considered here.

The traditional method that involves finding the structu
minimum first, then determining the hydrostatic path, a
then from a fit to the hydrostatic path reading off the bu
modulus and the bulk modulus pressure derivative, in p
ciple needs the same number of total-energy calculation
the method presented here, but the latter gives numeric
more accurate results. With the same set of total-energy
culations as input~for example, pn data points for an
n-parameter system! the bulk moduli can be calculated eithe
way. However, finding the local energy variation is mo
accurately done by onen-dimensional fit to allpn data
points, as in the present method, than the traditional met
of using p separate (n21)-dimensional fits each top(n21)

data points, followed by one one-dimensional fit to the a
proximate minima of thosep fits. This last one-dimensiona
fit is often semiempirical~Murnaghan, Birch, or similar!.
Thus, in addition to being conceptually more correct than
traditional method, our method also provides numerica
more accurate results.

The possibility of treating the external and internal para
eters collectively is important. For example, the variation
internal bond length with pressure might be as important
the total energy as the change in~external! lattice parameters
Often, relaxation of the internal parameters is done with
steepest-descent~or similar! search minimizing the
Hellmann-Feynman forces to a certain cutoff at fixed latt
parameters. Although in practice the atomic relaxation w
often be a convenient way of obtaining the optimal positi
of the atoms within the unit cell, the approach has two sho
comings: it introduces a random residual lattice strain, wh
in turn affects the total energy, and further, the Hellman
2-5
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Feynman forces have a nontrivial dependence on the p
sure acting on the unit cell and therefore a constant cutof
the force will not correspond to a constant accuracy of
total energy with varying pressure. Thus a better accurac
and a consistent choice of accuracy—can be obtained
treating the lattice and internal parameters on an equal f
ing. This is here done for the 2H and the 4H polytype of
SiC. The results are shown in Table I. For the Murnagh
and Birch values ofB0 andB08 we need to explicitly calcu-
late the hydrostatic path@in (a,c/a,u) and (a,c/a,u1 ,u2 ,u3)
space# before obtaining the fit. In contrast, we stress th
when using Eqs.~3! and ~4! there is no need to explicitly
calculate the hydrostatic path, which is here done purely
illustrational purposes.

V. CONCLUSION

In summary, we have presented a direct algorithm fo
combined determination of structure and bulk moduliB0 and
B08 . The lattice constants of a multiparameter system are
found in a least-squares polynomial fit, as previously notic
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2P. Käckell, B. Wenzien, and F. Bechstedt, Phys. Rev. B50, 17 037
~1994!.

3C. Persson and E. Janze´n, J. Phys.: Condens. Matter10, 10 549
~1998!.
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