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Fractal Particle Trajectories in Capillary Waves: Imprint of Wavelength
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We examine particle trajectories in capillary waves formed on a water surface subject to vertical
vibrations. We focus on the role of a distinct length scale present in our experiment, namely, the wave-
length A of the surface waves. We observe non-Brownian particle trajectories with a fractal dimen-
sion D different from the random walk valu® = 2. A crossover is observed from one anomalous
behavior at length scales belowy to another at larger length scales. Data collapse is shown to be
feasible, and scaling functions characterizing the crossover are identified. Our results are compared to
those obtained from observations of drifters in the upper ocean. The distinct length stbless us to
divide the particle trajectories into flights and traps. The distribution of flight times shows a power-law
behavior with an exponent between 2.3 and 3. [S0031-9007(97)04033-7]

PACS numbers: 47.20.Dr, 05.40.+j, 47.27.Qb, 47.52.+]

Studies of the turbulent motion of drifters in the up- Measurements on single particle dispersion in capillary
per ocean [1-3] have shown that the drifter motion possurface waves have previously been analyzed on a time
sesses a significant persistence, which is not present stale above 1 s by Ramshankar, Berlin, and Gollub (RBG)
ordinary Brownian motion. Rather, the motion seems td6]. On a time scale of approximately 1 s the particle is
be better described as a fractional Brownian motion witHfound to move a wavelength or so, the distance increasing
anomalous dispersion properties. For example,xf@y  with the value ofe. In the regime above this time and
being one component of the horizontally projected driftedength scale, the single particle dispersion expoaéhis
trajectoryr(¢) = [x(¢), y(r)], the single particle dispersion found to vary from2H ~ 1.3 at small values ot to the
V(r) = (x(t + 7) — x(t)]?) increases as a power law in Brownian valueH = 1 at larger values oé.
time 7, V(r) ~ 72#, where the “fractional Brownian mo- In the present experiment both the particle dispersion ex-
tion” exponent2H is larger than the unit value found for ponent2H and the fractal dimensiob of our particle tra-
ordinary Brownian motion. Also, the fractal dimension jectories are determined. Moreover, we take the analysis
D for the drifter trajectories has been determined basetb smaller time and length scales. Although the turbulent
on the “yardstick method” [4], and the value obtained forflow may show an almost Brownian particle dispersion at
D is significantly smaller than the Brownian motion resultlarge length scales, there is still a distinct length scale in
D = 2, and in good agreement with the vallle= 1/H  the fluid system, namely, the wavelength It is insuffi-
derived for a fractional Brownian motion [4]. Moreover, cient to describe the particle motion in terms of a single
the values offf and D reported for different geographic fractional Brownian motion characterized only by the ex-
locations are found to have surprisingly little variation. ponentH ~ 1.0-1.3 when length scales both smaller and

In the experiment reported here the motion of particles
on surface waves is studied on much smaller time and
length scales than those considered in the upper-ocean
studies. The surface waves are formed in a cylindrical
container (interior diameter 8.4 cm and height= 2 cm)
filled with water to a height of approximately 1 cm, and
vertically vibrated at a frequency of 260 Hz. At vibra- | A
tion amplitudesA above a critical amplitudel., capil-
lary surface waves are formed with a wavelengttof
approximately 2.6 mm. The particles used were mush-
room spores of size-50 um. The motion of the particles \
was recorded by a charge-coupled device (CCD) camera '
to a VCR sampling at 50 Hz, thus storing the horizontal

position of the particles at 20 ms intervals [5]. Thousands i

of particle trajectories were in this way collected and . ) . . .
analyzed for seven different values of the reduced control

parametere = (A — A.)/A., ranging frome = 0.05 to 20 40

e = 1.06. The trajectories were obtained on a time scale (mm]

from 20 ms to 30 s and a length scale from 0.1 to 50 MMF|G. 1. Two particle trajectories foe = 0.05 divided into
Two examples of trajectories are shown in Fig. 1. flights (thin lines) and traps (thick lines).
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larger than the wavelength are taken into account. Our for any spatial direction in the horizontal plane. The vari-
experiment addresses this point. How does the flow oance obtained by projecting the horizontal motinf)
large length scales relate to the flow on small length scalesthto two perpendicular directions(z), y(r) we found
Our results show that the description of the particle motior(as RBG) to be the same. The dotted horizontal line in
as a fractional Brownian motion at length scales above th€ig. 2(a) is whereV(r) = A?/2, and the timesr.(e) at
wavelength can be extended to all length scales by corwhich the curves cross this line are the characteristic times
voluting the motion with another fractional Brownian mo- associated with the distinct length scale All curves
tion that has a persistence length limited to the wavelengtlshow a crossover at this length scale from one behavior
We find the latter motion to be characterized by a universahbove A, where the particle motion at large becomes
exponentH, = 1.55 and a fractal dimensio®, = 1.3,  Brownian, to a steeper power-law behavior at length
surprisingly independent of the vibration amplitude. Ascales smaller than. The crossover time,. decreases
scaling function is identified, which significantly extends with growing vibration amplitude; the particles simply
the scaling range over which the expon@#f is deter- move faster for higher amplitudes. The decaypofs ap-
mined. proximately exponential i, 7.(€) = 7.(0) exp(—1.8¢),
Figure 2(a) shows the variané& r) obtained for seven where 7.(0) = 600 ms [inset of Fig. 2(a)]. We notice
values ofe, 0.05 = € = 1.06. There was no preference thatr.(0) is more than 2 orders of magnitude smaller than
the molecular diffusion time associated with
In order to determine the “large-scale” expon2ht for
[ T J ] the variance (scales larger thaj) we first normalized the
10 (a) time by the characteristic time.(¢). Second, we rescaled
this dimensionless time by an exponéiif(e). Fore =
1.06 the exponent was identified to have the Brownian mo-
tion value 1. Assuming that the variance scaleg &9 ~
721 we expect the data to collapse at length scales abhove
10° : . if the values of2H are correctly chosen (Table ). Indeed,
the data collapse is very good [Fig. 2(b)]. However, we
not only find data collapse abowe The data collapse ex-
107 - tends over the entire scaling regime. The scaling function
obtained shows a crossover from one power-law behav-
10 L 1 ior characterized by the exponet®, = 1.55 = 0.05 to
10-2 | 0 0 - the behavior of an ordinary Brownian motio2H = 1).
10 1(')2 1(')3 Tt Such a behavior can be modeled by a fractional Brownian
motion with a limited persistence imposed. The existence
of a scaling function across the entire time regime studied
provides a more accurate estimate of the expoR#itt),
. compared to estimating a large-scale exponent directly
from Fig. 2(a) (or from the corresponding curves in RBG).
The higher momentgx(r + 7) — x(¢)]*) for the par-
. ticle dispersion were also considered. An analysis similar
to the above shows that thgh absolute moment scales
as V(r)¥, where(, is found to be very close ta/2.
. However, a more detailed analysis of deviations from a
Gaussian behavior gave some further insight. In particu-
lar, we find generally that the skewness (derived from the
- third moment) changes sign, from being positive at time
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TABLE I. The values ofH(e), 1/H(e), and D(e) obtained

-2 ] | | .
10 107 o 1 10 10? by rescaling.

(r/7)?H € H(e) 1/H (e) D(e)

FIG. 2. (a) Variance/(r) obtained fore = 0.05, 0.13, 0.24, 0.05 0.63 1.59 1.65
0.34, 0.65, 0.86, and 1.06 (top curve). The dotted horizontaD.13 0.59 1.69 1.72
line is whereV(r) = A2/2. The times at which the curves 0.24 0.57 1.77 1.76
cross this line are denoted(e). Inset: The decay of.(¢) is 0.34 0.55 1.82 1.81
approximately exponentiat,.(¢) = 7.(0) exp(—1.8¢). (b) The (.65 0.54 1.87 1.89
dispersion curves shown in (a) are collapsed into a scaling gg 0.53 1.87 1.95
function by rescaling the curves according to eidependent 1 g 0.50 2.00 200
exponenH, whereH is given in Table I.
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scales belowr. to being negative at time scales abovedefined as the scale where 90% of the distances between
7.. This emphasizes the presence of two dynamicallysuccessive data points are less thgp,. Since particles
distinct diffusion processes, one of them having the permove faster at larger values ef n.,;, increases witle.
sistence lengthA. In addition, the kurtosis (derived from  The curves in Fig. 3 can be collapsed into one by
the fourth moment) is found always to be positive on allrescaling the scale by ane-dependent exponefit(e)/2,
scales, however, decreasing with increasingThus the whereD = 2 for the largest value o€ (inset of Fig. 3).
underlying distribution becomes flatter at larger scales, a¥/e find that the obtained value &f(¢) is in good agree-

is usually the case for turbulent motion. The deviationment with the estimaté/H(e) of the fractal dimension
from a Gaussian distribution is more pronounced at largeobtained from the single particle dispersion (Table I).
forcings (largere). Again the data collapse extends across the wavelength

Next, we determine the fractal dimension of our trajec-scale. The scaling function obtained shows a crossover
tories. The trajectories are defined by linear interpolatiorfrom a power-law behavior characterized by the exponent
between successive data points. We apply the standafd, = 1.30 = 0.05 to the behavior of an ordinary Brown-
“yardstick” method [4], where the length of the trajectory ian motion {0 = 2). We note thaiD, = 1/H,.
is measured on various scales The fractal dimension In upper-ocean studies of the motion of drifters [1—
D of the trajectory is defined from the numb®Kn) of 3], the time scales and length scales considered are of
yardsticks usedN(n) ~ n~P. For ordinary Brownian order 1-10 days and 10—100 km, respectively. Both
motion D = 2, while D = 1/H < 2 for persistent frac- the dispersion exponeri{ and the fractal dimensio®
tional Brownian motion. Figure 3 shows our results forhave been determined. The valuesbfand D reported
N(n). Inthe plot the scaleg; is measured in units of the from different geographic locations are found to have
wavelengthi, and the numbeN of yardsticks is normal- surprisingly little variation. The value2H ~ 1.5-1.6
ized to the number obtained at= A. TofindN(n), we andD ~ 1.3 are found in the northeast Atlantic Ocean
constructed one long “trajectory” by translating the trajec-(Rockall Trough) [1], in the northwest Atlantic Ocean
tories so that the end point of one trajectory was identifiedConception Bay, Newfoundland) [2], and in the Pacific
with the starting point of another. Naturally, the scgle Ocean near Japan (Kuroshio extension) [3]. Moreover,
must be chosen smaller than the typical size of a singléhe relationD = 1/H seems to hold quite well. 1t is
track. The maximal value of scale in Fig. 3 is set tointriguing that (but unclear why) the observed upper-ocean
Nmax = 10 mm. At 9.¢, 90% of the trajectories have values of H and D are the same as the small length-
a size larger than this scale. The lower scale limifs, scale result$7, andD, that we obtain for large vibration
(the smallest yardstick used) is set by the typical distancamplitudes [see the scaling functions in Fig. 2(b) and the
between two successive data points, i.e., the typical dignset of Fig. 3]. In the present experiment the crossover to
tance a particle moves in 20 ms. More precisejly;, is  ordinary Brownian motion is observed at the wavelength
scale. In upper-ocean studies the corresponding crossover
scale is more than 100 km, at which the dynamics is
governed by Rossby waves and zonal flows (the largest
eddies) [3].

The exponen2H ~ 1.5-1.6 obtained from ocean stud-
ies has also been associated with numerical results obtained
for vortex trajectories in two-dimensional turbulence [7,8].
In this connection, the exponegicharacterizing the decay
of the vortex density in freely evolving two-dimensional
1L turbulence,p ~ t~¢, seems to be important. The value
of ¢ is found to be¢ = 0.75 [9], and quite universal [10].

He [8] has suggested the relatiofl = 2 — %f. Using
& = 0.75, the value2H = 1.63 is obtained. Whether the
above relations apply for our forced system or for the
barotropic turbulent flow studied by Elhidet al.[7]
0.1k L L I = needs a more analytical consideration.
0.1 0.3 1 3 The distinct length scalet and corresponding time
/A . scale 7.(e) allow us to consider the particle motion
FIG. 3. NumbemV(n) of yardsticks used to follow the particle s & chaotic advection process with traps and flights.
trajectories on scaley, normalized to the number used at For this purpose, we associate with each data point
n = A (log-log plot). The curves show(n) for e = 0.05, _ r(r) along a particle track, a “velocityd[r(r)] = |r[r +
0.13, 0.24, 0.34, 0.65, 0.86, and 1.06 (steepest curve). Th@rC/Z)] — [t — (r./2)]l/7.. The particle tracks are now

scalen is measured in units of the wavelength Inset: The 1 . . . .
N(m) curves are collapsed into a scaling function by rescalingdIVIded into flights and traps according to the following

the curves according to asrdependent exponer?/2, where  procedure: (i) Data points with(r) > A/7. are denoted
D is given in Table I. “flight points”; those with v(r) = A/7. are denoted
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If a power-law behavior is assumed for the flight times
[Fig. 4(a)], P(tf) ~ tf_“ [12], we find u to increase
from u =23 to u =3 for increasing values ofe.

In comparison, the proposed relatign= 4 — 2H [12]
between the advection exponept and the diffusion
exponent2H vyields a u value changing fromu = 2.7

to u = 3 for increasing values of. The distribution of
sticking times,P(z,;), seems to be exponentially decaying
rather than to follow a power law [Fig. 4(b)]. This
suggests that the anomalous diffusion is dominated by the
flight time statistics.

In conclusion, we have shown that data obtained for
single particle dispersion in capillary waves for different
values of the vibration amplitude can be collapsed over
a wide scaling regime that includes the wavelength
scale. The fractal particle motion previously reported at
length scales above the wavelength [6] can be extended
to all length scales by convoluting the motion with
another fractional Brownian motion with a persistence
length equal to the wavelength. This latter motion is
characterized by the universal exponetts, = 1.55 and
D, = 1.3. These values are surprisingly the same as
those generally found for fractal drifter trajectories in
the upper ocean. Finally, we have analyzed the fractal

0.01 e e particle trajectories in terms of flights and traps, revealing
02 04 0608 1 3 5 7 a power-law distribution of flight times, and a highly
t [s] nontrivial trapped motion.
) We are indebted to Walter Goldburg for his experi-
FIG. 4. (a) Double-logarithmic plot of the distribution of mental help. The research was supported by the Novo-

flight times, P(tf), for € = 0.05 (o), € = 0.24 (triangles), i i i i
€ = 0.65 (squares), ande = 1.06 (). The straight lines gggzlr(cﬁ%u;:n?;rm and by the Danish Natural Science

have absolute slope = 2.3, u = 2.6, © = 3.0, andu = 3.0.
(b) Corresponding plot of the distribution of sticking times,
P(t,), obtained fore = 0.05 (o), ande = 1.06 (o).
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