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Vortex Dynamics in Dissipative Systems
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We derive the exact equation of motion for a vortex in two- and three-dimensional nonrelativistic
systems governed by the Ginzburg-Landau equation with complex coefficients. The velocity is given
in terms of local gradients of the magnitude and phase of the complex field and is exact also for
arbitrarily small intervortex distances. The results for vortices in a superfluid or a superconductor are
recovered. [pub S0031-9007(97)02621-5]
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Vortices are found in a variety of physical systems.(the Euler equations). In both caseg? corresponds to
Accordingly, the study of these intriguing collective ex- the (super)fluid mass density aNd is proportional to the
citations attracts widespread attention among the physiogelocity of the (super)fluid. We stress that the GPG case
community. Examples of vortices often studied are hy-s special because it describes a conservative system and
drodynamic vortices, vortices in superfluids, in superconthe vortex motion can be derived from a Lagrangian. The
ductors and in nematic crystals, and cosmic strings [1,2JCGL equation, on the other hand, describes a dissipative
An important goal is to clarify the mechanisms by which system and one is compelled to pursue a direct derivation
vortices are created and the details of their motion subjeaif the vortex equation of motion, as we do here.
to local interactions, such as crossing, merging, and inter- Equation (1) permits solutions in which has phase
commutation, as well as long-range forces. These issuesngularities efecty. In two space dimensions these
have recently been addressed in the context of relativistiare isolated points around which the pha&sehanges by
scalar field theories [3,4]. multiples of 2. At the same points the magnitudé|

In this Letter we present an analytic derivation of thevanishes, so that the complex figddemains single valued;
exact equation of motion for a vortex in a nonrelativisticsee Fig. 1. In the vicinity of a defect the phase is of the
dissipative system. The system we study is one modelefbrm S = (r) + n(¢ — wt) in polar coordinatesr( ¢)
by the extensively studied [5—9] Ginzburg—Landau equafl4]. For a constant phasethis is the equation fofn|-
tion with complex coefficients (CGL) armed spirals rotating at an angular frequecy In three

% = P(A,A"A + bV?*A, (1)  dimensions the defects become one-dimensional strings, or
whereA = |Alexp(iS) is a complex field, the functiop  filamentsand the spirals generalize to scroll waves [11,15]
is given byP(A,A") = u — alAl?, anda, b, u € C. By WhICh look like sheets wound arqund a filament. The
a suitable rescaling of time, space, afdthe number of filaments may be closed or open (in which case they end
(real) adjustable parameters in the coefficients of Eq. (19" the system boundary) and of arbitrary shape. We shall
may be brought down to two, as is often done. However?‘?‘” a sc_)lut|on Wlt'h one defept or fllamen.t (in two or three
we shall keep Eq. (1) unscaled for clarity. We study thedimensions) a spiral vortex, in analogy with the_ [nonsp_lral,
equation in two and three spatial dimensions. ¢'(r) = 0] vortex solution of the GPG equation, which

The reason for selecting the CGL equation is twofold.
First, it is a relatively simple partial differential equation,
yet it exhibits the principal features of more complicated
oscillatory systems. A prime example of such system:
are reaction-diffusion systems, such as the chemic:
oscillatory Belousov-Zhabotinsky reaction [10,11].

Second, the CGL equation contains a number of in:
teresting special cases. When b, and p are purely
imaginary the CGL equation coincides with the nonlinear
Schrddinger equation. The latter equation describes th
quantum dynamics of superflufte and is known in that i i s
context as the Ginzburg-Pitaevskii-Gross equation (GPGEG- 1. One-armed spiral vortex of the CGL field= ||’

. a two-dimensional system. The height of the surface depicts
[12]. Furthermore, by employing the Madelung tranSfor'the magnituddA|. The spiraling curves are contour lines of

matior_l [13] the nonlinear S.Chrt')dinlger equatic_)n ?'SQ transthe phases (isophase lines). The phase change between two
forms into the hydrodynamic equations for an inviscid fluidthin lines is /2.
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describes the circulation of the superfluid around strings ofystem can be found from the three-dimensional problem
normal-phase fluid. The integeris the winding number as the special case of straight, aligned vortices.
of the vortex and is a topologically conserved quantity in We may generalize Eq. (1) by admitting any continuous
two dimensions but not in three. Tleereof the vortex is  function P(A,A*) for which the equation has vortex
the region where the magnitudl¢| deviates significantly solutions. The details o do not enter the derivation.
from its asymptotic value; see Fig 1. The field A is zero on a collection of one-dimensional
The evolution of a system with (spiral) vortices may strings which are the filaments. Let the position of the
be described in terms of the motion of the defects, ofilament I' of a vortex be given at time by X(s, 1),
filaments, along with values of the fieldd| and S at wheres is the arclength coordinate alody We define
positions away from the defects or filaments. Such a local coordinate system along the string as follows
separation into collective coordinates and field variables if20]. At each point along the string the unit tangent
nontrivial, and the present work comprises the first exacvector T = 9X/ds, the unit normal vectoV, and the
treatment of this kind for a dissipative system. The motiorbinormal vectorB = T X N form an orthonormal frame
of a vortex is affected by modifications in field due so that any position in a neighborhood of the string can
to the presence of other vortices or system boundariebe expressed as= X(s,t) + xN(s,7) + yB(s,t). The
If the vortices are assumed to form a dilute system, i.e.coordinate representatidn, x, y) is unique forx < 1/«
one where the defects are well separated, the influence bfit becomes singular when reaches or exceeds the
variations in the magnitudgd| of the complex field may radius of curvaturd /.
be neglected, sincki| will assume its asymptotic value  Along the string, the transport of the unit vectors is
at distances much smaller than the interdefect distanogiven by the Frenet-Serret equations [20]
[16]. Under this assumption, the interaction between aT IN 9B
vortices can be described entirely by the phéiseln this —=kN, —=—-«T+7B, —=-7N, 3)
approximation Rica and Tirapegui [8] (and in a slightly 95 ds _ 9 _
different form also Ref. [9]) have derived the equation ofWherex is the curvature and is the torsion of the string.
motion in two space dimensions for the position of thelLet us further introduce the local polar coordinatesy
kth defectX,(¢) in terms of the portion of the phase  defined byx = rcosg, y = rsine. In terms of these

due to other defect®)® (x) = S — ny ¢y, Where tanp, =  coordinates, the gradient and Laplacian take the forms
(y = Y3)/(x — X;). Theirresult (foln,| = 1andbg = 1, P 1 9
but here generalized to any valuergfandby) is V=TH+ 7+ ¢ 90’ (4)
. dX
Xe = S5 —0p, VoW — 2pph g x VW, (2) 2 19 1 2
dt I . V=H+ — + —— + ——
wherebr = Re b, b; = Im b, andz = £ X § is normal ar? r or r2 9¢p?
to the plane. The first term, proportional to the gradient, is P 9
[ imi [ - — —sinp—— |, (5
that found by Fetter [17] in the GPG limit corresponding I — xrcose < Sp P p agp) (5)

to bg = 0, b; = I/2m and states that the vortex moves

with the local superfluid velocity. The second term is thewhere
perpendicular Peach-Koehler term [18] first found in this 1 9 9
context by Kawasaki [19]. H = m < >

When the system of spiral vortices cannot be approxi- i
mated by a dilute system the expression (2) for the defect We now proceed to find the velocitX(s,7) of the
velocity is no longer valid but will acquire additional terms. filamentI'. Because this string of zeros of the functién
We shall take a completely general approach in which théas no transverse extension and is a feature of a solution
amplitude|A| is allowed to vary. This will enable us to of an underlying local field theory, its motion should be
determine the exact motion of a defect also when anothatetermined from the behavior of the fielfi$| and S in
defect is located an arbitrarily small distance away, i.e.an infinitesimal neighborhood of the filament. It will
even when the vortex cores overlap. It will also providebe sufficient to study the fields within a distaneex
the exact mation of a defect which is arbitrarily near a sysmin(d, 1/«), whered is the shortest distance to another
tem boundary. For filaments in a three-dimensional systeratring segment [21]. This condition ensures uniqueness
our treatment will furthermore correctly incorporate inter- of the coordinate representation.
actions with other segments of the same filament. The phase fieldS is multivalued and satisfieS(s, r,

The corresponding problem for a relativistic scalar fieldg + 27;1) — S(s, r, ¢; 1) =n27 for 0 < r < e. Let us
theory was solved by Ben-Ya'acov [4]. His derivation therefore splitS = y + 6 in such a way thajy contains
was based strictly on a covariant world-sheet formalisrall multivalued contributions to the phase and depends
that cannot be applied to a nonrelativistic theory. For theon time only through the position of the filamemt
CGL equation one must therefore resort to other method$:or a straight (or two-dimensional) isolated vortex one

Let us consider the general motion of vortices in threemay choosey = n¢. A consistent description of the
space dimensions. The motion in a two-dimensionamultivalued phase of an arbitrarily shaped vortex filament
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requires, however, a global realization such as the Biota straight (or two-dimensional) isolated vortex we have

Savart integral, C=0.
n ¥ — X Since 6 and Inv are differentiable, the singularities
Vx = 3/ dX X x — XP of Vy and VInR at r = 0 must satisfy Egs. (9) and
r * (10) order by order. This last condition, together with
1

_ n(_ i %cow)@ _ %lnt + regular Eq. (12), leads to the coupled nonlinear system
,

VIR - u + brqy — bjq> = regular
(7) (13)
This expression contains logarithmic divergencies as VX - u + bigi + brgy = regular
r — 0, as well as functions of the azimuthal angte Wwhere ¢, =V?nR + (VInR)> — (Vx)?, q=V*x +
that are multivalued at = 0 [2]. We therefore absorb 2VInR-Vy and wu=X +2bg(Vinw + |:—le X Vo) —
in y any part of S that is nondifferentiable at = 0.  2p,(Vo — |7—1|T X Vinw).
Similarly, we may write|A| = Rw, where IR depends  Cancellation of terms of order! in Eq. (13) leads to
on the filament position and contains all contributions totwo equations for the perpendicular components.oThe
In|A| that are nondifferentiable at = 0. For a straight integrability condition provides four first-order differential
isolated vortex one may chooge= rl"l. Thus# andInv  equations relating the functiong and ;, and together
are differentiable and it follows that the time derivatives with four algebraic relations resulting from Eq. (12) the
andw are finite forr < &. We remark that the choice of system can be solved in terms of four constants of
x andR is not unique, sincé and|A| are invariant under integration. The perpendicular components wf are
two independent local symmetries then uniquely determined in terms @&f. Furthermore,
Y= x+8,0—60—25: R—Rf,w— wf, the_ singular terms _of ordetr 'Inkr in Eq. (13) canceI:
It is always possible to set the tangential velocity,
(8)  which is void of physical meaning, to zero by a time-

wheres and Irf are differentiable. dependent reparametrization— s(z). In the language
With these definitions the real and imaginary parts ofof relativistic string theory, this is referred to as world-
Eq. (1) lead to the two equations sheet reparametrization invariance. The exact result for

d the velocity of the vortex filament is
Z(NR + Inw) = Re(P) + brQ1 — b;Q2, (9)
. n n
X=b < —B+2(V,0+C —2—T><Vlnw>
L0+ x) = In(P) + b0y + beQs,  (10) BV =2
where
0, = V’InR + VInw

+ (VINR + Vinw)? — (Vy + Vo),

n

+bR<KN—2VJ_|nW—2 T><(V0+C)>, (14)

|n]
where (), = —T X [T X ()] and the fields on the right-
hand side are to be evaluated at the filament position
0> = V2 + V20 + 2(VINR + Vinw) - (Vx + V6). fﬁé) The exact two-dimensional result is obtained as
The time derivatived/dr in Egs. (9) and (10), which is  The value ofX is independent of the choice of gauge
to be evaluated in the lab frame, is related to the timgor R and y. Indeed, substituting” from Eq. (12) into
derivatived/ar in the moving reference frame of the local Eq. (14) we obtain the manifestly invariant expression
segment of the filament by/dr = —X -V + a/at. )

In general, global expressions f&y and VInR will X= Iim[b,<x

r—0

l”—lB +2V, 85— 2|”—|T X VIn|A|>
include singularities at = 0 of the type demonstrated by " "
Eq. (7). We therefore writ& y = f17 + (n/r + f2)& +

M T andVInR = (|n|/r + f3)F + f4& + AT, where

filr,@,s,t)=gi(e,s,t) + hi(e,s,Hinkr + O(r) (11)

and O (r) denotes any terms that vanishras»> 0. It can
be easily confirmed from these equations (as well as a
gued on general grounds) thay /dz, dx/ds, d(InR)/dt,
da(InR)/ds, Ay, and A, have well-defined finite limits as
r — 0. We require thaV y andVInR be integrable, and
that they satisfy the following condition near the filament:

+ bR<KN — 2V, In|A| - 2|”—|T X Vsﬂ,
n
(15)
in which the filament velocity is written in terms of
rgradients of the magnitude and phase of the original
complex fieldA. Let us define the complex veloci# =
(N + iB) - X and express the derivatives in Eq. (15) in
terms ofz = x + iy and its conjugate®. Then a quite
beautiful result emerges:

" Z=b[-47=A(2.2") + k], n=1,
VX - mTXV“’]R—C(S,l)"‘@(V). (12) Z*:b[_“'aizlnA(Z,Z*)"‘K], n=-1,

The arbitrary vectolC' corresponds to a choice of gauge where the right-hand side is to be evaluated at z* =
in Eq. (8). In thesymmetric gaug® = r!"l, y =n¢p for 0. The functionP(4,A*) does not enter explicitly in the
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expressions (14)—(16) for the velocity. However, sidce useful discussions and for pointing us in the direction of
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