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Fractal Particle Trajectories in Capillary Waves: Imprint of Wavelength
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(Received 2 December 1996; revised manuscript received 26 June 1997)

We examine particle trajectories in capillary waves formed on a water surface subject to vertical
vibrations. We focus on the role of a distinct length scale present in our experiment, namely, the wave-
length l of the surface waves. We observe non-Brownian particle trajectories with a fractal dimen-
sion D different from the random walk valueD ­ 2. A crossover is observed from one anomalous
behavior at length scales belowl, to another at larger length scales. Data collapse is shown to be
feasible, and scaling functions characterizing the crossover are identified. Our results are compared to
those obtained from observations of drifters in the upper ocean. The distinct length scalel allows us to
divide the particle trajectories into flights and traps. The distribution of flight times shows a power-law
behavior with an exponent between 2.3 and 3. [S0031-9007(97)04033-7]

PACS numbers: 47.20.Dr, 05.40.+ j, 47.27.Qb, 47.52.+ j
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Studies of the turbulent motion of drifters in the u
per ocean [1–3] have shown that the drifter motion p
sesses a significant persistence, which is not presen
ordinary Brownian motion. Rather, the motion seems
be better described as a fractional Brownian motion w
anomalous dispersion properties. For example, forxstd
being one component of the horizontally projected drif
trajectoryrstd ­ fxstd, ystdg, the single particle dispersio
V std ­ kfxst 1 td 2 xstdg2l increases as a power law i
time t, V std , t2H , where the “fractional Brownian mo
tion” exponent2H is larger than the unit value found fo
ordinary Brownian motion. Also, the fractal dimensio
D for the drifter trajectories has been determined ba
on the “yardstick method” [4], and the value obtained
D is significantly smaller than the Brownian motion res
D ­ 2, and in good agreement with the valueD ­ 1yH
derived for a fractional Brownian motion [4]. Moreove
the values ofH and D reported for different geographi
locations are found to have surprisingly little variation.

In the experiment reported here the motion of partic
on surface waves is studied on much smaller time
length scales than those considered in the upper-oc
studies. The surface waves are formed in a cylindr
container (interior diameter­ 8.4 cm and height­ 2 cm)
filled with water to a height of approximately 1 cm, an
vertically vibrated at a frequency of 260 Hz. At vibra
tion amplitudesA above a critical amplitudeAc, capil-
lary surface waves are formed with a wavelengthl of
approximately 2.6 mm. The particles used were mu
room spores of size,50 mm. The motion of the particles
was recorded by a charge-coupled device (CCD) cam
to a VCR sampling at 50 Hz, thus storing the horizon
position of the particles at 20 ms intervals [5]. Thousan
of particle trajectories were in this way collected a
analyzed for seven different values of the reduced con
parametere ­ sA 2 AcdyAc, ranging frome ­ 0.05 to
e ­ 1.06. The trajectories were obtained on a time sc
from 20 ms to 30 s and a length scale from 0.1 to 50 m
Two examples of trajectories are shown in Fig. 1.
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Measurements on single particle dispersion in capilla
surface waves have previously been analyzed on a t
scale above 1 s by Ramshankar, Berlin, and Gollub (RB
[6]. On a time scale of approximately 1 s the particle
found to move a wavelength or so, the distance increas
with the value ofe. In the regime above this time an
length scale, the single particle dispersion exponent2H is
found to vary from2H , 1.3 at small values ofe to the
Brownian value2H ­ 1 at larger values ofe.

In the present experiment both the particle dispersion
ponent2H and the fractal dimensionD of our particle tra-
jectories are determined. Moreover, we take the analy
to smaller time and length scales. Although the turbule
flow may show an almost Brownian particle dispersion
large length scales, there is still a distinct length scale
the fluid system, namely, the wavelengthl. It is insuffi-
cient to describe the particle motion in terms of a sing
fractional Brownian motion characterized only by the e
ponent2H , 1.0 1.3 when length scales both smaller an

FIG. 1. Two particle trajectories fore ­ 0.05 divided into
flights (thin lines) and traps (thick lines).
© 1997 The American Physical Society 1845
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larger than the wavelengthl are taken into account. Ou
experiment addresses this point. How does the flow
large length scales relate to the flow on small length sca
Our results show that the description of the particle mot
as a fractional Brownian motion at length scales above
wavelength can be extended to all length scales by c
voluting the motion with another fractional Brownian mo
tion that has a persistence length limited to the wavelen
We find the latter motion to be characterized by a univer
exponent2Hl . 1.55 and a fractal dimensionDl . 1.3,
surprisingly independent of the vibration amplitude.
scaling function is identified, which significantly extend
the scaling range over which the exponent2H is deter-
mined.

Figure 2(a) shows the varianceV std obtained for seven
values ofe, 0.05 # e # 1.06. There was no preferenc

FIG. 2. (a) VarianceV std obtained fore ­ 0.05, 0.13, 0.24,
0.34, 0.65, 0.86, and 1.06 (top curve). The dotted horizon
line is whereV std ­ l2y2. The times at which the curve
cross this line are denotedtcsed. Inset: The decay oftcsed is
approximately exponential,tcsed . tcs0d exps21.8ed. (b) The
dispersion curves shown in (a) are collapsed into a sca
function by rescaling the curves according to ane-dependent
exponent2H, whereH is given in Table I.
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for any spatial direction in the horizontal plane. The vari
ance obtained by projecting the horizontal motionrstd
onto two perpendicular directionsxstd, ystd we found
(as RBG) to be the same. The dotted horizontal line
Fig. 2(a) is whereV std ­ l2y2, and the timestcsed at
which the curves cross this line are the characteristic tim
associated with the distinct length scalel. All curves
show a crossover at this length scale from one behavi
abovel, where the particle motion at largee becomes
Brownian, to a steeper power-law behavior at lengt
scales smaller thanl. The crossover timetc decreases
with growing vibration amplitude; the particles simply
move faster for higher amplitudes. The decay oftc is ap-
proximately exponential ine, tcsed . tcs0d exps21.8ed,
where tcs0d . 600 ms [inset of Fig. 2(a)]. We notice
thattcs0d is more than 2 orders of magnitude smaller tha
the molecular diffusion time associated withl.

In order to determine the “large-scale” exponent2H for
the variance (scales larger thanl), we first normalized the
time by the characteristic timetcsed. Second, we rescaled
this dimensionless time by an exponent2Hsed. For e ­
1.06 the exponent was identified to have the Brownian mo
tion value 1. Assuming that the variance scales asV std ,
t2H , we expect the data to collapse at length scales abovel

if the values of2H are correctly chosen (Table I). Indeed
the data collapse is very good [Fig. 2(b)]. However, w
not only find data collapse abovel. The data collapse ex-
tends over the entire scaling regime. The scaling functio
obtained shows a crossover from one power-law beha
ior characterized by the exponent2Hl ­ 1.55 6 0.05 to
the behavior of an ordinary Brownian motion (2H ­ 1).
Such a behavior can be modeled by a fractional Brownia
motion with a limited persistence imposed. The existenc
of a scaling function across the entire time regime studie
provides a more accurate estimate of the exponent2Hsed,
compared to estimating a large-scale exponent direc
from Fig. 2(a) (or from the corresponding curves in RBG)

The higher momentskfxst 1 td 2 xstdgnl for the par-
ticle dispersion were also considered. An analysis simila
to the above shows that thenth absolute moment scales
as V stdzn , where zn is found to be very close tony2.
However, a more detailed analysis of deviations from
Gaussian behavior gave some further insight. In partic
lar, we find generally that the skewness (derived from th
third moment) changes sign, from being positive at tim

TABLE I. The values ofHsed, 1yHsed, and Dsed obtained
by rescaling.

e Hsed 1yHsed Dsed
0.05 0.63 1.59 1.65
0.13 0.59 1.69 1.72
0.24 0.57 1.77 1.76
0.34 0.55 1.82 1.81
0.65 0.54 1.87 1.89
0.86 0.53 1.87 1.95
1.06 0.50 2.00 2.00
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scales belowtc to being negative at time scales abo
tc. This emphasizes the presence of two dynamica
distinct diffusion processes, one of them having the p
sistence lengthl. In addition, the kurtosis (derived from
the fourth moment) is found always to be positive on
scales, however, decreasing with increasingt. Thus the
underlying distribution becomes flatter at larger scales
is usually the case for turbulent motion. The deviati
from a Gaussian distribution is more pronounced at lar
forcings (largere).

Next, we determine the fractal dimension of our traje
tories. The trajectories are defined by linear interpolat
between successive data points. We apply the stan
“yardstick” method [4], where the length of the trajecto
is measured on various scalesh. The fractal dimension
D of the trajectory is defined from the numberNshd of
yardsticks used,Nshd , h2D. For ordinary Brownian
motion D ­ 2, while D ­ 1yH , 2 for persistent frac-
tional Brownian motion. Figure 3 shows our results f
Nshd. In the plot the scaleh is measured in units of the
wavelengthl, and the numberN of yardsticks is normal-
ized to the number obtained ath ­ l. To find Nshd, we
constructed one long “trajectory” by translating the traje
tories so that the end point of one trajectory was identifi
with the starting point of another. Naturally, the scaleh

must be chosen smaller than the typical size of a sin
track. The maximal value of scale in Fig. 3 is set
hmax ­ 10 mm. At hmax, 90% of the trajectories have
a size larger than this scale. The lower scale limithmin

(the smallest yardstick used) is set by the typical dista
between two successive data points, i.e., the typical
tance a particle moves in 20 ms. More precisely,hmin is

FIG. 3. NumberNshd of yardsticks used to follow the particle
trajectories on scaleh, normalized to the number used a
h ­ l (log-log plot). The curves showNshd for e ­ 0.05,
0.13, 0.24, 0.34, 0.65, 0.86, and 1.06 (steepest curve).
scaleh is measured in units of the wavelengthl. Inset: The
Nshd curves are collapsed into a scaling function by rescal
the curves according to ane-dependent exponentDy2, where
D is given in Table I.
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defined as the scale where 90% of the distances betw
successive data points are less thanhmin. Since particles
move faster at larger values ofe, hmin increases withe.

The curves in Fig. 3 can be collapsed into one b
rescaling the scaleh by ane-dependent exponentDsedy2,
whereD ­ 2 for the largest value ofe (inset of Fig. 3).
We find that the obtained value ofDsed is in good agree-
ment with the estimate1yHsed of the fractal dimension
obtained from the single particle dispersion (Table I
Again the data collapse extends across the wavelen
scale. The scaling function obtained shows a crosso
from a power-law behavior characterized by the expone
Dl ­ 1.30 6 0.05 to the behavior of an ordinary Brown-
ian motion (D ­ 2). We note thatDl ­ 1yHl.

In upper-ocean studies of the motion of drifters [1
3], the time scales and length scales considered are
order 1–10 days and 10–100 km, respectively. Bo
the dispersion exponentH and the fractal dimensionD
have been determined. The values ofH andD reported
from different geographic locations are found to hav
surprisingly little variation. The values2H , 1.5 1.6
and D , 1.3 are found in the northeast Atlantic Ocea
(Rockall Trough) [1], in the northwest Atlantic Ocean
(Conception Bay, Newfoundland) [2], and in the Pacifi
Ocean near Japan (Kuroshio extension) [3]. Moreov
the relationD ­ 1yH seems to hold quite well. It is
intriguing that (but unclear why) the observed upper-oce
values of H and D are the same as the small length
scale resultsHl andDl that we obtain for large vibration
amplitudes [see the scaling functions in Fig. 2(b) and t
inset of Fig. 3]. In the present experiment the crossover
ordinary Brownian motion is observed at the waveleng
scale. In upper-ocean studies the corresponding crosso
scale is more than 100 km, at which the dynamics
governed by Rossby waves and zonal flows (the larg
eddies) [3].

The exponent2H , 1.5 1.6 obtained from ocean stud-
ies has also been associated with numerical results obtai
for vortex trajectories in two-dimensional turbulence [7,8
In this connection, the exponentj characterizing the decay
of the vortex densityr in freely evolving two-dimensional
turbulence,r , t2j , seems to be important. The valu
of j is found to bej . 0.75 [9], and quite universal [10].
He [8] has suggested the relation2H ­ 2 2 1

2 j. Using
j ­ 0.75, the value2H ­ 1.63 is obtained. Whether the
above relations apply for our forced system or for th
barotropic turbulent flow studied by Elhmaı¨di et al. [7]
needs a more analytical consideration.

The distinct length scalel and corresponding time
scale tcsed allow us to consider the particle motion
as a chaotic advection process with traps and fligh
For this purpose, we associate with each data po
rstd along a particle track, a “velocity”yfrstdg ­ jrft 1

stcy2dg 2 rft 2 stcy2dgjytc. The particle tracks are now
divided into flights and traps according to the followin
procedure: (i) Data points withysrd . lytc are denoted
“flight points”; those with ysrd # lytc are denoted
1847
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FIG. 4. (a) Double-logarithmic plot of the distribution o
flight times, Pstfd, for e ­ 0.05 (±), e ­ 0.24 (triangles),
e ­ 0.65 (squares), ande ­ 1.06 (≤). The straight lines
have absolute slopem ­ 2.3, m ­ 2.6, m ­ 3.0, andm ­ 3.0.
(b) Corresponding plot of the distribution of sticking times
Pstsd, obtained fore ­ 0.05 (±), ande ­ 1.06 (≤).

“sticking points.” (ii) If a sequence of sticking points
between two flight points corresponds to a time span le
thantc, the sticking points are changed into flight point
Thus, a particle is only considered trapped if sticking
observed for a period longer thantc. (iii) If a sequence
of flight points between two sticking points is so short th
the particle has moved a distance less thanl, the flight
points are changed into sticking points. Thus, to esca
a trap, a particle must “fly” farther than a wavelengt
(iv) Consecutive sticking points are now called a trap, a
consecutive flight points are called a flight. Traps an
flights at the ends of a trajectory are discarded [11]. B
definition, traps last longer thantc, and flights are over
distances larger thanl. The division of trajectories into
flights and traps are illustrated in Fig. 1, showing that t
trapped motion is nontrivial and possibly very influence
by the weakly turbulent motion of the underlying pattern

We have determined the flight time and sticking tim
distributions (normalized),Pstfd andPstsd; see Figs. 4(a)
and 4(b). The distributions are cut off atPstd ­ 0.005.
Beyond this point, the distributions are heavily influence
by the finite duration of the measured trajectories [11
1848
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If a power-law behavior is assumed for the flight time
[Fig. 4(a)], Pstf d , t

2m
f [12], we find m to increase

from m ­ 2.3 to m ­ 3 for increasing values ofe.
In comparison, the proposed relationm ­ 4 2 2H [12]
between the advection exponentm and the diffusion
exponent2H yields a m value changing fromm ­ 2.7
to m ­ 3 for increasing values ofe. The distribution of
sticking times,Pstsd, seems to be exponentially decayin
rather than to follow a power law [Fig. 4(b)]. This
suggests that the anomalous diffusion is dominated by
flight time statistics.

In conclusion, we have shown that data obtained f
single particle dispersion in capillary waves for differen
values of the vibration amplitude can be collapsed ov
a wide scaling regime that includes the waveleng
scale. The fractal particle motion previously reported
length scales above the wavelength [6] can be exten
to all length scales by convoluting the motion wit
another fractional Brownian motion with a persistenc
length equal to the wavelength. This latter motion
characterized by the universal exponents2Hl . 1.55 and
Dl . 1.3. These values are surprisingly the same
those generally found for fractal drifter trajectories i
the upper ocean. Finally, we have analyzed the frac
particle trajectories in terms of flights and traps, reveali
a power-law distribution of flight times, and a highly
nontrivial trapped motion.
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