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We derive the exact equation of motion for a vortex in two- and three-dimensional nonrelat
systems governed by the Ginzburg-Landau equation with complex coefficients. The velocity is
in terms of local gradients of the magnitude and phase of the complex field and is exact al
arbitrarily small intervortex distances. The results for vortices in a superfluid or a superconduc
recovered. [pub S0031-9007(97)02621-5]
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Vortices are found in a variety of physical system
Accordingly, the study of these intriguing collective ex
citations attracts widespread attention among the phys
community. Examples of vortices often studied are h
drodynamic vortices, vortices in superfluids, in superco
ductors and in nematic crystals, and cosmic strings [1,
An important goal is to clarify the mechanisms by whic
vortices are created and the details of their motion subj
to local interactions, such as crossing, merging, and int
commutation, as well as long-range forces. These iss
have recently been addressed in the context of relativis
scalar field theories [3,4].

In this Letter we present an analytic derivation of th
exact equation of motion for a vortex in a nonrelativist
dissipative system. The system we study is one mode
by the extensively studied [5–9] Ginzburg–Landau equ
tion with complex coefficients (CGL)

d
dt A ­ PsA, ApdA 1 b=2A , (1)

whereA ­ jAjexpsiSd is a complex field, the functionP
is given byPsA, Apd ­ m 2 ajAj2, anda, b, m [ C. By
a suitable rescaling of time, space, andA, the number of
(real) adjustable parameters in the coefficients of Eq.
may be brought down to two, as is often done. Howev
we shall keep Eq. (1) unscaled for clarity. We study th
equation in two and three spatial dimensions.

The reason for selecting the CGL equation is twofol
First, it is a relatively simple partial differential equation
yet it exhibits the principal features of more complicate
oscillatory systems. A prime example of such system
are reaction-diffusion systems, such as the chemi
oscillatory Belousov-Zhabotinsky reaction [10,11].

Second, the CGL equation contains a number of
teresting special cases. Whena, b, and m are purely
imaginary the CGL equation coincides with the nonline
Schrödinger equation. The latter equation describes
quantum dynamics of superfluid4He and is known in that
context as the Ginzburg-Pitaevskii-Gross equation (GP
[12]. Furthermore, by employing the Madelung transfo
mation [13] the nonlinear Schrödinger equation also tran
forms into the hydrodynamic equations for an inviscid flu
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(the Euler equations). In both casesjAj2 corresponds to
the (super)fluid mass density and=S is proportional to the
velocity of the (super)fluid. We stress that the GPG cas
is special because it describes a conservative system a
the vortex motion can be derived from a Lagrangian. Th
CGL equation, on the other hand, describes a dissipati
system and one is compelled to pursue a direct derivati
of the vortex equation of motion, as we do here.

Equation (1) permits solutions in whichA has phase
singularities (defects). In two space dimensions these
are isolated points around which the phaseS changes by
multiples of 2p. At the same points the magnitudejAj

vanishes, so that the complex fieldA remains single valued;
see Fig. 1. In the vicinity of a defect the phase is of th
form S ­ csrd 1 nsw 2 vtd in polar coordinates (r , w)
[14]. For a constant phaseS this is the equation forjnj-
armed spirals rotating at an angular frequencyv. In three
dimensions the defects become one-dimensional strings
filaments,and the spirals generalize to scroll waves [11,15
which look like sheets wound around a filament. Th
filaments may be closed or open (in which case they en
on the system boundary) and of arbitrary shape. We sh
call a solution with one defect or filament (in two or three
dimensions) a spiral vortex, in analogy with the [nonspira
c 0srd ­ 0] vortex solution of the GPG equation, which

FIG. 1. One-armed spiral vortex of the CGL fieldA ­ jAjeiS

in a two-dimensional system. The height of the surface depic
the magnitudejAj. The spiraling curves are contour lines of
the phaseS (isophase lines). The phase change between tw
thin lines ispy2.
© 1997 The American Physical Society
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describes the circulation of the superfluid around strings
normal-phase fluid. The integern is the winding number
of the vortex and is a topologically conserved quantity
two dimensions but not in three. Thecoreof the vortex is
the region where the magnitudejAj deviates significantly
from its asymptotic value; see Fig 1.

The evolution of a system with (spiral) vortices ma
be described in terms of the motion of the defects,
filaments, along with values of the fieldsjAj and S at
positions away from the defects or filaments. Such
separation into collective coordinates and field variables
nontrivial, and the present work comprises the first exa
treatment of this kind for a dissipative system. The motio
of a vortex is affected by modifications in fieldA due
to the presence of other vortices or system boundari
If the vortices are assumed to form a dilute system, i.
one where the defects are well separated, the influence
variations in the magnitudejAj of the complex field may
be neglected, sincejAj will assume its asymptotic value
at distances much smaller than the interdefect distan
[16]. Under this assumption, the interaction betwee
vortices can be described entirely by the phaseS. In this
approximation Rica and Tirapegui [8] (and in a slightl
different form also Ref. [9]) have derived the equation o
motion in two space dimensions for the position of th
kth defectXkstd in terms of the portion of the phaseS
due to other defects,uskdsxd ; S 2 nkwk , where tanwk ­
sy 2 Ykdysx 2 Xkd. Their result (forjnkj ­ 1 andbR ­ 1,
but here generalized to any value ofnk andbR) is

ÙXk ;
dXk

dt
­ 2bI=uskd 2 2bR

nk

jnkj
ẑ 3 =uskd, (2)

wherebR ; Re b, bI ; Im b, andẑ ­ x̂ 3 ŷ is normal
to the plane. The first term, proportional to the gradient,
that found by Fetter [17] in the GPG limit correspondin
to bR ­ 0, bI ­ h̄y2m and states that the vortex move
with the local superfluid velocity. The second term is th
perpendicular Peach-Koehler term [18] first found in th
context by Kawasaki [19].

When the system of spiral vortices cannot be appro
mated by a dilute system the expression (2) for the def
velocity is no longer valid but will acquire additional terms
We shall take a completely general approach in which t
amplitudejAj is allowed to vary. This will enable us to
determine the exact motion of a defect also when anoth
defect is located an arbitrarily small distance away, i.e
even when the vortex cores overlap. It will also provid
the exact motion of a defect which is arbitrarily near a sy
tem boundary. For filaments in a three-dimensional syst
our treatment will furthermore correctly incorporate inte
actions with other segments of the same filament.

The corresponding problem for a relativistic scalar fie
theory was solved by Ben-Ya’acov [4]. His derivatio
was based strictly on a covariant world-sheet formalis
that cannot be applied to a nonrelativistic theory. For t
CGL equation one must therefore resort to other metho

Let us consider the general motion of vortices in thre
space dimensions. The motion in a two-dimension
of
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system can be found from the three-dimensional probl
as the special case of straight, aligned vortices.

We may generalize Eq. (1) by admitting any continuo
function PsA, Apd for which the equation has vortex
solutions. The details ofP do not enter the derivation.
The field A is zero on a collection of one-dimensiona
strings which are the filaments. Let the position of th
filament G of a vortex be given at timet by Xss, td,
wheres is the arclength coordinate alongG. We define
a local coordinate system along the string as follow
[20]. At each point along the string the unit tangen
vector T ­ ≠Xy≠s, the unit normal vectorN, and the
binormal vectorB ­ T 3 N form an orthonormal frame
so that any positionx in a neighborhood of the string can
be expressed asx ­ Xss, td 1 xNss, td 1 yBss, td. The
coordinate representationss, x, yd is unique forx , 1yk

but becomes singular whenx reaches or exceeds th
radius of curvature1yk.

Along the string, the transport of the unit vectors
given by the Frenet-Serret equations [20]

≠T
≠s

­ kN,
≠N
≠s

­ 2kT 1 tB,
≠B
≠s

­ 2tN , (3)

wherek is the curvature andt is the torsion of the string.
Let us further introduce the local polar coordinatesr, w

defined byx ­ r cosw, y ­ r sinw. In terms of these
coordinates, the gradient and Laplacian take the forms

= ­ TH 1 r̂
≠

≠r
1 ŵ

1
r

≠

≠w
, (4)

=2 ­ H2 1
≠2

≠r2 1
1
r

≠

≠r
1

1
r2

≠2

≠w2

2
k

1 2 krcosw

µ
cosw

≠

≠r
2 sinw

1
r

≠

≠w

∂
, (5)

where

H ­
1

1 2 krcosw

µ
≠

≠s
2 t

≠

≠w

∂
. (6)

We now proceed to find the velocityÙXss, td of the
filamentG. Because this string of zeros of the functionA
has no transverse extension and is a feature of a solu
of an underlying local field theory, its motion should b
determined from the behavior of the fieldsjAj and S in
an infinitesimal neighborhood of the filament. It wil
be sufficient to study the fields within a distance´ ø
minsd, 1ykd, whered is the shortest distance to anothe
string segment [21]. This condition ensures uniquene
of the coordinate representation.

The phase fieldS is multivalued and satisfiesSss, r ,
w 1 2p; td 2 Sss, r , w; td ­ n2p for 0 , r , ´. Let us
therefore splitS ­ x 1 u in such a way thatx contains
all multivalued contributions to the phase and depen
on time only through the position of the filamentG.
For a straight (or two-dimensional) isolated vortex on
may choosex ­ nw. A consistent description of the
multivalued phase of an arbitrarily shaped vortex filame
1909
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requires, however, a global realization such as the Bi
Savart integral,

=x ­
n
2

Z
G

dX 3
x 2 X

jx 2 Xj3

, n

µ
1
r

1
k

2
cosw

∂
ŵ 2

nk

2
lnkrB 1 regular.

(7)

This expression contains logarithmic divergencies
r ! 0, as well as functions of the azimuthal anglew

that are multivalued atr ­ 0 [2]. We therefore absorb
in x any part of S that is nondifferentiable atr ­ 0.
Similarly, we may writejAj ­ Rw, where lnR depends
on the filament position and contains all contributions
lnjAj that are nondifferentiable atr ­ 0. For a straight
isolated vortex one may chooseR ­ r jnj. Thusu and lnw
are differentiable and it follows that the time derivativesÙu
and Ùw are finite forr , ´. We remark that the choice of
x andR is not unique, sinceS andjAj are invariant under
two independent local symmetries

x ! x 1 d, u ! u 2 d; R ! Rf, w ! wf21,

(8)

whered and lnf are differentiable.
With these definitions the real and imaginary parts

Eq. (1) lead to the two equations
d
dt slnR 1 lnwd ­ ResPd 1 bRQ1 2 bIQ2 , (9)

d
dt su 1 xd ­ ImsPd 1 bIQ1 1 bRQ2 , (10)

where

Q1 ­ =2lnR 1 =2lnw

1 s=lnR 1 =lnwd2 2 s=x 1 =ud2,

Q2 ­ =2x 1 =2u 1 2s=lnR 1 =lnwd ? s=x 1 =ud .

The time derivativedydt in Eqs. (9) and (10), which is
to be evaluated in the lab frame, is related to the tim
derivative≠y≠t in the moving reference frame of the loca
segment of the filament bydydt ­ 2 ÙX ? = 1 ≠y≠t.

In general, global expressions for=x and =lnR will
include singularities atr ­ 0 of the type demonstrated by
Eq. (7). We therefore write=x ­ f1r̂ 1 snyr 1 f2dŵ 1

l1T and=lnR ­ sjnjyr 1 f3dr̂ 1 f4ŵ 1 l2T, where

fisr , w, s, td ­ gisw, s, td 1 hisw, s, tdlnkr 1 O srd (11)

andO srd denotes any terms that vanish asr ! 0. It can
be easily confirmed from these equations (as well as
gued on general grounds) that≠xy≠t, ≠xy≠s, ≠slnRdy≠t,
≠slnRdy≠s, l1, and l2 have well-defined finite limits as
r ! 0. We require that=x and=lnR be integrable, and
that they satisfy the following condition near the filamen

=x 2
n
jnj

T 3 =lnR ­ Css, td 1 O srd . (12)

The arbitrary vectorC corresponds to a choice of gaug
in Eq. (8). In thesymmetric gaugeR ­ r jnj, x ­ nw for
1910
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a straight (or two-dimensional) isolated vortex we hav
C ­ 0.

Since u and lnw are differentiable, the singularities
of =x and =lnR at r ­ 0 must satisfy Eqs. (9) and
(10) order by order. This last condition, together with
Eq. (12), leads to the coupled nonlinear system

=lnR ? u 1 bRq1 2 bIq2 ­ regular,

=x ? u 1 bIq1 1 bRq2 ­ regular,
(13)

where q1 ­ =2lnR 1 s=lnRd2 2 s=xd2, q2 ­ =2x 1

2=lnR ? =x and u ­ ÙX 1 2bRs=lnw 1
n
jnjT 3 =ud 2

2bIs=u 2
n
jnjT 3 =lnwd.

Cancellation of terms of orderr21 in Eq. (13) leads to
two equations for the perpendicular components ofu. The
integrability condition provides four first-order differential
equations relating the functionsgi and hi , and together
with four algebraic relations resulting from Eq. (12) the
system can be solved in terms of four constants o
integration. The perpendicular components ofu are
then uniquely determined in terms ofC. Furthermore,
the singular terms of orderr21lnkr in Eq. (13) cancel.
It is always possible to set the tangential velocity
which is void of physical meaning, to zero by a time-
dependent reparametrizations ! sstd. In the language
of relativistic string theory, this is referred to as world-
sheet reparametrization invariance. The exact result f
the velocity of the vortex filament is

ÙX ­ bI

µ
k

n
jnj

B12s='u 1 C'd 2 2
n
jnj

T 3 =lnw

∂
1 bR

µ
kN2 2='lnw 2 2

n
jnj

T 3 s=u 1 Cd
∂

, (14)

where s d' ­ 2T 3 fT 3 s dg and the fields on the right-
hand side are to be evaluated at the filament positio
Xss, td. The exact two-dimensional result is obtained a
k ! 0.

The value of ÙX is independent of the choice of gauge
for R and x. Indeed, substitutingC from Eq. (12) into
Eq. (14) we obtain the manifestly invariant expression

ÙX ­ lim
r!0

∑
bI

µ
k

n
jnj

B 1 2='S 2 2
n
jnj

T 3 =lnjAj

∂
1 bR

µ
kN 2 2='lnjAj 2 2

n
jnj

T 3 =S

∂∏
,

(15)

in which the filament velocity is written in terms of
gradients of the magnitude and phase of the origina
complex fieldA. Let us define the complex velocityÙZ ;
sN 1 iBd ? ÙX and express the derivatives in Eq. (15) in
terms ofz ; x 1 iy and its conjugatezp. Then a quite
beautiful result emerges:(

ÙZ ­ bf24 ≠

≠zp lnAsz, zpd 1 kg, n $ 1 ,
ÙZp ­ bf24 ≠

≠z lnAsz, zpd 1 kg, n # 21 ,
(16)

where the right-hand side is to be evaluated atz ­ zp ­
0. The functionPsA, Apd does not enter explicitly in the
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expressions (14)–(16) for the velocity. However, sinceA
near the filament is determined by the differential equa
(1), the velocity nevertheless depends indirectly onP.

The results are to be interpreted as follows: The velo
of the central filament of a vortex gets contributions fro
the curvaturek of the filament and from local gradients
the magnitudejAj and phaseS of the complex field. A
cylindrically symmetric solutionA ­ rsrdexphifcsrd 1

nsw 2 vtdgj, for which r ­ jAj , r jnj and c 0s0d ­ 0,
contributes nothing to the velocity and corresponds t
straight (or two-dimensional) isolated vortex at rest w
respect to the lab frame. Nonzero gradient contributi
appear as a result of deviations from cylindrical symm
try in jAj andS. In a symmetric gauge withC ­ 0, these
deviations are represented byw andu. The asymmetries
arise from the presence of other vortices, system bou
aries, or (in three dimensions) other segments of the s
filament, causing the vortex to move.

In the C ­ 0 gauge the expression (14) reproduce
variety of results obtained previously for special cas
For k ­ 0 and =lnw ø 0 it reduces to Eq. (2) corre
sponding to a two-dimensional dilute system [8]. In t
GPG limit bR ­ 0 the expression (14) coincides with th
derived by Lee [22], who used a different method to fi
the velocity. ForbI ­ 0, Eq. (1) describes the nonline
diffusion of two fluid components with identical diffusio
constants. In this limit the contribution toÙX from curva-
ture,bRkN, agrees with the result of Ref. [15].

The expressions (14)–(16) for the velocity are ex
also for an arbitrarily small distance between filamen
This makes the formulation well suited for theoretic
or numerical investigations of local vortex interaction
such as crossing, merging, and intercommutation, in wh
the vortex cores overlap [3,23]. We caution that
GPG equation does not provide a realistic model for
core of a superfluid vortex, since there the core width
comparable to interatomic distances. For magnetic
vortices in a superconductor, however, the core width
much larger and a classical description is justified. S
vortices are solutions of Eq. (1) with the substitution= !
= 1 2ieAyh̄c, whereA is the vector potential and2e is
the charge of a Cooper pair. The corresponding filam
velocity is easily obtained by adding2eAyh̄c to =u in
Eq. (14) or to=S in Eq. (15) [22].

In summary, we have derived the exact equation
motion for a vortex in a large class of models of a nonre
tivistic complex field described by the complex Ginzbu
Landau equation (1) with an arbitrary, continuous funct
PsA, Apd. The velocity is expressed in terms of local gr
dients of the magnitude and phase of the complex fieldA.
The result agrees with that of Ref. [8] [our Eq. (2)] in t
case of a dilute two-dimensional system of vortices, but
the general nondilute case in two and three dimensions
find additional contributions to the velocity correspondi
to the asymmetry of the magnitudejAj around the vortex.

We are grateful to E. Copeland for crucial remar
relating to the three-dimensional case and to T. Bohr
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