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Relative Particle Motion in Capillary Waves
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When a container of fluid is oscillated vertically, capillary waves develop on the surface if the
amplitude exceeds a critical value. Experimentally one finds that the motion of small particles on
the surface of the fluid is close to Brownian. Here we study the relative motion of particle pairs.
The experiment establishes that particle motion is strongly correlated over macroscopic distances. Our
observations are in striking agreement with upper-ocean studies, and with theories that appear applicable
to this “weak turbulence” problem, and in disagreement with experimental and theoretical results for
two-dimensional large-scale atmospheric turbulence. [S0031-9007(96)00448-6]
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As first pointed out by Richardson [1], the nature
turbulence is significantly illuminated by studying t
motion of particle pairs, as opposed to the motion o
single fluid particle. He recognized that two partic
separated by a distanceR move more rapidly apart asR is
increased. In particular, Richardson considered the r
tive diffusivity, here defined askdsR2dydtl [2], where
the angular brackets indicate an average over all par
pairs. He found that for atmospheric turbulence
relative diffusivity increases with separation asR4y3. The
Kolmogorov theory of three-dimensional fully develop
turbulence, which came later [3], gave strong suppor
this observation. For two-dimensional fully develop
turbulence, the relative diffusivity increases with se
ration asR2 [4]. In accordance herewith, the relativ
diffusivity for atmospheric turbulence is found to have
crossover atR ø 20 km, from the three-dimensionalR4y3

behavior to the two-dimensionalR2 behavior [5].
Fully developed turbulence is also referred to as “str

turbulence,” to distinguish it from the type of turbulen
called “weak turbulence” or “wave turbulence” [6]. Whi
there are no small-amplitude homogeneous-backgro
waves in strong turbulence, weak turbulence is chara
ized by the presence of small-amplitude waves havin
dispersion relationvskd. The experiments reported he
probe turbulence of just this type. We track the mot
of floating particle pairs sprinkled on a water surface i
cylindrical dish which is being oscillated vertically so
to create capillary waves [7]. When the amplitudeA is
just above the critical valueAc, where surface waves a
first excited, there is no surface turbulence, and the
illary waves obey a dispersion relationv2skd ~ k3. At
stronger drive, nonlinear wave interactions are impor
[8], and the wave pattern becomes random in appeara
The theory of weak turbulence [6] takes these nonlin
interactions into account.

From our observations of relative particle motion
extract the relative diffusivitydsR2dydt. We analyze the
distribution functionPsssdsR2dydtddd and its moments ob
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tained at various values ofR and various values of the re
duced control parametere ; sA 2 AcdyAc. We note that
kdsR2dydtl ­ 2RkdysRdl, where dysRd ; eR ? dRydt
is the longitudinal component of the velocity differenc
eR being a unit vector in the directionR. Thus, we have
indirectly measured the distribution function for the v
locity differencedysRd as well.

Our results are compared with the theory of weak t
bulence, and with results found in upper-ocean stud
[9–11]. The agreement is gratifyingly good. Our me
surements, coupled with those of Ramshankar and Go
[12], also enable us to test a prediction [13] which rela
our measuredR dependence ofkjdysRdjl to the fractal di-
mensiondf that characterizes the turbulence-induced co
tortion of a patch of dye floating on the water surface.

The oscillating dish had an interior diameter of 8.4 c
and a height of 2 cm, and the water filled the dish to
height of approximately 1 cm. The dish was mount
on a frame fixed to a Brüel and Kjaer vibration excit
type 4809, driven by a sinusoidal signal coming from
frequency synthesizer SRI model DS 345, operating a
frequencyf ­ 260 Hz. At this frequency the wavelengt
was observed to bel ­ 2.6 mm. The amplitudeA of
the vertical oscillations is proportional to the voltag
applied to the exciter, and this applied voltage was
actual control parameter in the experiments. The partic
used were mushroom spores. They were chosen bec
of their small mass and size (approximately50 mm),
and, more importantly, because they strongly resist be
wetted by water, assuring that they will float. A charg
coupled device (CCD) camera recorded the images of
particles on a VCR tape, and the output of the VCR w
fed into a frame grabber board in a personal computer

For each value ofe (7 total), ranging frome ­
0.05 to e ­ 1.06, approximately 1000 particle track
were recorded. The tracking program arbitrarily sele
4 particles to track; for each particle the subsequ
coordinate sxi, yi , tid is identified by searching a box
with side length 2 mm, centered on the prior coordina
© 1996 The American Physical Society 4717
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sxi21, yi21, ti21d with ti 2 ti21 ­ 20 ms. A detailed
discussion of the tracking program is found elsewh
[14]. First, we considered the self-diffusivityDs [15]. By
definition, Ds ~ r2stdyt, wherer is a distance a singl
particle moves in a time interval of lengtht, and the bar
denotes the average over initial times. In agreement
Ramshankar, Berlin, and Gollub (RBG) [15], we fou
that particles appear to move around quite randomly w
a self-diffusivity that only increases slightly with timet,
Ds ~ t2H , with values of the exponent2H decreasing
from 0.26 ate ­ 0.05 to 0 ate ­ 1.06. In comparison,
RBG found the exponent2H in the range 0.2 to 0 fo
e ­ 0.06 to 0.4.

Whereas the measurements of the self-diffusiv
suggest that the particles are moving almost in a rand
walk fashion, the relative diffusivity behaves ve
differently. For every particle pair with initial distanc
less than 4 mm, we recorded the separationRstd every
20 ms, resulting in more than 50 000R values for
each value ofe. Pairs separated by a distance sma
than or comparable to the pixel size,0.3 mm were
discarded by the tracking program. At large distanc
our measurements were limited by the size of the cam
window (circular with a radius of 3 cmø 70% of the
dish radius). The derivativedsR2dydt for each particle
pair at separationR is approximated byDsR2dyDt —the
change inR2 over the fixed timeDt ­ 20 ms, divided
by Dt. Over this period, the squared separation chan
from R2 to R2 1 DsR2d ­ sR 1 dvDtd2, where dv is
the relative velocity. Thus,
DsR2d

Dt
­

sR 1 dvDtd2 2 R2

Dt
­ 2R ? dv 1 sdvd2Dt .

(1)
It is necessary thatDt be small enough to assure th
the termsdvd2Dt is negligible compared to the first ter
2R ? dv. Checks were made that this condition of sm
Dt is satisfied for the chosen value ofDt ­ 20 ms.

Figure 1 shows the relative diffusivity distributio
PsssdsR2dydtddd for R ­ 3, 6, and 14 mm, all ate ­
0.24. The distributions are normalized, horizonta
translated by their mean valuekdsR2dydtl, and rescaled
by their standard deviationssRd ; hkfdsR2dydtg2l 2

kdsR2dydtl2j1y2. The distributions consistently have the
maximum to the left of the mean which is an order
magnitude smaller thanssRd. For each value ofR, the
distribution includes distances betweenR 2

1
2 mm and

R 1
1
2 mm. The sizeNsRd of the ensemble of particl

pairs at separationR depends on the distanceR (see the
inset of Fig. 1).

In Fig. 2, the mean valuekdsR2dydtl as a function ofR
is shown on a log-log scale for seven values ofe ranging
from 0.05 (lower line) to 1.06 (upper line). We find th
the mean value increases with distanceR. The error bars
shown fore ­ 1.06 have a height equal tossRdy

p
NsRd,

with similar error bars for the othere values. For large
4718
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FIG. 1. Relative diffusivity distributionPsssdsR2dydtddd (semi-
logarithmic scale) for R ­ 3 mm (stars), R ­ 6 mm (tri-
angles), andR ­ 14 mm (diamonds);e ­ 0.24. The error bars
are of the size of the symbols. Inset: Sample sizeNsRd;
e ­ 0.24.

values ofR, the size of the ensemble is small (see th
inset of Fig. 1), and the values obtained have large er
bars. Assuming a power-law behaviorkdsR2dydtl ~ Ra ,
we finda ­ 0.9 6 0.15 [14], with a tendency to decrease
with e (a . 1 at smalle while a . 0.8 at largere). At
e ­ 1.06 a slope is hardly defined. UsingkdsR2dydtl ­
2RkdysRdl, we havekdysRdl ~ Rz , wherez ­ a 2 1 is
a small negative number that is possibly zero. We a
extractedkjdsR2dydtjl ­ 2RkjdysRdjl ~ Rz̃11 from our
measurements. We find thatz̃ is very close to zero and
slightly positive.

We examine our measurements in the light of a th
ory of Constantin and Procaccia (CP) [13]. Using
dye instead of particles, contours of constant dye co
centration are described by their (homogeneous) frac
f

FIG. 2. Mean valuekdsR2dydtl vs R (double-logarithmic
scale). From below,e ­ 0.05, 0.13, 0.24, 0.34, 0.65, 0.86
and 1.06. Inset: Mean valuekdsR2dydtl vs e at R ­ 10 mm.
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dimensiondf . In the CP theory, the dye concentratio
is a passive scalar; thusdf is considered an intrinsic
quantity related to the velocity field itself. Accordin
to the CP theory the exponentsdf , z̃ , and the dimen-
sion of the systemd are related bydf ­ d 2 s1 2 z̃ dy2.
For capillary waves, the kinematic condition on the flu
surface [6], Ùh ­ s2≠xh, 2≠yh, 1d ? v, wherehsx, yd is
the surface height andv is the incompressible velocity
field, states that fluid particles at the surface only mo
along the surface. Thus, for surface-confined particles
can apply the CP relation withd ­ 2. Using the value
df ­ 1.40 6 0.05 found for capillary waves in the dye
experiment by Ramshankar and Gollub [12], the va
z̃ ­ 20.2 6 0.1 is obtained. This result is in reasonab
agreement with the valuẽz . 0 which we find.

Next we examine theR dependence of the stan
dard deviation, ssRd, of PsssdsR2dydtddd (Fig. 3). For
each value ofe, the data are fitted rather well b
a straight line,s ~ Ra2y2, or, equivalently,kkkfdysRd 2

kdysRdlg2lll ~ Rz2 , with z2 ­ a2 2 2 [see Eq. (1)]. Since
the standard deviationssRd is an order of magni-
tude larger than the meankdsR2dydtl, we also have
kdysRd2l ~ Rz2 . For e , 0.4 we findz2 ­ 0.26 6 0.06.
For larger values ofe, z2 approaches zero. While th
exponentsz andz2 vary only weakly with the control pa
rameter, we find that the magnitude of the first and sec
moments ofPsssdsR2dydtddd increase roughly linearly withe
(see insets of Figs. 2 and 3).

We have also examined higher central momen
mnsRd ­ kkkfdsR2dydt 2 kdsR2dydtlgnlll and fitted the data
by the algebraic formmnsRd ~ Rn1zn . For e ­ 0.24
andn ­ 3, 4, and 6,zn is well fit by z3 ­ 0.37 6 0.06,
z4 ­ 0.37 6 0.06, and z6 ­ 0.2 6 0.1. Notice thatzn

is not linearly proportional ton. The definitions of the
various exponents are listed in Table I.

The capillary waves possess an underlying disp
sion relation vskd. Hence it seems appropriate
apply the theory of weak turbulence [6], which tak
into account coupling of interacting modes in syste
such as ours. The theory enables a calculation of
spectrumkjdvskdjnl rather than the real space momen
such as kfdysRdgnl. In this theory, which neglects
dissipation,kjdvskdj2l for surface waves is found to be
product of two factors, an underlying velocity spectru
of jdvskdj2 ~ k5y2 and a weighting factornskd ~ k217y4

[6]. Keeping in mind thatk is a two-dimensional vector
one shows, using the Wiener-Khintchine theorem [1
that

kjdvsRdj2l ~
Z

Dskmd
jdvskdj2s1 2 e2pik?Rdnskd d2k

~ 1 2 asRyld21y4, (2)

where km is the maximumk value (km , 1yl), and
e

d

,

FIG. 3. Standard deviations vs R (double-logarithmic scale).
From below,e ­ 0.05, 0.13, 0.24, 0.34, 0.65, 0.86, and 1.06
Lower inset: Standard deviations vs e at R ­ 10 mm. Upper
inset: ssyRd2 vs R on double-logarithmic scale fore ­ 0.13
(below) and e ­ 0.24 (above). Both sets of data are fi
according to Eq. (2) witha ­ 0.66. The straight line has slope
0.26, our estimated value ofz2.

a is a constant of order unity (which may depen
on e). The integral is evaluated on a diskDskmd of
radius km. Thus, for largeR, z2 ­ 0. For smallerR,
the above relationship suggests a small positive va
of z2 [assuming kdysRd2l ~ kjdvsRdj2l], in agreement
r-

s
s
he
s

],

TABLE I. Definitions of exponents and a comparison b
tween the exponents obtained from different experime
and theories.

kdsR2dydtl ­ 2RkdysRdl ~ Ra

kdysRdl ~ Rz , z ­ a 2 1
kjdsR2dydtjl ­ 2RkjdysRdjl ~ Rz̃11

s2 ; kkkfdsR2dydt 2 kdsR2dydtlg2lll ~ Ra2

kdysRd2l ~ Rz2 , z2 ­ a2 2 2
mn ; kkkfdsR2dydt 2 kdsR2dydtlgnlll ~ Rn1zn

This work, Faraday cell, a ­ 0.9 6 0.15
mushroom spores z̃ ­ 0 2 0.1

z2 ­ 0.26 se , 0.4d
z2 ­ 0 2 0.2 se . 0.4d

Stommel [9], upper-ocean,
floats z2 1 2 2 a ­ 4y3

Okubo [10], upper-ocean, dye a ­ 1.1
Morel and Larcheveque [5],

atmosphere, balloons a ­ 2, z2 ­ 2
Ramshankar and Gollub [12],

Faraday cell, dye and CP
relation [13] z̃ ­ 20.2 6 0.1

Weak turbulence theory [6] z2 ­ 0 slargeRd
4719
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with our observations fore , 0.4 (recall that z2 .
0.26). The theoretical fit (2) applied to our data fo
ssyRd2 ~ kdysRd2l (upper inset of Fig. 3) shows that ou
observations are consistent with weak turbulence theor

Our observations may also be compared with t
upper-ocean studies [9–11] (Table I). In the work b
Stommel [9], floats were released in pairs and followe
over a large range of scales (10 cm to 1000 km, 3 s
3 days). Over the various time scalesDt, the value of
kdysRd2l ­ ksDRyDtd2l was found, and the relative dif-
fusivity was defined askdysRd2lDt. From his results,
Stommel found thatkdysRd2lDt ~ R4y3. We can com-
pare his results with ours, if we assume thatkR2l ~ sDtdb .
Then,dkR2lydt ~ sDtdb21 ~ R222yb , andkdysRd2lDt ~

Rz212yb. Thus, a ­ 2 2 2yb, and z2 1 2yb ­ z2 1

2 2 a. From Stommel’s observations, we havez2 1

2 2 a ­ 4y3. This result is in good agreement with th
value z2 1 2 2 a ­ 1.25 6 0.1 obtained from our val-
ues ofa andz2.

In a different study by Okubo [10], a dye is release
Okubo finds that the average distance of dye patch
grows askR2l ~ sDtd2.3 (with Dt in the range a few hours
to a month). As above, this implies [11] that the rela
tive diffusivity dkR2lydt ~ sDtd1.3 ~ R1.1, compared to
our resultkdR2ydtl ~ R0.960.15. However, the averaging
process in Okubo’s work is carried out for fixed time, no
for fixed separation as in our case.

The results for the relative diffusivity obtained in ou
experiments and in upper-ocean studies are in sharp c
trast to the results obtained by Morel and Larcheveq
[5] for large-scale two-dimensional atmospheric turb
lence. They measured the relative diffusivity of balloon
distributed over the Southern Hemisphere. As we ha
done, they extract from their data both the mean val
kdsR2dydtl and the widthssRd of PsssdsR2dydtddd, taking
Dt ­ 6000 s. In accordance with Kolmogorov-like ar
guments applied to two-dimensional turbulence [4], th
find a ­ 2, z2 ­ 2, andkR2l ~ expftys1.35 daysdg.

In summary, measurements of the relative diffusivi
dsR2dydt establish that the surface motion of part
cles in our Faraday experiment is very far from bein
Brownian—in spite of contrary indications obtaine
from measurements of the single-particle diffusivity
For uncorrelated particles,dsR2dydt is independent of
R, whereas we find it to be roughly proportional toR.
This strongR dependence establishes the existence
long-range velocity correlations, as in fully develope
turbulence. However, the theory of fully develope
turbulence, which applies to atmospheric turbulenc
predicts results different from our results and from resu
obtained in upper-ocean studies. Instead, the theory
weak turbulence seems appropriate, and it predicts a s
ing form for kdysRd2l that is in excellent accordance with
our measurements. Moreover, our findings seem roug
to support the Constantin-Procaccia relation between
exponentz̃ for the absolute mean velocity difference an
4720
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the fractal dimensiondf of isoconcentration contour
formed by a passive scalar. The exponentsa, z̃ , andz2

obtained from the various experiments and theories
summarized in Table I.
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the theory of weak turbulence. This work was suppor
by the Novo-Nordisk Foundation, the Danish Resea
Academy, the Danish Natural Science Research Cou
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