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Abstract
This thesis consists of an introductory text together with five appended re-
search papers. The Ariadne’s thread through the whole thesis is various ef-
fects coming from high-dimensional 𝑝-branes in various subsectors of string
and M-theory.

The low energy effective actions in string and M-theory consists of a clas-
sical supergravity together with quantum corrections. In particular the non-
perturbative correction terms arise from instanton effects, which are inter-
preted as 𝑝-branes wrapping supersymmetric cycles. The general structure of
the full effective action is the result of a complicated interplay between super-
symmetry and U-duality. Requiring the action to be invariant under U-duality
leads to mathematical functions called automorphic forms. Both perturbative
and non-perturbative corrections seem to be captured by these functions. The
U-duality groups can be found by analyzing the algebraic structures of the
moduli space after toroidal compactification. Using this line of thinking, some
simple examples of higher order derivative corrections in pure gravity are in-
vestigated.

Compactification on manifolds with special holonomy is also discussed in
this thesis, with focus on the resulting moduli spaces. Certain quantum cor-
rections to type IIA string theory compactified on a rigid Calabi-Yau threefold
are analyzed.

Manifolds with special holonomy constitute target spaces of the topological
subsectors in string and M-theory. The low energy effective action of these
theories consists of a classical contribution from a form theory of gravity, which
receives quantum corrections from branes wrapping supersymmetric cycles in
the target space. In particular the dynamics of the M2- and M5-branes are
discussed in the context of a topological version of M-theory.
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Introduction

Modern physics started its course almost a century ago with the birth of quan-
tum mechanics and general relativity. In many ways these two theories can
be considered as opposite poles. History has told us that these two pillars of
theoretical physics seem to be incompatible with each other. However, there
are reasons to hope that by choosing a clever language this can be rectified
and the two theories made to live in perfect harmony with each other. Finding
the appropriate framework to do so has been the ultimate quest of high energy
physics for the last three decades.

Einstein’s theory of general relativity couples gravitational motion to the
geometry of spacetime. Gravitational systems are governed by equations of
motion which retain their form under coordinate transformations. This theory
works extremely well for heavy objects over large distance scales, as in astron-
omy for instance. Quantum mechanics, on the other hand, dictates that the
energy cannot take arbitrarily small values. Rather, it is said to be quantized.
Quantum mechanics is the framework to use when dealing with small physical
systems like atoms.

The experimental discoveries of the electromagnetic, weak and strong forces
pointed towards a general picture of the fundamental constituents of Nature.
Both matter and forces are viewed as point-like particles, which are character-
ized by mass, spin, charge, etc.. Some of them obey Bose-Einstein statistics
(bosons), others follow Fermi-Dirac statistics (fermions). In particular the
forces are mediated through massless particles named gauge bosons. Since the
gauge bosons move at the speed of light, the correct quantum theory describing
these has to respect Lorentz symmetry. In this so called relativistic quantum
field theory, elementary particles appear as states in the spectrum after quanti-
zation. The particle dynamics are then dictated by the scattering amplitudes,
which are derived in terms of Feynman diagrams. The construction of the
Standard Model containing the electromagnetic, weak and strong forces is so
far the greatest success of quantum field theory. The Standard Model is a non-
abelian gauge theory based on the Lie group 𝑆𝑈(3)×𝑆𝑈(2)×𝑈(1). Although
some of the Feynman diagrams seemed to give rise to divergences at first, it
was later found that they can be canceled out by employing a clever renormal-
ization scheme. Experimentally the Standard Model has been tested and seen
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to hold extremely well. The last major piece of the puzzle still missing is the
experimental verification of the mechanism that gives mass to the elementary
particles, which presumably happens via the Higgs mechanism.

The development of the Standard Model has been a process moving higher
and higher up in energy scale, theoretically as well as experimentally. Extrapo-
lating the three coupling constants in the theory to very high energies, it turns
out that they intersect almost at one point. A new kind of symmetry which
exchanges bosons with fermions then entered the stage. This supersymmetry
made the Higgs sector of the Standard Model better behaved in the ultravio-
let region, and as a side product the three forces became beautifully united.
Hopefully the answer to whether or not supersymmetry really exists will be
found in a not too distant future.

The idea of uniting the forces in Nature has been an enormously fruitful
guide for theoretical physics during the twentieth century. It was this line of
thinking that enabled the construction of the Standard Model. However, the
theory describing the origin of the universe or interior of a black hole must
contain both gauge theories and gravity. In other words, there exists a length
scale, known as the Planck length

ℓ𝑝 =

√
ℏ𝐺

𝑐3
≈ 1.616252(81)× 10−35 m, (1)

where the spacetime itself is quantized. The ingredients in Eq. (1) are the
three fundamental constants in Nature1: the reduced Planck constant ℏ, the
gravitational constant 𝐺 and the speed of light in vacuum 𝑐. Straightforwardly
quantizing gravity leads to many problems that we do not know how to solve,
e.g., it seems to be non-renormalizable.

The most successful attempt at quantizing gravity up to now is provided
by string theory. The fundamental object in string theory is, as the name
suggests, a string, which when moving around sweeps out a two-dimensional
surface in spacetime named the worldsheet. The classical action is simply given
by the area of the worldsheet. Quantizing this action, one finds not only gauge
fields, but also a particle that can be interpreted as the graviton. One of the
many beautiful properties of string theory is the fact that it contains only one
free parameter — the Regge slope 𝛼′. Both the characteristic length scale ℓ𝑠

and the tension 𝑇F1,S of the fundamental string are expressed in terms of 𝛼′

according to

ℓ𝑠 =
√
𝛼′ and 𝑇F1,𝑆 =

1

2𝜋𝛼′ . (2)

Moreover, the coupling constant appearing in target space is identified with
the vacuum expectation value of the dilaton scalar field:

𝑔𝑠 = 𝑒<𝜙>. (3)

1Throughout this thesis we will use natural units, i.e., ℏ = 𝑐 = 1.
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The fact that strings are one-dimensional resolves the problem of ultravio-
let divergences in the scattering amplitudes. The major argument against
string theory is that it requires a huge number of spacetime dimensions to
be consistent. Requiring also invariance under supersymmetry constrains the
dimension to be ten, which is still way to many compared to the four we
observe. The basic idea of how to deal with this problem is Kaluza-Klein com-
pactification, where the six superfluous spacelike dimensions are thought to
be small. Although we cannot observe these compact dimensions directly, the
four-dimensional physics is affected by their detailed structures. Much efforts
have been made trying to understand the exact implications of various choices
of internal manifolds.

Another puzzle in string theory for a long time was the fact that five self-
consistent string theories with seemingly distinct properties were found. They
are called type IIA, type IIB, type I, 𝑂(32) heterotic and 𝐸8×𝐸8 heterotic. In
the low energy limit each of them is described by a corresponding supergravity
theory together with perturbative as well as non-perturbative quantum cor-
rections. This puzzle was eliminated by the discovery of dualities. S-duality
exchanges weak and strong couplings, while T-duality relates certain string the-
ories compactified on small radii with others compactified on large radii. These
dualities collectively point towards an eleven-dimensional umbrella, which is
named M-theory by E. Witten. For instance type IIA string theory is obtained
from M-theory by circular compactification, in particular the IIA string cou-
pling constant can be reinterpreted in terms of the compactification radius 𝑅11

and the Planck length,

𝑔𝑠 =

(
𝑅11

ℓ𝑝

)3/2

. (4)

In the low energy limit, M-theory itself is described by an eleven-dimensional
supergravity theory. As for the quantum theory, the fundamental object is
believed to be a membrane. However, quantization of the membrane world-
volume action has so far not been achieved in a satisfactory way.

Whatever the microscopic description of M-theory turns out to be, the
various string theories should be thought of as perturbative descriptions of
distinct corners of its parameter space. Dualities are the correct tool to use
when relating these corners. Although string and M-theory are mathematically
very beautiful, we shall not forget that the goal for physicists is to understand
Nature. The discovery of higher-dimensional 𝑝-branes in string theory finally
opened the door to semi-realistic gauge theories. Furthermore, during the
last decade a new type of duality was discovered, which relates certain string
configurations on some particular 𝑑-dimensional spacetime geometries to non-
abelian gauge theories in one dimension less. As string and M-theory reveal
more and more of their secrets, hopefully soon we will know whether or not
this is the right track to take.
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D-Branes

A special type of 𝑝-branes related to open strings with Dirichlet boundary
conditions will play a central role in this thesis. Some basic properties of these
so called D-branes are briefly reviewed here.

D𝑝-branes in string theory are (𝑝 + 1)-dimensional objects on which open
strings can end. They were first discovered as a consequence of the T-duality by
J. Dai, R. G. Leigh and J. Polchinski [1], and independently by P. Hořava [2].
Later they were identified with BPS 𝑝-brane solutions of the ten-dimensional
supergravity theories [3]. The presence of D-branes breaks the symmetries
of the Minkowski space vacuum. In the vicinity of a D𝑝-brane the Lorentz
symmetry is broken according to

𝑆𝑂(1, 9)→ 𝑆𝑂(1, 𝑝)× 𝑆𝑂(9− 𝑝), (5)

while at least half of the supersymmetries are also broken.
Every massless gauge field in string theory is generated by an electric

or magnetic 𝑝-brane source. Let 𝐴𝑛 denote an 𝑛-form gauge field. Its field
strength is then an (𝑛+ 1)-form given by

𝐹𝑛+1 = 𝑑𝐴𝑛. (6)

Coupling terms containing the other gauge fields are for simplicity omitted on
the right hand side. Due to 𝑑2 = 0, field strengths defined as in Eq. (6) are
invariant under the gauge transformations

𝛿𝐴𝑛 = 𝑑Λ𝑛−1. (7)

A (𝑝+ 1)-form gauge field can be coupled to a 𝑝-brane via

𝑆int = 𝑒𝑝

∫
𝐴𝑝+1, (8)

where the pullback of 𝐴𝑝+1 to the brane worldvolume is understood implicitly.
The conventions we use are from Ref. [4]. The electric 𝑝-brane charge can be
computed using Gauss’s law

𝑒𝑝 =

∫
𝑆𝐷−𝑝−2

∗𝐹𝑝+2. (9)

The integral (9) is computed over a sphere 𝑆𝐷−𝑝−2, with 𝐷 being the total
number of spacetime dimensions. On the other hand, one can also define a
magnetic charge according to

𝑚𝑝 =

∫
𝑆𝑝+2

𝐹𝑝+2. (10)

4



Making the identification 𝐹𝑝+2 = ∗𝐹𝐷−𝑝−2, we may reinterpret 𝑚𝑝 as the
electric charge of a dual (𝐷 − 𝑝− 4)-brane

𝑆int = 𝑚𝑝

∫
𝐴𝐷−𝑝−3, (11)

where 𝐴𝐷−𝑝−3 is the gauge potential of 𝐹𝐷−𝑝−2. Thus, 𝑝- and (𝐷 − 𝑝 − 4)-
branes are dual to each other. In particular for 𝐷 = 10 we find that 𝑝-branes
are dual to (6−𝑝)-branes, and it is motivated to set 𝑒𝑝−6 = 𝑚𝑝. Moreover, the
electric and magnetic charges have to satisfy the Dirac quantization condition
[5, 6, 7]

𝑒𝑝𝑚𝑝 = 𝑒𝑝𝑒𝐷−𝑝−4 ∈ 2𝜋ℤ. (12)

The D𝑝-branes are most naturally embedded in a target space, containing
both spacetime and (odd) Grassmann coordinates, called superspace [8]. The-
ories formulated in superspace are manifestly target space supersymmetric.
On the worldsheet local kappa symmetry is employed to ensure the matching
between bosonic and fermionic degrees of freedom [9, 10, 11, 12, 13, 14]. The
worldvolume theory of a single D𝑝-brane in type II string theories is governed
by the Dirac-Born-Infeld action [15]

𝑆𝑝 = −𝑇D𝑝

∫
𝑑𝑝+1𝜎

√
− det(𝐺𝛼𝛽 + 2𝜋𝛼′𝐹𝛼𝛽). (13)

Here 𝐺𝛼𝛽 is the worldvolume pullback of the spacetime metric, while 𝐹𝛼𝛽 is
the pullback of a combination with the Maxwell field strength and the Kalb-
Ramond field. The worldvolume coordinates are denoted by 𝜎𝛼. The action
in Eq. (13) is non-linear, and expanding with respect to small 𝐹𝛼𝛽 leads to an
infinite series of terms starting with the ordinary Maxwell action. The symbol
𝑇D𝑝 stands for the tension of the 𝑝-brane. Using T-duality one can find the
general expression

𝑇D𝑝 =
1

𝑔𝑠(2𝜋)𝑝𝛼
′ 𝑝+1

2

. (14)

Let us emphasize the fact that the tension of a D-brane behaves as the inverse
of the string coupling constant, i.e., 𝑇D𝑝 ∼ 1/𝑔𝑠. Later we will also encounter
the so called NS5-branes, whose tension scales like 𝑇NS5 ∼ 1/𝑔2𝑠 .

D-branes play an important role in string theory, since gauge theories arise
naturally on the D-brane worldvolume [16]. This gives rise to new oppor-
tunities to find the Standard Model. From the gravitational point of view,
D-branes living entirely in the compact dimensions provide a microscopic ex-
planation for the thermodynamical properties of black holes [17]. In this thesis
we will focus on D-branes wrapping supersymmetric cycles in a compact man-
ifold. Two examples of such D-brane effects will be given. One is excitations
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of topological string theories on Calabi-Yau threefolds. The other is instan-
ton corrections in the spacetime effective theory, arising when D-branes are
completely wrapped on cycles in the internal manifold.

6



Outline

This thesis consists of four chapters, one appendix and five research papers.
The conventions are self-consistent within each chapter, and they are kept as
uniform as possible between the chapters.

Chapter 1 reviews the basics of the maximal supergravity theories in
eleven and ten dimensions. The role of the S- and T-duality in string theory
are described, and the U-duality conjecture is presented.

The theory of Kaluza-Klein compactification is reviewed in Chapter 2.
The dimensional reduction on an 𝑛-dimensional torus is done explicitly, in
particular the symmetry properties of the moduli space are analyzed in relation
to the U-duality. Compactification on Calabi-Yau threefolds and 𝐺2 manifolds
is also discussed in this chapter. Moreover, this chapter also contains a brief
account of the topological subsectors of string and M-theory residing on Calabi-
Yau threefolds and 𝐺2 manifolds.

Chapter 3 picks up where Chapter 1 ends and discusses the low energy
effective actions of type II string theories beyond the supergravity level. It con-
tains both perturbative and non-perturbative quantum corrections, organized
as a double expansion in the Regge slope 𝛼′ and the string coupling constant
𝑔𝑠. Both supersymmetry and U-duality turn out to be useful for finding the
general structures of the correction terms.

The 𝑔𝑠 expansion at each 𝛼′-level is encoded by mathematical functions
called automorphic forms. Some mathematical backgrounds of automorphic
forms is introduced in Chapter 4. The non-holomorphic Eisenstein series
based on the discrete group 𝑆𝐿(2,ℤ) is worked through in detail as a guid-
ing example. Various construction methods as well as the Fourier properties
of it are presented. Generalization to Eisenstein series based on discrete sub-
groups of larger Lie groups is discussed. Moreover, construction of automorphic
forms which transform under certain Lie groups is briefly mentioned. One of
the constructions is based on 𝑝-adic numbers, the relevant properties of this
mathematical field are given in Appendix A.

The appended research papers are grouped into two parts. The first part
consists of Paper I and II and deals with the topological subsector of M-
theory. The second part analyzes some symmetry structures of the quantum
corrections in string theory effective actions. This part contains Paper III,
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IV and V.
Considering a target space with 𝐺2 holonomy, the supersymmetric action of

a membrane moving in this space is formulated in Paper I. The fact that this
action is BRST-exact on-shell indicates that it is topological. It is suggested
that this membrane is the fundamental object of the conjectured topological
M-theory.

The action for a five-brane in topological M-theory is subsequently given in
Paper II using the top-form formulation. After compactification on a circle,
the M5-brane is identified with the NS5-brane in the topological A model. The
Kodaira-Spencer equation appears as equation of motion for the three-form on
the NS5-brane, which indicates a duality relation between the topological A
and B models.

Paper III discusses symmetries of coset type for the gravitational ℛ2, ℛ3

and ℛ4 corrections in the string effective action. This is achieved by dimen-
sional reduction to three spacetime dimensions on 𝑛-torii. It is argued in this
paper that requiring invariance under U-duality would require transforming
automorphic forms.

The toroidal reduction of the Gauss-Bonnet combination is analyzed in
detail in Paper IV. By investigating the dilaton exponents in the resulting
action, the symmetry properties of this correction term are discussed. In par-
ticular focus is set on the ”U-duality” symmetry 𝑆𝐿(𝑛+ 1,ℝ).

Paper V is also dealing with quantum corrections, although in another
context. The system considered here is type IIA string theory compactified on
a rigid Calabi-Yau threefold. The moduli space variables of this theory param-
eterizes the symmetric space 𝑆𝑈(2, 1)/𝑈(2). It is argued that the quantum
corrections at the two-derivative level are captured by the non-holomorphic
Eisenstein series based on the Picard modular group 𝑆𝑈(2, 1;ℤ[𝑖]). Physical
interpretations are given for the various components of this Eisenstein series.
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1
Supergravities and Dualities

This chapter is devoted to the subject of supergravity theories, which initially
were considered as candidates for the unification of the Standard Model with
Einstein’s theory of general relativity. Nowadays they are understood as low
energy limits of string and M-theory. In the limit of large string tension, or
equivalently, when the Regge slope 𝛼′ → 0 the massive particles become very
heavy. It is then justified to approximate string theory with its low-energy
effective supergravity. Even though supergravity theories only describe inter-
actions between the massless modes, studying them has proven to be very fruit-
ful. Most importantly they opened the door to the powerful non-perturbative
tools called dualities, resulting in the second superstring revolution.

1.1 Higher-Dimensional Supergravites

A supergravity theory, originally proposed in Ref. [18], is the extension of grav-
ity by supersymmetry. By definition it is invariant under local super-Poincaré
transformations. Among other fields supergravity contains a massless spin-
two graviton and its superpartner, the spin 3/2 gravitino. The number of
gravitino fields is denoted by 𝒩 and equals the number of copies of a super-
symmetry. Supergravities can be formulated in many spacetime dimensions.
However, constraining all the particle spins to be two or less, as is what has
been observed in nature, it was shown in Ref. [19] that the maximal number
of supercharges consistent with a single graviton is 32. This corresponds to
an eleven-dimensional spacetime with Lorentzian metric1. In this section we
will concentrate on supergravities in 𝐷 = 10 and 𝐷 = 11, since they are most

1Relaxing the Lorentzian metric constraint it is possible to have twelve dimensions with
two of them being timelike, which is the background setup for the so called F-theory [20].
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closely related to string and M-theory. The standard reference to supersym-
metry and supergravity is the book by J. Wess and J. Bagger [21].

1.1.1 Eleven-Dimensional Supergravity

Ever since its discovery [22] eleven-dimensional supergravity has held a spe-
cial place in high energy theoretical physics. This is the only supersymmetric
theory in eleven dimensions. It contains one supermultiplet, transforming as
a single representation of the supergroup 𝑂𝑆𝑝(1∣32). The field content of
the supermultiplet consists of the elfbein 𝐸 𝐴

𝑀 , the gravitino Ψ𝑀 and a rank
three gauge field 𝒞𝑀𝑁𝑃 . The index 𝑀 is the curved spacetime index, while
𝐴 is its tangent space equivalent. Since it contains the maximal number of
supersymmetries permitted in eleven dimensions, this theory is called a max-
imal supergravity. The gravitino is a 32-component Majorana spinor, which
transforms as a representation under 𝑆𝑝𝑖𝑛(1, 10).

The bosonic part of the eleven-dimensional supergravity action is

𝑆11 =
1

2𝜅211

[∫
𝑑11𝑥

√−𝐺𝑅 +
1

2

∫
𝒢4 ∧ ∗𝒢4 + 1

6
𝒢4 ∧ 𝒢4 ∧ 𝒞3

]
, (1.1)

where 𝑅 is the curvature scalar defined using the metric 𝐺𝑀𝑁 = 𝜂𝐴𝐵𝐸
𝐴

𝑀 𝐸 𝐵
𝑁 .

The four-form field strength 𝒢4 ≡ 𝑑𝒞3 is invariant under the gauge transfor-
mations

𝒞3 �−→ 𝒞′3 = 𝒞3 + 𝑑Λ2 (1.2)

and satisfies the Bianchi identity

𝑑𝒢4 = 0. (1.3)

Einstein’s equation together with

𝑑 ∗ 𝒢4 + 1

2
𝒢4 ∧ 𝒢4 = 0 (1.4)

constitute the equations of motion. An alternative formulation can be found
by introducing also a dual gauge field 𝒞6 and its corresponding field strength

𝒢7 = 𝑑𝒞6 + 1

2
𝒞3 ∧ 𝒢4. (1.5)

Requiring
∗ 𝒢4 = −𝒢7, (1.6)

Eq. (1.4) turns into the Bianchi identity of 𝒢7. The overall constant 𝜅11 is re-
lated to the eleven-dimensional Newton’s constant 𝐺11 and the 11-dimensional
Planck length ℓ𝑝 as

2𝜅211 = 16𝜋𝐺11 =
(2𝜋ℓ𝑝)

9

2𝜋
. (1.7)
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Using the supersymmetry variations

𝛿𝐸 𝐴
𝑀 = 𝜀Γ𝐴Ψ𝑀 ,

𝛿𝒞𝑀𝑁𝑃 = −3𝜀Γ[𝑀𝑁Ψ𝑃 ],

𝛿Ψ𝑀 = ∇𝑀𝜀+
1

12

(
1

4!
Γ𝑀𝒢𝑁𝑃𝑄𝑅Γ

𝑁𝑃𝑄𝑅 − 1

2
𝒢𝑀𝑁𝑃𝑄Γ

𝑁𝑃𝑄

)
𝜀,

(1.8)

we can obtain the full supersymmetric action. The variation 𝛿Ψ𝑀 given here is
only to leading order in fermionic fields, additional terms which are quadratic
in the fermionic fields have been dropped. The Dirac matrices are defined by
Γ𝑀 = 𝐸 𝐴

𝑀 Γ𝐴, with Γ𝐴 satisfying the Clifford algebra. Moreover, the covariant
derivative appearing in Eq. (1.8) is given by

∇𝑀𝜀 = ∂𝑀𝜀+
1

4
𝜔𝑀𝐴𝐵Γ

𝐴𝐵𝜀, (1.9)

where 𝜔𝑀𝐴𝐵 is the standard spin connection in tangent space.
In order to find bosonic solutions which also preserve some supersymme-

tries, the variation of the gravitino has to vanish:

𝛿Ψ𝑀 = ∇𝑀𝜀+
1

12

(
1

4!
Γ𝑀𝒢𝑁𝑃𝑄𝑅Γ

𝑁𝑃𝑄𝑅 − 1

2
𝒢𝑀𝑁𝑃𝑄Γ

𝑁𝑃𝑄

)
𝜀 = 0. (1.10)

A spinor 𝜀 satisfying this equation is called a Killing spinor. More specifically
for eleven-dimensional supergravity there are two stable maximally supersym-
metric brane solutions, a 2-brane and a 5-brane, which are electrically and
magnetically charged, respectively, with respect to the 𝒞3 field. The fact that
they both saturate the Bogomolny-Prasad-Sommerfield (BPS ) bound means
that their masses are equal to their charges. These two solutions are precisely
the long-wavelength limits of the M2- and M5-brane in M-theory with

𝑇M2 = 2𝜋(2𝜋ℓ𝑝)
−3 and 𝑇M5 = 2𝜋(2𝜋ℓ𝑝)

−6 (1.11)

being their tensions [4].
The uniqueness of eleven-dimensional supergravity caused much excitement

when it was first introduced. Much of the hope of it being the Theory Of Ev-
erything died out when it was realized that 𝐷 = 11 supergravity is non-chiral
as well as non-renormalizable. However, it managed to come back to the fore-
front of physics when E. Witten pointed out the existence of eleven-dimensional
M-theory. Instead of being a fundamental theory, 𝐷 = 11 supergravity should
be thought of as the classical limit of M-theory. The fact that it is not renor-
malizable is not an obstacle anymore since it is only an effective theory valid
at low energies. Since then it has also been understood that four-dimensional
chiral theories can be obtained from higher-dimensional non-chiral ones by
compactifying on manifolds with suitable singularities [23, 24].
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1.1.2 Type IIA Supergravity

The first hint towards M-theory is the construction of type IIA supergravity.
This theory is obtained from eleven-dimensional supergravity by dimensional
reduction [25]. Similar to how 𝐷 = 11 supergravity is interpreted as the low
energy limit of M-theory, type IIA supergravity is the low energy limit of type
IIA superstring theory in ten dimensions [26].

Upon dimensional reduction on 𝑆1, the eleven-dimensional metric gives rise
to a ten-dimensional metric, a gauge field and a scalar (dilaton) in the following
way

𝐺𝑀𝑁 =

(
𝑔𝜇𝜈 + 𝑒2𝜎𝐴𝜇𝐴𝜈 𝑒2𝜎𝐴𝜇

𝑒2𝜎𝐴𝜈 𝑒2𝜎

)
. (1.12)

The conventions used here are the same as in Ref. [27]. As opposed to com-
pactification, in dimensional reduction only the zero modes in the Fourier
expansions of the various fields are kept. Similarly the three-form gauge field
is decomposed into a three-form and a two-form

𝐶𝜇𝜈𝜌 = 𝒞𝜇𝜈𝜌 − (𝒞𝜈𝜌,10𝐴𝜇 + cyclic), 𝐵𝜇𝜈 = 𝒞𝜇𝜈,10. (1.13)

The bosonic part of the dimensional reduced action can now be written as

𝑆IIA =
1

2𝜅2

∫
𝑑10𝑥

√−𝑔𝑒𝜎

[
𝑅− 1

2 ⋅ 4!𝐹
2
4 −

1

2 ⋅ 3!𝑒
−2𝜎𝐻2

3 −
1

4
𝑒2𝜎𝐹 2

2

]
+

1

4𝜅2

∫
𝐵2 ∧ 𝑑𝐶3 ∧ 𝑑𝐶3,

(1.14)

where the field strengths are defined according to

𝐹2 = 𝑑𝐴, 𝐻3 = 𝑑𝐵2, 𝐹4 = 𝑑𝐶3 − 𝐴 ∧𝐻3. (1.15)

To bring the action to the standard string frame we need to rescale the metric
𝑔𝜇𝜈 → 𝑒−𝜎𝑔𝜇𝜈 . The end result is

𝑆IIA,S =
1

2𝜅2

∫
𝑑10𝑥

√−𝑔
[
𝑒−2𝜙

(
𝑅 + 4(∇𝜙)2 − 1

12
𝐻2
3

)

− 1

2 ⋅ 4!𝐹
2
4 −

1

4
𝐹 2
2

]
+

1

4𝜅2

∫
𝐵2 ∧ 𝑑𝐶3 ∧ 𝑑𝐶3,

(1.16)

with 𝜙 ≡ 3𝜎/2. Later in Section 3.1 we will see that the factor 𝑒−2𝜙 in front of
the curvature scalar originates from a spherical string worldsheet. Sometimes
it is useful to express the type IIA supergravity action without this dilaton
factor, which is known as the Einstein frame. This can be achieved by yet

12



another Weyl rescaling of the metric, 𝑔𝜇𝜈 → 𝑒𝜙/2𝑔𝜇𝜈 , yielding

𝑆IIA,E =
1

2𝜅2

∫
𝑑10𝑥

√−𝑔
[(

𝑅− 1

2
(∇𝜙)2 − 𝑒−𝜙

12
𝐻2
3

)

− 𝑒𝜙/2

2 ⋅ 4!𝐹
2
4 −

𝑒3𝜙/2

4
𝐹 2
2

]
+

1

4𝜅2

∫
𝐵2 ∧ 𝑑𝐶3 ∧ 𝑑𝐶3.

(1.17)

Notice that compared to Eq. (1.16) new couplings between the dilaton and the
R-R fields have also appeared.

Decomposing the gravitino in eleven dimensions into representations of
𝑆𝑝𝑖𝑛(1, 9), we obtain a Majorana gravitino (𝜓𝜇

𝛼) and a Majorana dilatino
(𝜆𝛼). Using the Γ11 matrix each of these can be decomposed again into a
pair of Majorana-Weyl spinors of opposite chirality. Together with the gravi-
ton (𝑔𝜇𝜈), the antisymmetric tensor (𝐵𝜇𝜈), the dilaton (𝜙), the vector (𝐴𝜇)
and the antisymmetric three tensor (𝐶𝜇𝜈𝜌), they form a single supermultiplet
of 𝒩 = (1, 1) supersymmetry. All the supersymmetry transformations can be
found in Ref. [25], in particular transformations of the fermionic fields in the
Einstein frame are given by

𝛿𝜆 =
1

2
√
2
∇𝜇𝜙Γ

𝜇Γ11𝜀+
3

16
√
2
𝑒3𝜙/4𝐹 (2)

𝜇𝜈 Γ
𝜇𝜈𝜀+

𝑖

24
√
2
𝑒−𝜙/2𝐻𝜇𝜈𝜌Γ

𝜇𝜈𝜌𝜀

− 𝑖

192
√
2
𝑒𝜙/4𝐹 (4)

𝜇𝜈𝜌𝜎Γ
𝜇𝜈𝜌𝜎𝜀,

𝛿𝜓𝜇 =∇𝜇𝜀+
1

64
𝑒3𝜙/4𝐹 (2)

𝜈𝜌 (Γ𝜇𝜈𝜌 − 14𝑔𝜇𝜈Γ𝜌) Γ11𝜀

+
1

96
𝑒−𝜙/2𝐻𝜈𝜌𝜎 (Γ

𝜇𝜈𝜌𝜎 − 9𝑔𝜇𝜈Γ𝜌𝜎) Γ11𝜀

+
𝑖

256
𝑒𝜙/4𝐹 (4)

𝜈𝜌𝜎𝜏

(
Γ𝜇𝜈𝜌𝜎𝜏 − 20

3
𝑔𝜇𝜈Γ𝜌𝜎𝜏

)
Γ11𝜀.

(1.18)

The covariant derivative is defined as ∇𝜇𝜀 =
(
∂𝜇 +

1
4
𝜔𝑎𝑏

𝜇 Γ𝑎𝑏

)
𝜀. The full action

of type IIA supergravity is obtained by acting on the bosonic part in Eq. (1.17)
with supersymmetry transformations.

The type IIA string coupling constant is defined in terms of the vacuum
expectation value of the dilaton

𝑔𝑠 = 𝑒<𝜙>. (1.19)

As a result of the dimensional reduction (1.12), the string length scale is related
to the Planck constant via

ℓ𝑝 = 𝑔1/3𝑠 ℓ𝑠, (1.20)

with ℓ𝑠 =
√
𝛼′. At the same time Newton’s constant in ten and eleven dimen-

sions are related as
𝐺11 = 2𝜋𝑅11𝐺10, (1.21)

13



where the radius of the compact circle is then found to be 𝑅11 = 𝑔𝑠ℓ𝑠. Using

16𝜋𝐺10 =
1

2𝜋
(2𝜋ℓ𝑠)

8(𝑔𝑠)
2 (1.22)

one can thus show that 𝜅 appearing in Eq. (1.17) should be defined as

2𝜅2 =
1

2𝜋
(2𝜋ℓ𝑠)

8. (1.23)

Moreover, we find that the string coupling constant satisfies

𝑔𝑠 =

(
𝑅11

ℓ𝑝

)3/2

. (1.24)

Just like the physical fields, most of the branes contained in IIA supergrav-
ity also have eleven-dimensional origins [28, 29]. The M2-brane wrapped on
the compactified circle is a IIA fundamental string F1, with tension given by,
in the string frame,

𝑇F1,S = 2𝜋𝑅11𝑇M2 =
1

2𝜋ℓ2𝑠
. (1.25)

On the other hand, an M2-brane not wrapping around the compactified circle
is a D2-brane. Similarly the M5-brane gives rise to a D4- or an NS5-brane.
The origin of the D0- and D6-branes are slightly harder to guess. The former
corresponds to the lowest Kaluza-Klein momentum mode along the compact-
ified circle. The latter is the magnetic dual of the D0-brane, and its physical
interpretation is a Kaluza-Klein monopole. The presence of a D8-brane would
however lead to a mass deformation of the IIA supergravity. Since no eleven-
dimensional lift of massive IIA supergravity is yet known, the origin of the
D8-brane is not as well understood as the other branes.

Once type IIA supergravity is formulated we can revert the argument.
By going to the strong coupling limit, we would have rediscovered its eleven-
dimensional origin [30, 29].

1.1.3 Type IIB Supergravity

Besides type IIA supergravity, there exists one more maximal supergravity in
ten dimensions. This theory is called type IIB supergravity and describes the
massless limit of the type IIB superstring [31, 32, 26]. The supermultiplet
of type IIB supergravity contains the graviton (𝑔𝜇𝜈), two scalars (𝜙, 𝐶0), two
antisymmetric tensors (𝐵2, 𝐶2), one “self-dual” four-form (𝐶4), two Majorana-
Weyl gravitini of the same chirality (or one Weyl gravitino 𝜓𝜇) and two
Majorana-Weyl dilatini of the same chirality (or one Weyl dilatino 𝜆). The
metric, 𝜙 and 𝐵2 belong to the NS-NS sector, while 𝐶0, 𝐶2 and 𝐶4 belong
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to the R-R sector. Since all the fermions are of the same chirality, type IIB
supergravity is chiral and said to have 𝒩 = (2, 0) supersymmetry.

The property that the field strength of the four-form 𝐶4 is self-dual is
impossible to obtain from a covariant action. One can thus either work entirely
at the level of equations of motion, or one can write down an action which yields
all other equations except for the self-duality and then impose this condition
by hand. It is the latter approach we are going to utilize2.

One important feature of this theory is the existence of a global 𝑆𝐿(2,ℝ)
invariance. Elements of this matrix group

𝑆𝐿(2,ℝ) =

{
𝛾 =

(
𝑎 𝑏
𝑐 𝑑

)
𝑎𝑑− 𝑏𝑐 = 1; 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ

}
(1.26)

act by fractional linear transformations on the scalars

𝜏 �−→ 𝑎𝜏 + 𝑏

𝑐𝜏 + 𝑑
, with 𝜏 = 𝐶0 + 𝑖𝑒−𝜙, (1.27)

and linearly on the two-forms(
𝐵2

𝐶2

)
�−→

(
𝑑 −𝑐
−𝑏 𝑎

)(
𝐵2

𝐶2

)
. (1.28)

The bosonic part of the action in the Einstein frame can now be written as

𝑆IIB,E =
1

2𝜅2

∫
𝑑10𝑥

√−𝑔
[
𝑅− 1

2

∂𝜏∂𝜏

ℑ(𝜏)2 −
1

12
∣𝐺3∣2 − 1

2 ⋅ 5!𝐹
2
5

]
+

1

2𝑖

∫
𝐶4 ∧𝐺3 ∧ �̄�3,

(1.29)

where

𝐻3 = 𝑑𝐵2, 𝐹3 = 𝑑𝐶2, 𝐺3 = 𝑖
𝐹3 + 𝜏𝐻3√ℑ(𝜏) , 𝐹5 = 𝑑𝐶4 − 𝐶2 ∧𝐻3. (1.30)

The notation ℑ(𝑥) is referring to the imaginary part of 𝑥. In addition we have
to impose the self-duality condition

𝐹5 = ∗𝐹5. (1.31)

Straightforward computation shows that both the action and the self-duality
condition are invariant under 𝑆𝐿(2,ℝ). The choice of Einstein frame has made
this quite transparent. In fact the invariance of the scalar sector can be made

2There is also a manifestly covariant formulation, by extending the theory with an aux-
iliary scalar field together with an extra gauge symmetry [33].
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manifest once one observes that the moduli space, parameterized by 𝜙 and
𝐶0, is isomorphic to the symmetric space 𝑆𝐿(2,ℝ)/𝑆𝑂(2). More about this
matter later when we discuss S-duality.

The supersymmetry transformations can be found in [31, 32], for instance
the transformations of the fermions are give by

𝛿𝜆 =− 1

2
𝑒𝜙Γ𝜇𝜀∗∂𝜇𝜏 − 𝑖

24
𝑒𝜙/2Γ𝜇𝜈𝜌𝜀𝐺(3)

𝜇𝜈𝜌,

𝛿𝜓𝜇 =∇𝜇𝜀− 𝑖

1920
Γ𝜇1...𝜇5Γ𝜇𝜀𝐹 (5)

𝜇1...𝜇5
+

1

96
(Γ𝜇𝜈𝜌𝜎 − 9𝑔𝜇𝜈Γ𝜌𝜎) 𝜀∗𝐺(3)

𝜈𝜌𝜎,
(1.32)

where 𝜀 = 𝜀𝐿 + 𝑖𝜀𝑅 and 𝜀∗ = 𝜀𝐿 − 𝑖𝜀𝑅 define the complexified version of a left
and a right Majorana-Weyl spinor. Acting recursively on the bosonic action
with the supersymmetry transformations we will find the full supersymmetric
action. The detailed computation can be found in Refs. [31, 32].

The brane content of IIB supergravity includes odd-dimensional D(−1)-,
D1-, D3-, D5- and D7-branes, which act as sources for the R-R gauge fields.
The D(−1)- and D7-branes are coupled electrically and magnetically to the
𝐶0 potential, respectively. Similarly 𝐶2 is coupled to D1 and D5, while 𝐶4

is coupled to the self-dual D3. In addition there are electric and magnetic
sources for the 𝐵2 field, namely the fundamental string F1 and the NS5-brane,
respectively.

1.1.4 The Democratic Formulation

By extending the R-R fields with their Hodge duals, the authors of Ref. [34]
managed to formulate both type IIA and IIB supergravity in a uniform way.
The field content in this formulation becomes

IIA : {𝑔𝜇𝜈 , 𝐵𝜇𝜈 , 𝜙, 𝐶
(1), 𝐶(3), 𝐶(5), 𝐶(7), 𝐶(9), 𝜓𝜇, 𝜆},

IIB : {𝑔𝜇𝜈 , 𝐵𝜇𝜈 , 𝜙, 𝐶
(0), 𝐶(2), 𝐶(4), 𝐶(6), 𝐶(8), 𝜓𝜇, 𝜆}.

(1.33)

The extra degrees of freedom will later be removed by self-duality constraints.
Type IIA contains fermions of both chiralities, while the opposite is valid for
IIB with Γ11𝜓𝜇 = 𝜓𝜇 and Γ11𝜆 = −𝜆.

The notations will be hugely simplified if we define a collective gauge po-
tential

C =

5, 9
2∑

𝑛=1, 1
2

𝐶(2𝑛−1), (1.34)

where the sums run over the integers in IIA and half-integers 1
2
. . . 9

2
in IIB.

The field strengths are then given by

𝐻 = 𝑑𝐵 and G = 𝑑C−𝐻 ∧C+𝐺(0)𝑒𝐵, (1.35)
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with G =
∑5, 9

2

𝑛=0, 1
2

𝐺(2𝑛) being a collective field strength. 𝐺(0) is the constant

mass parameter of IIA supergravity, while it vanishes in IIB supergravity.
Notice that Eq. (1.35) should be read off order by order in form degrees, in
particular the last term in G is only present in IIB. The corresponding Bianchi
identities are given by

𝑑𝐻 = 0 and 𝑑G = 𝐻 ∧G. (1.36)

We are now ready to present the bosonic action:

𝑆 =
1

2𝜅2

∫
𝑑10𝑥

√−𝑔
⎡
⎣𝑒−2𝜙 (

𝑅 − 4(∂𝜙)2 +
1

2
𝐻 ⋅𝐻

)
+

1

4

5, 9
2∑

𝑛=0, 1
2

𝐺(2𝑛) ⋅𝐺(2𝑛)

⎤
⎦ .

(1.37)
As already mentioned, to remove the extra degrees of freedom the gauge po-
tentials have to obey self-duality constraints

𝐺(2𝑛) = (−1)[𝑛] ∗𝐺(10−2𝑛) + (𝑓𝑒𝑟𝑚𝑖), (1.38)

where [𝑛] refers the integer part of 𝑛.
This formulation can also be applied to massive type IIA supergravity,

where one also adds a nine-form 𝐶(9). The dual of its field strength satisfies
𝐺(0) = 𝑚, with 𝑚 being the Romans mass. This theory was first constructed
in Ref. [35] as a deformed version of ordinary IIA supergravity. Though
its classical eleven-dimensional lift is so far not known, the theory should be
contained in M-theory.

As a side comment, a similar idea of grouping even and odd differential
forms has also been employed in the context of generalized complex structures
[36], although the reason behind it is of another character. There the geometry
of a manifold is described by differential forms, with even and odd forms being
mapped to Weyl spinors of different chiralities.

1.2 S-duality

The 𝑆𝐿(2,ℝ) invariance of type IIB supergravity expressed in Einstein frame
is a perfect example of a phenomenon known as S-duality. Since the coupling
constant in that theory is defined as 𝑔𝑠 = 𝑒<𝜙>, physically the operation 𝜏 →
− 1

𝜏
with 𝜏 being defined as

𝜏 = 𝐶0 + 𝑖𝑒−𝜙 (1.39)

corresponds to an inversion of the coupling constant. In other words, strong
coupling physics maps to the weak coupling regime.
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This kind of duality was first discovered as a duality between electric and
magnetic quantities in Maxwell’s equations. Later it was generalized to 𝒩 = 4
super Yang-Mills theory under the name of Montonen-Olive duality [37]. The
most general Lagrangian of 𝒩 = 4 SYM has the following form

ℒSYM =
1

𝑔2
Tr(𝐹 ∧ ∗𝐹 ) +

𝜃

8𝜋2
Tr(𝐹 ∧ 𝐹 ). (1.40)

The second term is topological, and thus does not have any significance for the
classical equations of motion. However, after quantization the story changes,
since now the quantum states are characterized also by the 𝜃 angle. Further-
more, defining a modular parameter as

𝜏 =
𝜃

2𝜋
+ 𝑖

4𝜋

𝑔2YM
, (1.41)

the quantized theory is invariant under the modular group 𝑆𝐿(2,ℤ) by frac-
tional transformations [38]. Similar behavior has also been studied in 𝒩 = 2
Seiberg-Witten gauge theories [39, 40].

Similar to the super Yang-Mills theory, quantizing IIB supergravity will
break the continuous 𝑆𝐿(2,ℝ) to a symmetry of the modular group 𝑆𝐿(2,ℤ)
[41]. An intuitive understanding of this can be achieved by studying the BPS
states in the theory. A BPS state is supersymmetric and saturates certain
equality relations between its mass and charges. If the maximal number of
supersymmetries are preserved we simply call it BPS, if only half of the super-
symmetries are preserved we call it half-BPS, etc.. One property that makes
BPS states interesting is that they are protected by supersymmetry. That is,
as long as the supersymmetry is unbroken they are stable under rescaling of the
coupling constant, leading to many scaling independent properties. The only
occasion this fails is when another representation becomes degenerate with the
BPS multiplet, then a mechanism similar to the Higgs mechanism might take
place.

The fact that the 𝑆𝐿(2,ℝ) symmetry rotates the doublet (𝐵2, 𝐶2) makes
the states coupled to these potentials suitable for study. It turns out that one
can form a bound state of 𝑝 F-strings and 𝑞 D-strings. By the Dirac quantiza-
tion argument the tensions of these so called (𝑝, 𝑞) strings must take discrete
values. Unlike the gauge potentials, the tensions are rotated by the discrete
𝑆𝐿(2,ℤ) group. Starting from the tension of a fundamental string we can thus
find the tension of an arbitrary (𝑝, 𝑞) string by modular transformations, which
in the Einstein frame is given by

𝑇(𝑝,𝑞) =
∣𝑝+ 𝑞𝜏 ∣√ℑ(𝜏) 𝑇F1,S, 𝑝 and 𝑞 co-prime. (1.42)
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Here 𝑇F1,S = 1
2𝜋𝑙2𝑠

denotes the tension of a fundamental string in the string

frame. The F- and D-strings correspond precisely to the special cases (1, 0)
and (0, 1), respectively:

𝑇F1,E =
√
𝑔𝑠𝑇F1,S, 𝑇D1,E =

1√
𝑔𝑠

𝑇F1,S. (1.43)

Notice that the D-string tension formula is valid only when ℜ(𝜏) = 0. Since
both F1 and D1 are 1/2-BPS states, the formula (1.42) is indeed valid for
all couplings. At weak string coupling (𝑔𝑠 ≪ 1), the D-strings are too heavy
to be observed. The situation becomes the opposite at strong coupling. The
S-duality, which manifests itself as the modular group, exchanges the roles
of F- and D-strings. Lastly, a junction of three (𝑝, 𝑞) strings requires charge
conservation:

∑
𝑖 𝑝

(𝑖) =
∑

𝑖 𝑞
(𝑖) = 0 for 𝑖 = 1, 2, 3.

Under the modular group, the D3-brane transforms as a singlet. Therefore
S-duality does not pose any additional constrain on how (𝑝, 𝑞) strings can end
on a D3-brane. The D5- and NS5-branes can also be grouped into a stable (𝑝, 𝑞)
five-brane, which is the magnetic dual of the (𝑝, 𝑞) string. The fluctuations of
the D5-brane are described by F-strings attached to it, with the same relation
being true also for NS5-brane and D-strings. The (𝑝, 𝑞) five-brane has similar
modular properties as the (𝑝, 𝑞) string. The 𝑆𝐿(2,ℤ) transformations on the
D7-branes are however more complicated.

In order to understand the S-duality at a deeper level we need first to
introduce a new concept called T-duality.

1.3 T-duality

T-duality is a symmetry of string theory which arises as a consequence of
compactification on an 𝑛-torus 𝑇 𝑛. Before stating the symmetry group in the
general case, let us first illustrate the phenomenon using the simplest example,
the bosonic closed string compactified on a circle with radius 𝑅.

The notion of circular compactification simply means that the string world-
sheet along the compactified direction in the target space should have a peri-
odic boundary condition

𝑋25(𝜏, 𝜎 + 𝜋) = 𝑋25(𝜏, 𝜎) + 2𝜋𝑤𝑅, 𝑤 ∈ ℤ, (1.44)

where we have assumed the 25th space direction to be compact. The remaining
spacetime coordinates are assumed for simplicity to be Minkowski. Here 𝜏 and
𝜎 are the standard worldsheet parameters. The discrete number 𝑤, called the
winding number, denotes the number of times the string winds around the
compact direction. The oscillator expansion in the compact direction then
becomes

𝑋25(𝜏, 𝜎) = 𝑥25 + 2𝛼′𝑝25𝜏 + 2𝑤𝑅𝜎 + (oscillators). (1.45)
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Since 𝑋25 is compact, the momentum of the center of mass along this direction,
𝑝25, must be quantized

𝑝25 =
𝑛

𝑅
, 𝑛 ∈ ℤ. (1.46)

Dividing the expansion into left- and right-movers

𝑋25(𝜏, 𝜎) = 𝑋25
L (𝜏 + 𝜎) +𝑋25

R (𝜏 − 𝜎), (1.47)

we may define

𝑃L = 𝑛
𝛼′

𝑅
+ 𝑤𝑅 and 𝑃R = 𝑛

𝛼′

𝑅
− 𝑤𝑅. (1.48)

It is now apparent that the mass squared [4]

𝛼′𝑀2 = 𝛼′
[( 𝑛

𝑅

)2
+

(
𝑤𝑅

𝛼′

)2
]
+ 2𝑁L + 2𝑁R − 4 (1.49)

as well as the oscillator number matching condition

𝑁L −𝑁R = 𝑛𝑤 (1.50)

are invariant under the transformation

𝑅↔ 𝛼′

𝑅
, 𝑛↔ 𝑤. (1.51)

The compact coordinate itself will transform as

𝑋25
L → 𝑋25

L and 𝑋25
R → −𝑋25

R , (1.52)

and similar results are obtained for the respective currents. Not only the spec-
trum matches perfectly, also the interactions respect this so called T-duality.
What T-duality really implies is that string theory compactified on a circle
with radius 𝑅 is equivalent to compactification on another circle with radius
𝛼′/𝑅, provided that the winding number and the momentum are interchanged
at the same time. Note that the fact that the string can wind around the
compact dimension is crucial for this duality to exist, and thus T-duality can
never be a property of a compactified point-particle theory.

The duality transformation in Eq. (1.51) is not a coincidence, and the
reason can be understood as follows. The pair (𝑃L, 𝑃R) from Eq. (1.48) can

be considered as vectors in a space endowed with the metric

(
1
2𝛼′ 0
0 − 1

2𝛼′

)
. A

natural choice for the basis vectors of this space is

�⃗�1 = (𝑅,−𝑅) and �⃗�2 =

(
𝛼′

𝑅
,
𝛼′

𝑅

)
, (1.53)
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resulting in the following metric of scalar products

𝜉 =

(
�⃗�1 ⋅ �⃗�1 �⃗�1 ⋅ �⃗�2
�⃗�2 ⋅ �⃗�1 �⃗�2 ⋅ �⃗�2

)
=

(
0 1
1 0

)
. (1.54)

Since the vectors (𝑃L, 𝑃R) are discrete quantities, they define an integer lattice
with Lorentzian metric. Being the unique two-dimensional Lorentzian lattice
which is also even and unimodular, this lattice is known in the literature as
Π1;1:

Π1;1 =
{
𝑚𝑖�⃗�𝑖 ∣𝑚𝑖 ∈ ℤ; 𝑖 = 1, 2

}
, (1.55)

see Refs. [42, 43]. The symmetry group that leaves this lattice invariant is

𝑂(1, 1;ℤ) =
{
𝑥 ∈ 𝐺𝐿(2,ℤ) 𝑥𝑇 𝜉𝑥 = 𝜉

}
. (1.56)

Explicitly solving the equation 𝑥𝑇 𝜉𝑥 = 𝜉 shows that 𝑂(1, 1;ℤ) ∼= ℤ2, where the
only non-trivial solution precisely correspond to the exchange of momentum
and winding number.

Generalization to compactification of the superstring on an arbitrary 𝑛-
torus 𝑇 𝑛 is straightforward. The momenta and winding numbers then describe
the even self-dual lattice

Π1;1 ⊕ . . . ⊕ Π1;1︸ ︷︷ ︸
𝑛 times

. (1.57)

The symmetry group of this lattice is the infinite discrete group 𝑂(𝑛, 𝑛;ℤ),
which is defined by

𝑂(𝑛, 𝑛;ℤ) =
{
𝑥 ∈ 𝐺𝐿(2𝑛,ℤ) 𝑥𝑇 𝜉𝑥 = 𝜉

}
(1.58)

with

𝜉 =

(
0 1𝑛

1𝑛 0

)
(1.59)

being the invariant metric. This is the most general result of T-duality [44].
One thing worth noticing is that T-duality, seen as a symmetry of M-theory,
only acts on momentum excitations and winding modes, in other words, it is a
perturbative symmetry. For instance the one-loop partition function has been
shown to respect T-duality [44]. More generally, it is valid order by order in
the 𝑔𝑠 expansion.

Extending to open strings, it can be shown that under T-duality Neumann
boundary conditions turn into Dirichlet ones. This property naturally lead to
the concept Dirichlet-branes or D-branes, which are defined as hypersurfaces
on which an open string can end. The D-branes themselves can then also
undergo T-dualization. Later in the context of Calabi-Yau compactification a
special type of T-duality has been extensively studied under the name mirror
symmetry [45].
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1.4 U-duality

Now we are fully equipped to return to the 𝑆𝐿(2,ℤ) symmetry in IIB super-
string theory. Compactifying the IIB theory on a circle with radius 𝑅𝐵 shows
that it is actually equivalent to the IIA theory compactified on a circle with
radius 𝑅𝐴 = 𝛼′/𝑅𝐵. The fact that IIA and IIB theories are related via a T-
duality indicates that they have a common higher-dimensional origin. One can
now go on comparing IIB compactified on a circle with M-theory compactified
on a two-torus. Study of BPS states, i.e., (𝑝, 𝑞) string, D-branes, M-branes,
etc., shows the matching again works perfectly well. Refs. [4, 27] provide some
flavors of the kind of computation involved. The most interesting observation
is, however, the identification

𝜏M = 𝜏B, (1.60)

where 𝜏M is the complex structure modulus of the two-torus on which M-
theory is compactified, and 𝜏B is the complex scalar of IIB theory defined
in Eq. (1.26). This relation tells us the weak-strong coupling symmetry in
IIB, which manifests itself as 𝑆𝐿(2,ℤ) acting on 𝜏B, can be interpreted as
modular transformations on the M-theory two-torus [46, 47, 48]. S-duality has
now received a geometric explanation! Though the relations are proven after
compactification to nine dimensions, the symmetry should work even in the
decompactification limit 𝑅𝐵 →∞.

We have just glimpsed at the interplay between S- and T-duality, both
of them being symmetries of M-theory. Compactify now string theory on an
(𝑛−1)-torus. As already been argued in Section 1.3, the perturbative T-duality
symmetry group becomes 𝑂(𝑛− 1, 𝑛 − 1;ℤ). When the determinant is 1 the
T-transformation maps IIA and IIB to themselves, while if the determinant is
−1 the T-transformation maps IIA↔ IIB. This indicates that IIA and IIB are
different sectors of one common underlying theory — the eleven-dimensional
M-theory. We can also switch to the M-theory point of view, where instead
compactification on an 𝑛-torus has been performed. This leads to the S-duality
group 𝑆𝐿(𝑛,ℤ), which is part of the diffeomorphism group yielding conformally
equivalent 𝑛-torii. Together, S- and T-duality intertwine in a non-trivial way
to generate the so called U-duality. All the U-duality groups are summarized
in Table 1.1. Curiously they all belong to the E-series of exceptional Lie groups
[49].

The first hint towards U-duality came from toroidal compactification of
eleven-dimensional supergravity. Due to the simple geometry of 𝑇 𝑛, toroidal
compactification preserves all supersymmetries, therefore the resulting super-
gravity theories are all maximal supersymmetric. By studying the scalar
sector E. Cremmer and B. Julia were able to generalize the coset construc-
tion of the IIB moduli space [50]. They showed that in (11 − 𝑛) dimensions
the scalars of the compactified supergravity parameterize the symmetric space
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Dimension U-duality Global Symmetry Local Symmetry
11 1 1 1
10, IIA 1 SO(1,1;ℝ)/ℤ2 1
10, IIB SL(2,ℤ) SL(2,ℝ) SO(2)
9 SL(2,ℤ)×ℤ2 SL(2,ℝ)×O(1,1;ℝ) SO(2)
8 SL(3,ℤ)×SL(2,ℤ) SL(3,ℝ)×SL(2,ℝ) U(2)
7 SL(5,ℤ) SL(5,ℝ) USp(4)
6 O(5,5;ℤ) O(5,5;ℝ) USp(4)×USp(4)
5 E6(6)(ℤ) E6(6)(ℝ) USp(8)
4 E7(7)(ℤ) E7(7)(ℝ) SU(8)
3 E8(8)(ℤ) E8(8)(ℝ) Spin(16)

Table 1.1: Symmetries of M-theory under toroidal compactification.

𝐸𝑛(𝑛)/𝒦(𝐸𝑛(𝑛)). The Lie algebra of 𝐸𝑛(𝑛) is the split real form of the complex
Lie algebra 𝔢𝑛, see for instance Ref. [51], and 𝒦(∗) denotes the maximal com-
pact subgroup of its argument. In Table 1.1 𝐸𝑛(𝑛) and 𝒦(𝐸𝑛(𝑛)) are labeled
as global and local symmetries, respectively. Indeed, the maximal compact
subgroups are the generalizations of local Lorentz symmetry. Moreover, the
scalar Lagrangian is a non-linear sigma model on this coset, details of this
construction will be given in Section 2.1. The rest of the form fields elegantly
fit the picture by transforming as representations of 𝐸𝑛(𝑛). Compactifying all
the way to three spacetime dimensions, the entire theory will be described by
scalar fields only.

Going beyond supergravities, it is conjectured that the continuous 𝐸𝑛(𝑛)(ℝ)
symmetry will be broken into the discrete 𝐸𝑛(𝑛)(ℤ), which contains the S- and
T-duality groups as subgroups [52, 53]. The moduli space of scalars is then
described by the double quotient

ℳ𝐸𝑛(𝑛)
= 𝐸𝑛(𝑛)(ℤ)∖𝐸𝑛(𝑛)/𝒦(𝐸𝑛(𝑛)). (1.61)

Similarly the BPS branes are mapped among themselves under U-duality. This
property is very useful since less well understood branes can be mapped to
well-studied ones. But more importantly dualities provide a window to the
difficult non-perturbative effects in string theory [54, 55, 56, 57]. A more
recent example is [58, 59], where a chain of dualities has been employed to
explore the instanton effects from the hypermultiplets in 𝐷 = 4 𝒩 = 2 string
compactifications.

Since toroidal compactification preserves the largest amount of symmetry,
it is believed that U-duality is a true symmetry of M-theory. Even if at low
energies it is non-linearly realized, at the Planck scale it might be linearly
realized. Evidence for U-duality has mainly come from higher order deriva-
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tive corrections in M-theory. The most seminal example is Ref. [60], where
the authors successfully predicted the existence of an infinite sum of instan-
ton contributions in the 𝑅4 corrections to the type IIB superstring effective
action. More about the higher order derivative expansion in 𝛼′ can be found
in Chapter 3.

Having established U-duality, it is evident that functions with simple trans-
formation properties under 𝐸𝑛(𝑛)(ℤ) are of special interest, as they can be used
to build up the effective action. In mathematics, functions on a moduli space
𝐺/𝒦(𝐺) which transform with a 𝒦(𝐺) factor under the discrete group 𝐺(ℤ)
are called automorphic forms. The so called Eisenstein series used in Ref. [60]
is precisely of this type. In three dimensions the moduli space contains all the
bosonic degrees of freedom in the maximal supergravity. Let alone the difficul-
ties of defining the 𝐸8(8)(ℤ) group [53, 61], this is a particular interesting case
for construction of automorphic forms. Chapter 4 will explore deeper into the
realm of automorphic forms.

Looking at Table 1.1 it is tempting to continue the compactification process
below three dimensions. By studying maximal 𝒩 = 16 supergravity in two
dimensions, it has been shown that the classical equations of motion exhibit
affine 𝐸9 symmetry [62, 63, 64]. The reason for this symmetry enhancement
can be traced down to the integrability of the Lax pair of linear equations,
which is an equivalent formulation of the equations of motion. Further down
in one time dimension, it was proven that at spacelike singularities the dy-
namics of gravitational theories can be described as billiard motion inside the
fundamental Weyl chamber of the hyperbolic Kac-Moody algebra 𝔢10 [65]. The
authors of Ref. [66] then argued that the corresponding Kac-Moody group 𝐸10

should be a true symmetry of M-theory. As the infinite-dimensional structure
of 𝐸10 makes things very complicated, so far only equivalence between trun-
cated 𝐸10/𝒦(𝐸10) coset models and certain parts of supergravity theories has
been shown. Another feature of 𝐸10 in its favor is the fact that its self-dual
root lattice precisely coincides with the lattice of the vertex operator algebra
of string theory states [67]. For those brave enough to continue further down
the U-duality group chain, the role of the Lorentzian Kac-Moody group 𝐸11

in relation to M-theory has also been discussed [68, 69].

1.5 Web of Dualities

In this thesis we are focusing on the links between M-theory, type IIA and type
IIB superstring theories. There are in fact five self-consistent string theories
in ten dimensions: type IIA, type IIB, type I, 𝑂(32) heterotic and 𝐸8 × 𝐸8

heterotic. Each of them has a supergravity as the low energy limit. Together
with M-theory, all of these are related by dualities:
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i. As already been discussed thoroughly, after circular compactification to
nine dimensions type IIA and IIB strings are related via T-duality [44].
Moreover, IIB string theory is self-dual under S-duality [70].

ii. Compactifying type IIA string on K3 is dual to 𝐸8 ×𝐸8 heterotic string
compactified on 𝑇 4 [70, 57]. At low energies both theories are given
by the six-dimensional 𝒩 = (1, 1) supergravity. This duality is non-
perturbative since the coupling constants are related via 𝑔het𝑠 ↔ 1

𝑔IIA𝑠
.

Compactifying both sides further on a two-torus provides an explanation
for the Montonen-Olive duality in four-dimensional gauge theory.

iii. Another duality between type IIA and heterotic string is provided by
compactifying IIA on K3×𝑇 2 and heterotic theory on certain elliptically
fibred Calabi-Yau threefolds [71, 72], respectively. In four dimensions
they correspond to 𝒩 = 2 supersymmetric gauge theories.

iv. Similar to the type II strings, 𝐸8 × 𝐸8 and 𝑂(32) heterotic strings are
opposite sides of a T-duality [44], after compactification on a circle.

v. 𝑂(32) heterotic string is S-dual to 𝑂(32) type I string [73, 70]. In par-
ticular, both of these theories have 𝐷 = 10 𝒩 = 1 supergravity as their
low energy limit.

vi. In the previous text we have already argued that type IIA string theory
can be obtained by circular compactification of M-theory.

vii. Starting from the 𝐸8 ×𝐸8 heterotic string, via a chain of dualities pass-
ing 𝑂(32) heterotic, type I and type IIA, it can be shown that 𝐸8 × 𝐸8

heterotic string theory is dual to M-theory compactified on the one-
dimensional orbifold 𝑇 1/ℤ2 [74, 75].

There is now convincing evidence that the various string theories are in
fact describing different perturbative regions of an eleven-dimensional poorly
understood non-perturbative theory, which usually is also referred to as M-
theory [41, 29]. We need to study all the string theories to get a more complete
picture of this underlying theory.
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2
Compactification and Geometry

Though superstring theories very elegantly put gravity and non-abelian gauge
theories on equal footing, one major concern is how to make contact with the
four-dimensional real world. The most successful way to resolve this problem
is based on old ideas by T. Kaluza and O. Klein, where the extra dimensions
are thought to be curled-up. These internal dimensions are simply too small to
be observed at energy scales accessible to current experiments. Nevertheless,
the topology of the extra dimensions is directly affecting the four-dimensional
physics. Since it has been suggested that supersymmetry might be broken at
lower energy than the compactification scale, the most interesting candidates
for the internal manifold are those preserving some supersymmetry. Examples
of such compact manifolds are the 𝑛-torus, Calabi-Yau 𝑛-folds and manifolds
with 𝐺2 holonomy. Compactification of the maximal supersymmetric theory
on each of these three cases will be discussed in this chapter. Another use
for compactification has already been mentioned in Section 1.5. Dualities that
relate the different string theories appear after appropriate compactifications.

Many of the basic concepts in geometry are discussed and used here, how-
ever for systematic treatments of Riemannian and complex manifolds the
reader is advised to read for instance Refs. [26, 76, 77]. Good reviews of
Kaluza-Klein compactification can be found in Refs. [78, 79, 80].

2.1 Torus Compactification

The original aim of the Kaluza-Klein compactification program was to rewrite
the four-dimensional gravity coupled to a Maxwell gauge field as a pure grav-
ity theory in five spacetime dimensions [81, 82]. From the five-dimensional
viewpoint, the geometry of the spacetime consists of four infinite spacetime
dimensions together with one compact circle as the fifth dimension. In fact,
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the compactification procedure was already employed in Subsec. 1.1.2, where
we obtained type IIA supergravity from eleven-dimensional supergravity. For
completeness we will review it again, before generalizing the compact circle to
an arbitrary 𝑛-torus.

2.1.1 Compactification on a Circle

Let us consider compactification of a 𝐷-dimensional field theory on a circle
with radius 𝑅. Since the circular dimension is periodic, all the fields can
be Fourier expanded in the compact coordinate. As an example a massless
𝐷-dimensional scalar field can be written as

𝜙(𝑥𝑀 ) =
∞∑
𝑙=0

𝜙(𝑙)(𝑥𝜇)𝑒𝑖𝑙𝑥𝐷−1/𝑅, (2.1)

where 𝑥𝑀 = (𝑥𝜇, 𝑥𝐷−1) are the curved spacetime coordinates. The non-
compact external coordinates are denoted 𝑥𝜇 with 𝜇 = 0, . . . , (𝐷 − 2); and
the compact direction 𝑥𝐷−1 takes its value on the interval [0, 2𝜋𝑅[. For no-
tational simplicity all the 𝐷-dimensional quantities will have a hat. Fourier
transforming the Klein-Gordon equation

∂̂𝑀 ∂̂𝑀𝜙 = 0 (2.2)

we find (
−𝐸2 + 𝑝21 + ⋅ ⋅ ⋅+ 𝑝2𝐷−2 −

𝑙2

𝑅2

)
𝜙(𝑙)(𝑥𝜇)𝑒𝑖𝑙𝑥𝐷−1/𝑅 = 0. (2.3)

The mass of the Kaluza-Klein excitation 𝜙(𝑙) is thus 𝑚(𝑙) =
𝑙
𝑅
. If the radius of

the circle is taken to be very small, the masses of the excitations will become
very large, and at the level of effective actions we can neglect all the massive
excitations. This limit of compactification is called dimensional reduction.

When dimensionally reducing gravity a convenient Ansatz for the vielbein
is

𝑒 𝐴
𝑀 = 𝑒

1
2
𝑠𝜙

(
𝑒 𝛼

𝜇 𝑒−
1
2
𝑓𝜙𝒜𝜇

0 𝑒−
1
2
𝑓𝜙

)
, (2.4)

where 𝑠 =
√

2
(𝐷−2)(𝐷−3) and 𝑓 = (𝐷 − 2)𝑠 take purely numerical values. The

index 𝐴 = (𝛼,𝐷−1) is the tangent space counterpart to the curved spacetime
index 𝑀 = (𝜇,𝐷 − 1). Gravity in 𝐷 dimensions will thus give rise to a
(𝐷−1)-dimensional metric 𝑔𝜇𝜈 , a scalar field 𝜙 and a graviphoton 𝒜𝜇. AWeyl

rescaling factor 𝑒
1
2
𝑠𝜙 has been included in Eq. (2.4) to ensure that we end up

in the Einstein frame for the dimensionally reduced action. Using the vielbein
one-form

𝑒𝐴 = 𝑑𝑥𝑀𝑒 𝐴
𝑀 =

(
𝑒

1
2
𝑠𝜙𝑒𝛼, 𝑒

1
2
(𝑠−𝑓)𝜙

[
𝑑𝑥𝐷−1 + 𝑑𝑥𝜇𝒜𝜇

])
=

(
𝑒𝛼, 𝑒𝐷−1) (2.5)
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we can define the anholonomy

𝑑𝑒𝐴 =
1

2
𝑒𝐵 ∧ 𝑒𝐶Ω̂ 𝐴

𝐵𝐶 . (2.6)

Since all the fields only depend on the external coordinates 𝑥𝜇, the derivative
one-form takes the form 𝑑 = 𝑑 = 𝑑𝑥𝜇∂𝜇. Setting the torsion to zero leads to
the following spin connection

�̂�𝐴𝐵𝐶 =
1

2

(
Ω̂𝐴𝐵𝐶 − Ω̂𝐵𝐶𝐴 + Ω̂𝐶𝐴𝐵

)
. (2.7)

The curvature two-form can then be found as

�̂�𝐴
𝐵 =

1

2
𝑒𝐶 ∧ 𝑒𝐷�̂� 𝐴

𝐶𝐷 𝐵 = 𝑑�̂�𝐴
𝐵 + �̂�𝐴

𝐶 ∧ �̂�𝐶
𝐵, (2.8)

where �̂�𝐴
𝐵 = 𝑒𝐶�̂� 𝐴

𝐶 𝐵. The Ricci tensor �̂�𝐴𝐵 and curvature scalar �̂� are
obtained in the standard way by contracting the curvature tensor �̂� 𝐶

𝐴𝐵 𝐷 with
the metric

𝑔𝑀𝑁 = 𝜂𝐴𝐵𝑒
𝐴

𝑀 𝑒 𝐵
𝑁 = 𝑒𝑠𝜙

(
𝑔𝜇𝜈 + 𝑒−𝑓𝜙𝒜𝜇𝒜𝜈 𝑒−𝑓𝜙𝒜𝜇

𝑒−𝑓𝜙𝒜𝜈 𝑒−𝑓𝜙

)
. (2.9)

In particular the curvature scalar becomes

�̂� = 𝑒−𝑠𝜙

{
𝑅 − 1

4
𝑒−𝑓𝜙ℱ𝛼𝛽ℱ𝛼𝛽 − 1

2
(∂𝜙)2 − 𝑠𝐷𝛼∂

𝛼𝜙

}
, (2.10)

with ℱ𝛼𝛽 = 2𝑒𝜇
[𝛼𝑒

𝜈
𝛽]∂𝜇𝒜𝜈 being the field strength of the graviphoton. Multi-

plying with the volume measure 𝑒 = 𝑒𝑠𝜙
√∣𝑔∣ we find that the dimensionally

reduced Einstein-Hilbert Lagrangian indeed is in the Einstein frame

ℒ̃(𝐷−1)
EH = 𝑒�̂� =

√
∣𝑔∣

{
𝑅− 1

4
𝑒−𝑓𝜙ℱ𝛼𝛽ℱ𝛼𝛽 − 1

2
(∂𝜙)2 − 𝑠𝐷𝛼∂

𝛼𝜙

}
. (2.11)

Due to the relation √
∣𝑔∣𝐷𝛼𝑋

𝛼 = ∂𝜇(
√
∣𝑔∣𝑋𝜇) (2.12)

the last term in Eq. (2.11) is a total derivative. After integration, total deriva-
tives only give rise to boundary terms, therefore we will omit them from now
on.

Similar to the vielbein, any field strength

𝐹𝑝 =
1

𝑝!
𝑒𝑀1 ∧ ⋅ ⋅ ⋅ ∧ 𝑒𝑀𝑝𝐹𝑀1...𝑀𝑝 (2.13)
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can be decomposed into (𝐷 − 1)-dimensional fields according to

𝐹𝑝 ≡ 1

𝑝!
𝑒𝜇1 ∧ ⋅ ⋅ ⋅ ∧ 𝑒𝜇𝑝𝐹𝜇1...𝜇𝑝

+
1

(𝑝− 1)!
𝑒𝜇1 ∧ ⋅ ⋅ ⋅ ∧ 𝑒𝜇𝑝−1 ∧ (

𝑑𝑥𝐷−1 +𝒜)
𝐹𝜇1...𝜇𝑝−1,𝐷−1,

(2.14)

where 𝐹𝜇1...𝜇𝑝 and 𝐹𝜇1...𝜇𝑝−1,𝐷−1 only depend on the external coordinates 𝑥𝜇.
Components like 𝐹𝜇1...𝜇𝑝−2,(𝐷−1),(𝐷−1) vanish due to the antisymmetric property
of 𝐹𝑀1...𝑀𝑝. Also, the gauge potentials are dimensionally reduced in the same
fashion. The relations between the field strengths and the gauge potentials in
(𝐷 − 1) dimensions are in general quite complicated.

Having rewritten the action in terms of the dimensionally reduced fields,
we can find the equations of motion by varying the action with respect to the
metric and the gauge potentials. Sometimes it is simpler to directly reduce
the 𝐷-dimensional equations of motion, since they are linear combinations of
the (𝐷− 1)-dimensional equations of motion. Similarly, the Bianchi identities
in (𝐷 − 1) dimensions can also be found by reducing the corresponding 𝐷-
dimensional ones.

The dimensionally reduced expressions we have obtained are not yet in
the final form. We still need to incorporate the Hodge dualization in (𝐷 − 1)
dimensions:

(∗𝑡) := 1

𝑝!(𝐷 − 1− 𝑝)!

1√∣𝑔∣𝑑𝑥𝜇𝑝+1 ∧ ⋅ ⋅ ⋅ ∧ 𝑑𝑥𝜇𝐷−1𝜀𝜇𝑝+1...𝜇𝐷−1𝜈1...𝜈𝑝𝑡
𝜈1...𝜈𝑝, (2.15)

where 𝑡 is a (𝐷 − 1)-dimensional 𝑝-form. Using the Hodge dualization all the
field strengths with form degree 𝑝 >

[
𝐷−1
2

]
can be dualized into forms with

degree 𝑝 <
[

𝐷−1
2

]
. To illustrate how it works let us consider pure gravity

dimensionally reduced from four to three dimensions. The Lagrangian in this
case takes the form

ℒ̃(3)EH =
√
∣𝑔∣

{
𝑅− 1

4
𝑒−2𝜙ℱ𝛼𝛽ℱ𝛼𝛽 − 1

2
(∂𝜙)2

}
. (2.16)

Since we are in three dimensions, it is possible to dualize the field strength
ℱ𝜇𝜈 to a vector ℱ𝜇. The dualization is achieved by first adding a Lagrange
multiplier, which is proportional to the Bianchi identity for ℱ𝛼𝛽

𝛿ℒ̃(3)EH = −
√
∣𝑔∣1

2
𝜒𝜀𝜇𝜈𝜌∂𝜇ℱ𝜈𝜌, (2.17)

to the Lagrangian and then vary (ℒ̃(3)EH+𝛿ℒ̃(3)EH) with respect to ℱ𝜇𝜈 . The result
we obtain is precisely the Hodge dual

ℱ𝛼𝛽 =
1√∣𝑔∣𝑒2𝜙𝜀𝛼𝛽𝛾∂

𝛾𝜒, (2.18)
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where 𝜒 is some arbitrary scalar field. Putting Eq. (2.18) into (ℒ̃(3)EH + 𝛿ℒ̃(3)EH)
we find at last

ℒ(3)EH =
√
∣𝑔∣

{
𝑅− 1

2
(∂𝜙)2 − 1

2
𝑒2𝜙(∂𝜒)2

}
. (2.19)

Later on we will discuss the symmetry properties of this Lagrangian. Notice
that the reduced Lagrangian before dualization is always marked with a tilde.

2.1.2 Generalization to 𝑛-Torus

The 𝑛-dimensional torus (or 𝑛-torus) is a compact manifold defined as

𝑇 𝑛 = 𝑆1 × ⋅ ⋅ ⋅ × 𝑆1︸ ︷︷ ︸
𝑛

. (2.20)

Geometrically this manifold is isomorphic to the space ℝ𝑛/ℤ𝑛, where ℤ𝑛 cor-
responds to integral shifts in 𝑛 dimensions. The Euler characteristic of the
𝑛-torus is vanishing

𝜒e(𝑇
𝑛) = 0, (2.21)

while its fundamental group 𝜋1(𝑇
𝑛) is a free abelian group of rank 𝑛.

The Two-Torus

As an illustration, let us consider the two-torus 𝑇 2 = 𝑆1 × 𝑆1. The standard
construction in physics is to start with the complex plane and then mod out
a two-dimensional lattice:

𝑇 2 = ℂ/Λ(𝑤1,𝑤2), (2.22)

where
Λ(𝑤1,𝑤2) = {𝑚𝑤1 + 𝑛𝑤2 ∣𝑚,𝑛 ∈ ℤ} . (2.23)

In other words, the complex coordinate 𝑧 of this space is doubly periodic

𝑧 ∼ 𝑧 + 𝑤1 and 𝑧 ∼ 𝑧 + 𝑤2, (2.24)

with the periods 𝑤1 and 𝑤2 satisfying
𝑤1

𝑤2
∕∈ ℝ. Using the coordinate transfor-

mation 𝑧 → 𝑧/𝑤2, the pair of periods (𝑤1, 𝑤2) may be normalized to (𝑤1/𝑤2, 1).
The normalized period

𝜏 :=
𝑤1

𝑤2

(2.25)

describes the shape of the two-torus and is called the complex structure moduli.
We can set ℑ(𝜏) > 0 without loosing generality. Transforming the complex
structure according to

𝜏 → 𝑎𝜏 + 𝑏

𝑐𝜏 + 𝑑
, 𝑎𝑑− 𝑏𝑐 = 1 (2.26)
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using integer parameters 𝑎, 𝑏, 𝑐 and 𝑑, we obtain a new two-torus which is
conformally equivalent to the original one. The group generated by all such
transformations is called the modular group 𝑃𝑆𝐿(2,ℤ). The moduli space of
all inequivalent two-torii is thus

ℳ𝑃𝑆𝐿(2,ℝ) = 𝐻/𝑃𝑆𝐿(2,ℤ), (2.27)

where 𝐻 is the complex upper half-plane. More properties of the modular
group can be found in Subsec. 4.1.1.

In addition to the complex structure moduli, one can also define a Kähler
structure moduli 𝜌

𝜌 := 𝑤1𝑤2 (2.28)

describing the size of the two-torus. Fixing these two parameters completely
determines the two-torus. A T-duality on the 𝑤2 circle sends 𝑤2 to 1/𝑤2,
exchanging the roles of the complex structure and Kähler structure. This is
the simplest example of mirror symmetry.

Dimensional Reduction on 𝑛-Torii

Dimensional reduction from 𝐷 dimensions on a one-dimensional circle is easily
generalized to a product of 𝑛 circles. This can be done by circular compacti-
fying dimension by dimension.

Using Eq. (2.4) recursively 𝑛 times the vielbein becomes [79, 80]

𝑒 𝐴
𝑀 = 𝑒

1
2
�⃗�⋅�⃗�

(
𝑒 𝛼

𝜇 𝑒−
1
2
𝑓𝑎⋅�⃗�𝒜 𝑚

𝜇 𝑢 𝑎
𝑚

0 𝑒−
1
2
𝑓𝑎⋅�⃗�𝑢 𝑎

𝑚

)
, (2.29)

where �⃗� = (𝜙1, . . . , 𝜙𝑛) is a vector containing 𝑛 Kaluza-Klein scalar fields.
These are multiplied with the coefficients

�⃗� = (𝑠1, . . . , 𝑠𝑛) ,

𝑓𝑎 = (𝑠1, . . . , 𝑠𝑎−1, (𝐷 − 2− 𝑛+ 𝑎)𝑠𝑎, 0, . . . , 0︸ ︷︷ ︸
𝑛−𝑎

), (2.30)

with

𝑠𝑎 =

√
2

(𝐷 − 2− 𝑛 + 𝑎)(𝐷 − 3− 𝑛+ 𝑎)
. (2.31)

The index conventions are such that 𝑀 = (𝜇,𝑚) and 𝐴 = (𝛼, 𝑎) denote the
curved and flat spacetime indices, respectively. All the 𝐷-dimensional objects
are marked with a hat.
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The internal vielbein 𝑒 𝑎
𝑚 := 𝑒−

1
2
𝑓𝑎⋅�⃗�𝑢 𝑎

𝑚 is the Borel representative of the

coset 𝐺𝐿(𝑛,ℝ)/𝑆𝑂(𝑛), where 𝑒−
1
2
𝑓𝑎⋅�⃗� is the contribution from the Cartan gen-

erators and
𝑢 𝑎

𝑚 = [(1−𝒜(0))
−1] 𝑎

𝑚 (2.32)

corresponds to the positive root generators. The scalar fields 𝒜(0) come from
dimensionally reducing the Kaluza-Klein vectors. The Maurer-Cartan form
can be constructed as follows:

𝐺 𝑎𝑏
𝛾 := 𝑢𝑚𝑎∂𝛾𝑢

𝑏
𝑚 = 𝑒−

1
2
(𝑓𝑎−𝑓𝑏)⋅�⃗� (

𝑃 𝑎𝑏
𝛾 +𝑄 𝑎𝑏

𝛾

)
, (2.33)

where 𝐺 𝑎𝑏
𝛾 is non-zero only when 𝑎 < 𝑏. 𝑃𝛾 viewed as a matrix is symmetric

and traceless, i.e., it takes its values in the Lie algebra 𝑠𝑙(𝑛,ℝ). Moreover, 𝑃𝛾

is also transforming as a representation of 𝑆𝑂(𝑛). The antisymmetric 𝑄𝛾 , on
the other hand, is a gauge connection for the local 𝑆𝑂(𝑛) symmetry. Thus,
in addition to the equations of motion and Bianchi identities, the system also
has to satisfy the Maurer-Cartan equations :

𝐷[𝛾𝑃𝛿]𝑎𝑏 +𝑄
𝑐

[𝛾∣𝑎∣ 𝑃𝛿]𝑐𝑏 + 𝑃
𝑐

[𝛾∣𝑎∣ 𝑄𝛿]𝑐𝑏 − 1

2
(𝑓𝑎 − 𝑓 𝑏) ⋅ (∂[𝛾 �⃗�)𝑄𝛿]𝑎𝑏 = 0,

𝐷[𝛾𝑄𝛿]𝑎𝑏 +𝑄
𝑐

[𝛾∣𝑎∣ 𝑄𝛿]𝑐𝑏 + 𝑃
𝑐

[𝛾∣𝑎∣ 𝑃𝛿]𝑐𝑏 − 1

2
(𝑓𝑎 − 𝑓 𝑏) ⋅ (∂[𝛾�⃗�)𝑃𝛿]𝑎𝑏 = 0.

(2.34)

Notice that there is no summation over the indices 𝑎 and 𝑏. The covariant
derivative appearing in Eq. (2.34) is an ordinary tangent space one containing
the spin connection, 𝐷 = ∂ + 𝜔.

Following the recipe given in Subsec. 2.1.1, we can compute the spin con-
nection from the vielbein, and then obtain the curvature tensor. Details of
this computation can be found in Paper IV. The resulting Einstein-Hilbert
Lagrangian is

ℒ̃(𝐷−𝑛)
EH =

√
∣𝑔∣

{
𝑅− 1

2
(∂�⃗�)2 − 1

4
𝑒−𝑓𝑐⋅�⃗�ℱ𝛼𝛽𝑐ℱ𝛼𝛽𝑐 − 𝑃𝛼𝑏𝑐𝑃

𝛼𝑏𝑐

}
, (2.35)

with ℱ𝛼𝛽𝑐 = 2𝑢𝑚𝑎𝑒
𝜇
[𝛼𝑒

𝜈
𝛽]∂𝜇𝒜 𝑚

𝜈 . We have again omitted the term which is
a total derivative. Similar to the gravity sector, the form fields can also by
reduced one dimension at a time. The equations of motion are found by
varying the reduced action, while the Bianchi identities are obtained by direct
dimensional reduction of the corresponding 𝐷-dimensional ones. Just like in
the circular compactification, it is sometimes convenient to Hodge dualize the
form-fields. In particular in 𝐷 − 𝑛 = 3 dimensions all the bosonic degrees of
freedom can be dualized into scalar fields. Analyzing also the fermionic fields
shows that compactification on 𝑛-torus will preserve all the supersymmetries.

The dimensional reduction we have described here works when we are only
interested in the classical theory. However, if we want to investigate quan-
tum effects also the Kaluza-Klein excitations we have ignored so far become
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important. As an example we can consider the one-loop ℛ4 correction in the
low energy effective action of M-theory. Upon compactification to lower di-
mensions, the Kaluza-Klein modes of the fields along the compact directions
are interpreted as the windings of Euclidean D-particle world-lines [83]. The
massless fields reproduce the one-loop string correction, while winding the
D-particle world-lines around the compact circle gives rise to the tree-level
string correction. Moreover, the massive D-particles are responsible for the
non-perturbative D-instanton effects. Higher derivative corrections in string
theory will be treated more thoroughly in Chapter 3.

2.1.3 Coset Symmetry

Dimensional reduction on an 𝑛-torus always leads to a simple moduli space,
i.e, a space of scalar fields with coset symmetry. The most clean example
of this phenomenon is the reduction of 𝐷-dimensional pure gravity. As we
have already explained in Subsec. 2.1.2, the symmetric part of the Maurer-
Cartan form 𝑃𝛼 is an element of 𝑠𝑙(𝑛,ℝ). The Einstein-Hilbert Lagrangian
(2.35) has thus manifest 𝑆𝐿(𝑛,ℝ) symmetry, where 𝑃𝛼 enters in terms of the
quadratic Casimir invariant. However, dimensionally reducing all the way
to three dimensions, we may dualize the Kaluza-Klein vector according to
Eq. (2.18) to obtain

ℒ(3)EH =
√
∣𝑔∣

{
𝑅− 1

2
(∂�⃗�)2

−1

2

𝑛∑
𝑐=1

𝑒𝑓𝑐⋅�⃗�(∂�⃗�)2 − 1

2

𝑛∑
𝑏,𝑐=1
𝑏<𝑐

𝑒(𝑓
𝑏−𝑓𝑐)⋅�⃗�𝐺𝛼𝑏𝑐𝐺

𝛼𝑏𝑐

⎫⎬
⎭ .

(2.36)

This operation will enhance the symmetry of the action to a global 𝑆𝐿(𝑛+1,ℝ)
together with a local 𝑆𝑂(𝑛+1). Compared to Eq. (2.35) we have also rewritten
𝑃𝛼𝑏𝑐𝑃

𝛼𝑏𝑐 in terms 𝐺𝛼𝑏𝑐.
The first indication of 𝑆𝐿(𝑛 + 1,ℝ) symmetry is provided by the dilaton

exponents in Eq. (2.36)

𝑓𝑎 − 𝑓 𝑏 (𝑏 > 𝑎) and 𝑓𝑎. (2.37)

These vectors span a linear space endowed with the scalar product

𝑓𝑎 ⋅ 𝑓 𝑏 = 2𝛿𝑎𝑏 +
2

𝐷 − 𝑛− 2
, (2.38)

see Eq. (2.30) and (2.31). Choosing {𝑓 1− 𝑓 2, . . . , 𝑓𝑛−1− 𝑓𝑛, 𝑓𝑛} to be the set
of basis vectors, one can show that the matrix of scalar products among the
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basis vectors is precisely the Cartan matrix of the Lie algebra 𝑠𝑙(𝑛+1,ℝ). The
basis vectors can thus be identified with the simple root vectors of 𝑠𝑙(𝑛+1,ℝ).

Notice that the simple root vector 𝑓𝑛 is obtained only after the dualization,
which is consistent with the fact that dualization enlarges the symmetry group.

To show that the symmetry enhancement does occur, let us consider the
reduction of four-dimensional pure gravity on a circle example again. The
Lagrangian after Hodge dualization, given in Eq. (2.19),

ℒ(3)EH =
√
∣𝑔∣

{
𝑅− 1

2
(∂𝜙)2 − 1

2
𝑒2𝜙(∂𝜒)2

}
(2.39)

can indeed be shown to contain the the coset symmetry 𝑆𝐿(2,ℝ)/𝑆𝑂(2). Let

𝐸
.
=

(
0 1
0 0

)
; 𝐻

.
=

(
1 0
0 −1

)
; 𝐹

.
=

(
0 0
1 0

)
(2.40)

be the generators of the Lie algebra 𝑠𝑙(2,ℝ). The Borel representative of the
coset 𝑆𝐿(2,ℝ)/𝑆𝑂(2) is defined as

𝒱 := 𝑒
𝜙
2

𝐻𝑒𝜒𝐸 .
=

(
𝑒

𝜙
2 𝑒

𝜙
2𝜒

0 𝑒−
𝜙
2

)
, (2.41)

which transforms according to

𝒱 �−→ 𝑘𝒱𝑔, 𝑔 ∈ 𝑆𝐿(2,ℝ) and 𝑘 ∈ 𝑆𝑂(2). (2.42)

𝑆𝐿(2,ℝ) is the global symmetry of this system, while the local 𝑆𝑂(2) sym-
metry is used to bring the coset representative 𝒱 back to the upper triangular
form. The Hermitian and anti-Hermitian parts of the Maurer-Cartan form are
then defined as

𝒫𝛼 :=
1

2

{𝒱∂𝛼𝒱−1 + (𝒱∂𝛼𝒱−1)†
}
,

𝒬𝛼 :=
1

2

{𝒱∂𝛼𝒱−1 − (𝒱∂𝛼𝒱−1)†
}
,

(2.43)

respectively. Explicit computation shows that the Lagrangian

ℒ(3)EH =
√
∣𝑔∣

{
𝑅− 1

2
Tr (𝒫𝛼𝒫𝛼)

}
(2.44)

is manifestly invariant under 𝑆𝐿(2,ℝ)/𝑆𝑂(2), since under coset transforma-
tions 𝒫𝛼 �−→ 𝑘𝒫𝛼𝑘

−1.
The analysis above is more or less unaltered for the reduction of pure gravity

to three dimensions on an 𝑛-torus. Instead of having 𝑛 Kaluza-Klein scalar
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fields as in Subsec. 2.1.2, we need to extract the determinant of the internal
vielbein

𝑒 𝑎
𝑚 = 𝑒−

𝐷−2
𝑛

𝜑𝜀 𝑎
𝑚 , (2.45)

with 𝜀 𝑎
𝑚 being an element of 𝑆𝐿(𝑛,ℝ). Defining the Borel representative of

𝑆𝐿(𝑛+1,ℝ)/𝑆𝑂(𝑛+1) accordingly, it can be shown that the Lagrangian takes
the form of Eq. (2.44).

Dimensionally reduced pure gravity is not the only example where the
moduli space has coset symmetry. The most interesting example in physics is
perhaps the toroidal reduction of eleven-dimensional supergravity. There, the
moduli variables parameterize the 𝐸𝑛(𝑛)/𝒦(𝐸𝑛(𝑛)) coset space, with 𝒦(𝐸𝑛(𝑛))
denoting the maximal compact subgroup of 𝐸𝑛(𝑛). The global exceptional
𝐸𝑛(𝑛) groups are the results of symmetry enhancements from dualizing the
form-fields, which already start to occur at dimensions higher than three. The
observation of coset symmetry in reduced eleven-dimensional supergravity is
one of the corner stones of the U-duality conjecture, see Section 1.4.

One might wonder to what extent this coset symmetry survives when quan-
tum corrections are included in the low energy effective action of M-theory.
Paper III examines the symmetry structures of ℛ3 and ℛ4 corrections by
toroidal reducing to three dimensions. A more complete reduction was carried
out for the ℛ2 correction in Paper IV, where an investigation of the dilaton
exponents was also given. Similar analysis of dilaton exponents of compacti-
fied higher order derivative corrections can be found in Refs. [84, 85, 86, 87].
The answer seems to be automorphic forms based on the U-duality groups
𝐸𝑛(𝑛)(ℤ). Chapters 3 and 4 will be dealing with this subject.

2.2 Calabi-Yau Compactification

The simple geometry of the 𝑛-torus makes it possible to compute the compact-
ified quantities explicitly, however the large amount of symmetry also makes
the compactification procedure preserve all the supersymmetries. Therefore
we cannot use a torus as the internal compact manifold to arrive at realistic
four-dimensional physics. Instead, we have to search for manifolds that break
supersymmetry in a controlled way. The most promising candidate is the so
called Calabi-Yau 𝑛-fold.

2.2.1 Calabi-Yau Manifold

A Calabi-Yau manifold 𝑀 with 𝑛 complex dimensions is a Kähler manifold
with vanishing first integral Chern class [26, 76]

𝑐1(𝑀) = 0. (2.46)
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An equivalent definition is that 𝑀 is Kähler and admits a holomorphic 𝑛-
form that is nowhere vanishing. For a compact Calabi-Yau manifold, the local
holonomy group is contained in 𝑆𝑈(𝑛). The fact that such manifolds have a
Kähler metric with vanishing Ricci curvature was first conjectured by Calabi,
and later proven by Yau.

The topology of a Calabi-Yau manifold is characterized by the Hodge num-
bers ℎ𝑝,𝑞, which count the number of Δ∂̄-harmonic (𝑝, 𝑞)-forms. The harmonic
(𝑝, 𝑞)-forms are in one-to-one correspondence to the generators of the Dol-
beault cohomology group 𝐻𝑝,𝑞

∂̄
(𝑀). However, all the Hodge numbers are not

independent. Complex conjugation yields the relation

ℎ𝑝,𝑞 = ℎ𝑞,𝑝, (2.47)

while Poincaré duality leads to

ℎ𝑝,𝑞 = ℎ𝑛−𝑞,𝑛−𝑝. (2.48)

In addition one can show that

ℎ𝑝,0 = ℎ𝑛−𝑝,0, (2.49)

and if we restrict us to simply-connected Calabi-Yau manifolds then ℎ1,0 =
ℎ0,1 = 0. Lastly, ℎ0,0 = 1 for any compact connected Kähler manifold. Taking
all these relations into account, the complete cohomological information is
contained in the Hodge diamond. For instance for 𝑛 = 3 the Hodge diamond
takes the form

1
0 0

0 ℎ1,1 0
1 ℎ2,1 ℎ2,1 1

0 ℎ1,1 0
0 0

1

(2.50)

showing that only ℎ1,1 and ℎ2,1 are independent Hodge numbers. The dimen-
sion of the 𝑘th de Rham cohomology 𝐻𝑘(𝑀) is called the Betti number, which
is related to the Hodge numbers via

𝑏𝑘 =
𝑘∑

𝑝=0

ℎ𝑝,𝑘−𝑝. (2.51)

The Euler characteristic is then given by

𝜒𝑒 =

2𝑛∑
𝑘=0

(−1)𝑘𝑏𝑘. (2.52)
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For a Calabi-Yau three-fold it becomes 𝜒𝑒(CY3) = 2(ℎ1,1 − ℎ2,1).
We may deform a Calabi-Yau manifold continuously without changing its

topological properties. These deformations are characterized by the expec-
tation values of the massless scalar fields, called moduli fields. Examples of
moduli fields have already been given in Subsec. 2.1.2, when we discussed the
two-torus. In that case, different choices of the complex structure moduli 𝜏 and
Kähler structure moduli 𝜌 correspond to torii with different shapes and sizes.
However, altering the values of the moduli fields still results in a two-torus.

Examples

Some explicit examples of Calabi-Yau manifolds are listed below. In principle
examples of compact Calabi-Yau 𝑛-folds can be constructed as submanifolds
of the complex projective space ℂℙ𝑛+1 for all 𝑛 > 1.

i. The complex plane ℂ is a non-compact one-dimensional Calabi-Yau man-
ifold, while the two-torus 𝑇 2 is a compact such.

ii. For 𝑛 = 2, ℂ×ℂ and ℂ× 𝑇 2 are naturally non-compact examples. The
only compact Calabi-Yau two-folds are 𝑇 4 and K3, where the latter is
a submanifold of ℂℙ3. Requiring also the holonomy to be 𝑆𝑈(2) leaves
K3 as the only candidate. Since 𝑆𝑈(2) is isomorphic to 𝑆𝑝(1), K3 is also
hyperkähler1. The Hodge numbers of K3 are

1
0 0

1 20 1
0 0

1

(2.53)

and its Euler characteristic is 𝜒𝑒(K3) = 24. K3 surfaces are useful in
string theory to show the duality between type IIA and heterotic strings.

iii. There are many Calabi-Yau three-folds, in fact the classification of these
is still an open problem. One example is the quintic hypersurface in ℂℙ3,
which is described by

𝐺(𝑧1, . . . , 𝑧5) = 0, 𝑧𝑎 ∈ ℂ5 (2.54)

with the polynomial 𝐺(𝑧1, . . . , 𝑧5) satisfying

𝐺(𝜆𝑧1, . . . , 𝜆𝑧5) = 𝜆5𝐺(𝑧1, . . . , 𝑧5). (2.55)

1A hyperkähler manifold is a Riemannian manifold of 4𝑘 dimensions whose holonomy
group is contained in 𝑆𝑝(𝑘).
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This manifold has the Hodge numbers

ℎ1,1 = 1 and ℎ2,1 = 101, (2.56)

yielding the Euler characteristic 𝜒𝑒 = −200. The fact that Calabi-Yau
three-folds break 3/4 of the supersymmetries makes them interesting for
string compactifications.

iv. Calabi-Yau four-folds break 7/8 of the supersymmetries. These are useful
for F-theory compactifications [20].

2.2.2 Calabi-Yau Three-fold

Calabi-Yau three-fold (CY3) is the most promising candidate for the internal
compact directions if we want to extract real world physics from string theory.
Before discussing compactification of any particular string models, let us first
study some general properties of this manifold.

The Moduli Space

The moduli space of CY3 is found by deforming the metric continuously while
keeping the topological properties, the entire moduli space refers to an infinite
family of Calabi-Yau manifolds [88]. The 𝛿𝑔𝑎𝑏 and 𝛿𝑔�̄��̄� deformations form the
complex structure moduli space ℳ𝐶 of complex dimension ℎ2,1. The name
comes from the fact that this kind of transformations deforms the complex
structure 𝐽 𝑖

𝑗 , which is defined for the CY3 viewed as a real six-dimensional
manifold

𝐽 𝑖
𝑘𝐽

𝑘
𝑗 = −𝛿𝑖

𝑗 , 𝑁𝑘
𝑖𝑗 = 𝐽 𝑙

𝑖(∂𝑙𝐽
𝑘
𝑗 − ∂𝑗𝐽

𝑘
𝑙)− 𝐽 𝑙

𝑗(∂𝑙𝐽
𝑘
𝑖 − ∂𝑖𝐽

𝑘
𝑙) = 0. (2.57)

𝑁𝑘
𝑖𝑗 is called the Nijenhuis tensor. The complex structure moduli space itself

is a Kähler manifold, with the Kähler potential given by

𝒦𝐶 = − ln

(
𝑖

∫
Ω ∧ Ω̄

)
. (2.58)

The (3, 0)-form Ω, being holomorphic and covariantly constant, is uniquely
defined. Introducing 𝐴𝐼 and 𝐵𝐼 as a basis for the Calabi-Yau three-cycles
with their intersections satisfying

𝐴𝐼 ∩ 𝐵𝐽 = −𝐵𝐽 ∩𝐴𝐼 = 𝛿𝐼
𝐽 , 𝐴𝐼 ∩𝐴𝐽 = 𝐵𝐼 ∩𝐵𝐽 = 0, (2.59)

we can define the coordinates 𝑋𝐼 on ℳ𝐶 according to

𝑋𝐼 =

∫
𝐴𝐼

Ω, 𝐼 = 0, . . . , ℎ2,1. (2.60)
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Integrating over the 𝐵 cycles

𝐹𝐼 =

∫
𝐵𝐼

Ω (2.61)

then yields functions of 𝑋𝐼 , which can be shown to be governed by a holomor-
phic function 𝐹 :

𝐹𝐼 =
∂𝐹

∂𝑋𝐼
. (2.62)

The prepotential 𝐹 is homogeneous of degree two

𝐹 (𝜆𝑋) = 𝜆2𝐹 (𝑋). (2.63)

Since the Calabi-Yau volume does not belong toℳ𝐶 , 𝐹 will exact in 𝛼′ when
we later consider string theory compactifications. The Kähler potential can
now be rewritten as

𝑒−𝒦𝐶 = −𝑖
ℎ2,1∑
𝐼=0

(
𝑋𝐼𝐹𝐼 − �̄�𝐼𝐹𝐼

)
. (2.64)

A Kähler manifold whose Kähler potential only depends on a single holomor-
phic prepotential is studied using the mathematics of special geometry.

Let us now turn to the 𝛿𝑔𝑎�̄� deformations of the CY3 metric. These will
alter the Kähler structure, whose associated Kähler form is defined as

𝐽 = 𝑖𝑔𝑎�̄�𝑑𝑧
𝑎 ∧ 𝑑𝑧�̄�, (2.65)

where 𝑔𝑎�̄� is the CY metric. The corresponding moduli space is therefore
called the Kähler structure moduli space ℳ𝐾 . The number of independent
such deformations is ℎ1,1. However, in string theory we can complexify the
Kähler form by adding the NS-NS two-form 𝐵

𝒥 = 𝐵 + 𝑖𝐽. (2.66)

The complexified Kähler moduli space then has real dimension 2ℎ1,1. For the
rest of this sectionℳ𝐾 will always be complexified. The Kähler moduli space
is also a Kähler manifold. The Kähler potential takes the form

𝒦𝐾 = − ln

(
4

3

∫
𝐽 ∧ 𝐽 ∧ 𝐽

)
= − ln (8𝑉 ) , (2.67)

where 𝑉 is the volume of the CY3. The Kähler potential in this case can also
be written in terms of a holomorphic prepotential. In the context of string
compactifications this prepotential receives non-perturbative 𝛼′ corrections.
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In summary the moduli space of a CY3 is factorized (at least locally) into
two parts

ℳ =ℳ𝐶 ×ℳ𝐾 . (2.68)

The variables of the moduli space are the massless scalar fields coming from
the compactification procedure. For instance a ten-dimensional 𝑝-form will af-
ter compactification yield 𝑏𝑝 moduli fields, where 𝑏𝑝 denotes the Betti numbers
of the Calabi-Yau manifold. One major problem with string compactifica-
tions is that the vacuum expectation values of the moduli space parameters
are not fixed by the compactification itself, leading to an arbitrariness of the
four-dimensional physics. By including non-zero background tensor fields the
moduli space can be stabilized. However, flux compactification results, in gen-
eral, in many possible vacua [89]. This is the short résumé of the string theory
landscape problem [90].

Mirror Symmetry

Recall from Subsec. 2.1.2 that the two moduli variables of a two-torus can be
interchanged by T-duality. A similar symmetry exists also for the Calabi-Yau
three-fold [91]. The conjectured mirror symmetry relates any CY3 𝑀 with
another CY3 �̃� such that their Dolbeault cohomology groups satisfy

𝐻𝑝,𝑞(𝑀) = 𝐻3−𝑝,𝑞(�̃�). (2.69)

Thus, mirror symmetry exchanges the complex structure and Kähler structure
moduli spaces [92]. The only exception is when𝑀 has ℎ2,1(𝑀) = 0, since a CY3

cannot have vanishing ℎ1,1(�̃�). Eq. (2.69) leads to ℎ1,1(𝑀) = ℎ2,1(�̃�) and vice
versa for the dimensions of the cohomology groups. The Euler characteristics
then satisfy 𝜒𝑒(𝑀) = −𝜒𝑒(�̃�). Similar to the two-torus example, mirror
symmetry between Calabi-Yau three-folds can also be understood in terms of
T-duality [45]. The key observation is that any CY3 can be thought of as a
𝑇 3 fibration over some three-dimensional base manifold 𝐵. Mirror symmetry
is then, roughly speaking, simultaneous T-dualization on all three directions
of the 𝑇 3.

Here we have merely provided some flavors of the huge research area con-
cerning mirror symmetry, [93] is a nice reference for deeper readings.

2.2.3 Compactification of Type II Strings

Compactification on a Calabi-Yau manifold cannot be made as explicit as
the toroidal compactification, in most cases we do not even know any global
metric of the CY. Nevertheless, we can learn many general properties of such
compactification without specifying the exact compactification Ansatz. The
fact that Calabi-Yau three-folds have 𝑆𝑈(3) as the holonomy group allows
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only 1/4 of the supersymmetries to survive after compactifying on them [94].
Thus, compactification of the heterotic string on a CY3 leads to an 𝒩 = 1
theory in four dimensions, which is appealing from phenomenological point of
view. However, following the main theme of this thesis we will only analyze
compactification of the type II string theories.

𝐷 = 4, 𝒩 = 2 Supermultiplets

Compactifying type II string theories on a CY3 leads to four-dimensional the-
ories with 𝒩 = 2 supersymmetry. Three types of massless supermultiplets
appear in the resulting theories, all of them containing four bosonic and four
fermionic degrees of freedom:

i. A vector multiplet consists of one vector, two gauginos and two scalars.
The maximum helicity of this multiplet is thus 1.

ii. A hypermultiplet has maximum helicity 1/2. It contains two spin 1/2
fields and four scalars.

iii. One single supergravity multiplet exists, which consists of one graviton,
two gravitini and one graviphoton. This multiplet has maximum helicity
2.

Type IIA on CY3

Let us first consider type IIA theory compactified on a Calabi-Yau three-fold
𝑀 . The index convention is such that 𝑀 = (𝜇, 𝑖, �̄�). The ten-dimensional met-
ric gives rise to a four-dimensional metric 𝐺𝜇𝜈 , ℎ

1,1 real scalars 𝐺𝑖�̄� and ℎ2,1

complex scalars 𝐺𝑖𝑗 . The NS two-form becomes ℎ1,1 real scalars 𝐵𝑖�̄� together
with a four-dimensional antisymmetric tensor 𝐵𝜇𝜈 , which can be dualized into
a real scalar. The ten-dimensional scalar remains a real scalar 𝜙 in four di-
mensions. In the R-R sector, the three-form gives rise to ℎ1,1 vectors 𝐶𝜇𝑖�̄� and
(2ℎ2,1 + 2) real scalars (𝐶𝑖𝑗�̄� and 𝐶𝑖𝑗𝑘). And lastly, the vector ends up as a
four-dimensional vector 𝐶𝜇. All the fields organize themselves nicely into the
following supermultiplets:

gravity multiplet: 𝐺𝜇𝜈 , 𝐶𝜇, Ψ𝜇, Ψ̃𝜇

universal hypermultiplet: 𝜙, 𝐵𝜇𝜈 , 𝐶𝑖𝑗𝑘, fermions
ℎ1,1 vector multiplets: 𝐺𝑖�̄�, 𝐵𝑖�̄� , 𝐶𝜇𝑖�̄� , fermions
ℎ2,1 hypermultiplets: 𝐺𝑖𝑗, 𝐶𝑖𝑗�̄�, fermions.

Table 2.1: Field contents of type IIA string theory compactified on CY3.
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Counting the number of real scalar fields we find the dimension of the
moduli space to be 2ℎ1,1+(4ℎ2,1+4). Using supersymmetric arguments it can
be shown that at the tree-level neutral couplings between vector multiplets
and hypermultiplets are forbidden [95]. The moduli space thus factorizes as

ℳ𝑀 =ℳ𝑉 ×ℳ𝐻 . (2.70)

The moduli space of vector multiplets ℳ𝑉 is a special Kähler manifold with
dimension 2ℎ1,1, at the classical level it can be identified with the moduli
space of complexified Kähler structures ℳ𝐾 . In Subsec. 2.2.2 it was argued
that this space receives non-perturbative 𝛼′ corrections from the worldsheet
instantons. ℳ𝐻 , on the other hand, has dimension 4(ℎ2,1+1) and is a so called
quaternionic Kähler manifold2. The classical hypermultiplet moduli space is
contains the CY3 complex structure moduli space together with the moduli
space coming from the universal hypermultiplet. Since the dilaton 𝜙 belongs
to a hypermultiplet,ℳ𝐻 will receive non-perturbative corrections in the string
coupling 𝑔𝑠.

Most often Calabi-Yau compactification does not lead to moduli space with
coset symmetry. One exception is when compactifying type IIA string theory
on a rigid Calabi-Yau manifold, which has ℎ2,1 = 0. There is then only one hy-
permultiplet, namely the universal hypermultiplet. The hypermultiplet mod-
uli fields parameterize the coset space 𝑆𝑈(2, 1)/𝑈(2) [96]. Paper V discusses
possible 𝑔𝑠 corrections to this universal hypermultiplet sector.

Type IIB on CY3

Compactification of type IIB theory on CY3 is very similar to the type IIA
case. The NS-NS sector is identical, while the ten-dimensional R-R sector now
consists of even form potentials. The axion gives an axion 𝐶 in four dimensions.
The two-form gives rise to ℎ1,1 real scalars 𝐶𝑖�̄� and a four-dimensional two-form
𝐶𝜇𝜈 , the latter can be dualized into another scalar field. The self-dual four-form
leads to ℎ1,1 real scalars 𝐶𝜇𝜈𝑖�̄� and (ℎ2,1 + 1) vectors (𝐶𝜇𝑖𝑗�̄� and 𝐶𝜇𝑖𝑗𝑘). 𝐶𝜇𝑖𝑗𝑘

corresponds to the unique (3, 0)-form of a Calabi-Yau manifold. In summary
we have:

gravity multiplet: 𝐺𝜇𝜈 , 𝐶𝜇𝑖𝑗𝑘, Ψ𝜇, Ψ̃𝜇

universal hypermultiplet: 𝜙, 𝐶, 𝐵𝜇𝜈 , 𝐶𝜇𝜈 , fermions
ℎ2,1 vector multiplets: 𝐺𝑖𝑗, 𝐶𝜇𝑖𝑗�̄�, fermions
ℎ1,1 hypermultiplets: 𝐺𝑖�̄�, 𝐵𝑖�̄� , 𝐶𝑖�̄� , 𝐶𝜇𝜈𝑖�̄� , fermions.

Table 2.2: Field contents of type IIB string theory compactified on CY3.

2A quaternionic Kähler manifold is a Riemannian manifold of 4𝑘 dimensions which has

its holonomy group contained in 𝑆𝑝(𝑘)×𝑆𝑝(1)
ℤ2

.
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The dimension of the moduli space is 2ℎ2,1 + 4(ℎ1,1 + 1). It can again
be decomposed into a vector multiplet and a hypermultiplet subspace as in
Eq. (2.70). The vector multiplet moduli spaceℳ𝑉 has dimension 2ℎ2,1 and it
is still special Kähler. However, it now parameterizes the complex structure
moduli space of the CY3. The hypermultiplet moduli space ℳ𝐻 is quater-
nionic Kähler and 4(ℎ1,1 + 1)-dimensional. It describes Kähler structure de-
formations. Since both the CY volume and the dilaton belong to ℳ𝐻, the
hypermultiplet moduli space receives perturbative as well as non-perturbative
𝛼′ and 𝑔𝑠 corrections. The tree-level geometry of ℳ𝑉 , on the other hand, is
exact.

A consequence of the mirror symmetry is that type IIA string theory com-
pactified on 𝑀 is equivalent to type IIB string theory compactified on �̃� .
More explicitly, the respective moduli spaces can be identified

ℳ𝑉 (𝑀) =ℳ𝐻(�̃�) and ℳ𝐻(𝑀) =ℳ𝑉 (�̃�). (2.71)

Eq. (2.71) is a statement with deep impact. It tells us that the prepoten-
tial of the IIB complex structure moduli space, which is classically exact, is
mapped to the prepotential of the IIA Kähler structure moduli space, which
contains quantum 𝛼′ corrections. Comparison of the BPS solutions which wrap
supersymmetric cycles on the both sides of the mirror symmetry serves as a
consistent check for the symmetry itself.

2.2.4 Non-perturbative Instanton Effects

Up to now we have only analyzed the massless sector after compactifica-
tion. The reason the massive Kaluza-Klein modes are ignored is they are
very heavy and can be integrated out in the low energy limit. It was found
out that the Calabi-Yau moduli space contains singularities, near which 𝑝-
branes wrapping supersymmetric cycles become very light. These contribute
as non-perturbative instanton effects in the low energy effective action [97, 98].
We will emphasize again that this picture of the low energy effective action
being an infinite expansion in the string coupling constant, containing pertur-
bative loop and non-perturbative instanton corrections, is only correct near
the moduli space singularities. The low energy quantum theory away from the
singularities requires a strong coupling description.

One simple example of moduli space singularities is the conifold singularity
[88]. Let us recall the coordinate parametrization of the complex structure
moduli space of a CY from Subsec. 2.2.2. When one of the coordinates, for
example

𝑋1 =

∫
𝐴1

Ω (2.72)
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is zero the moduli space metric will become singular. Near the singularity the
metric takes the form

𝐺11̄ =
∂2𝒦𝐶

∂𝑋1∂𝑋1
, (2.73)

with
𝒦𝐶 ∼ ln

(∣𝑋1∣2 ln ∣𝑋1∣2) . (2.74)

The singularity at 𝑋1 = 0 is of conifold type. It is a real singularity, since the
curvature scalar diverges at this point. The corresponding cycle 𝐴1 is called a
vanishing cycle.

As we have already mentioned, near moduli space singularities Euclidean
𝑝-branes wrapping supersymmetric cycles lead to instanton corrections. A su-
persymmetric cycle of a Calabi-Yau manifold is a cycle which preserves some
supersymmetry when a brane is wrapped around it. For CY3 there are two
types of cycles which allow a non-zero covariant constant spinor, both of them
characterized by the two 𝑝-forms which are invariant under the 𝑆𝑈(3) holon-
omy group:

i. A holomorphic two-cycle has real dimension two and satisfies

∂̄𝑥𝑎 = 0 and ∂𝑥�̄� = 0. (2.75)

The volume of a holomorphic submanifold is measured by the Kähler
form.

ii. The volume of a special Lagrangian submanifold 𝑊 , on the other hand,
is measured by the covariant constant (3, 0)-form. At the same time the
pullback of the Kähler form to 𝑊 vanishes. A special Lagrangian sub-
manifold has real dimension three. Ref. [99] nicely reviews the properties
of this kind of submanifolds.

Identifying any of these submanifolds with a 𝑝-brane worldsheet will put con-
straints on the worldsheet. Configurations satisfying these constraints will be
stable, moreover their volumes are minimized.

From the ten-dimensional point of view, the compact CY manifold is en-
tirely spacelike. Branes wrapping supersymmetric cycles inside the CY are
therefore Euclidean. These are precisely the classical instanton configurations,
i.e., events in spacetime. In general, the fundamental-string instantons lead to
non-perturbative 𝛼′ corrections, while the D-branes and the NS5-branes give
rise to non-perturbative 𝑔𝑠 corrections. To be more concrete, IIA string theory
compactified on a CY contains F1 worldsheet instantons inℳ𝑉 , while inℳ𝐻

there are D2- and NS5-brane instantons. For the IIB theoryℳ𝑉 is exact, and
ℳ𝐻 contains worldsheet F1 as well as D(−1)-, D1-, D3-, D5- and NS5-brane
instantons.
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The quantum corrections to the moduli spaces of CY compactified type II
string theories have been investigated in a series of papers [97, 100, 101, 102,
103, 104, 58]. Paper V addresses this question when the Calabi-Yau manifold
is rigid.

2.3 𝐺2 Manifold

For compactification of M-theory to four dimensions we need seven-dimensional
manifolds which only break supersymmetry partially. The manifold CY3 × 𝑆1

is certainly the simplest choice. The natural generalizations of CY3 × 𝑆1 are
manifolds with 𝐺2 holonomy. Compactification of M-theory on such manifolds
breaks 7/8 of the supersymmetries, resulting in theories with 𝒩 = 1 in 𝐷 = 4.

The group 𝐺2 is an exceptional simple Lie group, properties of it can be
found for instance in Ref. [51]. It has rank 2 and contains in total 14 root
vectors. The Cartan matrix takes the form

𝐴𝐺2 =

(
2 −3
−1 2

)
. (2.76)

The compact real form of 𝐺2 is a subgroup of 𝑆𝑝𝑖𝑛(7), which is the covering
of the Lorentz group of a Euclidean seven-dimensional manifold. We can thus
rewrite all the 𝑆𝑝𝑖𝑛(7) representations in terms of 𝐺2 representations [105],
see Table 2.3. The singlet 1 from the spinor decomposition is the one and only
covariant constant spinor

∇𝑀𝜉 = 0, (2.77)

with 𝑀 being the eleven-dimensional spacetime index.

Adjoint representation of 𝑆𝑝𝑖𝑛(7): 21→ 14+ 7
Vector representation of 𝑆𝑝𝑖𝑛(7): 7→ 7
Spinor representation of 𝑆𝑝𝑖𝑛(7): 8→ 7+ 1

Table 2.3: 𝑆𝑝𝑖𝑛(7) representations decomposed into 𝐺2 representations.

A seven-dimensional manifold with 𝐺2 holonomy is referred shortly as a 𝐺2

manifold. It is orientable and Ricci flat. Similar to the Calabi-Yau case, a 𝐺2

manifold is characterized by a covariant constant real three-form Φ called the
associative calibration [106, 105]. The associative calibration is both closed
and co-closed

𝑑Φ = 0 and 𝑑 ∗ Φ = 0. (2.78)

The Hodge dual four-form ∗Φ is named the coassociative calibration. These
forms are attached to supersymmetric three- and four-cycles, whose volumes
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satisfy [107]

Vol(𝑆3) =

∫
𝑆3

𝑓 ∗Φ and Vol(𝑆4) =

∫
𝑆4

𝑓 ∗(∗Φ). (2.79)

𝑓 ∗ and 𝑓 ∗ denote pullbacks to the respective submanifold. The volume condi-
tion of the three-cycle 𝑆3 is equivalent to the projection equation [4]

𝑃−𝜖 =
1

2

(
1− 𝑖

6
𝜀𝑖𝑗𝑘∂𝑖𝑋

𝑀∂𝑗𝑋
𝑁∂𝑘𝑋

𝑃Γ𝑀𝑁𝑃

)
𝜖 = 0, (2.80)

where 𝑋𝑀 is the eleven-dimensional spacetime coordinate, and 𝑖, 𝑗, . . . are the
local indices on 𝑆3. The spinor 𝜖 is constant and lives in seven dimensions.
Similarly the four-cycle 𝑆4 can be found by solving(

1− 𝑖

4!
𝜀𝑖𝑗𝑘𝑙∂𝑖𝑋

𝑀∂𝑗𝑋
𝑁∂𝑘𝑋

𝑃∂𝑙𝑋
𝑄Γ𝑀𝑁𝑃𝑄

)
𝜖 = 0. (2.81)

Branes wrapping the supersymmetric cycles will be stable, their volumes are
then minimized. Moreover, both cycles break 1/2 of the supersymmetries of
the objects winding around them. Smooth 𝐺2 manifolds can be constructed by
starting from seven-dimensional orbifolds and then resolving the singularities.

Calabi-Yau and 𝐺2 manifolds are both examples of manifolds with spe-
cial holonomy [106]. An 𝑛-dimensional Riemannian manifold 𝑀 with spe-
cial holonomy is characterized by the fact that its holonomy group satisfies
Hol(𝑀) ⊂ 𝑆𝑝𝑖𝑛(𝑛). Furthermore, it exhibits a covariant constant spinor as
well as invariant forms known as calibrations. The eight-dimensional 𝑆𝑝𝑖𝑛(7)
manifold belongs also to this category. This manifold breaks 15/16 of the
supersymmetries. Thus, M-theory compactified on 𝑆𝑝𝑖𝑛(7) manifolds yields
𝒩 = 1 supersymmetry in three dimensions.

2.4 The Topological Sector

One peculiar feature of manifolds with special holonomy is that they allow for
classical theories of gravity where the metric is not a fundamental quantity.
Instead, the metric can be constructed in terms of the form-fields. Such the-
ories are known as form theories of gravity. The well-known reformulation of
three-dimensional pure gravity in terms of Chern-Simons gauge theory [108]
serves as the prototype. Here we will focus on form gravity theories in six and
seven dimensions, and then briefly comment on their relations to topological
subsectors of M-theory.
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2.4.1 Six Dimensions

In six dimensions there exists two different form theories of gravity. One is
the Kähler gravity theory [109] and the other is the Kodaira-Spencer gravity
theory [110]. Both of them can be defined on Calabi-Yau three-folds.

Kähler Gravity Theory

The Kähler gravity theory describes variations of the complexified Kähler struc-
ture on a CY3 𝑀 . The action of this theory is

𝑆Kähler =

∫
𝑀

(
1

2
𝐾

1

𝑑𝑐†𝑑𝐾 +
1

3
𝐾 ∧𝐾 ∧𝐾

)
, (2.82)

where 𝐾 is a variation of the complexified Kähler form and 𝑑𝑐 = ∂ − ∂̄. The
equations of motion are

𝑑𝐾 + 𝑑𝑐†(𝐾 ∧𝐾) = 0. (2.83)

The action in Eq. (2.82) is invariant under the gauge transformations

𝛿𝛼𝐾 = 𝑑𝛼− 𝑑𝑐†(𝐾 ∧ 𝛼), (2.84)

with the one-form 𝛼 satisfying 𝑑𝑐†𝛼 = 0.
We can decompose 𝐾 into massless and massive modes

𝐾 = 𝐾0 + 𝑑𝑐†𝛾, (2.85)

where the dynamical degrees of freedom consist of the massive modes 𝛾 ∈
Ω3(𝑀), while the massless Kähler moduli 𝐾0 ∈ 𝐻1,1(𝑀,ℂ) are constant. The
action (2.82) can then be rewritten as

𝑆Kähler =

∫
𝑀

(
1

2
𝑑𝛾 ∧ 𝑑𝑐†𝛾 +

1

3
𝐾 ∧𝐾 ∧𝐾

)
. (2.86)

without the non-local term.
In Ref. [107] it was argued that the Kähler gravity is identical to the action

𝑉𝑆(𝐽) =
1

6

∫
𝑀

𝐽 ∧ 𝐽 ∧ 𝐽 (2.87)

introduced by N. Hitchin [111]. For a CY3 the two-form 𝐽 is simply the Kähler
form. The identification with 𝑆Kähler is achieved by constructing a stable3 four-
form

𝜎 =
1

2
𝐽 ∧ 𝐽 = 𝜎0 + 𝑑𝛾, (2.88)

3A 𝑝-form 𝑋𝑝 is stable if all forms in a neighborhood of 𝑋𝑝 are equivalent to 𝑋𝑝 by a
local 𝐺𝐿(𝑛) action.

48



where gauge field 𝛾 is the same three-form as we have introduced earlier.
Extremizing the action (2.87) with respect to 𝛾 one finds

𝑑𝐽 = 0. (2.89)

Kodaira-Spencer Gravity Theory

The action of the Kodaira-Spencer gravity theory has the following form

𝑆KS =
1

2

∫
𝑀

𝐴′ 1
∂
∂̄𝐴′ +

1

6

∫
𝑀

(𝐴 ∧ 𝐴)′ ∧ 𝐴′, (2.90)

where 𝐴 is a vector-valued one-form. The notation 𝑌 ′ := (𝑌 ⋅ Ω0) stands
for the product of some form 𝑌 with the background holomorphic (3, 0)-form
resulting in a three-form. For the non-local term 1

∂
∂̄𝐴′ to be well-defined, we

need to constrain 𝐴 according to

∂𝐴′ = 0. (2.91)

The field 𝐴 is variation of the holomorphic (3, 0)-form Ω

Ω = Ω0 + 𝐴′ + (𝐴 ∧ 𝐴)′ + (𝐴 ∧ 𝐴 ∧ 𝐴)′, (2.92)

the Kodaira-Spencer gravity theory thus describes deformations of the complex
structure of a CY3.

Decomposing 𝐴′ into massless modes and massive modes

𝐴′ = 𝐴′
0 + ∂𝜅, (2.93)

the Kodaira-Spencer action becomes

𝑆KS =
1

2

∫
𝑀

∂𝜅 ∧ ∂̄𝜅 +
1

6

∫
𝑀

(𝐴 ∧ 𝐴)′ ∧𝐴′. (2.94)

The massless modes 𝐴′
0 ∈ 𝐻2,1(𝑀,ℂ) are static, while the massive ones 𝜅 ∈

𝐻1,1(𝑀,ℂ) are dynamical. Varying the action with respect to 𝜅 we find the
equations of motion

∂̄𝐴′ + ∂(𝐴 ∧ 𝐴)′ = 0. (2.95)

The equations of motion (2.95) together with the constraint (2.91) require the
holomorphic (3, 0)-form Ω to be closed on-shell

𝑑Ω = 0. (2.96)

The action (2.94) contains a shift symmetry

𝜅→ 𝜅 + 𝜁, with ∂𝜁 = 0, (2.97)
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which can be used to remove the anti-holomorphic part of 𝜅, i.e.,

∂̄𝜅 = 0. (2.98)

For this reason the Kodaira-Spencer theory is said to be chiral.
A closely related theory has been given in Ref. [111], where the action is

directly written in terms of the holomorphic (3, 0)-form Ω

𝑉𝐻(𝜌) = − 𝑖

4

∫
𝑀

Ω ∧ Ω̄ =
1

2

∫
𝑀

𝜌(𝜌) ∧ 𝜌. (2.99)

The three-form 𝜌, defined as the real part of Ω, is a stable form, while 𝜌(𝜌) is
the imaginary part of Ω:

Ω = 𝜌+ 𝜌(𝜌). (2.100)

Letting 𝜌 vary in a fixed cohomology class

𝜌 = 𝜌0 + 𝑑𝛽 (2.101)

we may find the equations of motion

𝑑𝜌 = 0 and 𝑑𝜌 = 0. (2.102)

Again, we obtain the integrability condition for Ω from Eq. (2.96). This theory
is, however, not chiral. Arguments were presented in Ref. [107] that this form
theory of gravity is a sum of the Kodaira-Spencer theory together with its
conjugate.

Both 𝑉𝑆 and 𝑉𝐻 can be defined simultaneously on a Calabi-Yau threefold.
The following conditions then have to be obeyed in addition:

𝐽 ∧ 𝜌 = 0,

2𝑉𝑆(𝐽) = 𝑉𝐻(𝜌).
(2.103)

The Topological A Model

Quantizing the Kähler gravity leads to the topological A model, which roughly
speaking is the topological subsector of type IIA superstring theory on a CY3.
It contains two types of objects: fundamental strings and D2-branes.

Fundamental strings wrap the two-dimensional holomorphic cycles. Their
scattering amplitudes depend only on the Kähler form of the CY3 target space.
Moreover, there are quantum mechanical instanton corrections encoded by the
so called Gromov-Witten invariants. The low energy effective theory of the
closed strings is precisely the Kähler gravity.

The D2-branes, on the other hand, wrap the special Lagrangian three-
cycles. They are charged under the field 𝛾 from the Kähler gravity. Open
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strings ending on a stack of 𝑁 D2-branes describe a 𝑈(𝑁) Chern-Simons the-
ory. Fundamental topological strings ending on D2-branes is a stable configu-
ration only if the Kähler form 𝐽 and the holomorphic (3, 0)-form Ω satisfy

𝐽 ∧ Ω = 0. (2.104)

The Topological B Model

The Kodaira-Spencer gravity is the low energy effective theory of the closed
strings in the topological B model. The B model describes the topological
subsector of type IIB string theory.

This theory contains fundamental strings, D(−1)-, D1-, D3- and D5-branes,
all of them wrapping holomorphic cycles. The scattering amplitudes of the fun-
damental strings depends, in contrast to the A model, only on the complex
structure. Furthermore, they do not receive any worldsheet instanton correc-
tions. The D5-brane wraps a connected six-dimensional submanifold, its low
energy physics is governed by a holomorphic Chern-Simons theory. The effec-
tive theories of the other D-branes can be obtained by dimensional reducing
this holomorphic Chern-Simons theory. The D1-brane is charged under the
field 𝜅 from the Kodaira-Spencer gravity.

Mirror symmetry is believed to be an exact duality at the quantum level
between the A and B model on different Calabi-Yau threefolds. Some general
features of the mirror symmetry can be found in Subsec. 2.2.2. Also it has
been conjectured that the A and B model are S-dual to each other on the
same CY3 [112, 113].

Topological string theories are simplified versions of string theories, where
gravity does not pose any independent degrees of freedom. Because of its
simplicity many quantities, such as the partition function, may be computed
explicitly in topological string theories. However, they turn out to provide
many useful insights for the ten-dimensional string theories, Ref. [114] explores
some of these links.

2.4.2 Seven Dimensions

In seven dimensions it is possible to construct form theories of gravity on
𝐺2 manifolds. The story is quite similar to what happens in six dimensions.
Quantizing this system has been suggested to yield a topological version of
M-theory.
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Form Gravity in 𝐷 = 7

A real three-form Φ on a 𝐺2 manifold 𝑌 can be used to form a symmetric
tensor

𝐵𝑖𝑗 = − 1

144
𝜖𝑘1...𝑘7Φ𝑖𝑘1𝑘2Φ𝑗𝑘3𝑘4Φ𝑘5𝑘6𝑘7 , (2.105)

with 𝑖, 𝑗, ⋅ ⋅ ⋅ = 1, . . . , 7. Defining the metric as

𝑔𝑖𝑗 = (det𝐵)−1/9𝐵𝑖𝑗, (2.106)

we may compute the volume of 𝑌 according to

𝑉7(Φ) =

∫
𝑌

√
𝑔Φ =

∫
𝑌

(det𝐵)1/9. (2.107)

The metric in Eq. (2.106) provides also a Hodge operator, which we denote by
∗Φ. The action can now be rewritten as

𝑉7(Φ) =

∫
𝑌

Φ ∧ ∗ΦΦ. (2.108)

Assume Φ = Φ0 + 𝑑𝐵 with 𝑑Φ0 = 0. Varying the action with respect to the
two-form gauge potential 𝐵 we will obtain the equations of motion

𝑑Φ = 0 and 𝑑 ∗Φ Φ = 0. (2.109)

These equations dictate that Φ has to be the associative calibration.
Alternatively, one can start with a four-form, going through a similar pro-

cedure one finds that it has to be identified with the coassociative calibration.
The resulting action is identical to 𝑉7(Φ).

For the special 𝐺2 manifolds 𝑌 = 𝑀 × ℝ and 𝑌 = 𝑀 × 𝑆1, where 𝑀 is a
CY3 we can decompose the associative and coassociative calibration as follows

Φ = ℜ(Ω) + 𝐽 ∧ 𝑑𝑡 and ∗Φ Φ = ℑ(Ω) ∧ 𝑑𝑡+
1

2
𝐽 ∧ 𝐽. (2.110)

Recall 𝐽 is the Kähler form of the CY3, while Ω is the holomorphic (3, 0)-form.
The seventh dimension is parameterized by the coordinate 𝑡. The equations
of motion in Eq. (2.109) dimensionally reduce to

𝑑𝐽 = 0 and 𝑑Ω = 0. (2.111)

The action itself becomes

𝑉7(Φ) = 3𝑉𝑆(𝐽) + 2𝑉𝐻(𝜌). (2.112)
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Topological M-theory

The conjectured mirror symmetry and S-duality between topological A and B
model suggests the existence of a topological M-theory on 𝐺2 manifolds. The
topological M-theory on 𝑀 × 𝑆1 is then identified with the A model on the
Calabi-Yau threefold 𝑀 . The classical limit of the low energy effective theory
would be the form theory of gravity we have described. The fact that the
form gravity in seven dimensions reduces to a combinations of Kähler and
Kodaira-Spencer gravities is also hinting towards a unification.

In Refs. [115, 116, 107] the following definition of topological M-theory was
given: Topological M-theory on a 𝐺2 manifold 𝑌 is defined to be equivalent
to A model topological strings on 𝑌/𝑈(1). D2-branes wrapping special La-
grangian submanifolds in 𝑌/𝑈(1) should be lifted to points at which the circle
fibration degenerates. These are the Kaluza-Klein monopoles.

The fundamental object in topological M-theory is the membrane, which
is the seven-dimensional lift of the A model fundamental string. Thus, mem-
branes wrapping associative three-cycles will give rise to quantum corrections
in the low energy effective theory [117]. Viewing topological M-theory as the
topological subsector of eleven-dimensional M-theory, some properties of the
topological membrane was discussed in Paper I. Since membranes and strings
are dual to each other in seven dimensions, one can also study topological 𝐺2

strings [118]. Topological M5-branes living on 𝐺2 manifolds were analyzed in
Paper II, where comments were also made regarding their relation to the
topological string models.
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3
String Effective Actions

When we introduced the supergravity theories in Chapter 1 we explained that
they should be viewed as classical low energy limits of the superstring theories.
More explicitly, they describe the classical dynamics of the massless particles in
string theory. By computing scattering amplitudes of these massless particles
it was soon realized that the full effective field theory action of string theory is
a simultaneous expansion in two parameters. One is the Regge slope 𝛼′ and the
other is the string coupling constant 𝑔𝑠. Though the scattering amplitudes are
computationally very complicated, it is sometimes possible to find shortcuts
using the symmetries of the theory. It is believed that both supersymmetry
and U-duality should survive the quantization process, and therefore also be
symmetries of the low energy effective action. In particular by requiring in-
variance under U-duality it turns out that one can even move away from the
perturbative regime. In this chapter a short review of the general structure of
the superstring effective action will be given.

3.1 Scattering Amplitudes

The effective field theory action of a quantum theory describes the dynamics
of the massless particles. The general structure of such an action consists
of a classical part and its quantum corrections. In the case of string theory,
the classical part is a supergravity theory described in Section 1.1. The most
direct method to determine the quantum corrections is by computing scattering
amplitudes of the relevant particles. The idea of this section is to list a few
important results, while for explicit computations and techniques of this vast
research area the reader is asked to turn to the references given. We will be
setting our focus mostly on the type II theories, but also occasionally mention
some results for M-theory. One of the early observations of superstring theory,
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which also played a role making it favorable as a force unifying theory, is the
fact that its perturbation theory is finite to all loop orders [119, 120, 121].
Thus, no renormalization of the scattering amplitudes is needed.

The first correction term to the conventional Einstein-Hilbert action is
contained in the tree-level four-graviton scattering amplitude. Using a different
argument, it was shown by the authors of Ref. [122] that the leading order
correction in the Einstein frame has the following form

Δ𝑆 ∝ 𝛼′3

2𝜅2

∫
𝑑10𝑥

√−𝑔ℛ4, (3.1)

with 𝛼′ = ℓ2𝑠 being the Regge slope (or the inverse string tension). The rela-
tion between 𝜅 and the string length scale ℓ𝑠 can be found in Subsec. 1.1.2.
The notation ℛ4 is a short hand for a quartic order contraction of the Weyl
curvature tensor. In this particular case

ℛ4 = 𝑡𝑎1...𝑎8
8 𝑡𝑏1...𝑏8

8 𝑅𝑎1𝑎2𝑏1𝑏2𝑅𝑎3𝑎4𝑏3𝑏4𝑅𝑎5𝑎6𝑏5𝑏6𝑅𝑎7𝑎8𝑏7𝑏8 , (3.2)

where the contraction of 𝑡8 with four two-tensors 𝑀𝑎𝑏 is defined as

𝑡8𝑀
4 =8Tr(𝑀1𝑀2𝑀3𝑀4) + 8Tr(𝑀1𝑀3𝑀2𝑀4) + 8Tr(𝑀1𝑀3𝑀4𝑀2)

− 2Tr(𝑀1𝑀2)Tr(𝑀3𝑀4)− 2Tr(𝑀2𝑀3)Tr(𝑀4𝑀1)

− 2Tr(𝑀1𝑀3)Tr(𝑀2𝑀4).

(3.3)

Eq. (3.1) shows that quantum corrections in the effective action are clearly
higher order in the number of derivatives. Since [𝛼′] = 𝐿2, Δ𝑆 is indeed
dimensionless. The reason we did not specify which of the type II theories
this amplitude belongs to is because the perturbative contributions to ∂2𝑛ℛ4

corrections are the same in the IIA and IIB theories for 𝑛 ≤ 4 [123]. The
enormous complexity of scattering calculations is tested by the fact that the
full tree-level four-particle amplitude, including the fermionic terms, to all
orders in 𝛼′ has been worked out only recently in Ref. [124].

The four-particle loop computations have traditionally been carried out
using the Ramond-Neveu-Schwarz (RNS) or the Green-Schwarz (GS) for-
malisms. For instance the one-loop four-graviton amplitude was shown to
contain terms of the form ℛ4 and 𝒟6ℛ4 [125, 126], with 𝒟 representing some
combination of derivatives and fields with the same dimension as a spacetime
derivative. Working a bit harder, the two-loop four-graviton amplitude is also
calculable in the RNS formulation [127]. Among other things it contains terms
of the form 𝒟4ℛ4 and 𝒟6ℛ4. The correct Regge slope order can always be
restored afterwards by dimensional analysis.

Since the discovery of the pure spinor formalism [128], the computation of
scattering amplitudes has become considerably more efficient. The tree-level,
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one-loop and two-loop four-graviton scattering amplitudes were recomputed
in this formalism [129, 130], and proven to be identical to the results from
the RNS formulation [131, 132]. A prescription presented in Ref. [133] has
made arbitrary multiloop calculations in principle accessible. The resulting
expressions in pure spinor superfields are very elegant, in fact both the one-
loop and two-loop kinematic factors can be expressed in terms of the tree-level
one [134]. The difficult part lies in the expansion in component fields. Recently
progress has been made on the tree-level and one-loop five-particle scattering
amplitudes [135, 136, 137], showing that terms of the form 𝒟2𝑛ℛ5 exist.

To summarize the results from the scattering amplitude computations we
have the following perturbative expansion of the low energy effective action:

𝒮S =𝛼′−4
∫

𝑑10𝑥
√−𝑔𝑒−2𝜙 {[

(𝑅 + . . . ) +
(
𝛼′3ℛ4 + 𝛼′4𝒟2ℛ4 . . .

)
+

(
𝛼′4ℛ5 + 𝛼′5𝒟2ℛ5 + . . .

)
+ . . .

]
+ 𝑒2𝜙

[(
𝛼′3ℛ4 + 𝛼′6𝒟6ℛ4 + . . .

)
+

(
𝛼′6𝒟4ℛ5 + . . .

)]
+𝑒4𝜙

[
𝛼′5𝒟4ℛ4 + 𝛼′6𝒟6ℛ4 + . . .

]
+ . . .

}
.

(3.4)

The form-fields and fermionic terms are omitted for simplicity. Notice also
that we have changed to the string frame, where there is an overall dilaton
factor 𝑒−2𝜙. Clearly Eq. (3.4) is a double sum in 𝛼′ and 𝑒𝜙:

𝒮S = 𝛼′−4
∫

𝑑10𝑥
√−𝑔𝑒−2𝜙

∞∑
𝑛=0

∞∑
𝑔=0

𝛼′𝑛𝑒2𝑔𝜙𝐿(𝑛,𝑔), (3.5)

where 𝑔 is the genus of the string worldsheet. Since 𝑔𝑠 = 𝑒<𝜙>, the general jar-
gon is that 𝒮 is an expansion in the Regge slope and string coupling. Although
the entire perturbative effective action can be constructed systematically in
this way, the computations are very tedious and time consuming. One addi-
tional complication is posed by the relation [𝒟,𝒟] ∼ ℛ. Using 𝒟2ℛ5 as an
illustration, even though there is no contribution to this term from the one-
loop five-graviton amplitude [136], to really exclude the one-loop contribution
we must also compute the one-loop six-graviton amplitude.

We would like to mention that for comparison particle scattering am-
plitudes in M-theory have been computed as well, so far up to two-loops
[83, 138, 139, 140]. The M-theory amplitudes are directly linked to the IIA
amplitudes by compactification, which can then be mapped to IIB using T-
duality in nine dimensions. In Chapter 1 we have explained that U-duality
is expected to be a symmetry of string theory, therefore these operations are
justified. It turns out that only very few terms have an eleven-dimensional lift
in the decoupling limit. For instance the one-loop contribution to the type II
ℛ4 correction can be traced to a one-loop four-particle amplitude in M-theory.
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The rest, e.g., the tree-level ℛ4 or the entire 𝒟4ℛ4 are purely artifacts of the
compactification process. More generally, it was argued in Ref. [139] that
only terms with same dimensions as

ℛ̂3𝑘+1, 𝑘 ∈ ℕ (3.6)

are allowed in M-theory, where ℛ̂ denotes the eleven-dimensional curvature
tensor. As an interesting side remark, the orders (3𝑘 + 1) can be related to
certain weights of the Kac-Moody group 𝐸10 [84], and thus seem to support
the 𝐸10 conjecture we mentioned in Section 1.4. However, a caveat to this
symmetry analysis is given in Paper IV.

As scattering computations became more and more sophisticated, comple-
menting methods based on symmetry properties was developed in parallel.
These symmetries are precisely those discussed in Chapter 1, namely super-
symmetry and U-duality. In fact, we have already mentioned the usefulness of
T-duality. The subsequent two sections will be devoted to various symmetry
results. From now on we will focus on the type IIB theory. A better way to
organize the perturbative part of the effective action is then

𝒮IIB,S =𝛼′−4
∫

𝑑10𝑥
√−𝑔𝑒−2𝜙 {[𝑅 + . . . ]

+ 𝛼′3 [(𝑐(3,0) + 𝑐(3,1)𝑒
2𝜙
)ℛ4 + . . .

]
+ 𝛼′4 [𝒟2ℛ4 +ℛ5 + . . .

]
+ 𝛼′5 [(𝑐(5,0) + 𝑐(5,2)𝑒

4𝜙
)𝒟4ℛ4 +𝒟2ℛ5 + . . .

]
+ 𝛼′6 [(𝑐(6,0) + 𝑐(6,1)𝑒

2𝜙 + 𝑐(6,2)𝑒
4𝜙 + 𝑐(6,3)𝑒

6𝜙
)𝒟6ℛ4

+
(
𝑐(6,0) + 𝑐(6,2)𝑒

4𝜙
)𝒟4ℛ5 + . . .

]
+ . . .

}
,

(3.7)

where 𝑐(𝑛,𝑔) are purely numerical coefficients.

3.2 U-duality Completion

If U-duality indeed is a symmetry of M-theory, it is natural to expect that
the low energy effective actions are invariant under U-duality transformations.
The successful 𝑆𝐿(2,ℤ) completion of the ℛ4 correction in type IIB theory
suggests that this might be a correct path to take.

Let us follow Ref. [60] and work through the type IIB example. From
scattering amplitude computations the perturbative ℛ4 correction is found to
be

𝑆
(3)∗
IIB,E,pert = 𝛼′−4

∫
𝑑10𝑥

√−𝑔𝛼′3 (2𝜁(3)𝑒−3𝜙/2 + 4𝜁(2)𝑒𝜙/2
)ℛ4, (3.8)
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where the two terms correspond to tree-level and one-loop contributions, re-
spectively. 𝜁(𝑠) is the Riemann zeta function defined as 𝜁(𝑠) =

∑∞
𝑛=1 𝑛

−𝑠.
Eq. (3.8) is written in the Einstein frame where U-duality is most apparent.
The U-duality group of type IIB string theory is the modular group 𝑆𝐿(2,ℤ),
see Table 1.1. It acts on the dilaton axion 𝜏 = 𝜏1 + 𝑖𝜏2 = 𝐶0 + 𝑖𝑒−𝜙 according
to

𝜏 �−→ 𝑎𝜏 + 𝑏

𝑐𝜏 + 𝑑
, (3.9)

where the parameters 𝑎, 𝑏, 𝑐, 𝑑 are integer numbers satisfying 𝑎𝑑−𝑏𝑐 = 1. While
the ℛ4 combination itself does not transform under modular transformations,
its dilaton coefficients in Eq. (3.8) obviously do. The idea is to add more terms
inside the parenthesis to make the total expression modular invariant. It turns
out that the function

ℰ (0,0)(𝜏, 𝜏) =2𝜁(3)𝜏 3/22 + 4𝜁(2)𝜏
−1/2
2

+ 4𝜋
√
𝜏2

∑
𝑁 ∕=0

𝜇−2(𝑁)𝑁𝐾1(2𝜋∣𝑁 ∣𝜏2)𝑒2𝜋𝑖𝑁𝜏1 (3.10)

does the trick. The sum above runs over all non-zero integers, 𝐾1(𝑥) is the
modified Bessel function and the so called instanton measure 𝜇−2(𝑁) is defined
as a sum over all divisors of 𝑁

𝜇−2(𝑁) :=
∑
𝑛∣𝑁

𝑛−2. (3.11)

Eq. (3.10) is the 𝑆𝐿(2,ℤ) non-holomorphic Eisenstein series, in Subsec. 4.2.3
we show that it can be rewritten in a more compact form

ℰ𝑆𝐿(2,ℤ)
𝑠 (𝜏, 𝜏) =

∑
(𝑚,𝑛)

′ 𝜏 𝑠
2

∣𝑚+ 𝑛𝜏 ∣2𝑠 , (3.12)

with 𝑠 = 3/2. The verification that Eq. (3.12) is invariant under the modular
transformations (3.9) is now straightforward.

Let us compare Eq. (3.10) with (3.12). The axion independent part of
Eq. (3.12) corresponds precisely to the perturbative terms we have found from
scattering amplitudes. These are called “constant terms”. The additional
new part is argued to contain non-perturbative contributions coming from the
D(−1)-instantons. In type IIB string theory the D(−1) brane is the electric
source for the R-R scalar 𝐶0, since it is localized in both space and time it
qualifies as an instanton. To see that the infinite sum in Eq. (3.10) is an instan-
ton effect we can expand the Bessel function when its argument approaches
infinity

𝐾1(𝑥) =

√
𝜋

2𝑥
𝑒−𝑥 [1 +𝒪(1/𝑥) + . . . ] . (3.13)
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In the weak coupling limit the Eisenstein series then takes the form

ℰ (0,0)(𝜏, 𝜏 ) =2𝜁(3)𝜏 3/22 + 4𝜁(2)𝜏
−1/2
2

+ 2𝜋
∑
𝑁 ∕=0

𝜇−2(𝑁)
√
𝑁𝑒−𝑆inst(𝜏)

[
1 +𝒪

(
1

∣𝑁 ∣𝜏2

)
+ . . .

]
,

(3.14)

where

𝑆inst(𝜏) = 2𝜋∣𝑁 ∣𝑒−𝜙 − 2𝜋𝑖𝑁𝐶0. (3.15)

The real part of Eq. (3.15) indeed coincides with the Euclidean D(−1) instan-
ton action found in Ref. [141]. The fact that there is also an imaginary part is
similar to what happens in the case of Yang-Mills instantons when the theta
angle is non-zero. Physically the instanton contributions come from one single
instanton carrying 𝑁 units of charge, since several separate instantons would
contribute to corrections with higher 𝛼′ orders. The degeneracy of an instan-
ton with charge 𝑁 is given by the instanton measure 𝜇−2(𝑁). Moreover, the
sub-leading terms in the Bessel function expansion describe the perturbative
excitations around the instanton background. Notice that the instanton ac-
tion in Eq. (3.15) is invariant under discrete displacements of the axion field
𝐶0, indicating that after adding the instanton effects only a discrete symmetry
group remains.

The fact that the string effective action must contain more than just pertur-
bative contributions was realized long before any explicit U-duality completion
was deviced. To see this let us fix the 𝛼′ level in the double expansion (3.5)
and consider the large genus limit. In Ref. [142] it was argued that in this
limit, due to the growth of the torus volume the perturbative genus expansion
of the action behaves as

lim
𝑔→∞

𝑔2𝑔𝑠 𝐿(𝑛,𝑔) ∼ 𝑔2𝑔𝑠 𝑎−2𝑔(2𝑔)!, (3.16)

with some constant 𝑎. Summing the right hand side of Eq. (3.16) over all
possible genus is divergent. However, this sum can be regularized by adding
terms that are suppressed by 𝑒−1/𝑔𝑠 . Soon after the discovery of D-brane
instantons, which have tensions scaling as 𝑇 ∼ 𝑒−1/𝑔𝑠 , one realized that this
provided a physical explanation for this regularization. Turning back to the
type IIB theory, the additional contributions indeed come from instantons.
Also, the non-holomorphic Eisenstein series ℰ𝑆𝐿(2,ℤ)

𝑠 (𝜏, 𝜏) converges only when
ℜ(𝑠) > 1, and the series in Eq. (3.10) does satisfy the convergence condition.

Having accepted the role of the instantons, we can look at the brane content
of type IIB string theory. The only possible candidate for instanton there is the
D(−1)-brane. Using T-duality in nine Euclidean dimensions it can be mapped
to a type IIA D0-particle wrapping 𝑚 times around the compact Euclidean
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time direction. The action for a threshold bound state of 𝑛 such D0-particles
can be found independently, after T-dualization it becomes [60]

𝑆(𝑚,𝑛) = 2𝜋∣𝑚𝑛∣𝑒−𝜙 − 2𝜋𝑖𝑚𝑛𝐶0. (3.17)

Comparison with Eq. (3.15) shows that these two actions are identical provided
that we set 𝑁 = 𝑚𝑛. This indicates again that the instanton contributions in
Eq. (3.10) are correct.

Based on the above arguments, the authors of Ref. [60] made the conjecture
that the exact ℛ4 correction in type IIB string theory is

𝑆
(3)∗
IIB,E = 𝛼′−4

∫
𝑑10𝑥

√−𝑔𝛼′3ℰ (0,0)(𝜏, 𝜏 )ℛ4, (3.18)

where ℰ (0,0)(𝜏, 𝜏) = ℰ𝑆𝐿(2,ℤ)
3/2 (𝜏, 𝜏). The most interesting prediction resulting

from this conjecture is that there are no perturbative contributions beyond
one-loop. The implications of such perturbative non-renormalization theorems
were first discussed in Ref. [138], and later a proof was given in Ref. [143].
Explicit two-loop computations have verified that there is indeed no two-loop
contribution.

Inspired by how well the U-duality completion worked for the ℛ4 correc-
tion, other higher order derivative corrections in IIB string theory were in-
vestigated using automorphic lifts. The general procedure is that one starts
with some perturbative contributions to a particular correction, and then one
obtains a U-duality invariant action by replacing the genus dependent coef-
ficients with appropriate 𝑆𝐿(2,ℤ) Eisenstein series. Combining compactified
M-theory scattering amplitudes with automorphic lifts, structures of 𝒟2𝑛ℛ4

corrections (𝑛 ≥ 0) have been studied [144, 145, 146, 147, 148]. Furthermore,
it was argued that 𝒟2𝑛ℛ4 does not receive perturbative corrections above 𝑛
string loops [123, 145], proof for the cases 0 < 𝑛 < 6 was given in Ref. [123]. As
a side note, recently non-renormalization theorems in type IIB string theory
have attracted attention as a gateway to investigating the ultraviolet finiteness
of perturbative 𝐷 = 4 𝒩 = 8 maximal supergravity amplitudes.

3.3 Supersymmetry

Similar to the situation in supergravity, the complete low energy effective ac-
tion can, at least in theory, be obtained by supersymmetric completion of the
computed scattering amplitudes. A systematic analysis of the full supersym-
metry is however easier said than done [149]. As the number of correction
terms grows in the action, the supersymmetry transformations also need to be
deformed

𝛿 = 𝛿0 +

∞∑
𝑛=0

𝛼′𝑛𝛿𝑛, (3.19)
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where we have suppressed the expansion in 𝑔𝑠. The invariance of the action
then requires (

𝛿0 +

∞∑
𝑛=0

𝛼′𝑛𝛿𝑛

)(
𝑆0 +

∞∑
𝑚=0

𝛼′𝑚𝑆𝑚

)
= 0 (3.20)

to be fulfilled order by order in 𝛼′. Finding the full non-linear supersymmetry
transformations is thus as difficult as finding the action itself, not to speak
about using it to find the action. Nevertheless, we shall not loose our faith in
supersymmetry entirely, since in fact the linearized version of it can be quite
useful.

The 𝑛-particle scattering amplitude in the pure spinor formalism contains
automatically all 𝑛-field terms related by linearized supersymmetry 𝛿0. The
tree-level four-particle scattering computation in Ref. [124] shows an example
of how it works. But we can do better and go beyond the 𝑛-field truncation.

In the weak coupling limit, by considering a superfield which describes
linearized fluctuations, one can relate terms with different numbers of fields
at the same 𝛼′ level. The grand example is again the 𝛼′3 corrections in the
type IIB action [150, 151, 152]. In this case the linear superfield, describing
fluctuations Δ around a flat background with a constant dilaton axion 𝜏 , is

Φ = 𝜏 +Δ(𝜃, 𝑔𝜇𝜈 , 𝜓𝜇, 𝜆, . . . ), (3.21)

where 𝜃𝐴 is the Grassmann variable, 𝑔𝜇𝜈 is the metric, 𝜓𝐴
𝜇 is the gravitino,

𝜆𝐴 is the dilatino and the ellipsis denotes the rest of the physical fields. The
superfield shall satisfy the holomorphic constraint

�̄�Φ = 0 (3.22)

and the on-shell condition

𝐷4Φ = �̄�4Φ̄, (3.23)

with 𝐷 being the linear fermionic derivative in the superspace

𝐷𝐴 =
∂

∂𝜃𝐴

+ 2𝑖(Γ𝜇𝜃)𝐴∂𝜇, �̄�𝐴 = − ∂

∂𝜃𝐴
. (3.24)

Consider now the following linearized supersymmetric on-shell action

𝑆 = ℜ
(
𝛼′−4

∫
𝑑10𝑥𝑑16𝜃

√−𝑔𝛼′3𝑒4𝜙𝐹 [Φ]

)
, (3.25)

where the chiral superfield 𝐹 [Φ] is some arbitrary function of Φ. By integrating
out the Grassmann variables in Eq. (3.25) and then identifying the coefficient
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in front of the ℛ4 term with the Eisenstein series ℰ (0,0), we finally arrive at the
expression

𝑆
(3)
IIB,E =𝛼′−4

∫
𝑑10𝑥

√−𝑔𝛼′3 {ℰ (12,−12)(𝜏, 𝜏)𝜆16 + ℰ (11,−11)(𝜏, 𝜏)𝜓𝜆15
+ ⋅ ⋅ ⋅+ ℰ (0,0)(𝜏, 𝜏)ℛ4 + . . .

}
.

(3.26)

The function ℰ (0,0) is the non-holomorphic Eisenstein series we just de-
scribed in Section 3.2. The fermionic integrals in Eq. (3.25) require the other
coefficients ℰ (𝑘,−𝑘) to satisfy

ℰ (𝑘,−𝑘) ∝ 𝑒−𝑘𝜙 ∂𝑘

∂𝜏𝑘
ℰ (0,0). (3.27)

We should emphasize that linearized supersymmetry works in the limit 𝑔𝑠 → 0,
and therefore only guarantees that Eq. (3.27) holds for the leading instanton
terms. By invoking U-duality, relation (3.27) can be extended to the entire
Eisenstein series. Supersymmetry and U-duality really work hand in hand.
The functions ℰ (𝑘,−𝑘) are called generalized non-holomorphic Eisenstein series
in mathematics, constructions of these will be discussed in Section 4.3. For
now we just need to know that under modular transformations a function
of this kind receives an 𝑆𝑂(2) phase, which precisely compensates for the
corresponding phase coming from the field combination it is multiplied with.
The entire action (3.26) is thus invariant under the modular group. Notice
that all the terms in Eq. (3.26) are by construction at the 𝛼′3 level, to verify
its correctness we will have to compute all the 𝑛-point scattering amplitudes
up to sixteen particles.

3.4 Beyond Type IIB String Theory

So far in this chapter we have mostly concentrated on higher order derivative
corrections in type IIB superstring theory. We have learned that requiring
invariance under U-duality leads to Eisenstein series based on the modular
group 𝑆𝐿(2,ℤ). However, automorphic lifts can be useful in more situations,
the most direct generalization is toroidal compactification of M-theory to di-
mensions lower than ten [54, 153, 53, 154, 155, 156, 157, 87]. In Section 1.4 we
explained how the U-duality group 𝐸𝑛(𝑛)(ℤ) grows when compactifying on 𝑛-
torii with larger and larger dimensions. Similar to the IIB case, the low energy
effective action in these cases also exhibit a double expansion in Regge slope
and string coupling. Part of the correction terms can be found by dimension-
ally reducing the corresponding terms in ten dimensions, in the same way as
how the one-loop ℛ4 term in IIB is related to the one-loop four-graviton term
in M-theory. Due to the compactification procedure, the curvature tensor itself
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might receive quantum corrections. Also, we may find some contributions by
studying the supersymmetry properties. The exact effective action can then
be obtained by requiring invariance under 𝐸𝑛(𝑛)(ℤ) order by order in 𝛼′. It
is the Eisenstein series based on 𝐸𝑛(𝑛)(ℤ) which encodes the information on
the expansion in 𝑔𝑠. Most often the Eisenstein series is also transforming as
some representation of the maximal compact subgroup of 𝐸𝑛(𝑛)(ℝ), which is
the generalized form of the ℰ (𝑘,−𝑘) function.

Higher order derivative corrections have been discussed in heterotic string
theory as well, where 𝛼′ corrections occur already at the four-derivative ℛ2

level. The S-duality between heterotic string on 𝑇 6 and type IIA on K3×𝑇 2

turns out to be a handy tool, see for instance Refs. [158, 159, 57]. Possibilities
for automorphic lifts of the dimensionally reduced ℛ2, ℛ3 and ℛ4 corrections
are discussed in Paper III. The toroidal reduction of the ℛ2 term has been
carried out more carefully in Paper IV, which also contains a symmetry
analysis of this term.

In fact we can discuss subsectors of M-theory in general. If the classical
moduli space of such a theory describes a coset space𝐺/𝒦(𝐺), with 𝒦(𝐺) being
the maximal compact subgroup of 𝐺, the quantum corrections of the moduli
space should be written in terms of Eisenstein series based on 𝐺(ℤ). One
example that has been explicitly worked out is the Einstein-Liouville gravity
compactified from four to three spacetime dimensions [160]. Another example
is the scalar sector of type IIA string theory compactified on a rigid Calabi-
Yau threefold, where the moduli space receives quantum corrections already at
two-derivative level. It is argued in Paper V that the corrections are given by
an invariant non-holomorphic Eisenstein series based on the Picard modular
group 𝑆𝑈(2, 1;ℤ[𝑖]).

Having motivated the importance of the Eisenstein series or automorphic
forms in string theory, Chapter 4 will be dedicated to discussions of these
from a mathematical point of view. The heuristic structure is the same as
the 𝑆𝐿(2,ℤ) Eisenstein series, with perturbative and non-perturbative contri-
butions. However, for a larger symmetry group more types of instantons will
contribute and thus makes the story far more complicated.
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4
Automorphic Forms

Believing U-duality to be a true symmetry of M-theory leads naturally to
mathematical functions called automorphic forms. In the low energy effective
theory, all the quantum corrections are encoded into these functions. Studying
the automorphic forms will thus provide us a powerful tool towards understand-
ing the quantum nature of string theory.

The rich configuration of the automorphic forms has made this area of
mathematics a meeting ground for complex analysis, number theory and alge-
braic geometry. It is of course a mission signed impossible trying to expose the
full glory of such an active research field in a few pages. The intention here is
to give the basic ideas and highlight a few difficulties. Most of our understand-
ing of the automorphic forms comes from a special case called modular forms,
going through examples of these carefully will yield indispensable intuition for
the general cases.

4.1 Modular Forms

Starting with the complex upper half-plane 𝐻 = {𝜏 ∈ ℂ ℑ(𝜏) > 0}, modular
forms are analytic functions on this space endowed with certain transformation
properties under the discrete group 𝑆𝐿(2,ℤ)/{±1}. The conventions here
will mainly follow Refs. [161] and [162], which contains a more systematic
introduction to the subject for the interested reader.
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4.1.1 The Modular Group

On the complex upper half-plane 𝐻 there exists a natural conformal transfor-
mation

𝜏 �−→ 𝛾 ⋅ 𝜏 =
𝑎𝜏 + 𝑏

𝑐𝜏 + 𝑑
, (4.1)

with real parameters {𝑎, 𝑏, 𝑐, 𝑑} satisfying 𝑎𝑑− 𝑏𝑐 = 1. Letting the parameters
constitute a 2×2 matrix, it is nothing but an element of the real form 𝑆𝐿(2,ℝ):

𝑆𝐿(2,ℝ) =

{
𝛾 =

(
𝑎 𝑏
𝑐 𝑑

)
𝑎𝑑− 𝑏𝑐 = 1; 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ

}
. (4.2)

Since the element −1 =

(−1 0
0 −1

)
leaves 𝐻 invariant, only the subgroup

𝑃𝑆𝐿(2,ℝ) = 𝑆𝐿(2,ℝ)/{±1} acts faithfully. Choosing the parameters integer
valued, one defines the modular group as 𝑆𝐿(2,ℤ)/{±1}. From now on the
notation 𝑆𝐿(2,ℤ) will be used when referring to the modular group, the same
will also apply to the more general cases later on. The generators of the Lie
algebra 𝐴1 are taken to be

𝐸
.
=

(
0 1
0 0

)
; 𝐻

.
=

(
1 0
0 −1

)
; 𝐹

.
=

(
0 0
1 0

)
. (4.3)

It is now possible to show that the entire modular group can be generated
by two elements

𝑆 =

(
0 −1
1 0

)
and 𝑇 =

(
1 1
0 1

)
, (4.4)

obeying
𝑆2 = 1 and (𝑆𝑇 )3 = 1. (4.5)

In terms of transformations on the upper half-plane they translate into

𝑆 ⋅ 𝜏 = −1

𝜏
and 𝑇 ⋅ 𝜏 = 𝜏 + 1. (4.6)

Defining
𝜏 = 𝜒+ 𝑖𝑒−𝜙, (4.7)

where 𝜙 is the dilaton and 𝜒 is the axion. The transformation 𝑆 corresponds
precisely to the S-duality in type IIB string theory. Using the modular group
all points outside of 𝐷 = {𝜏 ∈ 𝐻 ∣𝜏 ∣ ≥ 1; ∣ℜ(𝜏)∣ ≤ 1

2
} can be mapped into 𝐷.

The region 𝐷 is called the fundamental domain, and contains three singular
points: 𝑖, ∞ and 𝑒𝑖𝜋/3.

The transformation in Eq. (4.1) provides an identification of 𝐻 with the
coset space 𝑆𝐿(2,ℝ)/𝑆𝑂(2), where the 𝑆𝑂(2) appearing in the denominator
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is the maximal compact subgroup of 𝑆𝐿(2,ℝ). The most straightforward way
to see this is by computing the metric of 𝐻

𝑔𝑖�̄� = ∂𝑖∂�̄�𝐾 (4.8)

using the following Kähler potential

𝐾(𝜏) = −4 ln 𝜏 − 𝜏

2𝑖
. (4.9)

This leads to
𝑑𝑠2 = 𝑔𝜏𝜏𝑑𝜏𝑑𝜏 = 𝑑𝜙2 + 𝑒2𝜙𝑑𝜒2, (4.10)

which can be written in terms of the 𝑆𝐿(2,ℝ)/𝑆𝑂(2) coset representative

𝒱 = 𝑒
𝜙
2

𝐻𝑒𝜒𝐸 .
=

(
𝑒

𝜙
2 𝑒

𝜙
2𝜒

0 𝑒−
𝜙
2

)
(4.11)

following the construction described in Subsec. 2.1.3.
Having the metric we can also compute the Laplace-Beltrami operator

Δ =
1√∣𝑔∣∂𝑖(

√
∣𝑔∣𝑔𝑖�̄�∂�̄�) = ℑ(𝜏)2∂𝜏∂𝜏 . (4.12)

The kernel of the Laplacian can be easily found to be

ℱ(𝜏) = ℑ(𝜏), (4.13)

which will be referred to as the height function in the following. The fact
that restricting this function to be strictly positive coincides with the defining
equation of the half-plane 𝐻 is not just a coincidence, in other words, the
Kähler potential given in Eq. (4.9) is designed to yield the correct height
function. We can now write 𝐾(𝜏) = −4 lnℱ(𝜏). Under the 𝑆𝐿(2,ℝ) group
action the height function transforms as

ℱ(𝛾 ⋅ 𝜏) = ℱ(𝜏)
∣𝑐𝜏 + 𝑑∣2 , (4.14)

showing that 𝐻 is stable under the 𝑆𝐿(2,ℝ) action.

4.1.2 Definition of Modular Forms

On the complex half-plane 𝐻 we have just described, any meromorphic func-
tion satisfying the relation

𝑓(𝛾 ⋅ 𝜏) = (𝑐𝜏 + 𝑑)𝑘𝑓(𝜏), ∀𝛾 =

(
𝑎 𝑏
𝑐 𝑑

)
∈ 𝑆𝐿(2,ℤ) (4.15)
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is called a weakly modular form of weight 𝑘. The factor of automorphy

𝜇(𝛾, 𝜏) = 𝑐𝜏 + 𝑑 (4.16)

can be obtained by differentiation

𝑑(𝛾 ⋅ 𝜏)
𝑑𝜏

=
1

𝜇(𝛾, 𝜏)2
, (4.17)

and satisfies the cocycle identity

𝜇(𝛾𝛾′, 𝜏) = 𝜇(𝛾, 𝛾′ ⋅ 𝜏)𝜇(𝛾′, 𝜏). (4.18)

The relation (4.15) can then be written as

𝑓(𝛾 ⋅ 𝜏)(𝑑(𝛾 ⋅ 𝜏)) 𝑘
2 = 𝑓(𝜏)(𝑑𝜏)

𝑘
2 , (4.19)

i.e., the ”differential form” 𝑓(𝜏)(𝑑𝜏)
𝑘
2 is invariant under the modular group.

The fact that a weakly modular form is invariant under the element 𝑇

𝑓(𝑇 ⋅ 𝜏) = 𝑓(𝜏 + 1) = 𝑓(𝜏) (4.20)

indicates that it can be expanded as a Laurent expansion

𝑓(𝜏) =

∞∑
𝑛=−∞

𝑎𝑛𝑒
2𝜋𝑖𝜏𝑛. (4.21)

If 𝑓(𝜏) extends to a meromorphic function at 𝜏 = 𝑖∞, then for 𝑛 < 𝑚 the
coefficients 𝑎𝑛 are all vanishing. The number 𝑚 is the order of the pole of 𝑓(𝜏)
at infinity. If 𝑚 ≥ 0 the function 𝑓(𝜏) is holomorphic. A weakly modular form
is called modular if it is meromorphic at infinity.

Just to summarize, a modular form is an analytic function on the complex
upper half-plane, which transforms according to Eq. (4.15) under the modular
group and is meromorphic everywhere (including infinity). When the weight
𝑘 is zero, it is then called a modular function. Moreover, if a modular form
is holomorphic everywhere and vanishes at infinity, it is called a cusp form.
Another way to understand the modular forms is to view them as the invariants
of elliptic curves. To each 𝜏 ∈ 𝐻 it is possible to assign an elliptic curve 𝐶(𝜏),
in other words the quotient of ℂ by the lattice ℤ+ℤ𝜏 , and the elliptic curves
corresponding to 𝜏 and 𝛾 ⋅ 𝜏 are defined to be isomorphic.

So far we have only described the modular forms based on the modular
group 𝑆𝐿(2,ℤ), in general modular forms can be constructed for any discrete
subgroup Γ of 𝑆𝐿(2,ℝ), as long as Γ∖𝐻 is compact or the complement of
finitely many points on a compact Riemann surface. For illustrative purpose
we will continue to use the modular group as the symmetry group for the rest
of this section.

68



Examples

It is now time to give some examples of modular forms.

i. The most simple example that can be constructed is the holomorphic
Eisenstein series of weight 2𝑘:

𝐺2𝑘(𝜏) =
∑
𝑚,𝑛

′ 1

(𝑚+ 𝑛𝜏)2𝑘
, (4.22)

which satisfies ∂𝜏𝐺2𝑘(𝜏) = 0. This series is convergent only for integers
𝑘 ≥ 2, and it is holomorphic everywhere. The Fourier expansion of the
holomorphic Eisenstein series can be written as

𝐺2𝑘(𝜏) = 2𝜁(2𝑘)

(
1 +

2

𝜁(1− 2𝑘)

∞∑
𝑛=1

𝑛2𝑘−1𝑒2𝜋𝑖𝜏𝑛

1− 𝑒2𝜋𝑖𝜏𝑛

)
, (4.23)

where 𝜁(𝑠) =
∑∞

𝑛=1 𝑛
−𝑠 is the Riemann zeta function.

ii. The second example is the Jacobi theta function

𝜃(𝜏) =
∑
𝑚∈ℤ

𝑒𝜋𝑖𝑚2𝜏 . (4.24)

This function is a modular form of weight 1/2 for the congruence sub-
group

Γ0(2) =

{(
𝑎 𝑏
𝑐 𝑑

)
∈ 𝑆𝐿(2,ℤ) 𝑐 ≡ 0 mod 2

}
(4.25)

of the modular group.

iii. The Jacobi theta function can be related to the Dedekind eta function

𝜂(𝜏) = 𝑒
2𝜋𝑖𝜏
24

∞∏
𝑛=1

(1− 𝑒2𝜋𝑖𝜏𝑛) (4.26)

via

𝜃(𝜏) =
𝜂( 𝜏+1

2
)2

𝜂(𝜏 + 1)
. (4.27)

The combination1

Δ(𝜏) = (2𝜋)12𝜂(𝜏)24 (4.28)

turns out to be a cusp form of weight 12.

1This function is called the modular discriminant of the Weierstrass elliptic function, and
the number 24 appearing in the definition can be related to the Leech lattice.
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iv. The last example given here is the non-holomorphic Eisenstein series

ℰ𝑆𝐿(2,ℤ)
𝑠 (𝜏) =

′∑
(𝑚,𝑛)∈ℤ2

( ℑ(𝜏)
∣𝑚+ 𝑛𝜏 ∣2

)𝑠

(4.29)

of order 𝑠, which is invariant under modular transformations. For conver-
gence the complex order must satisfy ℜ(𝑠) > 1, but it can be analytically
continued to the whole complex plane. The Eisenstein series will then
be meromorphic with a unique pole at 𝑠 = 1 (for all 𝜏 in the upper half-
plane). The non-holomorphic Eisenstein series is itself an eigenfunction
of the Laplace-Beltrami operator defined in Eq. (4.12) with eigenvalues
𝑠(𝑠− 1)

Δℰ𝑆𝐿(2,ℤ)
𝑠 (𝜏) = 𝑠(𝑠− 1)ℰ𝑆𝐿(2,ℤ)

𝑠 (𝜏). (4.30)

A function which is invariant under modular transformations and at the
same time is an eigenfunction of the Laplacian is called a Maass wave
form.

The celebrated complete, non-perturbative, four-graviton scattering
amplitude at low energies is encoded in a non-holomorphic Eisenstein
series with order 𝑠 = 3/2, see Ref. [60], and understanding this kind of
modular forms is thus of great interest for theoretical physicists. For the
rest of this chapter we will use this series as the main example.

4.2 Towards Automorphic Forms

Having worked through the modular forms, we are now ready to introduce the
automorphic forms. For a deeper treatment of the subject see for instance
Ref. [163].

4.2.1 Definition of Automorphic Forms

Generalizing the modular group to a discrete subgroup Γ of an arbitrary Lie
group 𝐺, automorphic forms are the generalizations of the modular forms,
living on the coset space 𝐺/𝒦(𝐺). As usual, the notation 𝒦(𝐺) refers to the
maximal compact subgroup of 𝐺. Thus, a function 𝑓 on 𝒵 ≡ 𝐺/𝒦(𝐺) is
defined as an automorphic form if it

i. transforms under the discrete group 𝐺(ℤ) ⊂ 𝐺 according to a given
factor of automorphy 𝜇

𝑓(𝛾 ⋅ 𝑥) = 𝜇𝛾(𝑥)𝑓(𝑥), 𝛾 ∈ 𝐺(ℤ) and 𝑥 ∈ 𝒵; (4.31)

ii. satisfies certain meromorphic conditions at infinity; and
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iii. is an eigenfunction of all the Casimir operators of 𝐺.

The moduli space, i.e., the space of parameters of the automorphic form is
given by the double coset

ℳ𝐺 = 𝐺(ℤ)∖𝐺/𝒦(𝐺). (4.32)

When an automorphic form is invariant under 𝐺(ℤ) transformations we call
it an automorphic function. The modular form is the special case when 𝐺 =
𝑆𝐿(2,ℝ).

4.2.2 Constructing Automorphic Forms

Having defined what an automorphic form is, it is time to explicitly con-
struct one. Since the non-holomorphic Eisenstein series ℰ𝐺(ℤ)

𝑠 (𝒵), based on
the principal series representations of 𝐺, are of our main interest, the differ-
ent constructions described here will be specialized for them. However, the
construction based on spherical vectors can be used generally for automorphic
forms.

Lattice Construction

The fact that the parameter space of an automorphic form is a symmetric
space, makes it possible to construct the non-holomorphic Eisenstein series
using a representative of the coset. Let �⃗� be a vector of the lattice which
is left invariant by 𝐺(ℤ), and let 𝒱 be a representative of the coset 𝐺/𝒦(𝐺)
transforming according to

𝒱 �−→ 𝑘𝒱𝑔, 𝑔 ∈ 𝐺 and 𝑘 ∈ 𝒦(𝐺). (4.33)

This leads to

𝒱�⃗� �−→ 𝑘𝒱�⃗�′ (4.34)

under a discrete 𝐺(ℤ) transformation. We can thus form the non-holomorphic
Eisenstein series as

ℰ𝐺(ℤ)
𝑠 (𝒵) =

∑
�⃗�

𝛿(�⃗�† ∧ �⃗�)
[
(𝒱�⃗�)† ⋅ 𝒱�⃗�]−𝑠

, (4.35)

which is by construction invariant under 𝐺(ℤ). Notice that in order to ensure
invariance 𝑘†𝑘 = 1. This function is non-holomorphic due to the Hermitian
conjugate appearing. The factor 𝛿(�⃗�† ∧ �⃗�) is a constraint to ensure that the
sum runs over the actual lattice which is invariant under 𝐺(ℤ), in case �⃗� are
defined on a larger lattice with simpler structure. When there is no issue of
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embedding the lattice into a larger but simpler one, then the constraint is
simply empty.

For the modular group a representative of 𝑆𝐿(2,ℝ)/𝑆𝑂(2) was given in
Eq. (4.11). Setting �⃗� = (𝑚,𝑛) ∈ ℤ2 one finds

ℰ𝑆𝐿(2,ℤ)
𝑠 (𝜙, 𝜒) =

′∑
(𝑚,𝑛)∈ℤ2

[
𝑒𝜙{(𝑚+ 𝑛𝜒)2 + 𝑛2𝑒−2𝜙}]−𝑠

, (4.36)

which is precisely the Eisenstein series introduced in Eq. (4.29). In this case
�⃗� can be viewed as the vector representation of 𝑆𝐿(2,ℝ) restricted to integer
values, thus no constraint needs to be posed on the lattice.

In Paper V another example is given, which deals with the group 𝑆𝑈(2, 1).
There, the lattice 𝑆𝑈(2, 1;ℤ[𝑖]) was embedded inside 𝑆𝐿(3;ℤ[𝑖]) to make it
more manageable, a constraint on the lattice vector is the price one has to
pay.

Poincaré Series

The lattice construction described above is entirely based on the group the-
oretical properties of the moduli space, however, we began this chapter by
introducing modular forms based on their complex analytic properties. The
fractional transformation in Eq. (4.1) is the bridge between these two points
of view. More generally, all the Riemannian symmetric spaces 𝐺/𝒦(𝐺) have
been classified by E. Cartan almost a century ago, the complete list can be
found for instance in Ref. [164]. In those cases where a geometric interpreta-
tion as a complex manifold exists for the symmetric space, there is a nice way
to construct non-holomorphic Eisenstein series in terms of Poincaré series.

The key here is the kernel of the Laplace-Beltrami operator, which we
named the height function ℱ(𝒵). This very function is also used to define
our complex manifold. Moreover, it is invariant under the nilpotent upper
triangular subgroup 𝑁(ℤ), which is generated by the positive step operators
in the Lie algebra of 𝐺. A Poincaré series for the group 𝐺(ℤ) can then be
constructed as

𝒫𝐺
𝑠 (𝒵) =

∑
𝛾∈𝑁(ℤ)∖𝐺(ℤ)

ℱ(𝛾 ⋅ 𝒵)𝑠, (4.37)

where the sum goes over the orbit 𝛾 ∈ 𝑁(ℤ)∖𝐺(ℤ). Once the transformation
rules of the moduli space variables under the group 𝐺 have been established,
the generators in the Lie algebra of 𝐺 can then be identified with derivative op-
erations on the corresponding function space. The quadratic Casimir operator
will simply coincide with the Laplacian.
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Turning to our favorite example 𝑆𝐿(2,ℝ), the transformation of the height
function there was according to Eq. (4.14)

ℱ(𝛾 ⋅ 𝜏) = ℱ(𝜏)
∣𝑐𝜏 + 𝑑∣2 , (4.38)

where ℱ(𝜏) = ℑ(𝜏). The nilpotent upper triangular subgroup in this case is
generated by the element 𝑇 , which correctly leaves ℱ(𝜏) invariant. Setting
𝑐 = 𝑛′ and 𝑑 = 𝑚′, the Poincaré series then takes the form

𝒫𝑆𝐿(2,ℤ)
𝑠 (𝜏) =

′∑
(𝑚′,𝑛′)∈ℤ2

(𝑚′,𝑛′)=1

( ℑ(𝜏)
∣𝑚′ + 𝑛′𝜏 ∣2

)𝑠

. (4.39)

Defining (𝑚,𝑛) = 𝛽(𝑚′, 𝑛′) with 𝛽 = gcd(𝑚,𝑛) ∈ ℤ, we obtain at last

ℰ𝑆𝐿(2,ℤ)
𝑠 (𝜏) = 2𝜁(2𝑠)𝒫𝑆𝐿(2,ℤ)

𝑠 (𝜏), (4.40)

where 𝜁(2𝑠) is the Riemann zeta function

𝜁(2𝑠) =
∞∑

𝛽=1

1

𝛽2𝑠
. (4.41)

The fractional transformation in Eq. (4.1) together with Eq. (4.3) lead to the
following identifications

𝐸
.
= ∂𝜒; 𝐹

.
= (𝑦2 − 𝜒2)∂𝜒 − 2𝜒𝑦∂𝑦; 𝐻

.
= 2(𝜒∂𝜒 + 𝑦∂𝑦) (4.42)

for the Lie algebra generators of 𝑆𝐿(2,ℝ), with 𝑦 ≡ 𝑒−𝜙. It is then apparent
that the quadratic Casimir operator

𝐶 =
1

2
𝐻2 + 𝐸𝐹 + 𝐹𝐸

.
= 2𝑦2(∂2𝜒 + ∂2𝑦) (4.43)

indeed is the same as the Laplacian

𝐶
.
= 2Δ (4.44)

given in Eq. (4.12). Moreover, the non-holomorphic Eisenstein series can be
verified explicitly to be an eigenfunction of the Casimir operator.

The Eisenstein series are constructed using the principal continuous series
of 𝐺. Depending on properties of the representation sometimes more than one
Casimir operator have to be taken into consideration. In the case of 𝑆𝐿(2,ℝ)
only the quadratic Casimir operator needs to be computed. However, already
for 𝑆𝐿(3,ℝ) the eigenvalue equations imposed by the quadratic and the cubic
Casimirs have to be satisfied independently, thus leading to two order numbers,
see Ref. [165].
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Spherical Vector

The last method to be described is based on the mathematical objects called
spherical vectors. This way of constructing automorphic forms is very general
and has been brought to attention in the physics community in a series of
papers [166, 167, 157, 168, 169, 170, 165].

The basic idea is that on a symmetric space 𝒵 = 𝐺/𝒦(𝐺), any automorphic
function can be cast into the following form

Ψ(𝑔) =< 𝑓ℤ, 𝜌(𝑔
−1) ⋅ 𝑓𝒦 >, 𝑔 ∈ 𝐺. (4.45)

The three constituents of the above formula are:

i. a linear representation 𝜌 of 𝐺 acting on a Hilbert space ℋ of square
integrable functions;

ii. a 𝒦(𝐺)-invariant function 𝑓𝒦 ∈ ℋ called the spherical vector; and

iii. a 𝐺(ℤ)-invariant distribution 𝑓ℤ ∈ ℋ★ living in the dual space of ℋ.

The inner product <,> is the natural pairing between ℋ and ℋ★.
The Iwasawa decomposition

𝐺 = 𝐾𝐴𝑁 (4.46)

of 𝐺 makes it possible to write any group element as 𝑔 = 𝑘𝒱, with 𝒱 being a
representative of 𝐺/𝒦(𝐺). Since the spherical vector is invariant under 𝒦(𝐺),
Eq. (4.45) becomes

Ψ(𝒱) =< 𝑓ℤ, 𝜌(𝒱−1) ⋅ 𝑓𝒦 > . (4.47)

Using the transformation rule in Eq. (4.33) together with the defining prop-
erties of 𝑓𝒦 and 𝑓ℤ, it is now manifest that Ψ(𝒱) is invariant under 𝐺(ℤ).
However, the real challenge boils down to explicitly constructing 𝑓𝒦 and 𝑓ℤ.
Once the real spherical vector 𝑓𝒦 has been found, using 𝑝-adic number theory
the distribution 𝑓ℤ can be written in terms of a 𝑝-adic counterpart of 𝑓𝒦. The
automorphic function then takes the form

Ψ(𝒱) =
∑
𝑥∈ℚ𝑛

[ ∏
𝑝<∞

𝑓𝑝(𝑥)
]
𝜌(𝒱−1) ⋅ 𝑓𝒦(𝑥), (4.48)

where 𝑥 is a vector of rational numbers in ℚ𝑛, and 𝑝 denotes all the prime
numbers. A very brief summery of the 𝑝-adic numbers is given in Appendix A,
containing only the necessary properties needed for our purpose. For a proper
introduction to the field ℚ𝑝 of 𝑝-adic numbers, Refs. [171] and [172] are nice
starting points.
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So far this construction has been quite formal, it will become more clear
once we apply it to the 𝑆𝐿(2,ℝ) example. For the principal continuous series
of a group 𝐺 there is a standard way to construct the real spherical vector
𝑓𝒦, by viewing it as a square-integrable function on the coset space 𝑃∖𝐺. 𝑃
here denotes the parabolic subgroup of 𝐺, and is generated by the negative
step operators together with the Cartan generators. The isomorphism between
𝑃∖𝐺 and the nilpotent subgroup 𝑁 makes it possible to choose

𝑛 = 𝑒𝑥𝐸 =

(
1 𝑥
0 1

)
∈ 𝑁 (4.49)

as a representative also for 𝑃∖𝐺. Under the group action of 𝐺 a compensating
𝑃 action from left is needed to ensure the upper triangular form of 𝑛

𝑛 �−→ 𝑝𝑛𝑔, 𝑔 ∈ 𝐺 and 𝑝 ∈ 𝑃. (4.50)

This transformation law naturally induces a linear representation 𝜌(𝑔) acting
on any function of the parameter 𝑥. The spherical vector will be a function
satisfying

𝜌(𝑔) ⋅ 𝑓𝒦(𝑥) = 𝜒𝑠(𝑝)𝑓𝒦(𝑥′), 𝑔 ∈ 𝐺 and 𝑝 ∈ 𝑃, (4.51)

where 𝜒𝑠(𝑝) is an infinitesimal character chosen so that

𝜌(𝑘) ⋅ 𝑓𝒦(𝑥) = 𝑓𝒦(𝑥), 𝑘 ∈ 𝒦(𝐺). (4.52)

Explicitly computing the right hand side of Eq. (4.50) it is easy to see that the
spherical vector we seek is uniquely given by the Euclidean norm of the first
row in 𝑛

𝑓𝒦(𝑥) = (1 + 𝑥2)−𝑠. (4.53)

Remembering 𝒱 from Eq. (4.11) we then obtain

𝜌(𝒱−1) ⋅ 𝑓𝒦(𝑥) =
( ℑ(𝜏)
∣ − 𝑥+ 𝜏 ∣2

)𝑠

. (4.54)

The next step is to find the 𝑆𝐿(2,ℤ)-invariant distribution. The general
recipe is to first replace the Euclidean norm in 𝑓𝒦 with the 𝑝-adic one

𝑓𝑝(𝑥) = ∣1, 𝑥∣−2𝑠𝑝 = max(1, ∣𝑥∣𝑝)−2𝑠. (4.55)

Letting 𝑥 = 𝑚′
𝑛′ with 𝑚′ and 𝑛′ being co-prime integers, one can then show

that

𝑓ℤ =
∏
𝑝<∞

𝑓𝑝(𝑥) =
∏
𝑝<∞

max

(
1,

∣∣∣𝑚′

𝑛′

∣∣∣
𝑝

)−2𝑠
= 𝑛′−2𝑠. (4.56)
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Details concerning the 𝑝-adic norm can be found in Appendix A. Putting all
the puzzles together and renaming 𝑚′ → −𝑚′, we find at last

Ψ𝑆𝐿(2,ℤ)
𝑠 (𝜏) =

∑
(𝑚′,𝑛′)=1

𝑛′ ∕=0

( ℑ(𝜏)
∣𝑚′ + 𝑛′𝜏 ∣2

)𝑠

. (4.57)

This is almost the same function as we found using Poincaré series, but with
one caveat. In order to make the redefinition 𝑥 = 𝑚′

𝑛′ well-defined, the number
𝑛′ is not allowed to have zero value. The result is one missing constant term
in the Fourier expansion, which corresponds to the value of the automorphic
function at the cusp 𝜏 → 𝑖∞. The problem may be cured by extending the
parameter space to a reducible one with

𝑓𝒦(𝑥, 𝑦) = (𝑥2 + 𝑦2)−𝑠 (4.58)

and

𝑓𝑝(𝑥, 𝑦) = max(∣𝑥∣𝑝, ∣𝑦∣𝑝)−2𝑠. (4.59)

The group action works then according to

𝜌(𝑔) ⋅ 𝑓(𝑥) = 𝑓(𝑎𝑥+ 𝑏𝑦, 𝑐𝑥+ 𝑑𝑦), 𝑔 =

(
𝑎 𝑏
𝑐 𝑑

)
∈ 𝑆𝐿(2,ℝ). (4.60)

We have used the Eisenstein series to illustrate the spherical vector con-
struction, but it is a much more general and powerful technique. By choosing
different unitary representations of 𝐺, different automorphic forms for the
same group can be constructed. The minimal representations, associated to
the nilpotent orbits of smallest dimension, of the exceptional Lie groups are
of special interest in M-theory, as their corresponding automorphic forms are
believed to govern the partition function of supermembrane zero-modes [156].

4.2.3 Fourier Expansion

Having constructed the automorphic forms, they are however not cast in the
form that naturally appears in physics. As explained in Section 3.2 the au-
tomorphic forms found in string theory are expressed as a Fourier expansion.
The reason behind the existence of a Fourier expansion for the modular forms
is its invariance under the nilpotent upper triangular subgroup, in fact one ex-
ample has already been given when we introduced the holomorphic Eisenstein
series. In the general case, axionic type of symmetries in 𝐺 will guarantee the
Fourier expansion. In this section we will describe the standard procedure in
obtaining this expansion for the non-holomorphic Eisenstein series.
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The Modular Function Revisited

Before jumping onto the most general Eisenstein series, we will again illustrate
the main concepts and ideas using the modular function

ℰ𝑆𝐿(2,ℤ)
𝑠 (𝜏) =

′∑
(𝑚,𝑛)∈ℤ2

𝜏 𝑠
2

∣𝑚+ 𝑛𝜏 ∣2𝑠 , (4.61)

with 𝜏 = 𝜒 + 𝑖𝑒−𝜙 = 𝜏1 + 𝑖𝜏2. The convention used here follows Ref. [173],
where more details in the computation can be found.

The first constant term is obtained by computing the value of ℰ𝑆𝐿(2,ℤ)
𝑠 (𝜏)

at the cusp 𝜏 = 𝑖∞, or equivalently by setting 𝑛 = 0

ℰ𝑆𝐿(2,ℤ)
𝑠 (𝜏) = 2𝜁(2𝑠)𝜏 𝑠

2 +
∑
𝑚∈ℤ

∑
𝑛 ∕=0

𝜏 𝑠
2

∣𝑚+ 𝑛𝜏 ∣2𝑠 . (4.62)

Recall that Riemann zeta function is defined as 𝜁(𝑘) =
∑∞

𝑛=1 𝑛
−𝑘. The next

step is to make use of the integral representation

1

∣𝑚+ 𝑛𝜏 ∣2𝑠 =
𝜋𝑠

Γ(𝑠)

∫ ∞

0

𝑑𝑡

𝑡𝑠+1
𝑒−

𝜋
𝑡
∣𝑚+𝑛𝜏 ∣2 (4.63)

for the summand. Since the summation parameter 𝑚 is unrestricted we can
Poisson resum as follows∑

𝑚∈ℤ
𝑒−𝜋𝑥(𝑚+𝑎)2+2𝜋𝑖𝑚𝑏 =

1√
𝑥

∑
�̃�∈ℤ

𝑒−
𝜋
𝑥
(�̃�+𝑏)2−2𝜋𝑖(�̃�+𝑏)𝑎, (4.64)

with 𝑥 = 𝑡−1, 𝑎 = 𝑛𝜏1 and 𝑏 = 0. The second constant term can now be
extracted by setting �̃� = 0

ℰ𝑆𝐿(2,ℤ)
𝑠 (𝜏) = 2𝜁(2𝑠)𝜏 𝑠

2 + 2
√
𝜋
Γ(𝑠− 1

2
)

Γ(𝑠)
𝜁(2𝑠− 1)𝜏 1−𝑠

2

+
𝜋𝑠𝜏 𝑠

2

Γ(𝑠)

∑
�̃�∕=0

∑
𝑛 ∕=0

𝑒−2𝜋𝑖�̃�𝑛𝜏1

∫ ∞

0

𝑑𝑡

𝑡𝑠+
1
2

𝑒−𝜋𝑡�̃�2−𝜋
𝑡
𝑛2𝜏2

2 .
(4.65)

What remains is to perform the integration∫ ∞

0

𝑑𝑡

𝑡𝑠+
1
2

𝑒−𝜋𝑡�̃�2−𝜋
𝑡
𝑛2𝜏2

2 = 2
∣∣∣�̃�
𝑛

∣∣∣𝑠− 1
2
𝜏

1
2
−𝑠

2 𝐾𝑠− 1
2
(2𝜋∣�̃�𝑛∣𝜏2) (4.66)

of Bessel type and then rename one of the variables as 𝑁 ≡ −�̃�𝑛. When the
dust has settled we find at last

ℰ𝑆𝐿(2,ℤ)
𝑠 (𝜏) = 2𝜁(2𝑠)𝜏 𝑠

2 + 2
√
𝜋
Γ(𝑠− 1

2
)

Γ(𝑠)
𝜁(2𝑠− 1)𝜏 1−𝑠

2

+
2𝜋𝑠√𝜏2
Γ(𝑠)

∑
𝑁 ∕=0

𝜇1−2𝑠(𝑁)𝑁 𝑠− 1
2𝐾𝑠− 1

2
(2𝜋∣𝑁 ∣𝜏2)𝑒2𝜋𝑖𝑁𝜏1 ,

(4.67)

77



with
𝜇1−2𝑠(𝑁) :=

∑
𝑛∣𝑁

𝑛1−2𝑠 (4.68)

being the so called instanton measure. The fact that the sum runs over divisors
of 𝑁 in the instanton measure is due to the change of variable in the last step.
Recalling Section 3.2 this is precisely the kind of function appearing in the
four graviton scattering amplitude.

A few words concerning the structure of Eq. (4.67) are now in order. One
of the main properties of the non-holomorphic Eisenstein series is that it is
an eigenfunction of the Laplacian, see Eq. (4.30). Acting Eq. (4.67) with the
Laplace-Beltrami operator shows not only the entire sum satisfies the eigen-
value equation, the three constituents are in fact eigenfunctions separately. We
can now start from a general Ansatz

ℰ𝑆𝐿(2,ℤ)
𝑠 (𝜏) = ℭ0(𝜏2) +

∑
𝑛 ∕=0

ℭ𝑛(𝜏2)𝑒
2𝜋𝑖𝑛𝜏1 , (4.69)

where the constant terms ℭ0(𝜏2) by definition only depend on the dilaton. By
solving the Laplace equation

Δ𝑓𝑠(𝜏) = 𝑠(𝑠− 1)𝑓𝑠(𝜏) (4.70)

separately for ℭ0(𝜏2) and the infinite sum we will already arrive to the result

ℰ𝑆𝐿(2,ℤ)
𝑠 (𝜏) = 𝐴(𝑠)𝜏 𝑠

2 +𝐵(𝑠)𝜏 1−𝑠
2 +

√
𝜏2

∑
𝑛 ∕=0

𝐶(𝑛)𝐾𝑠− 1
2
(2𝜋∣𝑛∣𝜏2)𝑒2𝜋𝑖𝑛𝜏1 . (4.71)

However, to find the coefficients 𝐴(𝑠), 𝐵(𝑠) and 𝐶(𝑛) the Poisson resummation
has to be carried out explicitly, after all, we have not used the 𝑆𝐿(2,ℤ)-

invariance of ℰ𝑆𝐿(2,ℤ)
𝑠 (𝜏) yet.

As can be seen in Eq. (4.67), there are two constant terms

ℭ0(𝜏2) = 2𝜁(2𝑠)

[
𝜏 𝑠
2 +

√
𝜋
Γ(𝑠− 1

2
)𝜁(2𝑠− 1)

Γ(𝑠)𝜁(2𝑠)
𝜏 1−𝑠
2

]
. (4.72)

Physically they correspond to the tree level and one-loop amplitudes, respec-
tively, in the four graviton scattering. In Ref. [174] it is nicely explained that
a more natural way to write the above expression is in terms of the so called
complete zeta function

𝜉(𝑘) := 𝜋−𝑘/2Γ(𝑘/2)𝜁(𝑘), (4.73)

which obeys the functional identity

𝜉(𝑘) = 𝜉(1− 𝑘). (4.74)
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It then becomes apparent that the combination

ℭ0(𝜏2)
𝜉(2𝑠)

2𝜁(2𝑠)
= 𝜉(2𝑠)𝜏 𝑠

2 + 𝜉(2𝑠− 1)𝜏 1−𝑠
2 (4.75)

is invariant under the action
𝑠→ 1− 𝑠. (4.76)

Looking closely it turns out to be nothing but the Weyl action of 𝑆𝐿(2,ℝ).
The last comment we make is that the Eisenstein series in its Fourier ex-

panded form can readily be obtained by using the spherical vector construction
[157], thus demonstrating its generality. In this case a linear representation of
𝑆𝐿(2,ℝ)

𝐸
.
= 𝑖𝑧; 𝐹

.
= 𝑖(𝑧∂𝑧 + 2− 2𝑠)∂𝑧; 𝐻

.
= 2𝑧∂𝑧 + 2− 2𝑠 (4.77)

acts on the real spherical vector

𝑓𝒦(𝑧) = 𝑧𝑠− 1
2𝐾𝑠− 1

2
(𝑧), (4.78)

whose 𝑝-adic counterpart is

𝑓𝑝(𝑧) =
1− 𝑝−2𝑠+1∣𝑧∣2𝑠−1𝑝

1− 𝑝−2𝑠+1
𝛾𝑝(𝑧). (4.79)

The function 𝛾𝑝(𝑧) is defined such that it takes value one when 𝑧 is a 𝑝-adic
integer and zero otherwise. This real spherical vector is related to the one from
Eq. (4.53) precisely by a Fourier transform in the variable 𝑧.

General Groups

Most of the properties we have mentioned above can be generalized to Eisen-
stein series of larger Lie groups. The constant terms and the infinite expan-
sions in the axionic fields are still satisfying the Laplace equation separately.
Formally the constant terms can be obtained by integrating out all the axions

ℭ0(𝜙) =

∫
𝜒𝛼

𝑑𝜒𝛼ℰ𝐺(ℤ)
𝑠 (𝜙, 𝜒𝛼). (4.80)

Notice that 𝑠 denotes the set of all order numbers of the particular Eisen-
stein series. Moreover, the number of constant terms as well as their relative
structures are dictated by the Weyl group.

What differs most from the simple modular example is perhaps the struc-
ture of the part containing the axions. As we already mentioned, the linear
displacement of the axion field under the nilpotent upper triangular subgroup
in Eq. (4.6) is the motivation behind the Fourier expansion. However, for an
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arbitrary Lie group the nilpotent subgroup, which is generated by all the pos-
itive step operators, is in general non-abelian. This simply means that under
these translations the axion fields will transform into each other, and thus
destroy the chances for any periodicity in the Eisenstein series. The way to
resolve this problem is to factorize the nilpotent upper triangular subgroup
into a product of its center and a nilpotent abelian group

𝑁 = 𝑍 × �̃� ⇒ 𝜒𝛼 = {�̃�𝑎, 𝜓𝑖}. (4.81)

The parameters of the abelian group �̃� are then only transforming under �̃�

�̃�𝑎 �−→ �̃�𝑎 + 𝑘𝑎, (4.82)

while the parameters of the center 𝑍 are affected by the full 𝑁

𝜓𝑖 �−→ 𝜓𝑖 + 𝑙𝑖 +
∑
𝑎,𝑏

𝑐𝑎𝑏𝑘𝑎�̃�𝑏, (4.83)

with some numerical coefficients 𝑐𝑎𝑏. The Eisenstein series is now characterized
by three parts: the constant, the abelian and the non-abelian ones

ℰ𝐺(ℤ)
𝑠 (𝜙, 𝜒𝛼) = ℐ0 + ℐA + ℐNA

= ℭ0(𝜙) +
∑
𝑘𝑎∈ℤ

ℭ𝑘(𝜙) exp

[
2𝜋𝑖

∑
𝑎

𝑘𝑎�̃�𝑎

]

+
∑
𝑙𝑖∈ℤ

ℭ𝑙(𝜙, �̃�𝑎) exp

[
2𝜋𝑖

∑
𝑖

𝑙𝑖𝜓𝑖

]
.

(4.84)

The principles of the Poisson resummation remain the same even for general
Lie groups, though sometimes tricks might be needed to actually be able to
carry out the computations. In particular lattice constraints described below
Eq. (4.91) tend to require special treatment. Also, often one needs to carry
out a series of Poisson resummation before arriving at the final result.

In Paper V the Fourier expansion of the Eisenstein series invariant under
𝑆𝑈(2, 1;ℤ[𝑖]) is computed. Many properties which are described in general
terms here can be illustrated by that example.

4.3 Transforming Automorphic Forms

So far in this chapter we have dealt extensively with automorphic functions,
i.e., functions that are invariant under some discrete group 𝐺(ℤ). The generic
case relevant for string theory, however, is automorphic forms which transform
as representations of 𝒦(𝐺). Most often functions that have been conjectured
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as coefficients of the higher derivative corrections in supergravity theories are
of this more general type.

The transforming modular form that generalizes the non-holomorphic Eisen-
stein series has been well-studied in the physics literature [150, 175, 151, 160].
It has the form

𝑓𝑠,𝑘(𝜏, 𝜏 ) =
∑
(𝑚,𝑛)

′ 𝜏 𝑠
2

(𝑚+ 𝑛𝜏)𝑠+𝑘(𝑚+ 𝑛𝜏 )𝑠−𝑘
, (4.85)

and obeys 𝑓𝑠,𝑘 = 𝑓𝑠,−𝑘. The bar here denotes the complex conjugation. Under
modular transformations this series gains an 𝑆𝑂(2) phase

𝑓𝑠,𝑘(𝜏, 𝜏) �−→
(
𝑐𝜏 + 𝑑

𝑐𝜏 + 𝑑

)𝑘

𝑓𝑠,𝑘(𝜏, 𝜏), (4.86)

where the 𝑆𝐿(2,ℤ) group elements are parameterized as in Eq. (4.1). The
ordinary non-holomorphic Eisenstein series is the special case when 𝑘 = 0. A
covariant derivative

𝒟𝑘 ≡ 2𝑖𝜏2∂𝜏 + 𝑘 (4.87)

can be defined to step between different orders of 𝑘

𝒟𝑘𝑓𝑠,𝑘(𝜏, 𝜏) = (𝑠+ 𝑘)𝑓𝑠,𝑘+1(𝜏, 𝜏). (4.88)

Making use of 𝑓𝑠,𝑘 = 𝑓𝑠,−𝑘 one can show that

�̄�−(𝑘+1)𝒟𝑘𝑓𝑠,𝑘(𝜏, 𝜏 ) = (𝑠− 𝑘 − 1)(𝑠+ 𝑘)𝑓𝑠,𝑘(𝜏, 𝜏). (4.89)

This is the generalization of the Laplace equation.
For an arbitrary Lie group the transforming automorphic forms can readily

be obtained by generalizing the spherical vector method. Instead of requiring
invariance under the maximal compact subgroup, one simply demands the
generalized spherical vector 𝑓𝒦 to transform appropriately under 𝒦(𝐺). This
will assure the correct transformation properties of the resulting automorphic
form. Though the logic is clear, computationally it might be very complicated.
In particular finding the 𝑝-adic counterpart of a generalized spherical vector
can pose a mathematical challenge.

An alternative construction is presented in Ref. [87], where the authors
made an intuitive generalization of the lattice construction. The key observa-
tion for this construction is Eq. (4.34), namely

𝒱�⃗� �−→ 𝑘𝒱�⃗�′, 𝑘 ∈ 𝒦(𝐺) (4.90)

under 𝐺(ℤ) transformations. Recall that 𝒱 ∈ 𝐺/𝒦(𝐺) and �⃗� is a vector in
the lattice left invariant by 𝐺(ℤ). If 𝒱 was constructed using the fundamental
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representation of 𝐺, then 𝒱�⃗� will transform as the fundamental representation
of 𝒦(𝐺). We can now take appropriate tensor product of a number of 𝒱�⃗� to
obtain objects transforming as arbitrary finite-dimensional representation of
𝒦(𝐺). Schematically a transforming automorphic form can then be written as

𝑓𝐺(ℤ)
𝑠,𝑎1...𝑎𝑛

(𝒵) =
∑

�⃗�

𝛿(�⃗�† ∧ �⃗�)
(𝒱�⃗�)𝑎1 . . . (𝒱�⃗�)𝑎𝑛

[(𝒱�⃗�)† ⋅ 𝒱�⃗�]𝑠 , (4.91)

with some (anti)symmetrization of the indices 𝑎1, . . . , 𝑎𝑛. It was shown in
Ref. [87] that the generalized modular form in Eq. (4.85) indeed can be
obtained by this method.

In this thesis we have been concentrating on the non-holomorphic Eisenstein
series based on the principal continuous representation, which appear as co-
efficients of higher order derivative corrections in string theory. At each level
in 𝛼′, these are the functions dictating the expansion in the string coupling
constant 𝑔𝑠. However, theta theories based on the minimal representation is
another example of automorphic form which play important role in physics. It
is believed that the partition function of the supermembrane is related to the
theta series, though so far only the zero modes have been studied [156]. Also,
there are strong indications that minimal representations and theta series are
associated to black hole degeneracies [176, 168, 169].
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A
𝑝-Adic Numbers

This appendix provides a list of basic relations of 𝑝-adic numbers we need for
the construction of Eisenstein series. For a proper introduction to the world of
𝑝-adic numbers the reader is referred to for instance Refs. [171, 172], or [161]
for a different take of the subject.

For a given prime number 𝑝 ∈ ℙ, the field ℚ𝑝 of 𝑝-adic numbers is a com-
pletion, in the Cauchy sequence sense, of the rational numbers. The defining
property of a 𝑝-adic number is that it can be expanded similar to a power
series with base 𝑝

∞∑
𝑖=𝑘

= 𝑎𝑖𝑝
𝑖, 𝑘 ∈ ℤ, (A.1)

where 𝑎𝑖 are integers in the interval {0, . . . , 𝑝 − 1}. A subring of ℚ𝑝 is the
𝑝-adic integers ℤ𝑝, which consists of those 𝑝-adic numbers with 𝑎𝑖 = 0 for all
𝑖 < 0. The ring of 𝑝-adic integers is not only complete but also compact.

For any non-zero rational number there is a unique decomposition

𝑥 =
𝑎

𝑏
𝑝𝑛, 𝑥 ∈ ℚ, 𝑝 ∈ ℙ and 𝑛 ∈ ℤ, (A.2)

where neither 𝑎 nor 𝑏 is divisible by 𝑝. The norm used for the Cauchy sequences
is then defined as

∣𝑥∣𝑝 := 𝑝−𝑛, (A.3)

satisfying the following properties:

𝑖. ∣𝑥∣𝑝 ≥ 0, ∀𝑥;
𝑖𝑖. ∣𝑥∣𝑝 = 0 ⇐⇒ 𝑥 = 0;

𝑖𝑖𝑖. ∣𝑥𝑦∣𝑝 = ∣𝑥∣𝑝∣𝑦∣𝑝, ∀𝑥, 𝑦;
𝑖𝑣. ∣𝑥+ 𝑦∣𝑝 ≤ ∣𝑥∣𝑝 + ∣𝑦∣𝑝, ∀𝑥, 𝑦;
𝑣. ∣𝑥+ 𝑦∣𝑝 ≤ max(∣𝑥∣𝑝, ∣𝑦∣𝑝), ∀𝑥, 𝑦.

(A.4)
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Generalizing to a vector of 𝑝-adic numbers �⃗� = (𝑥1, . . . , 𝑥𝑘), the norm is defined
as

∣�⃗�∣𝑝 := max(∣𝑥1∣𝑝, . . . , ∣𝑥𝑘∣𝑝). (A.5)

The 𝑝-adic spherical vector appearing in the construction of 𝑆𝐿(2,ℝ) Eisen-
stein series is

𝑓𝑝(𝑥) = (∣1, 𝑥∣𝑝)−2𝑠 = [max(1, ∣𝑥∣𝑝)]−2𝑠 . (A.6)

Since ∣ − 𝑥∣𝑝 = ∣𝑥∣𝑝 we can assume 𝑥 to be positive. Set 𝑥 = 𝑚
𝑛

with 𝑚
and 𝑛 being integer and co-prime. By computing the prime factorizing 𝑚 =
𝑝𝑘1
1 . . . 𝑝𝑘𝑚

𝑚 and 𝑛 = 𝑞𝑙1
1 . . . 𝑞𝑙𝑛

𝑛 , where {𝑝𝑖, 𝑞𝑗} are all distinct prime numbers, it
then follows that

∣𝑥∣𝑝𝑖 = 𝑝−𝑘𝑖
𝑖 , ∣𝑥∣𝑞𝑗 = 𝑞

𝑙𝑗
𝑗 , ∣𝑥∣𝑝 = 1 ∀𝑝 /∈ {𝑝𝑖, 𝑞𝑗}. (A.7)

The 𝐺(ℤ)-invariant distribution now simplifies to

𝑓𝐺(ℤ) =
∏
𝑝<∞

𝑓𝑝(𝑥) = (𝑞𝑙1
1 . . . 𝑞𝑙𝑛

𝑛 )−2𝑠 = 𝑛−2𝑠. (A.8)

Following a similar argument

∏
𝑝<∞

max

(∣∣∣𝑚1

𝑛1

∣∣∣
𝑝
,
∣∣∣𝑚2

𝑛2

∣∣∣
𝑝

)
= 𝑛1𝑛2. (A.9)
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1. Introduction

The notion of topological M-theory was introduced recently by Dijkgraaf et al. [1] (see

also [2]). In analogy with topological string theory [8, 9] (for a recent review, see ref. [10]),

one expects here a topological membrane world-volume theory to give rise to a field theory

in a seven-dimensional target space. In the string case both the world-sheet and the six-

dimensional target space theories are fairly well understood, the latter being in fact string

field theories constructed from the world-sheet BRST charge. Although Calabi-Yau three-

folds have special properties in this context [10], topological strings exist also on special

holonomy manifolds of other dimensionalities, see e.g. ref. [3]. The features found in the

topological string case would for many reasons be very valuable to understand also in the

membrane/M-theory case. One important reason is connected to the rôle topological string

amplitudes play in compactification of physical string theories. One may also wonder if a

better understanding of topological M-theory may indicate how to approach the problem

of finding a microscopic formulation of M-theory, possibly including a quantisation of the

membrane.

In ref. [1], the authors took a first step towards this goal by suggesting the form of the

effective target space field theory of topological M-theory. Such an effective theory may be

obtained by arguing that the theory and its topological properties should be connected to
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those of the A and/or B topological string models by dimensional reduction in much the

same way as the physical field theories in ten and eleven dimensions are related. Similarly,

one should be able to connect the topological string world-sheet theories to the topological

membrane one by subjecting the latter to a double dimensional reduction.

The target space aspects were discussed in some detail in ref. [1], where the crucial rôle

of Hitchin functionals [5, 6] was elaborated upon. These are special functionals of p-forms

which can be connected to metric fields by some rather complicated non-linear relations.

The resulting theory was given the appropriate name form-gravity in ref. [1]. By starting

from a Hitchin 3-form on a seven-dimensional G2 holonomy manifold, the authors of ref. [1]

show that by dimensional reduction various well-known topological form-gravity theories in

lower dimensions are obtained. In particular, one finds the Kodaira-Spencer theory [11] for

the complex structure deformations in the B-model and the Kähler gravity theory [12] of

the Kähler deformations in the A-model, albeit produced in a particular interacting form.

At the classical level the connection between form-gravity based on a six-dimensional

Hitchin functional and the topological B-model was made explicit by relating the corre-

sponding tree-level partition functions to each other. However at one loop level, where the

B-model is known to compute a special combination of Ray-Singer torsion invariants [11], it

was recently demonstrated by Pestun and Witten [15] that one needs to use the extended

Hitchin functional introduced in ref. [4] to obtain the same one-loop partition function.

This connection to the extended Hitchin functionals is intriguing since they play a rôle also

in flux compactifications [20] on the generalised Calabi-Yau manifolds discussed by Hitchin

in his paper.

The natural next step seems to be to construct a topological membrane theory that may

be related to the topological M-theory mentioned above. That is, we want to construct a

membrane embedded in a seven-dimensional space with G2 holonomy whose effective action

is the Hitchin functional 3-form gravity theory discussed in ref. [1]. The usual approach

to derive topological strings by means of twisting does not seem to work here since it

is based on the spinning string, or NSR, formulation which is lacking in the membrane

case. Here we will instead approach this problem by starting from the Green-Schwarz (GS)

formulation of the membrane [21]. Of course, since the superstring, and perhaps also the

supermembrane, are quantized most easily using Berkovits’ pure spinor formulation [22],

this is probably an even more suitable starting point. This point was discussed recently

also in [23]. We note here that although the GS formulation of string theory is as standard

as the NSR one, it does not seem to have been used yet in the construction of topological

strings. As will be clear below such a GS formulation will come out of the results presented

here for the topological membrane.

One important aspect of twisting in the construction of the topological string from

a two-dimensional supersymmetric sigma model is that it turns a spin-3
2 supersymmetry

current into a spin-1 object that can be interpreted as a BRST current. This kind of twisting

is accomplished by enforcing the identification of the world-sheet Lorentz symmetry with

an so(2) R-symmetry giving fermionic quantities unphysical integer spin values. In the GS

formulation of the membrane, which is the starting point in our approach to the topological

membrane, such an unphysical spin-statistics relation on the world-volume is already in
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effect since the supercoordinates in the target space (xm, ψµ̂I) contain the anticommuting

world-volume scalars ψµ̂I (the ranges of the various indices will be specified later). For

trivial target spaces like eleven-dimensional flat space, the gauge-fixing of the κ-symmetry

generates an ordinary supermultiplet in three dimensions with physical spin fermions [21].

However, in the context discussed here no twisting needs to be done by hand, a fact that has

been noticed before in ref. [7]. As discussed in detail in section 3, a similar phenomenon to

twisting does occur but now as an automatic consequence of combining G2 holonomy and

the tangent space symmetry remaining after the introduction of the membrane into target

space. This twisting leaves the bosonic and fermionic fields in the same representation of

the surviving symmetry. We will however not fix the gauge, and for the most part work

with a fully κ-symmetric theory with a (1+7)-dimensional parameter.

This paper is organised as follows. In section 2 we start by discussing the G2 3-

form gravity theory that the topological membrane is supposed to generate in the seven-

dimensional target space. Different action functionals are presented for this theory, one

of which we believe is new. This section also describes the supergeometry into which the

bosonic seven-dimensional G2 holonomy manifolds can be embedded. The supercoordinates

are ZM = (xm, θµ̂I) where m runs over seven values and µ̂I enumerates two (I = 1, 2)

eight-dimensional spinors (µ̂ = 1, .., 8). The supergeometry in encoded by a standard

vielbein (supersiebenbein) and a superspace 3-form CMNP (Z). The Bianchi identities are

discussed and an explicit 3-form superfield is derived, but only in the flat space limit. As

also explained, the full expansions in fermionic coordinates of the curvature dependent

3-form and vielbein superfields can be obtained by a lengthy iterative procedure which we

hope to come back to in a future publication (for a similar discussion, see refs. [13, 14]).

In section 3 we discuss the κ-symmetric membrane theory that we propose as the

starting point for deriving a topological membrane. The rôle of G2 in obtaining the BRST

charge from a partially gauge fixed world-volume action is explained and arguments in-

dicating the topological nature of the action, namely the fact that it is BRST exact, are

presented. This discussion is carried out in the full theory but the calculation of the action

is performed only to lowest order in the curvature and a full proof will require more work.

In the concluding section 4 we make a few additional remarks and comments. Proper-

ties of the octonions are used heavily in this paper and some aspects can be found in the

appendices. In appendix A we discuss G2 tensors, projection operators and the relation to

quaternions, while in appendix B we give the explicit form of the flat superspace 3-form

based on the octonionic structure constants.

2. G2 holonomy

Seven-dimensional manifolds with G2 holonomy have special properties, among which are

Ricci-flatness and a single covariantly constant (Killing) spinor.

When holonomy is restricted to lie in a G2 subgroup, a (partial) gauge choice can be

made for the spin connection to make it lie entirely in the Lie algebra G2. Then, G2 singlets

can be defined as constant over the manifold, and this thus applies to special elements of

any Spin(7) representation containing a G2 singlet. So, there is a constant spinor, since
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8 → 1⊕ 7, and a constant 3-form Ω, since 35 → 1⊕ 7⊕ 27. In a flat frame the 3-form may

be chosen as Ωabc = σabc, the octonionic structure constants, invariant under the action of

G2, the automorphism group of O (see appendix A for details).

2.1 The 3-form

Hitchin [5, 6] has constructed a model containing a 3-form field, whose solutions are G2

manifolds. This is certainly a part of topological M-theory. The metric is constructed from

the 3-form as

Kmn =
√

g gmn = − 1

144
εm1...m7Ωmm1m2

Ωnm3m4
Ωm5m6m7

, (2.1)

Hitchin gives the action S =
∫

d7xK1/9. A Polyakov type action, due to Nekrasov [26],

giving both the relation (2.1) and the covariant constancy of the 3-form, is

S′ =
2

9

∫

d7x

(√
g − 1

288
gmnεm1...m7Ωmm1m2

Ωnm3m4
Ωm5m6m7

)

, (2.2)

The metric is auxiliary and determined by its equation of motion. The constant in front

is chosen so that the action is normalised to the volume. In a frame where (locally)

Ωabc = σabc, one thus has gab = δab, which is checked by σacdσbef?σcdef = −24δab (see

appendix A).

Varying the action (2.2) w.r.t. Ω gives

− 1
9×144

∫

d7x( 2grnεstm3...m7Ωnm3m4
Ωm5m6m7

+gmnεm1...m4rstΩmm1m2
Ωnm3m4

)δΩrst .
(2.3)

Using the relations of appendix A to calculate the two terms, one finds using the expression

for gmn that they both are proportional to the same expression, and that the variation (2.3)

becomes
1

3

∫

?Ω ∧ δΩ =
1

18

∫

d7x
√

g ΩmnpδΩmnp . (2.4)

The relation (2.1) for the metric may equivalently be written in the implicit form

gmn =
1

6
gp1q1gp2q2Ωmp1p2

Ωnq1q2
, (2.5)

which is used by Hitchin in expressing the variation of his action in the “linear form” (2.4).

This latter relation could as well be obtained from an action, which now takes a much more

conventional form:

S′′ = −1

6

∫

d7x
√

g

(

1 − 1

6
gm1n1gm2n2gm3n3Ωm1m2m3

Ωn1n2n3

)

(2.6)

(what varying this action w.r.t. gmn really gives is ΩmpqΩn
pq = −gmn(1 − 1

6ΩpqrΩ
pqr),

which after contracting the free indices with gmn gives ΩpqrΩ
pqr = 42, and thus gmn =

1
6ΩmpqΩn

pq). Variation of the action (2.6) w.r.t. Ω gives an expression proportional to (2.4)

directly, without any use of the algebraic identities of appendix A.

The 3-form is part of the geometric background for propagation of membranes. The

expression “Ω = σ” is purely bosonic. In a superspace, Ω will contain more components

when expressed in flat basis, due to torsion (see appendix B).
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2.2 Superspace and supersymmetry

The superspace we want to consider has bosonic coordinates which are the coordinates of

a euclidean manifold with G2 holonomy. In addition there will be fermionic coordinates.

These are a priori a set of real spinors in the 8-dimensional representation of Spin(7), but

when Spin(7) → G2 each spinor decomposes as 8 → 1 ⊕ 7. The γ-matrices of Spin(7) are

real and antisymmetric, so it is clear that an even number of spinors are needed, together

with an internal Sp(2n) in order to have a non-vanishing torsion. We will choose the

simplest possibility, n = 1, giving a doublet of spinors, for reasons that become obvious

in the following subsection. This superspace is obtained from D = 11 superspace, with

twice as many fermionic coordinates, as a truncation of the Spin(7) × SL(2, C) subgroup

of Spin(1, 10) to Spin(7) × SL(2, R), where the spinors in the representation 32 → (8, 2C)

are demanded to be real.

A convenient realisation is to consider a vector as an imaginary octonion, v ∈ O
′, and

a spinor as an arbitrary octonion, s ∈ O. Letting the orthonormal basis of O
′ be {ea}7

a=1,

multiplication by γa is identified with left multiplication of a spinor with ea, i.e., vs is again

a spinor. The octonionic multiplication table, eaeb = −δab + σabcec, tells us that the real

γ-matrices square to −1 (a property which will be crucial for supermembranes).

Before moving on let us fix some notation. Superspace coordinates are written

ZM = (xm, ψµ̂I) , m = 1, . . . 7 , µ̂ = 0, . . . , 7 , I = 1, 2 . (2.7)

Flat indices are written (a, α̂I). The spinor index will often be divided into (0, α = 1, . . . , 7),

reflecting the decomposition 8 → 1 ⊕ 7. This division applies also to curved indices, as

long as one only considers super-diffeomorphisms that leave the singlet inert, and we use

the notation

ψµ̂I = (θI , ψµI) . (2.8)

Bosonic and fermionic vielbeins are written,

Ea , E α̂I = (EI , EαI) , (2.9)

and the purely bosonic vielbein, em
a.

The γ matrices encoded in the left multiplication of a spinor λ = λα̂eα̂ by an imaginary

unit ea are

(γa)αβ = σa
αβ ,

(γa)0α = δa
α .

(2.10)

They satisfy {γa, γb} = −2δab , where the minus sign is necessary for real γ-matrices.

The Clifford algebra is spanned by the so(7)-invariant tensors δα̂
β̂
, (γa)α̂

β̂
, (γab)α̂

β̂
and

(γabc)α̂
β̂
, of which the first and last are symmetric and the second and third antisymmetric

– 5 –
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matrices. The decomposition in terms of G2-invariant tensors is

δα̂
β̂

=

[

1 0

0 δα
β

]

(γa)α̂
β̂

=

[

0 δa
β

−δaα σaα
β

]

(γab)α̂
β̂

=

[

0 −σab
β

σabα − ? σabα
β − 2δab

αβ

]

(γabc)α̂
β̂

=

[

σabc − ? σabc
β

− ? σabcα 6δ
[a
(ασ

bc]
β) − δα

βσabc

]

.

(2.11)

Solving the dimension-0 part of the torsion Bianchi identities reveals a possible solution

in terms of SO(7) γ-matrices. We choose T a
αI,βJ = 2εIJ (γa)αβ , implying

TαI,βJ
a = 2εIJσa

αβ ,

T0I,αJ
a = 2εIJδa

α ,

T0I,0J
a = 0 .

(2.12)

(A wider class of G2-invariant solutions exists but κ-symmetry restricts the choice to

eq. (2.12).) The background will contain a 3-form potential C (descending from the

one in D = 11) with 4-form field strength, G, whose dimension-0 part is taken to be

Gab,α̂I,β̂J = −2εIJ(γab)α̂β̂:

Gab,αI,βJ = 2εIJ (2δab
αβ + ?σabαβ) ,

Gab,0I,βJ = 2εIJσabβ ,

Gab,0I,0J = 0 .

(2.13)

The Fierz identity in D = 7 ensuring the Bianchi identity for G is

(γb)α̂β̂(γab)γ̂δ̂| = 0 , (2.14)

where the Young tableau indicates the symmetry structure of the spinor indices. The

expression (γb)α̂β̂(γab)γ̂δ̂ contains only terms that are antisymmetric in at least three spinor

indices, implying that εIJεKL(γb)α̂β̂(γab)γ̂δ̂ completely symmetrised in the four composite

indices (α̂I, β̂J, γ̂K, δ̂L) vanishes.

The potential C, which will be the field that the supermembranes couples minimally

to, is a priori thought of as a 3-form with vanishing cohomology class, so that, modulo

gauge transformations, Cabc = 0. Of course, changing C to C(k) = C + kΩ leaves the field

strength invariant.

The constraints for torsion and field strength used are standard, and the ones obtained

by reduction from D = 11 and truncation to real fermions. In order to use them to extract

an explicit form for the dynamics of the supermembrane introduced in the following section,

one would need to solve these constraints explicitly for the vielbeins and components of C

in terms of the bosonic and fermionic coordinates. This has not been done, except for in

the case of flat manifolds (orbifolds of tori). In principle, this can be done order by order

in the fermions, and we will indicate how this expansion starts.

– 6 –
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The target space coordinates1 are xm, ψmI and θI . Under (bosonic) diffeomorphisms,

δχxm = χm, δχψmI = ψnI∂nχm, δχθI = 0. This means that the derivatives and dual

differentials that transform covariantly are

dxm Dm = ∂m − Γp
mnψnI ∂

∂ψpI

DψmI = dψmI + dxnψpIΓm
np

∂
∂ψmI

dθI ∂
∂θI

(2.15)

(if we have differentials that transform covariantly, we can just contract them with em
a

to get something that is invariant). In order to reproduce the dimension-0 torsion, the

vielbeins are constructed from the covariant differentials as

Ea = (dxm + εIJΩm
npDψnIψpJ + 2εIJdθIψmJ)em

a + . . . ,

EaI = DψmIem
a + . . . ,

EI = dθI .

(2.16)

We also let ω = dxmωm(x) and D = d + ω. These terms generate torsion, however, which

contains the Riemann tensor (T aI ≡ TαIδa
α):

T a = εIJ(Ωm
npDψnI ∧ DψpJ + 2dθI ∧ DψmJ )em

a + Ωm
npRq

nψqIψpJem
a ,

T aI = ψnIRn
mem

a ,
(2.17)

where DΩ = 0 has been used. The curvature enters with Rm
n ≡ 1

2dxp ∧ dxqRqp m
n.

So, while the correct torsion terms are generated, the curvature-dependent ones have to

be compensated for by adding terms of higher order in fermions in the vielbeins. Note,

however, that this does not apply to the coefficients of dθI , which is a G2 singlet, hence

not affected by the spin connection, and furthermore exact.

2.3 G2 manifolds and supersymmetry

The existence of a constant spinor allows for a Killing spinor, a fermionic “isometry” of

the superspace, i.e., a global supersymmetry. In our superspace with an internal SL(2)

index, there will be a doublet of supersymmetries. We choose a parametrisation where the

superspace Killing vectors, i.e., the supersymmetry generators are

QI =
∂

∂θI
, (2.18)

which obviously fulfill

{QI , QJ} = 0 . (2.19)

All vielbeins in eq. (2.16) are invariant under QI . We may remark that the simple

form (2.18) of the supersymmetry generators depends on the the form of the bosonic

vielbeins. If the fermion bilinears in the bosonic vielbein had been chosen to contain

εIJ (dθIψmJ − θIdψmJ ) instead of 2εIJdθIψmJ (which to lowest order corresponds to a

1The identification of part of the spinor as vectors involves gauge-fixing all except the bosonic diffeo-

morphisms.
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change of bosonic coordinate), one would also have had a term −εIJψmI ∂
∂xm in QI . Dif-

feomorphism covariance would then demand that ∂
∂xm is replaced by Dm, so also ψ is

transformed. It turns out (by trial and error) that it is impossible to construct a super-

symmetry doublet that starts out this way and fulfills the nilpotency relation (2.19), due

to curvature terms, so we are left with the choice of eq. (2.18).

In the discussion on a topological theory of membranes below, the QI ’s are the nilpotent

operators that will be promoted to BRST operators.

3. Topological membranes

In this section, we will describe in detail how we obtain a topological membrane by impos-

ing a supersymmetry constraint on supermembranes embedded in a superspace extending

a manifold of G2 holonomy. First we will introduce supermembranes, and investigate the

structure of κ-symmetry in the background at hand. We proceed to promote the global

supersymmetry generators to BRST operators, thereby turning the theory into a topologi-

cal theory. We show that the action, modulo topological terms and fermionic equations of

motion, is not only BRST-invariant, but also BRST-exact.

3.1 Supermembranes on G2 manifolds

A supermembrane in seven dimensions should have N = 2 supersymmetry, i.e., propagate

in a background superspace with two fermionic spinorial coordinates ψµ̂I . Then the four

transverse bosons match the fermions in number, with κ-symmetry and equations of motion

taken into account. Both bosons and fermions are a priori scalars on the world-volume.

This can of course change after some gauge-fixing, e.g. choosing a static gauge. The

superspace we choose for the propagation of the membrane is thus taken to be the one

described in the previous section.

When formulating a theory of topological strings it is convenient to start from the

action of a spinning (world-sheet supersymmetric) string. For a membrane, no such for-

mulation exists that is equivalent to the space-time supersymmetric one. Since we want

our membrane to describe part of M-theory, we seem to be forced to use the ordinary

supermembrane action. The generic action for a supersymmetric membrane is

S =

∫

d3ξ
√

g +

∫

C . (3.1)

where g and C are pullbacks from target superspace to the world-volume.

The 7-dimensional R-symmetry is SL(2). R-symmetry is typically something one wants

to use in a topological twist, but the real forms of R-symmetry and local world-volume

rotations su(2) do not match. On the other hand, once one decomposes rotations into

longitudinal and transverse, there are lots of su(2)’s. When so(7) → so(3) ⊕ so(4) ≈
su(2) ⊕ su(2) ⊕ su(2), 7 → (1, 2, 2) ⊕ (3, 1, 1) and 8 → (2, 1, 2) ⊕ (2, 2, 1). But if we also

have the breaking so(7) → G2, 7 → 7, 8 → 1 ⊕ 7, we have to consider the maximal

unbroken subalgebra contained in both G2 and su(2)3. In the case that the embedding of

the membrane world-volume is associative, i.e., if ?σijka = 0, or equivalently σijk = ±εijk,
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this is su(2) ⊕ su(2), which is a maximal subalgebra of G2, and where the second su(2) is

the last of the three in so(7) → su(2)⊕su(2)⊕su(2) and the first is the diagonal subalgebra

of the first two (this is shown in detail in appendix A, using the splitting of an octonion

into a pair of quaternions). For a more general embedding, the same representations are

obtained in a static gauge based on coordinate directions spanning a quaternion.

From a 3-dimensional perspective, we have (before G2 is imposed) scalars transforming

as vectors under R-symmetry so(4), φ ∈ (1, 2, 2), and spinors transforming as either of the

chiralities of so(4), ψ ∈ (2, 2, 1) and/or ψ′ ∈ (2, 1, 2). Introduction of G2 implies a twist

of one of the spinor representations, since it identifies one of the two R-symmetry su(2)’s

with the su(2) of space rotations. This twisting has been observed earlier in ref. [7].

The lesson from the behaviour of the representations and the effective twisting is that

when one wants to formulate a topological membrane theory, no twisting “by hand” is

needed — it is automatically provided in a space-time supersymmetric formulation.

3.2 Fermionic symmetries

The supermembrane action is invariant under global supersymmetry as well as κ-symmetry.

Let us discuss these symmetries in some more detail, beginning with supersymmetry, gen-

erated by the vector fields Qε = εI ∂
∂θI , with constant parameters εI .

All vielbeins, both the bosonic ones Ea and the fermionic ones E α̂I = (dθI , EαI), are

invariant under supersymmetry — this is just the statement that supersymmetry is an

isometry of superspace. This accounts for the invariance of the kinetic volume term in the

supermembrane action.

Invariance of the Wess-Zumino term
∫

C is guaranteed by the invariance of the field

strength G of eq. (2.13). The field strength is expressible as constant coefficients times

wedge products of vielbeins, and thus invariant. This implies that the supersymmetry

transformation of C is a total derivative, QεC = εIdΛI . It is indeed possible to choose

a gauge where a stronger statement, namely local invariance, QεC = 0, holds. We have

constructed C explicitly in such gauges (to lowest order in curvature), see appendix B.

The fact that C can be chosen to be completely independent of θI will later, when QI are

used as BRST operators, be a crucial property.

To begin our exposé of κ-symmetry for the topological membrane we recount some well

known facts concerning its properties. In order to reduce clutter we drop the sl(2)-indices

temporarily, reinserting them when returning to the topological membrane. We begin by

introducing the superspace vector field,

κ = κM∂M = καEM
α ∂M (κa = 0) , (3.2)

the action of which transforms the pullback of a superspace form as,

δκ(f∗Ω) = f∗LκΩ = f∗(iκd + diκ)Ω , (3.3)

where f∗ is a pullback and L a Lie derivative. From here on we will not write out pullbacks

explicitly. The action of this vector field on the Wess-Zumino term then follows,

δκ

∫

C =

∫

(iκd + diκ)C =

∫

(iκG + diκC) =

∫

iκG , (3.4)
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and the variation of the vielbein,

δκEA = iκ(TA − EB ∧ ωB
A) + DiκEA − (iκEB) ∧ ωB

A

= iκTA − EB ∧ iκωB
A + DiκEA .

(3.5)

By adding a local Lorentz transformation with parameter iκωB
A, we can reduce the ex-

pression to δκEA = iκTA + DiκEA, and furthermore, by considering the relevant part of

this expression, to

δκEa = iκT a . (3.6)

The variation of the kinetic term then becomes (with pullbacks written out)

δκ
√

g =
1

2

√
ggijδκgij =

√
ggijEa

(iE
B
j)κ

αTαB
a , (3.7)

where we have used δκgij = δκ(Ea
i Ea

j ) = 2Ea
(iE

B
j)κ

αTαB
a. At the level of (length-)dimension

0 this term varies as

δκ
√

g =
√

ggijEa
i E

β
j καTαβ

a =
√

gE
β
j Tαβ

jκα , (3.8)

whereupon the action consequently transforms as

δκ

(
∫

d3ξ
√

g +

∫

C

)

=

∫

d3ξ
√

g

(

E
β
i Tαβ

iκα +
1

2

εijk

√
g

E
β
k καGijαβ

)

. . (3.9)

Turning to the case of the G2-membrane this transformation, after insertion of the torsion

and field strength, looks like,

δκS =

∫

d3ξ
√

g

(

Eα̂I
i Tα̂I,β̂J

iκβ̂J +
1

2

εijk

√
g

Eα̂I
k Gijα̂I,β̂Jκβ̂J

)

=

∫

d3ξ
√

gEα̂I
i

(

2(γi)α̂β̂ − εijk

√
g

(γjk)âβ̂

)

κβ̂JεIJ ,

(3.10)

which can be rewritten as

δκS = 4

∫

d3ξ
√

gEα̂I
i (γiΠ+)α̂β̂κβ̂JεIJ (3.11)

The κ-symmetry condition is thus (Π+)α̂
β̂
κβ̂I = 0, where

(Π+)α̂
β̂
≡ 1

2

{

δα̂
β̂

+
1

6
√

g
εijk(γijk)

α̂
β̂

}

(3.12)

is the operator which annihilates an infinitesimal κ-parameter. The fact that

Γα̂
β̂
≡ 1

6
√

g
εijk(γijk)

α̂
β̂

=
1

6
√

g
εijk

[

σijk − ? σijkβ

− ? σ
α

ijk 6
(

δ
(α
[i

σ
β)

jk]
− 1

6δαβσijk

)

]

(3.13)

fulfills the conditions Tr(Γ) = 0 and Γ2 = 1 implies that Π+ is a projection operator2. It is

then obvious that the κ-symmetry condition can be solved by κ = Π−ξ, where Π− is defined

2An essential observation for the working of κ-symmetry is that the euclidean signature of the world-

volume is compensated by the fact that the gamma matrices square to minus one. Compared to 11-

dimensional Minkowski space there are two changes of sign. Had only one of these changes occurred,

idempotent projection matrices could not have been constructed.
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as (Π−)α̂β̂ ≡ 1
2(δα̂

β̂ − Γα̂
β̂) and ξ is an arbitrary spinor. Since Π− projects out half of the

degrees of freedom of ξ, κ is parametrised by two scalars and two world-volume vectors

{λ0I , λiI}. It can be shown that Π± are the only projection operators, which project out

precisely half of the spinors, that can be formed using the G2 invariant tensors only, and

hence we have found the most general κ-variation.

A byproduct of the above calculation is that the fermionic equations of motion are

Π+γiE α̂I
i = 0.

A general background will of course contain fermionic excitations, demanding that

κ-symmetry is checked also at dimension 1
2 . In the present context, however, we are only

interested in superspaces extending any bosonic manifold of G2 holonomy. We do not

consider deformations of the geometry. In topological M-theory, such deformations should

be parametrised by solutions of the Hitchin model, and purely bosonic.

The algebra of κ-symmetry is obtained by commuting κ-variations of a fermionic vari-

able, which after some calculation, mainly involving transformation of the projection ma-

trix, yields

[δκ̃, δκ]ψα̂I = εLK(Π+γiEi)
α̂K κ̃(LκI) − εLK(γj)α̂

β̂
(Π+γiEi)

β̂K κ̃[Lγjκ
I]

+(Π−)α̂
β̂

{

1

2
[(δκ̃Π−)ξ − (δκΠ−)ξ̃]β̂I + (Ei)

β̂IεKLκ̃KγiκL

}

−(Ei)
α̂IεKLκ̃KγiκL .

(3.14)

It is straight-forward to see that the three rows represent fermionic equations of motion,

κ-transformations and world-volume diffeomorphisms, respectively. This is the point where

it becomes clear that the formulation, due to the mismatch between fermions and bosons

off-shell, is an on-shell formulation — part of the gauge symmetry only works modulo

equations of motion.

Although we will not elaborate on this in the present paper, it is worth mentioning that

κ-symmetry can in fact be treated in a completely covariant manner on a G2 manifold.

The projection κ = Π+κ may be solved by parametrising κ in terms of a scalar and a

world-volume vector as

κ0 = (1 − y)ξ ,

κα = zαξ + (Eα
i − 1

2
√

gεi
jkσα

jk)ζ
i ,

(3.15)

where y = 1
6
√

gεijkσijk, zα = 1
6
√

gεijk?σijkα. In a situation where the scalar part has been

fixed, the remaining gauge symmetry (closing on-shell) will be a super-diffeomorphism

algebra with an SL(2) doublet of world-volume vectors as fermionic generators.

There is an interplay between the global supersymmetry and the local κ-symmetry,

in the sense that both transform the singlet fermions θI . Even if the supersymmetry

generators obey eq. (2.19) exactly and without reference to the embedding of the membrane

world-volume, this ceased to be true once κ-symmetry is gauge fixed. When some gauge

is chosen that involves θI (which any gauge has to), compensating gauge transformations

have to be introduced in order that the redefined supersymmetry generator transforms

within the constraint surface defined by the gauge choice. Then, due to the commutation
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relation (3.14), the nilpotency relation (2.19) only holds on-shell, i.e., modulo fermionic

equations of motion.

3.3 Topological membranes

In order to restrict the supermembrane theory to a topological theory, we want to promote

the two supercharges QI to BRST operators, and let the theory be defined by cohomology of

these. Unlike the theory of topological strings, where one in a conformal gauge has a split in

left- and right-movers (or holomorphic and anti-holomorphic dependence of the world-sheet

coordinate), there is no such natural split, and one has to treat the two supersymmetry

generators simultaneously.

We have already shown how the invariance of the supermembrane action works. If the

theory is to become a cohomological field theory, it is important that the action not only is

invariant, but also trivial in cohomology, i.e., BRST-exact. This means that there should

exist a functional ΣI with

QIΣ
J = δJ

I S . (3.16)

The simple form of the supersymmetry generators assures that this is achieved by ΣI =
∫

LθI , if QIL = 0 locally on the world-volume, and the action is then invariant without

resort to partial integration. We have demonstrated earlier that this is actually the case,

due to the fact that a gauge can be chosen where the 3-form C is independent of θ. The

proof of this statement involved the explicit construction of the superspace 3-form, which

used flat space expressions, but should be possible to generalise.

The “pre-action” ΣI is defined modulo Q-exact terms, encoded in QIΞ
JK = δK

I ∆ΣJ ,

which can be seen as “gauge transformations” in the complex. It is important that other

gauge symmetries in the model are consistent with this one, in the sense that ΣI must be

invariant modulo terms of this trivial type. This applies especially to κ-symmetry, which

is not manifest. Indeed, the fact that the κ-variation of L is a total derivative ensures that,

with the above form of ΣI , δκΣI is trivial. This property becomes essential e.g. when one

wants to perform a gauge-fixing of a part of κ-symmetry that transforms θI . Then, QIhas

to be supplemented with a compensating gauge transformation, which can not be allowed to

interfere with cohomology. Consider an infinitesimal “deformation” of the supersymmetry

generator by a κ-transformation, Q̃I = QI + MA
I tA, where tA are generators of some

gauge transformations labelled by the index A, and MA
I are infinitesimal parameters. If

QIΞ
JK
A = 1

2δK
I QLΞJL

A = δK
I tAΣJ as above, one can define Σ̃I = ΣI − MA

J ΞIJ
A , and still

have Q̃IΣ̃
J = δJ

I S. A finite deformation, as when gauge-fixing is performed, will require

the discussion to be extended to an infinite sequence of descent equations.

An interesting parallel to topological string theory can be observed when one tries to

construct a ΣI that is “as κ-invariant as possible”, order by order in fermions. An Ansatz

would, apart from the expression above, include terms that are independent of θ,

ΣI =

∫

d3ξ
√

gθI +

∫

((C + kΩ)θI + RI) . (3.17)
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Here, R is a 3-form with QIR = 0, and the the term containing Ω modifies eq. (3.16) with

a purely topological term,

QIΣ
J = δJ

I (S + kΩ) . (3.18)

Using elements of the calculation yielding κ-symmetry of the action, one finds

δκΣI =

∫

iκ((?1 + C + kΩ)∧dθI + dRI) . (3.19)

Invariance at lowest order can be achieved if k = 1 and RI
abc = −?σabcαψαI , in which

case the lowest order variation becomes
∫

2(Π+κI)0 = 0, which is seen from the decom-

position (3.13) of the projection matrix in G2 tensors. However, exact cancellation to all

orders is not possible by addition of further terms in RI . Again, of course, the non-zero

terms in the variation are trivial. The relation (3.18), with k = 1, is the exact correspon-

dence to the fact that in topological string theory, the BRST-trivial object is the action

plus the integral of the Kähler form, which is obtained from Ω on dimensional reduction.

4. Topological membranes in topological M-theory

We have shown how a supermembrane in seven dimensions with euclidean signature can be

turned into a topological theory. It would be interesting to study the quantum mechanical

properties of the topological membrane theory, and investigate to what extent the quantum

theory reproduces topological M-theory. The best framework for doing this would be one

including a proper set of auxiliary fields that makes the symmetries of the theory valid

of-shell. It seems much harder to reach such a formulation in the present situation than

for the usual world-sheet supersymmetric sigma model on which topological string theory

is based.

It is clear that associative cycles [17] are solutions of the theory. These are calibrating

cycles for the 3-form Ω. An easy way to see that associative cycles are supersymmetric is

to partially fix gauge for κ-symmetry by demanding θI = 0. The supersymmetry, including

a compensating κ-transformation, on the remaining fermions becomes

δεψ
αI = − zα

1 − y
εI , (4.1)

where y = 1
6
√

gεijkσijk, zα = 1
6
√

gεijk?σijkα. A configuration is supersymmetric if zα = 0,

giving the possibilities y = ±1, and if eq. (4.1) is to be well behaved only y = −1 is possible.

With a non-zero Wess-Zumino term in the membrane action we are actually dealing with

a generalised calibration, see e.g. refs. [18, 19]. It is however of a trivial type since the

bosonic 3-form is closed and hence the Wess-Zumino term contributes equally to all cycles

minimal or not.

Looking for local observables seems more problematic. In the A-model, considering col-

lapsed, point-like, world-sheets is straightforward, and cohomology of the BRST-operator

is directly translated into cohomology for a de Rahm-complex for the Calabi-Yau manifold.

In the present situation, we have to take κ-symmetry into account, with its projection that

depends on the orientation of the embedded world-volume. We have not yet been able to
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address this question in a constructive way, and thus can not present a direct connection

between observables for the topological membrane and Hitchin’s theory.

It is clear that a double dimensional reduction of the topological membrane produces

the strings of the topological A-model, although formulated in a space supersymmetric

rather than world-sheet supersymmetric way. Associative cycles will map to holomorphic

cycles. For the same reasons as above, we are not able to make a corresponding statement

concerning local observables (although investigating this question for the A-model starting

from a Green-Schwarz formulation might give some insight)3. A direct reduction will of

course give A-model 2-branes. These are not D-branes. An A-model D2-brane must be

represented by a 3-brane in D = 7, since the boundary of an open membrane winding the

compactified circle also winds. This, along with the existence of the dual form ?Ω, makes

it clear that 3-branes, on which the membranes may end, are needed in topological M-

theory. The 3-branes, living on the same superspace, should support a world-volume 2-form

potential, with a 3-form field strength. This field, that can be dualised to a scalar, accounts

for the correct matching of bosonic and fermionic degrees of freedom. An interesting

observation, on which we would like to elaborate in the future, is that although (γabc)α̂β̂ is

symmetric in spinor indices, and thus cannot be used in a dimension-0 component of the

5-form field strength for the 4-form potential coupling to the 3-brane, there exists a closed

5-form constructed from G2-invariant tensors.

It would be a great step forward to find a good set of auxiliary fields for the membrane

theory, that would allow for an off-shell formulation, and hopefully make quantisation more

manageable. Although this, in general backgrounds, would probably be to ask too much,

it is maybe not unrealistic to hope that the G2 structure would help. It turns spinors into

scalars and vectors, and even κ-symmetry can be parametrised covariantly, as in eq. (3.15).

One possible starting point could be the construction of a super-diffeomorphism algebra

on the world-volume containing an SL(2) doublet of fermionic vector generators, similar to

what one obtains after gauge-fixing the scalar part of κ-symmetry.

Although we do not claim to have a microscopic definition of topological M-theory, we

hope that the present work represents a step in that direction. Maybe it can be a point

of departure for a refined formulation, where urgent questions, such as the connection

to Hitchin’s theory of G2 moduli, can be answered. Such a formulation might also give

valuable insight into the question of how membrane functional integrals are performed

(see e.g. the discussion in ref. [7]). Earlier experience of instanton counting on compact

submanifolds have shown that naive counting of membrane configurations may lead to

incorrect results [24, 25], and a proper theory of topological membranes may be a place

where such issues can be addressed in a precise manner.

A. Some details on G2 tensors

We use e.g. the expressions σa,a+1,a+3 = 1 (where indices are counted modulo 7), giving

?σa,a+1,a+2,a+5 = 1. ?σ is the octonionic associator, [ea, eb, ec] = (eaeb)ec − ea(ebec) =

3Such a formulation will be possible directly in six dimensions for both the A- and B-models. One has

a priori an SL(2) doublet of complex supersymmetries, of which different real combinations may be chosen.
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−2?σabcded. Useful relations between octonionic structure constants:

σacdσb
cd = 6δab ,

?σabdeσc
de = −4σabc ,

σabcσ
abc = 42 ,

σabeσcd
e = 2δab

cd − ?σabcd ,

σabf?σcde
f = 6δ

[a
[c σb]

de] ,

?σabcg?σdef
g = 6δabc

def − 3δ
[a
[d?σbc]

ef ] − 3σ[ab
[dσc]

ef ] ,

?σabef?σcd
ef = 8δab

cd − 2?σabcd .

(A.1)

The last of these relations can be used to find projections on the 7- and 14-dimensional

vector spaces in 21 → 14 ⊕ 7 under Spin(7) → G2 as

Π(14)
ab

cd =
2

3
(δcd

ab +
1

4
?σab

cd) ,

Π(7)
ab

cd =
1

3
(δcd

ab −
1

2
?σab

cd) .

(A.2)

It can be noted that σabc, seen as a set of seven matrices (σa)bc, are in the 7-dimensional

subspace: (Π(14)σa)bc = 0, and actually provide a basis for it.

Consider the split of the octonions O as H ⊕ H, and write x = ξ + jη, where ξ and η

are quaternions and j is an imaginary unit orthogonal to H. The octonionic multiplication

is encoded in terms of the quaternions by the multiplication rules ja = a∗j, (ja)b = j(ba)

for all a, b ∈ H. Then

xx′ = ξξ′ − η′η∗ + j(ξ∗η′ + ξ′η) . (A.3)

We want to examine which of the rotations in SO(3) × SO(4) acting on imaginary octo-

nions and preserving this split are automorphisms, i.e., belong to G2. The rotations are

parametrised as ξ → σ∗ξσ, η → e∗ηe′, where all three parameters are unit quaternions.

A direct check with eq. (A.3) yields that the necessary condition for this to be an auto-

morphism is σ = e, verifying that the common subgroup of this SO(3) × SO(4) and G2 is

SU(2)×SU(2), and that the twisting — the identification of world-volume SO(3) rotations

with a transverse SU(2)—takes place.

The remaining part of the G2 algebra transforms as (4, 2), and is realised infinitesimally

with a “vector-spinor” hi, i = 1, 2, 3, in H
⊗3 with eihi = 0. The transformations are

δξ = eiηh∗
i , δη = eiξhi (= −2ξihi), and the derivation property may be checked explicitly.

The split into two quaternions can also be seen as a split in four complex numbers

with imaginary unit j. With x = z0 + ziei, the multiplication table is xx′ = z0z
′
0 − ziz̄′i +

(z0z
′i + ziz̄′0 + εijkz̄j z̄

′
k)ei, in which SU(3) ⊂ G2 is a manifest automorphism. The rest

of the automorphisms are parametrised by λi, λ̄i in 3 ⊕ 3̄, acting as δz0 = λiz̄i − λ̄iz
i,

δzi = λi(z0 − z̄0) + εijkλ̄j z̄k.

B. 3-forms in superspace

The field strength G is related to the potential C in the conventional way

G = dC ⇒ GABCD = 4δ[ACBCD) + 6T
F

[AB C|F |CD) , (B.1)
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where the indices in capital letters are the entire superspace indices. The bracket [∗)
denotes a graded symmetrisation. Using the fact that in a flat background, the only non-

vanishing components of GABCD and T C
AB are Gab,γ̂I,δ̂J = −2εIJ(γab)γ̂δ̂ and T

c

α̂I,β̂J
=

2εIJ (γc)α̂β̂, respectively, the equations (B.1) can be solved for CABC . The solution we are

interested in has the property that the only coordinate dependence is through the seven-

dimensional fermionic coordinates ψαI . By looking at the group representation structures

of the different components of C, we make an Ansatz for the potential using G2 invariants.

Due to invariance under the gauge transformations δC = dΛ, some of the parameters in

the Ansatz are free, and set to zero for simplicity. We use flat space or work to lowest

order in curvatures. The potential we have found can be written as C(k) = C + kΩ, where

Cabc = 0

Cab,0I = εILψδL2σabδ

Cab,αI = εILψδL(2δab
αδ + ?σabαδ)

Ca,0I,0J = εI(Lε|J |M)ψ
δLψεM (−4)σaδε

Ca,αI,0J = εI(Lε|J |M)ψ
δLψεM

(

−4δaα
δε − 2

3
? σaαδε

)

Ca,αI,βJ = εI(Lε|J |M)ψ
δLψεM

(

−4

3
σaδεδαβ − 8

3
σaαδδβε

)

C0I,0J,0K = εI(Lε|J |Mε|K|N)ψ
δLψεMψφN8σδεφ

CαI,0J,0K = εILεJ(Mε|K|N)ψ
δLψεMψφN

(

−8

3

)

? σαδεφ

CαI,βJ,0K = εILεJMεKNψδLψεMψφN

(

8

3
δαβσδεφ + 8σαεφδβδ

)

CαI,βJ,γK = εILεJMεKNψδLψεMψφN8δαφ ? σβγδε (B.2)

Ωabc = σabc

Ωab,0I = εILψδL(−2)σabδ

Ωab,αI = εILψδL(−2δab
αδ + ?σabαδ)

Ωa,0I,0J = εI(Lε|J |M)ψ
δLψεM4σaδε

Ωa,αI,0J = εI(Lε|J |M)ψ
δLψεM (4δaα

δε + 2 ? σaαδε)

Ωa,αI,βJ = εI(Lε|J |M)ψ
δLψεM

(

8

3
δaασβδε −

4

3
σaδεδαβ − 8

3
σaαδδβε

)

Ω0I,0J,0K = εI(Lε|J |Mε|K|N)ψ
δLψεMψφN (−8)σδεφ

ΩαI,0J,0K = εILεJ(Mε|K|N)ψ
δLψεMψφN4 ? σαδεφ

ΩαI,βJ,0K = εILεJMεKNψδLψεMψφN

(

−8

3
δαβσδεφ − 56

3
σαεφδβδ

)

ΩαI,βJ,γK = εILεJMεKNψδLψεMψφN8δαφ ? σβγδε (B.3)

and k is a free parameter. Symmetrisation in composite fermionic indices is implicitly

understood in eqs. (B.2) and (B.3). Eq. (B.3) can of course be obtained directly (modulo
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an exact form) by expanding the bosonic differentials in Ω = 1
6dxp∧dxn∧dxmep

cen
bem

aσabc

using the vielbeins of eq. (2.16).

The fact that θI are G2-invariant should make it clear that the proof of local θ-

independence of the lagrangian, on which the BRST-exactness relies, may be generalised

to curved backgrounds, involving modifications of the explicit forms of the supervielbeins

of eq. (2.16) and the super-3-forms of eqs. (B.2) and (B.3).
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1. Introduction and conclusions

The purpose of this paper is to formulate and examine the stability conditions (generalised

calibration relations) for M5-branes in the topological M-theory formulated in ref. [17] (see

also refs. [9, 39]). The stability conditions, which have been discussed from a world sheet

point of view for D-branes in string theory in ref. [25] and for topological string theory in

refs. [26, 8, 27], can also be seen as a direct consequence of calibration [28] or demanding

supersymmetry [29, 7, 30, 31]. As is the case e.g. for the D4-brane in the A-model, the

stability conditions demand non-vanishing world-volume field strength. Here we derive the

corresponding stability conditions for the M5-brane in topological M-theory and its close

relative the NS5-brane in the topological A-model. This is achieved using the κ-symmetric

top-form formulation applied to the physical M5-brane in ref. [1]. In this approach there

is in the 7-dimensional G2 superspace, apart from the super-4-form field strength, also

a super-7-form field strength obeying the appropriate Bianchi identities, but without a

bosonic component.

The M5-brane is, apart from the topological membrane constructed in ref. [2] (for a

different approach see ref. [23, 32]), the only brane present in topological M-theory.1 Their

direct and double dimensional reductions on a circle to a Calabi-Yau space give all NS-

branes and D-branes in the A-model save for the isotropic D-branes with one-dimensional

world sheets introduced in ref. [27] which should probably be viewed as Kaluza-Klein

modes.

We proceed to demonstrate how the direct reduction of the M5-brane on CY×S1 gives

the NS5-brane in the topological A-model introduced in ref. [18, 19] (see refs. [11, 33] for a

review of topological string theory), whose world-volume inherits the dynamical Kodaira-

Spencer deformation theory [34] from the M5-brane. The related connection between

the M5-brane instantons in the physical M-theory and Kodaira-Spencer theory was first

pointed out in ref. [7]. The double reduction will give the D4-brane, with the stability

1
G2 target spaces occur also in the topological string constructed in ref. [3]; its relation to topological

M-theory is, however, unclear to us.

– 1 –
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conditions formulated by Kapustin and Li [8] (although that correspondence is not shown

in the present paper). The NS5-brane provides a precise description of how duality between

Kähler gravity [22] and Kodaira-Spencer theory [21], describing deformations of the Kähler

and complex structures, respectively, is realised in the A-model as a “string-fivebrane

duality” [35]. A forthcoming paper [24] will extend the discussion to the full sets of D-

branes and RR fields in the A- and B-models.

Related conjectures have been made earlier. In ref. [10] Dijkgraaf, Verlinde and Vonk

used T-duality to relate the partition function on coinciding NS5-branes (with linear self-

duality) in the A-model to a B-model calculation. S-duality, relating the A- and B-models

on the same manifold, for topological strings, was conjectured on a twistorial CY by Neitzke

and Vafa [11], and clarified, mainly using D-instantons, by Nekrasov, Ooguri and Vafa in

ref. [12], where the existence of the topological NS5-brane was also pointed out. The

relevance of the calculation of ref. [10] in this context was observed in ref. [36]. Gerasimov

and Shatashvili, in their paper pointing towards a topological M-theory [9], relate Kodaira-

Spencer theory to a 7-dimensional theory. Mariño et al. [7] derive conditions forD = 11 M5-

branes wrapping a Calabi-Yau space to preserve supersymmetry, and derive the Kodaira-

Spencer equation. We comment to the relation of the present paper to the latter work in

section 3.

2. Topological M5-branes

The reduction of topological M-theory on a circle contains the A-model [17]. The presence

in the A-model of a D4-brane and an NS5-brane implies that there has to be a 5-brane in

topological M-theory. The purpose of this section is to derive, using superspace techniques

and κ-symmetry, the stability conditions for this topological M5-brane, and to demonstrate

the consistency between these conditions and the non-linear self-duality for the 3-form field

strength on the brane. Open topological membranes have boundaries on the 5-brane, just

as fundamental strings end on D-branes and D-branes on NS5-branes in the A-model.

As in ref. [2], where topoloical membranes were considered, the background for the

branes is described by superspace geometry. This approach was motivated by the absence

of “spinning” supermembranes. In such a formulation there is no need for explicitly per-

forming a twist to obtain the representations of the fields in the topological model; the

“twisting” is automatically implied by the G2 holonomy. The relevant superspace is that

of minimal (euclidean) 7-dimensional supergravity, with 16 real fermionic directions and

R-symmetry group SL(2). The background is not treated as dynamical. The formalism

makes the connection to M-theory and its instantons direct. It is possible to show that

the 7-dimensional Hitchin model corresponding to deformations of the G2 structure is ob-

tained by considering the cohomology of the surviving supercharge in this half-maximal

supergravity theory, and we will do this in detail in a forthcoming publication [24].

Let us begin with some details and conventions concerning the superspace background.

The number of fermionic coordinates, 16, is half of that superstring theory or M-theory, and

appropriate for the formulation of a topological 7-or 6-dimensional theory. The dimension-0

– 2 –



J
H
E
P
0
6
(
2
0
0
8
)
1
0
0

components of the torsion and the 4-form field strength are

T a
αI,βJ = 2εIJγ

a
αβ , (2.1)

Hab,αI,βJ = 2εIJ (γab)αβ . (2.2)

The real γ-matrices, which can be viewed as imaginary unit octonions multiplying octo-

nionic spinors of Spin(7), square to −1. For details on γ-matrices etc., we refer to the

appendix and to ref. [2].

Even though there is no bosonic 7-form field strength in the supergravity multiplet,

there is a 7-form field strength on superspace, namely

Habcde,αI,βJ = 2εIJ(γabcde)αβ ,

with the Bianchi identity dH + 1
2H ∧ H = 0, following from the 7-dimensional Fierz

identities. This presence of a superspace field strength that does not contain a purely

bosonic part, or, more precisely, the absence of an invariant cohomologically non-trivial

6-form to calibrate the 6-cycle of the brane world-volume, is symptomatic for the cases of

high-dimensional branes where non-vanishing world-volume field strength is demanded by

the generalised calibration (stability) conditions.

We write an action for the 5-brane in complete analogy with ref. [1], the only difference

being that the signature of the world-volume is euclidean,

S =

∫
d6ξ

√
gλ

[
1 + Φ(F ) + (⋆F)2

]
,

where the field λ is a Lagrange multiplier and Φ a functional to be determined. F is the

modified 6-form field strength of a 5-form potential A and the 3-form F is the field strength

of the 2-form A:

F = dA− C , (2.3)

F = dA− C − 1

2
A ∧H (2.4)

where the pullbacked superfield potentials C and C provide the coupling to the background.

These field strengths are constructed with background gauge invariance as guideline. The

Bianchi identities are dF = −H, dF = −H + 1
2F ∧ H. The action has of course to be

supplemented by some self-duality condition. The advantage of actions of this type [13 –

15, 1, 16], with world-volume fields corresponding to all background fields the brane couples

to, is (apart from complete control over background couplings and possible boundary con-

ditions for lower-dimensional branes) that consistency of the non-linear self-duality relation

is restrictive enough that demanding κ-symmetry gives its explicit form, which can be ob-

tained without a priori specifying the function Φ. At the same time, the corresponding

projector on κ is derived, and Φ can be constructed.

We define Kijk ≡ ∂Φ
∂Fijk

. The equations of motion for A, A and λ are

d(λ⋆K) − λ(⋆F)H = 0 , (2.5)

d(λ⋆F ) = 0 , (2.6)

1 + Φ + (⋆F)2 = 0 , (2.7)

– 3 –
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respectively. These must be consistent with the Bianchi identities, thus, combining the

first two equations of motion with the Bianchi identity dF = −H we find K = (⋆F) ⋆ F .

By varying the action using δκF = −iκH and δκF = −iκH + 1
2F ∧ iκH and inserting the

relation between K and the field strengths, the projection matrix on κ and the non-linear

self-duality of the field strengths are obtained. We leave out the details, since they are

in close parallel to ref. [1], and state the result. For the action to be invariant under the

κ-symmetry the parameter κ must satisfy (1 − Γ)κ = 0, with

Γ =
i

N
√
g
εijklmn

[
1

6!
γijklmn +

1

2(3!)2
Fijkγlmn

]
(2.8)

and N ≡
√

1 + Φ. The self-duality relation is

iN⋆F ijk = N2Fijk +
1

2
q[i

lFjk]l , (2.9)

where the sign choice ⋆F = −i
√

1 + Φ = −iN has been used. Here we have introduced

the symmetric matrix kij = 1
2Fi

klFjkl and the traceless q = k − 1
6tr k. Inserting eq. (2.9),

together with the Bianchi identities, into the equations of motion we find Φ = −1
6tr k −

1
24 tr q2 + 1

144 (tr k)2. On the other hand, contracting the self-duality relation (2.9) with F ijk

gives tr q2 = −24N2(1−N2), which by representation theory turns out to be the stronger

relation q2 = −4N2(1 −N2)11. The equation of motion for the Lagrange multiplier λ now

becomes

N2 = 1 − 1

12
tr k . (2.10)

This relation follows in fact also from Γ2 = 11. Dualising the self-duality relation (and using

all the known relations between N , k and q as well as “⋆(qF ) = −q⋆F”) gives consistency.

After elimination of the top-form F , we may write an action of a more standard type

giving the same equations of motion,

S =

∫
d6ξ

√
g(1 + Φ) + i

∫ (
C − 1

2
F ∧ C

)
. (2.11)

Although this type of action (supplemented with some self-duality2) is less convenient as

a starting point, the calibration relations we derive below has a clearer interpretation as

relating kinetic and Wess-Zumino terms, as usual.

We are now ready to consider this M5-brane in a manifold with G2 holonomy, and look

for 6-cycles that, together with the appropriate values of F , preserve supersymmetry. There

is a covariantly constant spinor ηI (for each value of the SL(2) index I), which we take

to be the real part of the octonion. We expect the global supersymmetry to play the rôle

of BRST charges, in analogy with the situation for the topological membrane of ref. [2].

In that reference it was shown that the 3-form field strength, to which the topological

membrane was coupled, can be made invariant under local supersymmetric transformations

by an appropriate gauge choice. This observation is then used to show that the action is

2Note that the implementation of the self-duality condition [1] can only be done on the level of the

partition function, see [6, 4, 5].
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BRST-exact. We expect that the same can be shown for the 6-form field strength of the

M5-brane, so that the action (2) is not only BRST-invariant (supersymmetric) but also

BRST-exact, however the calculations involved would be quite extensive.

Using the explicit expressions for γ-matrices in terms of G2-invariant tensors we have

the action of Γ on the covariantly constant spinor:

Γ

[
1

0

]
=

i

N
√
g
εijklmn

[ 1
2(3!)2

Fijkσlmn

− 1
6!
√

gεijklmnδ
α
7 + 1

2(3!)2Fijk⋆σlmnα

]
, (2.12)

where we for convenience have used a local basis where the direction dx7 is normal to the

world-volume. The tensor σ is the covariantly constant G2-invariant 3-form. The criterion

for supersymmetry is that (1−Γ)η = 0, which yields the stability conditions for the brane:

i

2
F ∧ f∗σ = NVol6 , (2.13)

1

2
F ∧ ⋆σ = −Vol7 , (2.14)

F ∧ ivf∗⋆σ = 0 , (2.15)

where Vol6 and Vol7 are the world-volume and space volume forms, respectively, and

v is any world-volume vector. In order to solve these relations locally, and check their

consistency, we parametrise the tensors using the local breaking of G2 to SU(3), and use

the standard relations σ = Re Ω + ω ∧ dx7, ⋆σ = −ImΩ ∧ dx7 − 1
2ω ∧ ω (see appendix

for conventions). At the moment this is not necessarily to be seen as the direct reduction

to an A-model NS5-brane, although the local parametrisation suits this case. The SU(3)-

covariant version of the stability conditions is

i

2
F ∧ f∗Re Ω = NVol6 , (2.16)

1

2
F ∧ f∗Im Ω = Vol6 , (2.17)

F ∧ f∗ω = 0 . (2.18)

From the conditions (2.18) it follows immediately that Fabc = −1+N
4 Ωabc, Fāb̄c̄ = −1−N

4 Ω̄āb̄c̄

(we suppress explicit pullbacks from now on), and that gbc̄Fabc̄ = 0 and gab̄Fab̄c̄ = 0 (the

last two equations leave only the representations 6̄ out of 6̄⊕3 in F(2,1) and 6 out of 6⊕3̄ in

F(1,2)). It is not a priori clear that the stability conditions, derived from the G2 structure,

are consistent with the self-duality relations. We will however show that this is indeed

the case, and that, given the value of F(3,0) from the stability condition, the self-duality

relation dictates exactly the value of F(0,3) given after eq. (2.18).

It is convenient to parametrise the non-linearly self-dual 3-form F in terms of a linearly

self-dual one, h. It is straightforward to show that hijk = Fijk + 1
2N(1+N)qi

lFjkl satisfies

i⋆h = h. Forming the matrix rij = 1
2hi

klhjkl, the relations above give r = 2
N(1+N)q, so the

relation between h and F becomes hijk = mi
lFjkl, where m = 11+ 1

4r. Inverting the matrix

m, m−1 = (1+N)
2 (11 − 1

4r), finally gives the explicit parametrisation of F in terms of h,

Fijk =
1 +N

2

(
hijk − 1

4
ri

lhjkl

)
, (2.19)

– 5 –
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where the scalar N now is defined by r2 = −161−N
1+N 11.

The general Ansatz for h in terms of SU(3) tensors contains a singlet in h(3,0) (ξ), a

triplet 3 in h(2,1) and the representation 6 in h(1,2) (u). It is clear that the triplet generates

triplets in F violating the last equation in (2.18), so we set it to zero. The Ansatz becomes

habc =
1

2
ξΩabc , (2.20)

habc̄ = 0 , (2.21)

hab̄c̄ =
1

2
ua

d̄Ω̄b̄c̄d̄ , (2.22)

hāb̄c̄ = 0 . (2.23)

The matrix r has the non-vanishing components rab = 4ξua
c̄gbc̄, rāb̄ = 1

4Ω̄ā
cdΩ̄b̄ēf̄uc

ēud
f̄ .

Calculating F from this Ansatz gives immediately Fabc = 1+N
4 ξΩabc, so ξ = 1 by the

stability conditions. We have tr r2 = 96det u (note that detu = 1
8·3! Ω̄

abcΩ̄āb̄c̄ua
āub

b̄uc
c̄),

and thus detu = 1−N
1+N . The complete non-linearly self-dual tensor is

Fabc = −1 +N

4
Ωabc , (2.24)

Fabc̄ =
1 +N

4
Ω̄c̄d̄ēua

d̄ub
ē (2.25)

=
1 −N

4
Ωabd(u

−1)c̄
d ,

Fab̄c̄ =
1 +N

4
ua

d̄Ω̄b̄c̄d̄ , (2.26)

Fāb̄c̄ = −1 +N

4
Ω̄āb̄c̄ det u

= −1 −N

4
Ω̄āb̄c̄ . (2.27)

We notice that the value of F(0,3) consistent with the stability conditions is exactly the one

that follows from non-linear self-duality. This concludes the check of algebraic consistency

of the stability conditions (2.15) with the self-duality relation (2.9), and provides an explicit

parametrisation for the following section.

3. NS5-branes in the A-model and Kodaira-Spencer theory

So far, the analysis is completely local and algebraic. We will show that the equation

of motion (or equivalently, the Bianchi identity) for the 3-form is the Kodaira-Spencer

equation. We will now suppose that the M5-brane actually winds a Calabi-Yau space, so

that it becomes an NS5-brane in the A-model. The components of dF = 0 are (we assume

that the RR field strengths vanish)

(dF )(1,3) : ∂aN − ∂̄b̄[(1 +N)ua
b̄] = 0 , (3.1)

(dF )(2,2) : Ω̄acd∂c[(1 +N)ud
b̄] + Ωb̄c̄d̄∂̄c̄[(1 −N)(u−1)d̄

a] = 0 , (3.2)

(dF )(3,1) : ∂̄āN + ∂b[(1 −N)(u−1)ā
b] = 0 . (3.3)

– 6 –



J
H
E
P
0
6
(
2
0
0
8
)
1
0
0

It is straightforward to show, using dN = −1
2(1−N2)tr (u−1du), that the first two equations

imply the third. The first equation can be seen as a gauge-fixing condition, while the second

one reads

0 = ∂[a[(1 +N)ub]
c̄] + ∂̄d̄[(1 +N)u[a

d̄ub]
c̄] (3.4)

= (∂[aN − ∂̄d̄[(1 +N)u[a
d̄])ub]

c̄ + (1 +N)(∂[aub]
c̄ − u[a

d̄∂̄d̄ub]
c̄) , (3.5)

which, using the gauge-fixing condition, implies that u fulfills the Kodaira-Spencer equation

∂[aub]
c̄ − u[a

d̄∂̄d̄ub]
c̄ = 0 , (3.6)

corresponding to the deformation of the complex structure encoded in the differential ∂′ =

dza(∂a − ua
b̄∂̄b̄).

The non-linearly self-dual closed 3-form F is exactly the deformation of the form 1
2Ω

defining the complex structure. It will be linearly self-dual under the deformed metric. It

is possible to be quite explicit about the deformed metric G, such that i⋆GF = F . From

the form of the non-linear self-duality relation, it is clear that the metric G satisfies (using

that the antisymmetry of G[i
lFjk]l is automatic provided G is expressible in terms of F )

G3

√
detG

= N11 − 1

2N
q , (3.7)

where contractions are made with the undeformed metric (which we for calculations have

taken to be locally 11). The right hand side has unit determinant. The expressions become

more transparent if we use the normalised matrix s = 1
2N

√
1−N2

q with s2 = −11. We then

have (detG)−1/2G3 = N11 −
√

1 −N2s = e−sθ, where θ is defined by cos θ = N . The

deformed metric is thus defined, up to a scale factor, by

(detG)−1/6G = e−
1

3
sθ . (3.8)

It will of course be hermitean only with respect to the deformed complex structure.

We would like to comment on the relation to the treatment of the 11-dimensional M5-

brane instantons winding on CY spaces of ref. [7]. The projection matrix on the κ parameter

stated there does not contain the actual Γ of eq. (2.8), but only its linearisation in h, which is

the projection arising from a superembedding treatment [37]. It was shown in ref. [38] how

the two apparently different projections “1
2(1−Γ)” are related, and that they both project

on the fermionic gauge degrees of freedom. Here we start from a topological M5-brane,

in a superspace with 7 bosonic coordinates and half the number of fermions compared to

M-theory, whose presence in topological M-theory is necessitated by the existence of D4-

and NS5-branes in the A-model.

A. Conventions

In 7 euclidean dimensions, we use γ matrices that satisfy

{γa, γb} = −2δab , (A.1)
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where the minus sign is necessary for real γ-matrices. The spinors are real ψI
α, where

α = 1, . . . , 8 and the I = 1, 2 is an SL(2, R) R-symmetry index [2].

For the 3-form σ, we use σ124 = 1 and cyclic. On the CY space, with 3 complex

dimensions, we use locally Ωabc = εabc, so that Ω ∧ Ω̄ = 8iVol6. We have gab̄ = 1
2δab̄

and ωab̄ = i
4δab̄, so that ω ∧ ω ∧ ω = −6Vol6. The relations between 7-dimensional and

6-dimensional forms are

σ = Re Ω + ω ∧ dx7 , (A.2)

⋆σ = −Im Ω ∧ dx7 − 1

2
ω ∧ ω . (A.3)

The real 7-dimensional γ matrices encoded in the left multiplication of a spinor λ =

λα̂eα̂ by an imaginary unit ea are

(γa)αβ = σa
αβ , (A.4)

(γa)0α = δa
α . (A.5)

The Clifford algebra is spanned by the so(7)-invariant tensors δα̂
β̂
, (γa)α̂

β̂
, (γab)α̂

β̂
and

(γabc)α̂
β̂
, of which the first and last are symmetric and the second and third antisymmetric

matrices. The decomposition in terms of G2-invariant tensors is

δα̂
β̂

=

[
1 0

0 δα
β

]
, (A.6)

(γa)α̂
β̂

=

[
0 δa

β

−δaα σaα
β

]
, (A.7)

(γab)α̂
β̂

=

[
0 −σab

β

σabα − ⋆ σabα
β − 2δab

αβ

]
, (A.8)

(γabc)α̂
β̂

=

[
σabc − ⋆ σabc

β

− ⋆ σabcα 6δ
[a
(ασ

bc]
β) − δα

βσ
abc

]
. (A.9)
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Abstract
We discuss various aspects of the dimensional reduction of gravity with the
Einstein–Hilbert action supplemented by a lowest-order deformation formed as
the Riemann tensor raised to powers two, three or four. In the case of R2 we give
an explicit expression, and discuss the possibility of extended coset symmetries,
especially SL(n+1,Z) for reduction on an n-torus to three dimensions. Then we
start an investigation of the dimensional reduction of R3 and R4 by calculating
some terms relevant for the coset formulation, aiming in particular towards
E8(8)/(Spin(16)/Z2) in three dimensions and an investigation of the derivative
structure. We emphasize some issues concerning the need for the introduction
of non-scalar automorphic forms in order to realize certain expected enhanced
symmetries.

PACS numbers: 04.50.−h, 04.60.Cf, 11.30.Ly, 11.30.Na

1. Introduction and summary

M-theory, when compactified on an n-torus, is conjectured to have a global U-duality symmetry
En(n) in the low-energy limit described by maximal supergravity in d = 11 − n dimensions.
It is known from string theory that this continuous symmetry is broken in the quantum theory
to a discrete version En(n)(Z). The massless scalars in the compactified theory belong to
the coset En(n)(Z)\En(n)/K(En(n)), where K(En(n)) is the (locally implemented) maximal
compact subgroup of the split form En(n). When d � 3, no local massless bosonic degrees
of freedom remain except the scalar ones. It has been proposed that it may even be possible
to define M-theory itself as a theory on the coset obtained when going to d = 1 (E10) or
d = 0 (E11), although it is unclear whether or not such a formulation incorporates degrees of
freedom beyond supergravity.

Some aspects of these discrete symmetries are well investigated. This primarily concerns
calculations in the cases with low dimension of the torus. For n < 3, non-perturbative string
theory results are obtained from loop calculations in D = 11 supergravity. For n � 3 one
expects that there will also be contributions from membrane instantons and for n � 6 from
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five-brane instantons. This makes results for higher-dimensional tori difficult to obtain. On
the other hand, one may turn the argument around and ask what kind of restrictions U-duality
puts on the possible quantum corrections of the theory. It is convenient to work in the massless
sector, obtained by dimensional reduction, and let quantum effects manifest themselves in an
effective action, which will then contain higher orders of curvatures (and other fields), i.e.,
higher derivative terms.

Some partial results have been obtained by investigating the general structures of higher
derivative terms to determine if they can be made to fit into something U-duality invariant.
For example, it has been shown that the Riemann tensor in D = 11 comes only in powers
3k + 1, where k is an integer. The purpose of the paper is to initiate a more detailed analysis
aiming at actually checking the invariance. The scope of the paper is modest; we restrict
our attention to the D-dimensional gravitational sector alone. Then we set out to form
higher-derivative corrections to the Einstein–Hilbert action in the form of second, third and
fourth powers of the Riemann tensor. The full U-duality group is not accessible with gravity
only, but on compactification to d = 3 there still has to be an enhancement from SL(8) to
SL(9), which is the subgroup of E8(8) of which the gravitational scalars form a coset (more
generally, on reduction from n + 3 to 3 dimensions, we expect an enhancement from SL(n) to
SL(n + 1)). Some aspects about the general structures of the higher curvature terms at hand
are investigated, before we turn to examining chosen subsets of terms and thereby extracting
concrete information concerning the possibility of implementing SL(n + 1). We draw some
definite conclusions about the necessity of introducing transforming automorphic forms, and
show that they can always be chosen to reproduce the results in the dimensionally reduced
theory. The interpretation of the dimensionally reduced actions is not as U-duality invariant
object per se, but as properly taken large volume limits of U-duality invariant actions involving
transforming automorphic forms. The investigation is very much a partial one, and we point
out some further directions, such as a more complete expansion in fields, and a concrete
examination of cosets and discrete groups based on exceptional groups.

We refer to [1, 2] for an overview of U-duality. Topics on E10 and E11 as fundamental
symmetries are dealt with in [3–6] and references therein. Recent developments concerning
the connections between U-duality and higher curvature terms are found in [7–10]. For
different approaches to higher curvature terms in supergravity and string theory, see [11–17].
The 3k + 1 restriction on powers of the Riemann tensor in 11-dimensional supergravity is
discussed in [18].

2. The torus dimensional reduction procedure

Our ansatz for dimensional reduction on an n-torus to three dimensions is given by

Êa = e−φea, Êi = (dyµ − Aµ)eµ
i. (2.1)

Here, eφ is not an independent field, but the determinant of the internal vielbein eµ
i . The

prefactor e−φ is chosen so that a canonically normalized Einstein–Hilbert term results in
three dimensions from the reduction of such a term in the higher-dimensional theory. Our
conventions are such that D = d + n, where D is the spacetime dimension before the
dimensional reduction and d the one after and n is the dimension of the internal torus on
which we are performing the dimensional reduction. Flat indices are denoted a, b, . . . in
spacetime and i, j, . . . on the internal manifold which is parametrized by coordinates yµ. The
one-forms Aµ in the above ansatz are the n graviphoton potentials, while eµ

i is the internal
vielbein and hence an element of GL(n). One of our goals will be to see if this global
symmetry (or, strictly speaking, SL(n,Z), the mapping class group of the internal torus) is
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extended to larger groups when considering Lagrangians which consist of the Einstein–Hilbert
term plus the terms containing the Riemann tensor raised to powers 2, 3 and 4. This issue
has previously been investigated by the authors of [9] where the root and weight structure of
the scalar prefactors arising in the reduction is studied. These prefactors are in [9] extracted
by applying some general arguments about the properties of higher derivative terms. In a
continued work [10] they conclude that when weights instead of roots occur in the scalar
exponent prefactors this should be compensated for by tensorial automorphic forms. The
results obtained here by explicitly computing some of the relevant terms in the dimensional
reduction lend further support to such a construction. Automorphic forms of SL(2,Z) with
similar non-trivial properties have already been seen to arise in the type II B superstring
multiplying a term containing the product of 16 dilatinos [19].

From the above ansatz one easily obtains, using the zero-torsion condition, the
dimensionally reduced form of the spin connection one-form and from it the Riemann tensor
two-form. By reading off the components of these tensors using the basis indicated by
the ansatz above, i.e., êa = ea, êi = (dyµ − Aµ)eµ

i , we get an answer without explicit
graviphoton potentials since this basis is manifestly translation invariant on the torus [20]. In
order to examine the possibility of symmetry enhancement in reduction to d = 3, we need the
following expressions for the components of the Riemann tensor:

R̂ab
cd = e2φ

[
Rab

cd + 4δ
[c
[aDb]φDd]φ + 4δ

[c
[aDb]φDd]φ − 2δ

cd

abDeφD
e
φ
]

− e4φ
[

1
2 (FabF

cd) + 1
2

(
F[a

cFb]
d
)]

,

R̂ab
cl = e3φ

[
1
2DcFab

l + DcφFab
l − D[aφFb]

cl + δc
[aD

dφFb]d
l + 1

2 (FabP
c)l +

(
F[a

cPb]
)l]

,

R̂ab
kl = −2e2φ(P[aPb])

kl − 1
2e4φFa

c[kFbc
l],

R̂aj
cl = + 1

4e4φF ce
jFae

l − e2φ
[
DaP

c + DaφP c + DcφPa − δ
c

aDeφP e + PaP
c
]
j

l,

R̂aj
kl = −e3φFa

e[kPej
l],

R̂ij
kl = −2e2φ(Pe)[i

k(P e)j ]
l , (2.2)

where F i
ab := F

µ

abeµ
i , with F

µ
mn = 2∂[mAn]

µ, are the graviphoton field strengths. We use the
notation (AB) = AiBi for the scalar product of SO(n) vectors. The covariant derivative is
Dm = ∂m + ωm + Qm. We have also defined P and Q as the symmetric and antisymmetric
parts of the Maurer–Cartan one-form constructed from the internal vielbein eµ

i (remember
that they form the Maurer–Cartan form of GL(n), so that trP = dφ). Q belongs to the so(n)

subalgebra and P spans the tangent directions of the corresponding coset GL(n)/SO(n). As
a direct consequence of their definition, P and Q satisfy

DP := dP + PQ + QP = 0, FQ := dQ + Q2 = −P 2. (2.3)

We also have that the graviphotons satisfy the Bianchi identity DF − F ∧ P = 0.
Reduction of the D-dimensional Einstein–Hilbert term using these expressions leads

directly to the following Lagrangian in d = 3:

ÊR̂ = e
[
R − tr(PaP

a) − 1
4e2φ(FabF

ab) − DaφDaφ
]
, (2.4)

where one should keep in mind that there is a hidden contribution to the kinetic term of the
dilaton φ in the GL(n) coset term. Note, however, that even after putting the two singlet terms
together the kinetic term is not conventionally normalized in our conventions; see below for
further details. The equations of motion that we will need in the following are (in d = 3)

Rab = tr(PaPb) + DaφDbφ + 1
2e2φ

[(
Fa

cFbc

) − 1
2ηab(F

cdFcd)
]
,

(DaFab)
i = −(P aFab)

i − 2DaφF i
ab,

(DaPa)
ij = 1

4e2φF i
abF

jab.

(2.5)
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Note that the equation of motion for φ, DaDaφ = 1
4e2φ(F abFab), follows directly from the

last equation above since trPa = Daφ. In the following section we will apply this ansatz to
derive the compactification of the R̂2 term.

Before leaving this review of the dimensional reduction, we would like to make more
explicit the relation of our conventions to the ones in, e.g., [9]. In that paper, the ansatz is
written as

Êa = eαφea, Êi = eβφ(dyµ + Aµ)ẽµ
i, (2.6)

where the internal vielbein ẽµ
i is an element of SL(n). Furthermore, the parameters α and

β are determined to satisfy α2 = n
2(d−2)(n+d−2)

and β = − d−2
n

α = −
√

d−2
2n(D−2)

in order for

the reduction to produce a canonical Einstein–Hilbert term and a properly normalized kinetic
term for the scalar φ. In fact, using the above ansatz, the coefficient in front of the scalar
kinetic terms reads

(d − 1)(d − 2)α2 + 2n(d − 2) αβ + n(n + 1)β2. (2.7)

Since our ansatz corresponds to d = 3, α = −1 and β = 1
n

, we find the coefficient to be
1 + 1

n
. This is consistent with our action in equation (2.4) if one extracts the contribution to the

scalar kinetic term from the coset term. The choice β = 1
n

is natural, since it keeps intact the
GL(n) element that will be a building block of SL(n + 1) in the following section. Finally,
note that the field strength F i appearing in equation (2.4) has an extra φ dependence hidden
in the internal vielbein.

3. Toroidal dimensional reduction of R2

We now consider adding to the Einstein–Hilbert action terms of higher order in the Riemann
tensor. In this paper, we only treat one such deformation at the time, and think of it as the
next-to-leading term in an infinite expansion in a dimensionful parameter formed from α′ or
Newton’s constant.

At the level of R2 there is only one possible term, modulo field redefinitions, namely
R̂ABCDR̂ABCD . At the next-to-leading order, field redefinitions give changes in the action
containing the lowest-order field equations, so any term containing the Ricci tensor can be
thrown away without loss of generality. The dimensional reduction (setting A = (a, i), etc)
will result in an expression that contains the following kind of terms: the square of Rabcd ,
two F i

ab field strengths contracted to one Rabcd , plus F i
ab, P

ij
a and Daφ combined into terms

with four such fields, or to terms with three or two fields together with one or two covariant
derivatives Da , respectively.

We note at this point that modulo field equation R̂ABCDR̂ABCD is equivalent to the Gauss–
Bonnet term LGB = Ê(R̂ABCDR̂ABCD − 4R̂ABR̂AB + R̂2). The fact that the integral of this
expression,

∫
dDx LGB ∼ ∫

εA1...AD
R̂A1A2 ∧R̂A3A4 ∧ÊA5 ∧· · ·∧ÊAD , is a topological invariant

in some dimension (D = 4) implies that it has no two-point function (the terms quadratic in
fields are total derivatives). Perhaps less well known is that this feature repeats itself at the
level of three fields in the scalar sector. This is an effect of the dimensional reduction. It is
quite trivial to convince oneself that any three-point coupling P 2DP , modulo the lowest-order
field equation (representing the freedom of field redefinitions) is a total derivative. However,
as we will discuss more later, for R3 and R4 terms related to topological invariants in six
and eight dimensions, this property holds only for terms containing three and four fields,
respectively.
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To present the result of the dimensional reduction of R̂ABCDR̂ABCD , it is convenient to
first note that the splitting of the indices A = (a, i), etc, gives

R̂ABCDR̂ABCD = R̂abcd R̂
abcd + 4R̂ibcd R̂

ibcd + 2R̂ijcd R̂
ijcd

+ 4R̂ibkdR̂
ibkd + 4R̂ijkd R̂

ijkd + R̂ijklR̂
ijkl . (3.1)

At this point, we suppress the dilaton dependence in the higher curvature terms. It should of
course be kept for a complete treatment, but will be irrelevant for the considerations in this
and the following sections. Formally, this amounts to setting φ = 0, which implies trP = 0.
We then get

R̂abcdR̂
abcd = RabcdR

abcd − 3
2Rabcd(F

abF cd)

+ 3
8 [(F abF cd)(FabFcd) + (F abF cd)(FacFbd)],

R̂ibcd R̂
ibcd = (D[cFd]bD

cF db) − 2(FcdPbD
cF db) + (FabPcP

cF ab),

R̂ijcd R̂
ijcd = 1

8

[(
Fa

cFbc

)(
Fa

dF
bd

) − (
FabF cd

)
(FacFbd)

]
+ 2

(
FaeP[aPb]F

b
e

)
− 2tr(PaPbPaPb) + 2tr(P aPaP

bPb),

R̂ibkdR̂
ibkd = 1

16

(
Fa

cFbc

)(
Fa

dF
bd

)
+ tr

(
P aPaP

bPb

) − 1
2

(
Fa

ePbPaF
be

)
+ 2tr(DaPbP

aP b) − 1
2

(
Fa

eDaPbF
be

)
+ tr(DaPbD

aP b),

R̂ijkdR̂
ijkd = 1

2

(
Fa

cF
bc

)
tr(PaPb) − 1

2

(
Fa

ePbPaF
be

)
,

R̂ijklR̂
ijkl = 2tr(PaPb) tr(P aP b) − 2tr(PaPbP

aP b). (3.2)

All traces and scalar products are over internal indices, all spacetime indices are explicit.
Two of the above Riemann tensor components depend explicitly, as well as implicitly after
integration by parts, on the field equations. After using the lowest-order field equations
obtained from the reduction of the Einstein–Hilbert term, we find that the expressions for
these components become (modulo total derivative terms and including the combinatorial
factors above)

4R̂ibcd R̂
ibcd = Rabcd(FabFcd) − 2Rab

(
Fa

cFbc

) − 1
2 (F abF cd)(FabFcd)

+ 6
(
Fa

cP bP aFbc

)
+ 2(F abP cPcFab),

4R̂ibkd R̂
ibkd = −4Rab tr(P aP b) + 1

4

(
Fa

cFbc

)(
Fa

dF
bd

)
+ 1

8 (F abF cd)(FabFcd) − 4tr(P aPaP
bPb) + 8tr(PaPbP

aP b)

− 2
(
Fa

ePaPbF
be

) − 2(F abP cPcFab). (3.3)

Note that we have not yet implemented the Einstein equation since it will only produce terms
with short traces, that is over two P ′s, and these will not enter the discussion below. It is for
the same reason that we can neglect the dependence on the scalar φ in the above formulae.
Here we have also made use of the Maurer–Cartan equations and Bianchi identities which in
the particular case of R2 terms imply that no derivatives appear anywhere (it is straightforward
to show that this is true also for the non-constant φ). As we will see in later sections, this nice
feature will not occur for Rn with n > 2.

In d = 3 the two-forms F can be dualized to one-forms f , turning the graviphoton degrees
of freedom into scalars. Dualization is performed by adding a term

∫
uµ dFµ to the action,

thus enforcing the Bianchi identity of F with a Lagrange multiplier, and treating F as an
independent field. Solving the algebraic field equations for F in terms of du and reinserting
the solution into the action gives the action in terms of the scalar dual graviphotons uµ. At
the level of the Einstein–Hilbert action, reintroducing the scalar, this procedure gives the
Lagrangian

Ldual = e
[
R − tr(PaP

a) − 1
2 (faf

a) − DaφDaφ
]
, (3.4)

5



Class. Quantum Grav. 25 (2008) 095001 L Bao et al

where the dualized field strength is given by F i = e−φ	f i . It has the Bianchi identity
Df + f ∧ P + f ∧ dφ = 0 and the equation of motion Dafa − P afa − Daφfa = 0, and is
obtained from the scalar as f = e−φe−1 du. The dualized scalars fit together with the GL(n)

ones parametrizing the internal torus into an element of SL(n + 1) as

G =
[

e−φ 0
e−φu e

]
, (3.5)

which gives the SL(n + 1) Maurer–Cartan form

P + Q = G−1 dG =
[ −dφ 0
f = e−φe−1 du e−1 de

]
. (3.6)

The SL(n + 1) symmetry of the dimensionally reduced Einstein–Hilbert action is manifested
as

Ldual = e[R − tr(PaPa)]. (3.7)

We note that, at lowest order, the Lagrange multiplier term contributes to the action (in
fact, so that the kinetic term keeps its correct sign after dualization). When the action contains
higher-order interaction terms, the equations of motion for F become nonlinear, and one will
get a nonlinear duality relation between F and f . In general, one has to be careful about this,
but it is straightforward to check that for any next-to-leading term, the nonlinearities cancel
between the F 2 term and the Lagrange multiplier term. To the next-to-leading order, which is
all we treat in this paper, the correct dualized version of the higher-curvature term is obtained
by direct insertion of the linearly dualized graviphotons.

In view of this it is of course interesting to check if the pure P terms, respecting the
manifest so(n) symmetry, can combine with the graviphotonic scalars to form the enlarged
symmetry sl(n + 1) also when the R2 terms are included. To this end, we collect the terms of
the form tr(PaPbP

aP b) and tr(PaP
aPbP

b) together with the terms containing F’s that would
mix with them under sl(n + 1).

The result is

2tr(PaPbP
aP b) + 2

(
FacP

bP aFb
c
)

(3.8)

(i.e., the terms tr(PaP
aPbP

b) cancel out), which becomes, after dualization of the two-forms
F i to one-forms f i as discussed above:

2tr(PaPbP
aP b) + 2(f aPaP

bfb) − 2(f aPbP
bfa). (3.9)

This should then be compared to the SL(n + 1)-covariant expression trP4. The terms
contributing uniquely to this ‘long trace’, and not to (trP2)2, are of the types trP 4 and
(f PPf ) as above, together with ∂φ(f Pf ), with tangent indices placed in all possible ways.
With the parametrization of the SL(n + 1)/SO(n + 1) coset as above, we get

tr(PaPaPbPb) = tr(P aPaP
bPb) + 1

2 [(f aPbP
afb) + (f aP bPbfa)]

+ 1
16 [(f afa)(f

bfb) + (f af b)(fafb)] + πa(faP
bfb)

+ 1
2 [πaπa(f

bfb) + πaπb(fafb)] + πaπaπ
bπb,

tr(PaPbPaPb) = tr(P aP bPaPb) + (f aP bPafb)

+ 1
8 (f af b)(fafb) + πa(f bPafb) + πaπb(fafb) + πaπaπ

bπb,

(3.10)

where π = −dφ is the upper left corner component of P . It seems hard to reconcile
equation (3.9) with a possible sl(n + 1). In fact, the coefficients of the two terms are dictated
by the trP 4 terms. Of the three structures (f PPf ) consistent with SL(n), only two linear

6
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combinations are allowed by SL(n + 1). The terms from dimensional reduction in equation
(3.9) are not the ones required by equation (3.10).

In the above calculation, the volume factor eφ of the internal torus has been omitted (set
to 1). After dualization, any term from R̂p carries an overall factor e2(p−1)φ . This factor tells
us that the terms obtained by dimensional reduction cannot be SL(n + 1)-invariant, since φ is
one of the scalars parametrizing the coset SL(n + 1)/SO(n + 1). Neither is this expected from
string theory or M-theory, since quantum corrections break the global symmetry group to a
discrete version. The terms obtained from the reduction will not be the whole answer, but its
large volume limit. The torus volume factor may be obtained as the large volume limit of an
automorphic form. As we will see later, the observation that the tensor structure does not match
with SL(n + 1) covariance means that scalar (SO(n + 1)-invariant) automorphic forms (i.e.,
functions) do not suffice, and calls for the introduction of automorphic forms transforming
under SO(n+ 1). Similar conclusions are reached in [10] based on an investigation of the root
and weight structure of the scalar prefactors.

At this point, we could of course extend the investigation to other terms by including dφ

and considering also ‘short’ traces. However, as we have already demonstrated the need for
transforming automorphic forms, we will now show how any term obtained in the reduction
can be matched to such constructions.

4. Transforming automorphic forms

Previous work by Green et al [19] (see also [11]) indicates how the apparent contradiction
found in the previous section should be resolved. In fact, as we will see in later sections,
there are also terms arising in the compactification of R4 from D = 11 to d = 3 that are
not immediately compatible with the SL(9) subgroup of E8(8). We suggest that the proper
interpretation of these results is that they should be viewed as the large volume limit of an
SL(9,Z)-invariant constructed from transforming automorphic forms and non-scalar products
of the fields in question. This turns out to hold for the R2 terms of the previous section on
reduction from any D to d = 3. Of course, consistency with decompactification requires
that the automorphic form, in the large volume limit, does not diverge and has as its only
remnant after decompactification the very term that was used as the starting point for the
compactification.

Appendix A describes the construction of automorphic forms, scalar as well as
transforming ones. (For a partly overlapping discussion, see the appendix of [10].) We
now apply this construction to the quartic terms of the previous section, although it will be
obvious that the treatment is general. For any irreducible SO(n+1) representation r contained
in the symmetric product of four symmetric traceless tensors, we can form the combination
ψ

(r)
IJ,KL,MN,PQ PaIJ PKL

a PbMNPPQ
b , where ψ is an automorphic form transforming in the

representation r. The symmetric product of four symmetric traceless SO(n+1) tensors contains
23 irreducible representations for any n � 8, and this is then the number of SL(n + 1,Z)-
invariant terms we can write down starting from the symmetric traceless representation1. This
is however true only when all the indices on P’s are contracted with indices on an automorphic
form constructed as in appendix A. The actual number is larger, since nothing prevents us
from taking products of such automorphic forms and invariant tensors without symmetrizing
all indices—there is no a priori reason to symmetrize in P’s with different spacetime indices.

1 The ‘weight’ of each automorphic form, as defined in appendix A, is fixed by the overall volume factor. We ignore
ambiguities from products of automorphic forms, where only the sum of weights will be determined, as well as
from the use of different Casimirs in the sum defining the automorphic form. Terms differing in these respects are
indistinguishable in the large volume limit.

7
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In the case of an SL group, it is preferable to build automorphic forms from the
fundamental representation (although this option does not exist if we want, e.g., SL(9) as a
subgroup of E8(8)). By using the automorphic forms built from the fundamental representation,
we have seen in appendix A that the only surviving part in the large volume limit is the one
with all indices equal to 0 (the first component in our SL(n + 1) matrices) [10]. The part
of R̂2 containing P 4 comes from an SO(n + 1) scalar automorphic form. Since P0i = 1

2fi

and P00 = π , we can always choose to insert an even number of zeros in the positions we
like, and thereby arrange for products of transforming automorphic forms and SO(n + 1)-
invariant tensors to have a large volume limit reproducing any of the SO(n)-invariant terms
occurring in the reduction. The matching can be made recursively, in an increasing number of
0 indices. We take the long trace as an example. The terms with scalar automorphic forms are
determined from the trP 4 terms to be proportional to ψ(1) tr(PaPbPaPb), with the notation of
appendix A. Subtracting its large volume limit from the actual result of the reduction, given in
part by equation (3.9), there is a remainder proportional to (f aPaP

bfb) − (f aP bPbfa) −
(f aP bPafb). This implies a term proportional to ψ

(2,1)
IJ (PaPaPbPb − PaPbPbPa −

PaPbPaPb)
IJ . With a more complete expansion of the reduced curvature term, it can always

be matched to the large volume limit of an expression in terms of P’s and automorphic forms.
It should of course be checked that automorphic forms exist that give the correct power

of the torus volume factor obtained from the reduction. A term R̂p gives an overall factor
e2(p−1)φ . Suppose we try to obtain some corresponding terms with a product of M automorphic
forms, each with 2lk fundamental indices and weight wk, k = 1, . . . ,M . Convergence of the
sum defining the automorphic forms demands 2(wk − lk) > 1, and the large volume limit
will yield a dilaton dependence exp

(∑M
k=1 2(wk − lk)φ

)
. Matching with the reduction gives

p−1 = ∑M
k=1(wk − lk) and thus M < 2(p−1). The R̂2 term gives room for one automorphic

form, which is exactly what we need.
It is not clear what to expect for this kind of symmetry enhancement to SL(n + 1) in

the context of R̂2 terms. There are, for example, no known examples from string/M-theory
that make use of such a step, so the R̂2 term should probably be seen as a toy model to
set the framework for the higher curvature terms. (The heterotic string has an R̂2 term, but
the symmetry enhancement is to SO(n, n); this case is treated in [21].) The situation is
different for the R̂4 terms, which are the first higher derivative terms to arise in the maximally
supersymmetric string theories in 10 dimensions, as well as in the 11-dimensional M-theory.
When compactified to three dimensions all degrees of freedom are collected into a coset based
on E8(8) when starting from a two-derivative action. We now proceed to discuss the R̂3 and
R̂4 terms in this context with the goal of understanding the role of SL(n + 1), and to develop
methods that might eventually be useful in dealing with the more complicated case of E8(8).

Automorphic forms of SL(2,Z) transforming under U(1) have been encountered in loop
calculations with external fermions in string theory compactified on a circle to d = 9 [19].
We expect that the appearance of transforming automorphic forms is generic in a situation
where the external fields of the diagram transforms under K. In the specific case in [19], the
contribution was shown to disappear in the M-theoretic large volume limit. We note that this
limit is a quite different one in terms of the SL group involved than in our case. We deal
with a larger symmetry SL(n + 1) appearing after dualization of the graviphotons, and blow
up a certain parameter, that, had our SL(n + 1) element been a vielbein on T n+1, would have
corresponded to shrinking one direction and consequently blowing up the other n directions. In
the SL(2) case, the large volume limit has nothing to do with the SL(2) element parametrizing
the shape of T 2, but with the determinant of a GL(2) element blowing up. We have shown
how to match combinations of P’s and automorphic forms that are designed to survive in the
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large volume limit. It would be interesting to compare such a construction (not for terms
corresponding to R̂2, but presumably to R̂4) to actual loop calculations.

5. The case of R3

Our main concern in the rest of the paper is the investigation of the R̂4 terms which are part
of the first non-trivial correction in M-theory and type II string theory. Before doing that we
would however like to emphasize some aspects of the R̂3 terms. The R̂2 terms of section 3
were a testing ground for the ideas but turned out to have some special non-generic features,
such as the effective vanishing of all terms with second derivatives on scalar fields. As we
will see below, this feature is not found for R̂3 and higher terms. Here we also take the
opportunity to introduce some diagrammatic methods that will be tremendously helpful in
keeping track of index structures of increasing complexity as we go to higher powers of the
Riemann tensor.

Again, the R̂3 terms are seen as a next-to-leading order correction to the Einstein–Hilbert
action (i.e., there are no R̂2 terms). Any term which contains the lowest-order field equation
can be removed by a field redefinition, so we leave them out from the start. We thus want
to list all possible terms where indices are contracted between different Riemann tensors.
We represent each contracted index by a line, and each Riemann tensor by the endpoints of
four such lines. The lines whose endpoints meet represent an antisymmetric pair of indices.
The sign is fixed by letting the indices, as they sit on R̂, run in the clockwise direction in
the diagram. The only structure not accounted for is R̂A[BCD] = 0, which has a simple
diagrammatic expression.

A basis for the two inequivalent R3 terms can be taken as

(1): (2):

thus representing R̂AB
CDR̂DC

EF R̂FE
BA and R̂A

B
D

ER̂B
C

E
F R̂C

A
F

D , respectively. One may
also consider the contraction , but it is related to the ones in the basis, using the Bianchi
identity R̂A[BCD] = 0, as = 1

4 (1) + (2).
At this level, there is one obvious combination that does not give any three-point couplings.

This is the ‘Gauss–Bonnet’ term,

εεR̂3 = εA1...ADεB1...BD
R̂A1A2

B1B2R̂A3A4
B3B4R̂A5A6

B5B6δ
B7...BD

A7...AD

= 32(D − 6)!{(1) + 2(2)}, (5.1)

which is topological in D = 6 and lacks three-point couplings in any dimension. The general
form of the scalar terms will be (DP)3 + P2(DP)2 + P4DP + P6, where ‘P’ denotes any of
P, f and ∂φ, but we are guaranteed that the first term vanishes for this specific combination.

To see this explicitly, and to derive further properties relying on the dimensional reduction,
we concentrate on the pure P terms (note that this truncation is consistent and implies trP = 0).
They are extracted in the Riemann tensor derived in section 2:

R̂ab
cd = −4δ

[c
[a tr(Pb]P

d]) + δc
[aδ

d
b] tr(PeP

e),

R̂ab
cl = 0,

R̂ab
kl = −2(P[aPb])

kl,

R̂aj
cl = −(DaP

c)j
l − (PaP

c)j
l,

R̂aj
kl = 0,

R̂ij
kl = −2(Pe)[i

k(P e)j ]
l .

(5.2)
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Note that Einstein’s equations in three dimensions have been used to obtain the specific form
of R̂ab

cd .
The two independent cubic contractions of the Riemann tensor components above become

after compactification, and keeping only terms which give pure P contributions2,

R̂AB
CDR̂DC

EF R̂FE
BA = Rij

klRlk
mnRnm

ji + 3Rab
klRlk

mnRnm
ba + 8Raj

clRlc
enRne

ja

+ Rab
cdRdc

ef Rf e
ba + 3Rab

cdRdc
ijRji

ba (5.3)

and

R̂A
B

D
ER̂B

C
E

F R̂C
A

F
D = Ri

j
l
mRj

k
m

nRk
i
n
l + 3Ra

j
d
mRj

k
m

nRk
a
n
d + 2Ri

j
d
eRj

k
e
f Rk

i
f

d

+ 6Ri
b
d
mRb

k
m

f Rk
i
f

d + Ra
b
e
f Rb

c
f

gRc
d
g
e + 3Ra

b
c
dRb

i
d
jRi

a
j
c. (5.4)

We now insert the P-dependent terms from above. For the purposes here it is sufficient to
collect only the (DP )3 and P 2(DP )2 terms, while remembering that trP = 0.

For (DP )3, which gets a contribution entirely from (1)3, it is straightforward to show that
it is a total derivative

(DP )3 = tr
(
Sa

bSb
cSc

a
) = Dc

[
tr(P aSa

bSb
c) − 1

2 tr(P cSa
bSb

a)
]

(5.5)

(as always, modulo the lowest-order equations of motion), where Sab = DaPb. The tensor
(Sab)ij is symmetric in both (ab) and (ij), and Sa

a is the kinetic term in the equation of motion
for Pa . The fact that, modulo equations of motion, the (DP )3 term is a total derivative is
expected for the highest derivative term in a Gauss–Bonnet combination of any order, but we
see that after dimensional reduction the scalar three-point couplings vanish for any R̂3 term.

Doing a similar analysis for the (DP )2P 2 terms, there are ten algebraically independent
structures:

(i) = tr
(
Sa

bSb
aPcP

c
)
,

(ii) = tr
(
Sa

bSb
cPcP

a
)
,

(iii) = tr
(
Sa

bSb
cP aPc

)
,

(iv) = tr
(
Sa

bPcSb
aP c

)
,

(v) = tr
(
Sa

bPbS
a
cP

c
)
,

(vi) = tr
(
Sa

bSb
a
)

tr(PcP
c),

(vii) = tr
(
Sa

bSb
c
)

tr
(
PcP

a
)
,

(viii) = tr
(
Sa

bPc

)
tr
(
Sb

aP c
)
,

(ix) = tr
(
Sa

bPc

)
tr
(
Sc

aPb

)
,

(x) = tr
(
Sa

bPb

)
tr
(
Sc

aP c
)
.

(5.6)

Since (i)–(v) will not mix with (vi)–(x), we will consider the two groups separately. For
the single-trace terms, neglecting the equations of motion, the combination x1(i) + 2x2(ii) −
(x2 − 2x3)(iii) + x3(iv) + (2x1 − x2)(v) is a total derivative for arbitrary values of {x∗}.
Correspondingly, a total derivative consisting of the double-trace terms must be written as
y1(vi) + (y2 + y3)(vii) + y2(viii) + (y2 − 2y3)(ix) + (2y1 + y3)(x) for arbitrary values of {y∗}.
Extracting the pure (DP )2P 2 terms from (5.3) and (5.4), we find that

(1) + z(2) = 6(4 − z)(ii) + 6z(iii) + 3z(iv) + z
[− 3

2 (vi) + 6(vii) − 3(viii)
]
, (5.7)

2 The combinatorial factors are easily read off from the diagrams. Splitting of the indices into two classes, spacetime
and internal, corresponds to colouring the lines in the diagrams with two colours. The factors are given by the number
of ways this can be done.
3 This term comes only from Raj

cl , which means that it gets contributions only from coloured diagrams with alternating
colour on all cycles. A diagram containing a cycle with an odd number of lines cannot contribute.
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with an arbitrary parameter z. For the single-trace terms in equation (5.7), z = 4 is the only
choice where they can form a total derivative, this corresponds to the case x1 = x2 = 0, x3 = 12
(which is not the Gauss–Bonnet combination from equation (5.1)). For the double-trace terms
in equation (5.7), however, no choice of z can make them a total derivative. We have thus
shown that the (DP )2P 2 cannot vanish by partial integrations. Unlike in the R̂2 terms,
derivatives of Maurer–Cartan forms necessarily appear.

A more complete treatment should include also the other fields in P . One should also
continue with terms of the types P4DP and P6. This would imply quite some work which we
do not find motivated for R̂3. In order to access the complete expressions, care has to be taken
when using partial integrations, since terms with a certain number of derivatives contribute
to terms with fewer derivatives via equations of motion, Bianchi identities and curvatures
(R and FQ).

6. R4 terms

In this section, we start the analysis of the R̂4 terms by presenting the content of t8t8R̂
4 and εεR̂4

in terms of an explicitly given basis of seven elements. That this basis is seven-dimensional is
well known [22]. We then concentrate on the terms that after the dimensional reduction contain
only the coset variable P

ij
a . These are of the types (DP )4, P 2(DP )3, P 4(DP )2, P 6(DP ) and

P 8. A test of the possible role of the octic invariant of E8(8) derived in [23] is spelt out (for
details see appendix B). This would involve the P 8 terms and be rather lengthy. For that
reason we turn in the section to the much simpler terms (DP )4 from which we are able to
draw the conclusions we are looking for.

Using the same diagrammatic notation as in the previous section, a basis for the seven R̂4

terms can be taken as

(1): (2): (3): (4):

(5): (6): (7):

A contraction that also occurs naturally (e.g. in εεR4) is , and it can be related to the

others by using R̂[ABC]D = 0 as follows: cycling on gives = − 1
2 . Cycling on

(5) = gives = + 1
2 , and on (7) = gives = + 1

2 . Eliminating the

diagrams not present in the basis, and , gives the relation = 1
4 (4) − (5) + (7).

In D = 10 and 11, the structures

εεR̂4 = εA1...ADεB1...BD
R̂A1A2

B1B2 R̂A3A4
B3B4 R̂A5A6

B5B6R̂A7A8
B7B8δ

B9...BD

A9...AD
(6.1)

(the ‘Gauss–Bonnet term’) and t8t8R̂
4 are of special interest, since they, or combinations

of these, are dictated by string theory calculations and by supersymmetry; see for instance
the explicit evaluation in appendix B2 of [12] of the appropriate superspace term given in
[24]. The invariant tensor t

A1A2,A3A4,A5A6,A7A8
8 is defined to be antisymmetric in the indices

composing the pairs and symmetric in the four pairs. When contracted with the antisymmetric
matrix M, it is defined to give

t
A1A2,A3A4,A5A6,A7A8
8 MA1A2MA3A4MA5A6MA7A8 = 24 trM4 − 6(trM2)2. (6.2)

11
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In t8t8R̂
4, the indices are contracted according to

t8t8R̂
4 = t

A1A2,A3A4,A5A6,A7A8
8 t8B1B2,B3B4,B5B6,B7B8

× R̂A1A2
B1B2R̂A3A4

B3B4R̂A5A6
B5B6R̂A7A8

B7B8 . (6.3)

A direct evaluation gives, in D dimensions,

1

12
t8t8R̂

4 = 2(1) + (2) − 16(3) − 8(4) + 16(6) + 32(7)

− 1

48(D − 8)!
εεR̂4 = 2(1) + (2) − 16(3) + 32(5) + 16(6) − 32 (6.4)

or, with expressed in the basis as above,

1

12
t8t8R̂

4 = 2(1) + (2) − 16(3) − 8(4) + 16(6) + 32(7)

− 1

48(D − 8)!
εεR̂4 = 2(1) + (2) − 16(3) − 8(4) + 64(5) + 16(6) − 32(7).

(6.5)

These expressions agree with the ones in, e.g., [17], where the basis {A1 = (2), A2 =
(3), A3 = (1), A4 = (4), A5 = − = 1

2 (4) − (5), A6 = (6), A7 = = 1
4 (4) − (5) + (7)}

is used.
The P 8 terms obtained when compactifying from 11 dimensions to 3 will of course form

a scalar of SO(8). Assuming that these terms combine to a scalar also of the Spin(16)/Z2 that
is associated with coset E8(8)/(Spin(16)/Z2) arising in the two-derivative sector of M-theory,
the only invariant possible (apart from the fourth power of the quadratic one) would be the
octic invariant constructed in [23]. As explained in appendix B, when reducing this to an
invariant of SO(9) one finds a certain polynomial in the SL(9)/SO(9) coset element that
if valid puts severe restrictions on the structure of the P 8 terms. However, checking this is
lengthy and instead we turn to the (DP )4 terms where, as we will see below, some qualitative
results we are looking for can be obtained with much less effort.

Thus, we now concentrate on the four-point couplings, which consequently have four
derivatives. Assume, for the moment, that E8(8)(Z) invariance were to be achieved with a
scalar automorphic form. Since E8 has no invariant of order four other than the square of the
quadratic Casimir (and thus the only so(16) invariant quartic in spinors is the square of the
quadratic one), we would get the restriction that any trace tr(DP )4 has to vanish, since this
so(8) invariant cannot be lifted via so(9) to so(16).

Using the Riemann tensor with only P terms (see the previous section), it is not very
difficult to derive the (DP )4 terms from diagrams (1)–(7). Since we only want contributions
with the components Raibj , one gets one contribution from each colouring with two colours
(for spacetime and internal indices) of the graphs, where the two colours alternate on every
cycle. It follows directly that any diagram with a cycle of odd length does not contribute.
There are none in the basis, but in the process of cycling above we encountered the contraction

= (5) − 1
2 (4) that then does not contribute to (DP )4.

There are eight algebraically independent structures containing (DP )4. We enumerate
them as

12



Class. Quantum Grav. 25 (2008) 095001 L Bao et al

(i) = tr(SabS
abScdS

cd),

(ii) = tr(SabScdS
abScd),

(iii) = tr(SabS
bcScdS

da),

(iv) = tr(SabScdS
acSbd),

(v) = tr(SabS
ab) tr(ScdS

cd),

(vi) = tr(SabS
cd) tr(SabS

cd),

(vii) = tr(SacS
bc) tr(SadSbd),

(viii) = tr(SabScd) tr(SacSbd),

(6.6)

where Sab = DaPb. One also has to take total derivatives into account. This can be
done by writing out all possible terms (PS3)a (there are 12) and take the divergence. As
long as we only consider (DP )4, we let Sa

a → 0 and S[ab] → 0. It turns out that only
two combinations of these do not produce terms P(DP)2D2P (the second derivative of
P can again be considered as symmetric and traceless), and they lead to the combinations
(i) + 1

2 (ii) − (iii) − 2(iv) and 1
2 (v) + (vi)− 2(vii)− (viii) being total derivatives. (These in

fact arise from tr
(
P[aSb

bSc
cSd]

d
)

and tr
(
P[aSb

b) tr(Sc
cSd]

d
)
, where the antisymmetry, by the

Bianchi identity, prevents P(DP)2D2P from arising. The counting also holds for reduction
to d = 3, but with the combinations being total derivatives in higher dimensions now being
identically zero.)

Evaluating the contributions to the 4-point couplings from the terms (1), . . . , (7) then
gives

(1) −→ 16(iii),

(2) −→ 16(v),

(3) −→ 4(i) + 4(vii),

(4) −→ 8(iv),

(5) −→ 4(iv),

(6) −→ 2(iii) + 2(vi),

(7) −→ (ii) + 2(iv) + (viii).

(6.7)

Demanding that the contribution vanishes, modulo total derivatives, tells that the R4 term is
proportional to 2(1) + (2) − 16(3) + x(4) + (48 − 2x)(5) + 16(6) − 32(7) for some number
x. εεR̂4 (of course) passes the test, but t8t8R̂

4 does not. The combination (4) − 2(5) does,
as seen above. In this calculation, t8t8R̂

4 does not even contribute with (trS2)2 terms only,
as would be demanded from E8 invariance. (The condition that the long contractions vanish
can be expressed as conditions on the coefficients in front of (5)–(7), given the ones in front
of (1)–(4). The latter are identical in t8t8R̂

4 and εεR̂4.) The ‘difference’ between t8t8R̂
4

and εεR̂4 (with the normalizations above) is another very simple expression, proportional to

(7)−(5) or to − 1
4 (4), whose contribution to the long contractions is (ii)−2(iv) �= 0. In the

conclusion, if the term t8t8R̂
4 is present, there are four-point couplings not only in the gravity

sector but also in the scalar sector. The term t8t8R̂
4 cannot be obtained without transforming

E8 automorphic forms.
We thus find a contradiction with E8 unless transforming automorphic forms are

introduced. The fact that E8 does not have primitive fourth-order invariant means that the
SL(8)-invariant D4P 4 terms derived here must come from an E8 term which is a double trace.
Since we find nonzero single-trace terms, this means that the enhanced symmetries do not
generalize to higher derivative terms obtained through compactification as described here with
scalar automorphic forms.

13
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Given that the number of automorphic forms of E8 is smaller than that of SL(9), for the
same number of so(16) spinors or so(9) symmetric traceless tensors (see appendix A), it seems
reasonable to believe that E8 puts some constraints on the possible terms obtained by reduction
of pure gravity. Checking this would require more concrete knowledge of E8 automorphic
forms and their large volume limit, as well as (presumably) a much more complete expansion
of the seven R4 terms. It is not at all clear to what degree E8 will single out some specific
combination of these.

Performing a loop calculation with external scalars analogous to the ones in [19, 25]
would give information on what kind automorphic functions actually appear in an M-theory
context (although such a calculation leaves out non-perturbative information from winding
membranes and five-branes).
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Appendix A. Automorphic forms

Consider an element g ∈ G, where G is a Lie group. In the context of the supergravities (or
sigma models) we are considering, g represents the scalar degrees of freedom. These belong
to a coset G/K , where K is a subgroup of G. In all cases under consideration, G has the split
(maximally non-compact) real form and K is the maximal compact subgroup of G. The coset
is realized by gauging the local right action of K, g → gk, k ∈ K . This still leaves room
for a global left action of G on g, g → γg, γ ∈ G. These global G transformations are
however symmetries only of the undeformed supergravities or sigma models, and are broken
by quantum effect in string theory. Higher-derivative corrections to effective actions in string
theory are expected to break G to a discrete duality subgroup G(Z), and the correct moduli
space for the scalars is not G/K but G(Z)\G/K .

The definition of G(Z) has to be clear, of course. If G is a classical matrix group, it can be
defined as the group of elements in G with integer entries in the fundamental representation.
For exceptional groups, care has to be taken to choose the relevant discrete subgroup. A
definition of G(Z) in terms of generators of the Lie algebra g of G in the Chevalley basis is
given in [26] (see also [2]). In the following, it will be understood that G(Z) is the discrete
duality group relevant to M-theory compactifications, although the construction in principle
holds also for other discrete subgroups of G.

The general method for building automorphic forms [10, 11, 25, 27, 28] is to combine
g with some element in the discrete group (or a representation of it) so that the resulting
entity only transforms under K, in the sense defined below. The invariance under G(Z) is then
obtained by summation over G(Z) (or some representation). Let g ∈ G and µ ∈ G(Z), with
the transformation rules under G(Z)×K with group element γ ⊗k: g → γgk, µ → γµγ −1.
If one forms g−1µg, it transforms as g−1µg → k−1(g−1µg)k, i.e., only under K. One may
then K-covariantly project g−1µg on the representation ‘g/k’, i.e., the complement to k in the
Lie algebra g, which forms a representation of K.4 We denote the obtained building block

 = �g/k(g

−1µg). When using tensor notation, we write 
α , inspired by the so(16) spinor
index carried by the tangent space to E8(8)/(Spin(16)/Z2).

4 This projection may be performed by letting g and µ be represented as matrices in any faithful representation of
G, the result of course being independent of the choice of representation.
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Let us start with the simplest kind of automorphic forms, the scalar ones. In order
for the function not to transform under K, we need to form scalars from a number of 
’s.
This is straightforward—the algebraically independent polynomial invariants have the same
number and degree of homogeneity as the Casimir operators of g. In fact, as observed in
[23], they are simply the restrictions of the Casimir operators to g/k. Let us denote them
Ci(
), i = 1, . . . , r, r being the rank of g. Finally, in order to achieve invariance under G(Z),
one has to form some function of the Ci’s and sum over the discrete group element µ. The
function should be conveniently formed so that the sum converges, e.g. a power function. For
some ‘weight’ w, we thus define

φ(i,w)(g) =
∑

µ∈G(Z)

[Ci(
(µ, g))]−w. (A.1)

This automorphic function is clearly a function on the double coset G(Z)\G/K .
The construction above is entirely based on 
, which is obtained as (a projection of) the

action of g by conjugation on a discrete group element µ. Alternatively, one may start from
some representation. Especially, when G is a classical matrix group, it is simpler to let m
lie in the fundamental module (a row vector with integer entries) [28]. Consider the case
G = SL(n) with K = SO(n). We form mg, which if m transforms as m → mγ −1 transforms
under G(Z) × K as mg → (mg)k. Then, mg is taken as a building block, and one forms the
invariant |mg|2 = (mg)(mg)t . The automorphic function is

ψ(w)(g) =
∑
Zn\0

|mg|−2w. (A.2)

This construction has the advantage that the summation is easier to perform than the one over
the discrete group, but it is not available for exceptional groups G. Choosing other modules
yields algebraically independent automorphic functions, as long as these modules are formed
by anti-symmetrization from the fundamental one. One gets again a number of functions
equating the rank.

We expect that the summation in the defining equation (A.1), which is over a single
orbit of the discrete group, namely the group itself, can be lifted to the summation over a
lattice, quite analogously to how the summation in equation (A.2) can be decomposed into
an infinite number of orbits. Such a lattice summation might make even automorphic forms
of exceptional groups reasonable to handle. Equation (A.1), with the replacement of the
discrete group by a lattice, is well suited for the bosonic degrees of freedom of the sigma
model obtained by dimensional reduction, since the object 
 carries the same index structure
as P. When it comes to fermions, these transform under another representation which is (an
enlargement of) a spinor representation of so(n), and it seems natural to consider spinorial
automorphic forms.

One attractive feature of invariant automorphic forms, automorphic functions, is that their
structure and number closely reflect the properties of the Lie algebra g. Once one takes the step
to transforming automorphic forms, the freedom is much bigger. Remember that the scalar
degrees of freedom reside in the coset G(Z)\G/K , and that they appear through the ‘physical’
part P of the Maurer–Cartan form g−1 dg, P = �g/k(g

−1 dg). Any higher-derivative term
(considering purely scalar terms) contain a number of P’s, perhaps with covariant derivatives,
contracted with something that cancels the K transformation of P in the appropriate way. Note
that 
(µ, g) transforms correctly, so that a K-invariant object may be formed by contracting
P’s either with each other, or with 
’s. Again, summation over G(Z) is of course needed. We
arrive at automorphic forms of the generic form

φ(i,w,k)
α1...αk

(g) =
∑

µ∈G(Z)


α1 . . . 
αk
Ci(
)−w, (A.3)
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where again 
α = 
α(µ, g) = [�g/k(g
−1µg)]α . The automorphic form φ is symmetric in the

αk indices. The restricted Casimir Ci is inserted for convergence of the sum. We see that, for
a given choice of Ci and w, there is one automorphic form for each irreducible K-module in
the symmetric tensor product of n elements in g/k, generically a much larger number than the
number of invariant automorphic forms.

Also here, the simpler construction for G = SL(n) is obtained with an even number of
(mg)I ’s (I is the fundamental index) as

ψ
(w,l)
I1...I2l

(g) =
∑
Zn\0

(mg)I1 . . . (mg)I2l
|mg|−2w. (A.4)

We would like to comment on the transformation properties of the transforming
automorphic forms. As they are written (as functions of g), they are a collection of functions
on G(Z)\G, transforming under K transformations as specified by the index structure. If
we, on the other hand, view g as a representative of the right coset G/K by fixing a gauge
encoded in some parametrization g = g(τ), the picture changes. The coset coordinates
τ transform nonlinearly under G(Z), and a compensating gauge transformation is required
to get back on the gauge hypersurface. The transformations under G(Z) are of the form
g(τ) → γg(τ)k(γ, τ ). In this picture, a G(Z) transformation of the automorphic forms
induces a K-transformation with the element k(γ, τ ) on the appropriate module given by the
index structure. This can of course be mimicked without gauge fixing by replacing the element
γ ⊗ 1 ∈ G(Z) × K by the element γ ⊗ k(γ, τ ), which allows us to interpret the automorphic
forms as collections of functions on G/K with a specific nonlinear transformation property
under G(Z).

We are sometimes interested in certain limiting values of automorphic forms. In the
present paper, the terms obtained after dimensional reduction should correspond to leading
terms in an asymptotic expansion at large volume of a torus. We consider the possibility of
collecting the terms we obtain in sums of automorphic functions of SL(n + 1) after reducing
on T n. With the embedding of GL(n) in SL(n + 1) discussed earlier in section 3, where eφ is
the determinant of the metric on T n, the SL(n + 1) group element may (with a partial gauge
choice) be parametrized as

G =
[

e−φ 0

e−φu e
φ

n ẽ

]
, (A.5)

where ẽ is a group element of SL(n) parametrizing the shape of T n. The large volume limit
is φ → ∞. The shape of T n should be irrelevant in this limit, as long as it is non-degenerate,
and we take ẽ = 11. An automorphic form of the type in equation (A.4) with 2w > 2l + 1
(for convergence) is then dominated by terms with m = (m0, 0, . . . , 0) and has the limiting
value [10]

ψ
(w,l)
I1...I2l

(g) −→
φ→∞

e2(w−l)φζ(2(w − l))δI1,0 . . . δI2l ,0. (A.6)

Finally, it is interesting to count the number of possible terms one can write down in
a concrete situation. Much of the present paper aims at reduction to d = 3 and the coset
E8(8)(Z)\E8/(Spin(16)/Z2). An R4 correction contains terms with up to eight P’s. Just
considering these for a given w (i.e., for the moment omitting the terms with derivatives of P),
and assuming that we use the quadratic Casimir, the number of possible terms obtainable are
labelled by irreducible so(16) representations in the symmetric product of eight chiral spinors.
The number of representations, i.e., of automorphic forms, is 222. This can be compared to
the number of scalars, two, which is obtained directly from the E8 Casimir operators. The
corresponding number relevant for gravity, i.e., the number of irreducible so(9) representations

16



Class. Quantum Grav. 25 (2008) 095001 L Bao et al

in the symmetric product of eight symmetric traceless tensors, is 609. It seems that demanding
E8(8) invariance gives some restriction even on the possible SL(9,Z)-invariant terms involving
the gravitational scalars only, but it will take some ingenuity to extract the information. It is
tempting to believe that the octic E8 invariant [23] has some special role in the R4 terms, but
this remains unclear in the light of the large number of transforming automorphic functions.

Appendix B. Reduction of the octic invariant to matrices

By assuming that E8 organizes the scalars after compactification to three dimensions also after
the inclusion of R4 terms, we can obtain constraints related to SL(9) which are more readily
checked. To see this, consider the e8 Dynkin diagram, with Coxeter labels and extended root:

(2)

8

−θ

(3)

21 3 4 5 6 7

(2) (3) (4) (5) (6) (4)

The horizontal line consists of the simple roots of sl(9). In the standard way of embedding sl(n)

roots in (n+1)-dimensional space, an element in the Cartan algebra of sl(9) (and, thereby, of e8)
can be written in an orthonormal basis as M = (m0,m1 − m0,m2 − m1, . . . , m7 − m6,−m7).
We have α0 = −θ = −(2α1 + 3α2 + 4α3 + 5α4 + 6α5 + 4α6 + 2α7 + 3α8). Solving for α8 gives
α8 = 1

3 (−1,−1,−1,−1,−1,−1, 2, 2, 2) in the orthonormal basis.

Invariants under sl(9) restricted to the CSA can be formed as trMn ≡ ∑9
i=1(Mi)

n (i.e.,
the vector M above is thought of as the diagonal of a matrix M). They will all be automatically
invariant under the Weyl group of sl(9), generated by simple reflections permuting nearby
components of the nine-dimensional vectors in the orthonormal basis. The only thing one
has to check for invariance under the Weyl group of e8 is invariance under reflection in the
hyperplane orthogonal to the exceptional root α8. As a (9 × 9)-matrix it is realized as

w(α8) = 11 − αt
8 α8 = 1

9

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

8 −1 −1 −1 −1 −1 2 2 2
−1 8 −1 −1 −1 −1 2 2 2
−1 −1 8 −1 −1 −1 2 2 2
−1 −1 −1 8 −1 −1 2 2 2
−1 −1 −1 −1 8 −1 2 2 2
−1 −1 −1 −1 −1 8 2 2 2

2 2 2 2 2 2 5 −4 −4
2 2 2 2 2 2 −4 5 −4
2 2 2 2 2 2 −4 −4 5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (B.1)

and acts on M as w(α8)M = M + 1
3m5(−1,−1,−1,−1,−1,−1, 2, 2, 2). A general ansatz

for the restriction of the octic e8 invariant to the CSA (using sl(9) ‘covariance’) is S(M) =
trM8+a trM6 trM2+b trM5 trM3+c(trM4)2+d tr M4(trM2)2+e(trM3)2 trM2+f (trM2)4. The
coefficient f is of course arbitrary, and will be left out. We demand that S(w(α8)M) = S(M).
A short Mathematica calculation then gives the values of the coefficients in the ansatz:

S(M) = trM8 − 28
45 trM6 trM2 − 28

45 trM5 trM3 − 7
36 (trM4)2

+ 7
36 trM4(trM2)2 + 7

27 (trM3)2 trM2. (B.2)
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This is the polynomial (in the symmetric (9×9)-matrix P) we should look for in the R4 terms
if multiplied by a scalar automorphic form of E8. It has to be the same formal expression
already in terms of the P of SO(8).
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in the tree-level Lagrangian when D − n = 3. The analysis builds upon and extends the
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compactified Gauss-Bonnet term, including the contribution from the dilaton exponents.

We analyze these exponents using the representation theory of the Lie algebra sl(n + 1, R)

and determine which representation seems to be the relevant one for quadratic curvature

corrections. By interpreting the result of the compactification as a leading term in a large

volume expansion of an SL(n+1, Z)-invariant action, we conclude that the overall exponen-

tial dilaton factor should not be included in the representation structure. As a consequence,

all dilaton exponents correspond to weights of sl(n + 1, R), which, nevertheless, remain on

the positive side of the root lattice.
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1. Introduction and summary

Dimensional reduction of supergravity theories is an efficient method of revealing symmetry

structures which are “hidden” when the theories are formulated in maximal dimension. The

first discovery of such a hidden symmetry was the so-called Ehlers symmetry of pure four-

dimensional gravity compactified on a circle to three dimensions [1]. The global symmetry

GL(1, R) = R, corresponding to rescaling of the S1, is in this case extended through

dualisation of the Kaluza-Klein vector into a new scalar, revealing that the full global

symmetry of the Lagrangian is, in fact, described by the group SL(2, R). The scalars in the

theory parametrise the coset space SL(2, R)/SO(2), where SO(2) is the maximal compact

subgroup of SL(2, R), playing the role of a local gauge symmetry. More generally, upon

toroidal compactification of lowest order pure gravity in D spacetime dimensions on an n-

torus, T n, to three dimensions, the scalars parametrise the coset space SL(n+1, R)/SO(n+

– 1 –
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1). The enhancement from GL(n, R) to SL(n + 1, R) is again due to the fact that in three

dimensions all Kaluza-Klein vectors can be dualised to scalars.

Similar phenomena occur also for coupled gravity-dilaton-p-form theories, such as the

bosonic sectors of the low-energy effective actions of string and M-theory. The most thor-

oughly investigated case is the toroidal compactification of eleven-dimensional supergravity

on T n to d = 11 − n dimensions, for which the scalar sector parametrises the coset space

En(n)/K(En(n)), with K(En(n)) being the (locally realized) maximal compact subgroup of

En(n) [2]. In particular, for reduction to three dimensions the global symmetry group is the

split real form E8(8), with maximal compact subgroup Spin(16)/Z2. The global symmetry

group E8(8) is the U-duality group, which, from a string theory perspective, combines the

non-perturbative S-duality group SL(2, R) of type IIB supergravity with the perturbative

T-duality group SO(7, 7) [3].

These symmetries are present in the classical (tree-level) Lagrangian, but it is known

from string theory that they must be broken by quantum effects. It has been conjectured

that if Ud is the continuous symmetry group appearing upon compactification from D to

d = D − n dimensions, then a discrete subgroup Ud(Z) ⊂ Ud lifts to a symmetry of the

full quantum theory [4 – 6].1 The physical degrees of freedom of the scalar sector then

parametrise the coset space Ud(Z)\Ud/K(Ud).

1.1 Non-Perturbative completion and automorphic forms

Recently, several authors [7 – 11] have initiated an investigation aimed at answering the

question of whether or not the U-duality group U3 in three dimensions is preserved also

if the tree-level Lagrangian is supplemented by higher order curvature corrections. The

consensus has been that toroidal compactifications of quadratic and higher order corrections

give rise to terms which are not U3-invariant.2

A nice example of a fairly well understood realisation of these mechanisms is the

breaking of the classical SL(2, R) symmetry of the type IIB supergravity effective action

down to the quantum S-duality group SL(2, Z) of the full type IIB string theory [12].

The next to leading order α′-corrections to the effective action are octic in derivatives of

the metric, i.e., fourth order in powers of the Riemann tensor, and receives perturbative

contributions only from tree-level and one-loop in the string genus expansion. However, this

gives a scalar coefficient in front of the R4-terms in the effective action which is not SL(2, Z)-

invariant. This problem is resolved by noting that there are additional non-perturbative

1Strictly speaking, the name U-duality is reserved for the chain of exceptional discrete groups En(n)(Z),

related to the toroidal compactification of M-theory (see [3] for a review). However, for convenience, we

shall in this paper adopt a slight abuse of terminology and refer to any enhanced symmetry group Ud(Z)

as a “U-duality” group. This then applies, for example, to the mapping class group SL(n + 1, Z) of the

internal torus in the reduction of pure gravity to three dimensions, and to the T-duality group SO(n, n, Z)

appearing in the reduction of the coupled gravity-2-form system. Moreover, we shall refer to the continuous

versions of these groups, Ud = Ud(R), as “classical U-duality groups”.
2One exception being ref. [10] in which the authors considered quadratic curvature corrections to pure

gravity in four dimensions. In that special case, the most general correction can be related, through suitable

field redefinitions, to the Gauss-Bonnet term which is topological in four dimensions and does not contribute

to the dynamics. Hence, the SL(2, R)-symmetry of the compactified Lagrangian is trivially preserved.

– 2 –
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contributions to the octic derivative terms arising from D-instantons (D(−1)-branes) [12].

This contribution can be seen as a “completion” of the coefficient to an SL(2, Z)-invariant

scalar function which is identified with a certain automorphic function, known as a non-

holomorphic Eisenstein series. A weak-coupling (large volume) expansion of this function

reproduces the perturbative tree-level and one-loop coefficients at lowest order.

In the scenario described above the completion to a U-duality invariant expression

was achieved through the use of a scalar automorphic form, i.e., an automorphic function,

which is completely SL(2, Z)-invariant. More generally, one might find terms in the effec-

tive action whose non-perturbative completion requires automorphic forms transforming

under the maximal compact subgroup K(U3). For example, this was found to be the case

in [13], where interaction terms of sixteen fermions were analyzed. These terms transform

under the maximal compact subgroup U(1) ⊂ SL(2, R) and so the U-duality invariant com-

pletion requires in this case an automorphic form which transform with a U(1) weight that

compensates for the transformation of the fermionic term, and thus renders the effective

action invariant.

The need for automorphic forms which transform under the maximal compact sub-

group K(U3) was also emphasized in [8], based on the observation that the dilaton ex-

ponents in compactified higher curvature corrections correspond to weights of the global

symmetry group U3, implying that these terms transform non-trivially in some representa-

tion of K(U3). An explicit realisation of these arguments was found in [11] for the case of

compactification on S1 of the four-dimensional coupled Einstein-Liouville system, supple-

mented by a four-derivative curvature correction. The resulting effective action was shown

to explicitly break the Ehlers SL(2, R)-symmetry; however, an SL(2, Z)global × U(1)local-

invariant effective action was obtained by “lifting” the scalar coefficients to automorphic

forms transforming with compensating U(1) weights. The non-perturbative completion

implied by this lifting is in this case attributed to gravitational Taub-NUT instantons [11].

Similar conclusions were drawn in [9], in which compactifications of derivative correc-

tions of second, third and fourth powers of the Riemann tensor were analyzed. Again,

it was concluded that the U3-symmetry is explicitly broken by the correction terms. It

was argued, in accordance with the type IIB analysis discussed above, that the result of

the compactification – being inherently perturbative in nature — should be considered as

the large volume expansion of a U3(Z)-invariant effective action. It was shown on general

grounds that any term resulting from such a compactification can always be lifted to a

U-duality invariant expression through the use of automorphic forms transforming in some

representation of K(U3).

In this paper we extend some aspects of the analysis of [9]. In [9] only parts of the

compactification of the Riemann tensor squared, R̂ABCDR̂ABCD, were presented. The

terms which were analyzed were sufficient to show that the continuous symmetry was

broken, and to argue for the necessity of introducing transforming automorphic forms to

restore the U-duality symmetry U3(Z). Moreover, the overall volume factor of the internal

torus was neglected in the analysis.

We restrict our study to corrections quadratic in the Riemann tensor in order for a

complete compactification to be a feasible task. More precisely, we shall focus on a four-

– 3 –
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derivative correction to the Einstein-Hilbert action in the form of the Gauss-Bonnet term

R̂ABCDR̂ABCD − 4R̂ABR̂AB + R̂2. Modulo field equations, this is the only independent

invariant quadratic in the Riemann tensor. We extend the investigations of [9] by giving

the complete compactification on T n of the Gauss-Bonnet term from D dimensions to D−n

dimensions. In the special case of compactifications to D−n = 3 dimensions the resulting

expression simplifies, making it amenable for a more careful analysis. In particular, one of

the main points of this paper is to study the full structure of the dilaton exponents, with the

purpose of determining the sl(n + 1, R)-representation structure associated with quadratic

curvature corrections. In contrast to the general arguments of [7] we have here access to

a complete expression after compactification, thus allowing us to perform an exhaustive

analysis of the weight structure associated with all terms in the Lagrangian.

We note that effects of adding Gauss-Bonnet correction terms have recently been dis-

cussed in the contexts of black hole entropy (see [14] for a recent review and further

references) and brane world scenarios (see, e.g., [15]).

1.2 A puzzle and a possible resolution

The research programme outlined above was initially inspired by recent results regard-

ing the question of how curvature corrections in string and M-theory, analyzed close to

a spacelike singularity (the “BKL-limit”), fit into the representation structure of the hy-

perbolic Kac-Moody algebra E10(10) = Lie E10(10) [16, 17]. These authors found that

generically such curvature corrections are associated with exponents which reside on the

negative side of the root lattice of the algebra, indicating that correction terms fall into

infinite-dimensional (non-integrable) lowest-weight representations of E10(10).
3 Moreover,

it was shown that curvature corrections to eleven-dimensional supergravity match with the

root lattice of E10(10) only for the special powers 3k + 1, k = 1, 2, 3, . . . , of the Riemann

tensor. This is in perfect agreement with explicit loop calculations, which reveal that the

only correction terms with non-zero coefficients are R4,R7, . . . , etc. [18]. However, when

reducing to ten-dimensions and repeating the analysis for type IIA and type IIB super-

gravity, the restriction on the curvature terms — obtained by requiring compatibility with

the E10(10)-root lattice — no longer match with known results from string calculations [17].

For example, the E10(10) analysis for type IIA predicts a correction term of order R3, which

is known to be forbidden by supersymmetry. This implies that — even though correct for

eleven-dimensional supergravity — the compatibility between higher derivative corrections

and the root lattice of E10(10) is clearly not well-understood, and requires refinement.

These results are puzzling also in other respects, most notably because the weights that

arise from curvature corrections are negative weights of E10(10); with the leading order term

in a BKL-like expansion of the R4-terms being the lowest weight of the representation, and,

in fact, corresponds to the negative of a dominant integral weight. This implies that the

representation builds upwards and outwards from the interior of the negative fundamental

Weyl chamber, rendering the representation non-integrable. From the point of view of

3The root lattice of E10(10) is self-dual, implying that the root lattice and the weight lattice coincide.

The same is true for E8(8).

– 4 –
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the nonlinear sigma model for E10(10)/K(E10(10)) this result is also strange, because the

correspondence with the tree-level Lagrangian in the BKL-limit requires the use of the

Borel gauge, for which no negative weights appear in the Lagrangian [19] (see [20, 21] for

reviews). The reason for these puzzling results is essentially due to the “lapse-function”

N , representing the reparametrisation invariance in the timelike direction. At tree-level

the powers of the lapse-function arising from the measure and from the Ricci scalar cancel,

and the remaining exponents correspond to positive roots of E10(10). On the other hand,

for terms of higher order in the Riemann tensor there are also higher powers of the lapse-

function which “pushes” the exponents to the negative side of the root system.

From a different point of view, similar features have appeared in the analysis of [7].

These authors investigated the general structure of the dilaton exponents upon compact-

ifications on T 8 of quartic curvature corrections to eleven-dimensional supergravity, em-

phasizing the importance of including the overall “volume factor”, which parametrises the

volume of the internal torus. Of course, in this case it is the Lie algebra E8(8) = Lie E8(8)

which is the relevant one, rather than E10(10). However, the inclusion of the volume factor

into the dilaton exponents when investigating the weight structure has precisely the same

effect as the lapse-function had in the E10(10)-case above, namely to push the exponents

from the positive root lattice of E8(8) down to the negative root lattice, thus giving rise to

negative weights of E8(8).

These results imply that one might use the simpler approach of compactification of

curvature corrections to three dimensions in order to develop some intuition regarding the

more difficult case of implementing the full E10(10)-symmetry in M-theory. Based on these

considerations — and the results obtained in the present paper concerning the represen-

tation structure of the compactified Gauss-Bonnet term — we shall in fact argue that the

overall volume factor should not be included in the analysis of the representation structure.

This interpretation draws from the idea that the result of the compactification should be

seen as the lowest order term in a large volume expansion of a manifestly U-duality invari-

ant action. From this point of view the volume factor is then associated to the first term in

an expansion of an automorphic form of U3(Z), transforming in some representation of the

maximal compact subgroup K(U3). Moreover, with this interpretation, the dilaton expo-

nents of the compactified quadratic corrections exhibit a more natural structure in terms of

representations of U3. It is our hope that these results can also be applied to the question

of how higher derivative corrections to eleven-dimensional supergravity fit into E10(10).

1.3 Organisation of the paper

Our paper is organized as follows. In section 2 we present the result of the compactification

of the Gauss-Bonnet term on T n from D dimensions to D − n = 3 dimensions. The

completely general action representing the compactification to arbitrary dimensions is given

in appendix A. The result in three dimensions is given in section 2 after dualisation of all

Kaluza-Klein vectors into scalars, which is the case of most interest from the U-duality point

of view. We then proceed in section 3 with the analysis of the compactified Lagrangian. We

analyze in detail the dilaton exponents in terms of the representation theory of sl(n+1, R),

which is the enhanced symmetry group of the compactified tree-level Lagrangian. Finally, in

– 5 –
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section 4 we suggest a possible non-perturbative completion of the compactified Lagrangian

into a manifestly U-duality invariant expression. We explain how this completion requires

the lifting of the coefficients in the Lagrangian into automorphic forms transforming non-

trivially under the maximal compact subgroup K(U3) ⊂ U3. We interpret our results and

provide a comparison with the existing literature. All calculational details are displayed in

appendix A.

2. Compactification of the Gauss-Bonnet term

In this section we outline the derivation of the toroidal compactification of the Gauss-

Bonnet term from D dimensions to D − n dimensions. In eq. (A.22) of appendix A we

give the full result for the compactification to arbitrary dimensions. Here we focus on the

special case of D − n = 3, which is the most relevant case for the questions we pursue in

this paper.

2.1 The general procedure

The Gauss-Bonnet Lagrangian density is quadratic in the Riemann tensor and takes the

explicit form

LGB = ê
[
R̂ABCDR̂ABCD − 4R̂ABR̂AB + R̂2

]
. (2.1)

The compactification of the D-dimensional Riemann tensor R̂A
BCD on an n-torus, T n, is

done in three steps: first we perform a Weyl-rescaling of the total vielbein, followed by a

splitting of the external and internal indices, and finally we define the parametrisation of

the internal vielbein. In the following we shall always assume that the torsion vanishes.

Conventions and reduction Ansatz. Our index conventions are as follows. M,N, . . .

denote D dimensional curved indices, and A,B, . . . denote D dimensional flat indices.

Upon compactification we split the indices according to M = (µ,m), where µ, ν, . . . and

m,n, . . . are curved external and internal indices, respectively. Similarly, the flat indices

split into external and internal parts according to A = (α, a).

Our reduction Ansatz for the vielbein is

ê A
M = eϕẽ A

M = eϕ

(
e α
µ Am

µ ẽ a
m

0 ẽ a
m

)
, (2.2)

where the internal vielbein ẽ a
m is an element of the isometry group GL(n, R) of the n-

torus. Later on we shall parametrise ẽ a
m in various ways. With this Ansatz, the line

element becomes

ds2
D = e2ϕ

{
ds2

D−n +
[
(dxm + Am

(1))ẽ
a

m

]2}
. (2.3)

Weyl-Rescaling. In order to obtain a Lagrangian in Einstein frame after dimensional

reduction, we perform a Weyl-rescaling of the D-dimensional vielbein,

ê A
M −→ ẽ A

M = e−ϕê A
M . (2.4)
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Note that all D-dimensional objects before rescaling are denoted X̂, the Weyl-rescaled

objects are denoted X̃ , while the d = (D−n)-dimensional objects are written without any

diacritics. After the Weyl-rescaling the Gauss-Bonnet Lagrangian, including the volume

measure ê = eDϕẽ, can be conveniently organized in terms of equations of motion and total

derivatives. This is achieved using integration by parts, where ∇̃(A∂̃B)ϕ does not appear

explicitly. The resulting Lagrangian is (see appendix A):

LGB = ẽe(D−4)ϕ

{
R̃2

GB − (D − 3)(D − 4)

[
2(D − 2)(∂̃ϕ)2�̃ϕ + (D − 2)(D − 3)(∂̃ϕ)4

+4

(
R̃AB − 1

2
ηABR̃

)
(∂̃Aϕ)(∂̃Bϕ)

]}

+2(D − 3)ẽ∇̃A

{
e(D−4)ϕ

[
(D − 2)2(∂̃ϕ)2∂̃Aϕ + 2(D − 2)(�̃ϕ)∂̃Aϕ

−(D − 2)∂̃A(∂̃ϕ)2 + 4

(
R̃AB − 1

2
ηABR̃

)
∂̃Bϕ

]}
, (2.5)

where R̃2
GB represents the rescaled Gauss-Bonnet combination. In D = 4 the Lagrangian

is only altered by a total derivative, while in D = 3 the Lagrangian it is merely rescaled

by a factor of e−ϕ. The total derivative terms here will remain total derivatives even after

the compactification. Along with the volume factor the Weyl-rescaling will determine the

overall exponential dilaton factor, which shall play an important role in the analysis that

follows.

2.2 Tree-level scalar coset symmetries

The internal vielbein ê a
m can be used to construct the internal metric ĝmn = ê a

m ê b
n δab,

which is manifestly invariant under local SO(n) rotations in the reduced directions. Thus

we are free to fix a gauge for the internal vielbein using the SO(n)-invariance. After

compactification the volume measure becomes ẽ = eẽint, where e is the determinant of the

spacetime vielbein and ẽint is the determinant of the internal vielbein. Defining the Weyl-

rescaling coefficient as e−(D−2)ϕ ≡ ẽint ensures that the reduced Lagrangian is in Einstein

frame.

The GL(n, R) group element ẽ a
m can now be parameterized in several ways, and we

will discuss the two most natural choices here. The first choice is included for completeness,

while it is the second choice which we shall subsequently employ in the compactification of

the Gauss-Bonnet term.

First parametrisation — Making the symmetry manifest. First, there is the pos-

sibility of separating out the determinant of the internal vielbein according to ẽ a
m =

(ẽint)
1/nε a

m = e−
(D−2)

n
ϕε a

m , where ε a
m is an element of SL(n, R) in any preferred gauge.

The line element takes the form

ds2
D = e2ϕ

{
ds2

D−n + e−2 (D−2)

n
ϕ
[
(dxm + Am

(1))ε
a

m

]2}
. (2.6)

This Ansatz is nice for investigating the symmetry properties of the reduced Lagrangian

because the GL(n, R)-symmetry of the internal torus is manifestly built into the formalism.
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More precisely, the reduction of the tree-level Einstein-Hilbert Lagrangian, êR̂, to d = D−n

dimensions becomes,

L[d]
EH = e

[
R − 1

4
e−2 (D−2)

n
ξρFcαβF cαβ − 1

2
(∂ρ)2 − tr(PαPα) − 2ξ�ρ

]
, (2.7)

where F c
αβ ≡ ε a

m Fm
αβ and

P bc
α ≡ εm(b∂αε c)

m = P̃ bc
α +

(D − 2)

n
ξ∂αρδbc. (2.8)

Notice that P bc
α is sl(n, R) valued and hence fulfills tr(Pα) = 0. To obtain eq. (2.7) we

also performed a scaling ϕ = ξρ with ξ =
√

n
2(D−2)(D−n−2) , so as to ensure that the scalar

field ρ appears canonically normalized in the Lagrangian.

The SL(n, R)-symmetry is manifest in this Lagrangian because the term tr(PαPα)

is constructed using the invariant Killing form on sl(n, R). By dualising the two-form

field strength F(2), the symmetry is enhanced to SL(n + 1, R). With a slight abuse of

terminology we call this the (classical) “U-duality” group. Since we are only investigating

the pure gravity sector, this is of course only a subgroup of the full continuous U-duality

group.

It was already shown in [9], that the tree-level symmetry SL(n + 1, R) is not realized

in the compactified Gauss-Bonnet Lagrangian. It was argued, however, that the quantum

symmetry SL(n + 1, Z) could be reinstated by “lifting” the result of the compactification

through the use of automorphic forms. In this paper we take the same point of view, but

since we now have access to the complete expression of the compactified Gauss-Bonnet

Lagrangian we can here extend the analysis of [9] in some aspects. In order to do this

we shall make use of a different parametrisation than the one displayed above, which

illuminates the structure of the dilaton exponents in the Lagrangian. The dilaton exponents

reveals the weight structure of the global symmetry group and so can give information

regarding which representation of the U-duality group we are dealing with.

Second parametrisation — Revealing the root structure. The second natural

choice of the internal vielbein is to parameterize it in triangular form by using dimension

by dimension compactification [22 – 24]. Instead of extracting only the determinant of the

vielbein, one dilaton scalar is pulled out for each compactified dimension according to

ẽ a
m = e−

1

2

~fa·~φu a
m , where ~φ = (φ1, . . . , φn) and

~fa = 2(α1, . . . , αa−1, (D − n − 2 + a)αa, 0, . . . , 0︸ ︷︷ ︸
n−a

), (2.9)

with

αa =
1√

2(D − n − 2 + a)(D − n − 3 + a)
. (2.10)

The internal vielbein is now the Borel representative of the coset GL(n, R)/SO(n), with

the diagonal degrees of freedom e−
1

2

~fa·~φ corresponding to the Cartan generators and the

upper triangular degrees of freedom

u a
m = [(1 −A(0))

−1] a
m = [1 + A(0) + (A(0))

2 + . . . ] a
m (2.11)
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corresponding to the positive root generators. The form of eq. (2.11) follows naturally

from a step by step compactification, where the scalar potentials (A(0))
i
j , arising from the

compactification of the graviphotons, are nonzero only when i > j. The sum of the vectors
~fa can be shown to be

n∑
a=1

~fa =
D − 2

3
~g, (2.12)

~g ≡ 6(α1, α2 . . . , αn). In addition, ~g and ~fa obey

~g · ~g =
18n

(D − 2)(D − n − 2)
,

~g · ~fa =
6

D − n − 2
,

~fa · ~fb = 2δab +
2

D − n − 2
, (2.13)

and
n∑

a=1

(~fa · ~x)(~fa · ~y) = 2(~x · ~y) +
D − 2

9
(~g · ~x)(~g · ~y). (2.14)

These scalar products can naturally be used to define the Cartan matrix, once a set of

simple root vectors are found. The line element becomes

ds2
D = e

1

3
~g·~φ
{
ds2

D−n +

n∑
a=1

e−
~fa·~φ
[
(dxm + Am

(1))u
a

m

]2 }
, (2.15)

yielding the corresponding Einstein-Hilbert Lagrangian in d dimensions

L[d]
EH = e

[
R− 1

2
(∂~φ)2− 1

4

n∑
a=1

e−
~fa·~φFaβγF aβγ− 1

2

n∑
b,c=1
b<c

e(~fb−~fc)·~φGαbcG
αbc− 1

3
~g ·�~φ

]
, (2.16)

with F c
αβ ≡ u a

m Fm
αβ and

G bc
α = umb∂αu c

m = e−
1

2
(~fb−~fc)·~φ

[(
P̃ bc

α +
1

2
~fb · ∂α

~φδbc

)
+ Q bc

α

]
. (2.17)

Here, no Einstein’s summation rule is assumed for the flat internal indices. Notice also

that G bc
α is non-zero only when b < c.

We shall refer to the various exponents of the form e~x·~φ (~x being some vector in Rn)

collectively as “dilaton exponents”. If relevant, this also includes the contribution from the

overall volume factor.

All the results obtained in this parametrisation can be converted to the first parametri-

sation simply by using the following identifications

1

3
(~g · ~φ) = 2ξρ,

~fa · ~φ = 2
(D − 2)

n
ξρ, ∀a,

~φ · ~φ = ρ2, (2.18)
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where one should keep in mind that ξ =
√

n
2(D−2)(D−n−2) . Notice also that our compactifi-

cation procedure breaks down at D−n = 2, in which case the scalar products in eq. (2.13)

become ill-defined.

Even though proving the symmetry contained in the Lagrangian is somewhat more

cumbersome compared to the first choice of parametrisation, since all the group actions

have to be carried out adjointly in a formal manner, the second choice comes to its power

when dealing with the exceptional symmetry groups of the supergravities for which no

matrix representations exist. This parametrisation is particularly suitable for reading off

the root vectors of the underlying symmetry algebra; they appear as exponential factors

in front of each term in the Lagrangian. Identifying a complete set of root vectors in this

way gives a necessary but not sufficient constraint on the underlying symmetry.

2.3 The Gauss-Bonnet lagrangian reduced to three dimensions

When reducing to D − n = 3 dimensions, we can dualise the two-form field strength

F̃ a
αβ ≡ ẽ a

m Fm
αβ of the graviphoton A(1) into the one-form H̃aα. More explicitly, we

employ the standard dualisation

δabF̃
b
αβ = ǫαβγ ẽm

a∂
γχm ≡ ǫαβγH̃ γ

a . (2.19)

When we go to Einstein frame, the appearance of the inverse vielbein ẽm
a in the definition

of the one-form H̃aα implies there is a sign flip on its dilaton exponent in the Lagrangian

after dualisation. The dualisation presented here follows from the tree-level Lagrangian,

but in general receives higher order α′-corrections. However, these lead to terms of higher

derivative order than quartic and so can be neglected in the present analysis [7, 9].

The compactification is performed according to the standard procedure by separating

the indices; the detailed calculations can be found in appendix A. The final results are

written in such way that the only explicit derivative terms appearing are divergences, total

derivatives and first derivatives on the dilatons ϕ. The complete compactification of the

Gauss-Bonnet Lagrangian on T n to arbitrary dimensions D − n is given in eq. (A.22) of

appendix A.4 This expression is rather messy and difficult to work with. However, by

making use of all first order equations of motion, dualising all graviphotons to scalars, and

restricting to D − n = 3, the Lagrangian simplifies considerably. The end result reads

L[3]
GB =

√
|g|e−2ϕ

{
− 1

4
H̃aγH̃ γ

b H̃a
δH̃

bδ +
1

4
H̃2H̃2 − 4H̃2(∂ϕ)2 + 2H̃cαP̃αcdP̃

βdeH̃eβ

−2H̃cαP̃βcdP̃
βdeH̃eα + 4H̃cαP̃αcdH̃ β

d ∂βϕ − 6H̃cαP̃ βcdH̃ α
d ∂βϕ

+2tr(P̃αP̃βP̃αP̃ β) + 2tr(P̃αP̃β)tr(P̃αP̃ β) − (P̃ 2)2 + 8tr(P̃αP̃βP̃ β)∂αϕ

−4(D − 2)tr(P̃αP̃β)∂αϕ∂βϕ + 2(D + 2)P̃ 2(∂ϕ)2 + (D − 2)(D − 4)(∂ϕ)2(∂ϕ)2
}

,

(2.20)

4Kaluza-Klein reduction of quadratic curvature corrections has also been analyzed from a different point

of view in [25].
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where H̃2 ≡ H̃aβH̃aβ and P̃ 2 ≡ P̃αbcP̃
αbc. Note that contributions from the boundary

terms and terms proportional to the equations of motion have been ignored. The one-form

P̃α is the Maurer-Cartan form associated with the internal vielbein ẽ a
m , and so takes values

in the Lie algebra gl(n, R) = sl(n, R)⊕R. Here, the abelian summand R corresponds to the

“trace-part” of P̃α. Explicitly, we have tr(P̃α) = −(D − 2)∂αϕ. We shall discuss various

properties of P̃α in more detail below.

Finally, we note that the three-dimensional Gauss-Bonnet term is absent from the

reduced Lagrangian because it vanishes identically in three dimensions:

RαβγδR
αβγδ − 4RαβRαβ + R2 = 0, (α, β, γ, δ = 1, 2, 3). (2.21)

The remainder of this paper is devoted to a detailed analysis of the symmetry properties

of eq. (2.20).

3. Algebraic structure of the compactified Gauss-Bonnet term

We have seen that the Ansatz presented in eq. (2.15) is particularly suitable for identifying

the roots of the relevant symmetry algebra from the dilaton exponents associated with

the diagonal components of the internal vielbein. Through this analysis one may deduce

that for the lowest order effective action, the terms in the action are organized according

to the adjoint representation of sl(n + 1, R), for which the weights are the roots. The

aim of this section is to extend the analysis to the Gauss-Bonnet Lagrangian. By general

arguments [7, 8], it has been shown that the exponents no longer correspond to roots of the

symmetry algebra but rather they now lie on the weight lattice. Here, however, we have

access to the complete compactified Lagrangian and we may therefore present an explicit

counting of the weights in the dilaton exponents and identify the relevant sl(n + 1, R)-

representation.

An exhaustive analysis of the sl(4, R)-representation structure of the Gauss-Bonnet

term compactified from 6 to 3 dimensions on T 3 is performed. We do this in two alternative

ways.

First, we neglect the contribution from the overall dilaton factor e−2ϕ in the repre-

sentation structure. This is consistent before dualisation because this factor is SL(3, R)-

invariant. However, after dualisation this is no longer true and one must understand what

role this factor plays in the algebraic structure. If one continues to neglect this factor then

all the weights fit into the 84-representation of sl(4, R) with Dynkin labels [2, 0, 2].

On the other hand, including the overall exponential dilaton factor in the weight struc-

ture induces a shift on the weights so that the highest weight is associated with the 36-

representation of sl(4, R) instead, with Dynkin labels [2, 0, 1]. However, this representation

is not “big enough” to incorporate all the weights in the Lagrangian. It turns out that

there are additional weights outside of the 36 that fit into a 27-representation of sl(3, R).

Unfortunately there seems to be no obvious argument for which sl(4, R)-representation

those “extra” weights should belong to.

This indicates that the first approach, where the dilaton pre-factor is neglected, is the

correct way to interpret the result of the compactification because then all weights are
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“unified” in a single representation of the U-duality group. A detailed demonstration of

this follows below.

3.1 Kaluza-Klein reduction and sl(n, R)-representations

We shall begin by rewriting the reduction Ansatz in a way which has a more firm Lie

algebraic interpretation. Recall from eq. (2.15) that the standard Kaluza-Klein Ansatz for

the metric is

ds2
D = e

1

3
~g·~φds2

d + e
1

3
~g·~φ

n∑
i=1

e−
~fi·~φ
[(

dxm + Am
(1)

)
um

a
]2

. (3.1)

The exponents in this Ansatz are linear forms on the space of dilatons. Let ~ei, i = 1, . . . , n,

constitute an n-dimensional orthogonal basis of Rn,

~ei · ~ej = δij . (3.2)

Since there is a non-degenerate metric on the space of dilatons (the Cartan subalgebra

h ⊂ sl(n + 1, R)) we can use this to identify this space with its dual space of linear forms.

Thus, we may express all exponents in the orthogonal basis ~ei and the vectors ~fi and ~g

may then be written as

~fi =
√

2~ei + α~g,

~g = β

n∑
i=1

~ei, (3.3)

where the constants α and β are defined as

α =
1

3n

(
D − 2 −

√
(D − n − 2)(D − 2)

)
,

β =

√
18

(D − n − 2)(D − 2)
. (3.4)

Note here that the constant α is not the same as the αa of eq. (2.9).

The combinations
~fi − ~fj =

√
2~ei −

√
2~ej (3.5)

span an (n− 1)-dimensional lattice which can be identified with the root lattice of An−1 =

sl(n, R). For compactification of the pure Einstein-Hilbert action to three dimensions, the

dilaton exponents precisely organize into the complete set of positive roots of sl(n, R),

revealing that it is the adjoint representation which is the relevant one for the U-duality

symmetries of the lowest order (two-derivative) action. After dualisation of the Kaluza-

Klein one forms A(1) the symmetry is lifted to the full adjoint representation of sl(n+1, R).

When we compactify higher derivative corrections to the Einstein-Hilbert action it is

natural to expect that other representations of sl(n, R) and sl(n + 1, R) become relevant.

In order to pursue this question for the Gauss-Bonnet Lagrangian, we shall need some

features of the representation theory of sl(n + 1, R).
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Representation theory of An = sl(n + 1, R). For the infinite class of simple Lie

algebras An, it is possible to choose an embedding of the weight space h⋆ in Rn+1 such

that h⋆ is isomorphic to the subspace of Rn+1 which is orthogonal to the vector
∑n+1

i=1 ~ei

(see, e.g., [26]). We can use this fact to construct an embedding of the (n− 1)-dimensional

weight space of An−1 = sl(n, R) into the n-dimensional weight space of An = sl(n + 1, R),

in terms of the n basis vectors ~ei of Rn.

To this end we define the new vectors

~ωi = ~fi −
(

α +

√
2

nβ

)
~g

=
√

2~ei −
√

2

n

n∑
j=1

~ej , (3.6)

which have the property that

~ωi · ~g =
√

2β −
√

2β = 0. (3.7)

This implies that the vectors ~ωi form a (non-orthogonal) basis of the (n − 1)-dimensional

subspace U ⊂ Rn, orthogonal to ~g. The space U is then isomorphic to the weight space h⋆

of An−1 = sl(n, R). Since there are n vectors ~ωi, this basis is overcomplete. However, it is

easy to see that not all ~ωi are independent, but are subject to the relation

n∑
i=1

~ωi = 0. (3.8)

A basis of simple roots of h⋆ can now be written in three alternative ways

~αi = ~fi − ~fi+1 = ~ωi − ~ωi+1 =
√

2(~ei − ~ei+1), (i = 1, . . . , n − 1). (3.9)

What is the algebraic interpretation of the vectors ~ωi? It turns out that they may

be identified with the weights of the n-dimensional fundamental representation of sl(n, R).

The condition
∑n

i=1 ~ωi = 0 then reflects the fact that the generators of the fundamental

representation are traceless.

In addition, we can use the weights of the fundamental representation to construct the

fundamental weights ~Λi, defined by

~αi · ~Λj = 2δij . (3.10)

One finds

~Λi =

i∑
j=1

~ωj, (i = 1, . . . , n − 1), (3.11)

which can be seen to satisfy eq. (3.10).

The relation, eq. (3.11), between the fundamental weights ~Λi and the weights of the

fundamental representation ~ωi can be inverted to

~ωi = ~Λi − ~Λi−1, (i = 1, . . . , n − 1). (3.12)
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In addition, the n:th weight is

~ωn = −~Λn−1, (3.13)

corresponding to the lowest weight of the fundamental representation.

We may now rewrite the Kaluza-Klein Ansatz in a way such that the weights ~ωi appear

explicitly in the metric5

ds2
D = e

1

3
~g·~φds2

d + eγ~g·~φ
n∑

i=1

e−~ωi·~φ
[(

dxm + Am
(1)

)
um

a
]2

, (3.14)

with

γ =
1

3
− α −

√
2

nβ
. (3.15)

3.2 The algebraic structure of Gauss-Bonnet in three dimensions

We are interested in the dilaton exponents in the scalar part of the three-dimensional

Lagrangian. For the Einstein-Hilbert action we know that these are of the forms

~fa − ~fb (b > a), and ~fa. (3.16)

The first set of exponents ~fa − ~fb correspond to the positive roots of sl(n, R) and the

second set ~fa, which contributes to the scalar sector after dualisation, extends the algebraic

structure to include all positive roots of sl(n+1, R). The highest weight ~λhw
ad,n of the adjoint

representation of An = sl(n+1, R) can be expressed in terms of the fundamental weights as

~λhw
ad,n = ~Λ1 + ~Λn, (3.17)

corresponding to the Dynkin labels

[1, 0, . . . , 0, 1].

We see that before dualisation the highest weight of the adjoint representation of sl(n, R)

arises in the dilaton exponents in the form ~f1 − ~fn = ~ω1 − ~ωn = ~Λ1 + ~Λn−1 = ~λhw
ad,n−1.

We proceed now to analyze the various dilaton exponents arising from the Gauss-

Bonnet term after compactification to three dimensions. These can be extracted from each

term in the Lagrangian eq. (2.20) by factoring out the diagonal components of the internal

vielbein according to ẽ a
m = e−

1

2

~fa·~φu a
m . For example, before dualisation we have the

manifestly SL(n, R)-invariant term tr(P̃αP̃βP̃αP̃ β). Expanding this gives (among others)

the following types of terms

tr
(
P̃αP̃βP̃αP̃ β

)
∼

∑
b < a, c

d < a, c

e−(~fa−~fb+~fc−~fd)·~φGαbaG
bc

β Gα
dcG

βda + · · ·

+
∑

a < c < d < b

e(~fa−~fb)·~φGαabG
ac

β Gα
cdG

βdb + · · · . (3.18)

5A similar construction was given in [27].
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After dualisation, we need to take into account also terms containing H̃α
a. We have then,

for example, the term

H̃4 ∼
∑
a,b

e(~fa+~fb)·~φH4. (3.19)

Many different terms in the Lagrangian might in this way give rise to the same dilaton

exponents. As can be seen from eq. (3.18), the internal index contractions yield constraints

on the various exponents. We list below all the “independent” exponents, i.e., those which

are the least constrained. All other exponents follow as special cases of these. Before

dualisation we find the following exponents:

~fa − ~fb (b > a),

~fc + ~fd − ~fa − ~fb (c < a, c < b, d < a, d < b),

~fa + ~fb − ~fc − ~fd (b < c, a < d), (3.20)

and after dualisation we also get contributions from

~fa,

~fa + ~fb,

~fa + ~fb − ~fc, (a < c, b < c). (3.21)

Let us first investigate the general weight structure of the dilaton exponents before dualisa-

tion. The highest weight arises from the terms of the form ~fc + ~fd− ~fa− ~fb when c = d = 1

and a = b = n, i.e., for the dilaton vector 2~f1 − 2~fn. This can be written in terms of the

fundamental weights as follows

2~f1 − 2~fn = 2~ω1 − 2~ωn = 2~Λ1 + 2~Λn−1, (3.22)

which is the highest weight of the [2, 0, . . . , 0, 2]-representation of sl(n, R).

3.3 Special case: compactification from D = 6 on T 3

In order to determine if this is indeed the correct representation for the Gauss-Bonnet

term, we shall now restrict to the case of n = 3, i.e., compactification from D = 6 on T 3.

We do this so that a complete counting of the weights in the Lagrangian is a tractable

task.6 Before dualisation we then expect to find the representation 27 of sl(3, R), with

Dynkin labels [2, 2]. We will see that, after dualisation, this representation lifts to the

representation 84 of sl(4, R), with Dynkin labels [2, 0, 2].

It is important to realize that of course the Lagrangian will not display the complete

set of weights in these representations, but only the positive weights, i.e., the ones that

can be obtained by summing positive roots only. Let us begin by analyzing the weight

structure before dualisation. From eq. (3.20) we find the weights

~f1 − ~f2, ~f2 − ~f3, ~f1 − ~f3,

2(~f1 − ~f2), 2(~f2 − ~f3), 2(~f1 − ~f3),

2~f1 − ~f2 − ~f3, ~f1 + ~f2 − 2~f3. (3.23)

6The simpler case where one performs compactification from D = 5 on T
2 behaves in a similar fashion,

where we find a level decomposition of sl(3, R) in terms of sl(2, R).
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The first three may be identified with the positive roots of sl(3, R), ~α1 = ~f1− ~f2, ~α2 = ~f2− ~f3

and ~αθ = ~f1 − ~f3. The second line then corresponds to 2~α1, 2~α2 and 2~αθ. The remaining

weights are

~f1 + ~f2 − 2~f3 = ~α1 + 2~α2,

2~f1 − ~f2 − ~f3 = 2~α1 + ~α2. (3.24)

These weights are precisely the eight positive weights of the 27 representation of sl(3, R).

We now wish to see whether this representation lifts to any representation of sl(4, R),

upon inclusion of the weights in eq. (3.21). As mentioned above, the natural candidate is

an 84-dimensional representation of sl(4, R) with Dynkin labels [2, 0, 2]. It is illuminating

to first decompose it in terms of representations of sl(3, R),

84 = 27 ⊕ 15 ⊕ 1̄5 ⊕ 6 ⊕ 6̄⊕ 8 ⊕ 3⊕ 3̄⊕ 1, (3.25)

or, in terms of Dynkin labels,

[2, 0, 2] = [2, 2] + [2, 1] + [1, 2] + [2, 0] + [0, 2] + [1, 1] + [1, 0] + [0, 1] + [0, 0]. (3.26)

We may view this decomposition as a level decomposition of the representation 84, with

the level ℓ being represented by the number of times the third simple root ~α3 appears in

each representation. From this point of view, and as we shall see in more detail shortly,

the representations 27,8 and 1 reside at ℓ = 0, the representations 15 and 3 at ℓ =

1, and the representation 6 at ℓ = 2. The “barred” representations then reside at the

associated negative levels. Knowing that we will only find the strictly positive weights in

these representations, let us therefore start by listing these.

Firstly, we may neglect all representations at negative levels since these do not contain

any positive weights. However, not all weights for ℓ ≥ 0 are positive. If we had decomposed

the adjoint representation of sl(4, R) this problem would not have been present since all

roots are either positive or negative, and hence all weights at positive level are positive and

vice versa. In our case this is not true because for representations larger than the adjoint

many weights are neither positive nor negative. It is furthermore important to realize that

after dualisation it is the positive weights of sl(4, R) that we will obtain and not of sl(3, R).

As can be seen in figure 1 the decomposition indeed includes weights which are negative

weights of sl(3, R) but nevertheless positive weights of sl(4, R). An explicit counting reveals

the following number of positive weights at each level (not counting weight multiplicities):

ℓ = 0 : 8,

ℓ = 1 : 8,

ℓ = 2 : 6. (3.27)

The eight weights at level zero are of course the positive weights of the 27 representation

of sl(3, R) that we had before dualisation. In order to verify that we find all positive

weights of 84 we must now check explicitly that after dualisation we get 8 + 6 additional
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Reps ℓ Positive Weights of sl(4, R)

3 1 ~α3, ~α2 + ~α3, ~α1 + ~α2 + ~α3

15 1 2~α2 + ~α3, ~α1 + 2~α2 + ~α3, 2~α1 + 2~α2 + ~α3,

2~α1 + ~α2 + ~α3, (~α1 + ~α3)

6 2 2~α2 + 2~α3, ~α1 + 2~α2 + 2~α3, 2~α1 + 2~α2 + 2~α3,

~α1 + ~α2 + 2~α3, 2~α3, ~α2 + 2~α3

Table 1: Positive weights at levels one and two.

positive weights. The total number of distinct weights of sl(4, R) that should appear in the

Lagrangian after compactification and dualisation is thus 22.

The lifting from sl(3, R) to sl(4, R) is done by adding the third simple root ~α3 ≡ ~f3,

from eq. (3.21). The complete set of new weights arising from eq. (3.21) is then

ℓ = 1 : ~f1 = ~α1 + ~α2 + ~α3, ~f2 = ~α2 + ~α3,

2~f1 − ~f2 = 2~α1 + ~α2 + ~α3, 2~f2 − ~f3 = 2~α2 + ~α3,

2~f1 − ~f3 = 2~α1 + 2~α2 + ~α3, ~f1 + ~f2 − ~f3 = ~α1 + 2~α2 + ~α3,

(~f1 + ~f3 − ~f2 = ~α1 + ~α3), ~f3 = ~α3,

ℓ = 2 : 2~f1 = 2~α1 + 2~α2 + 2~α3, 2~f2 = 2~α2 + 2~α3,

2~f3 = 2~α3, ~f1 + ~f2 = ~α1 + 2~α2 + 2~α3,

~f1 + ~f3 = ~α1 + ~α2 + 2~α3, ~f2 + ~f3 = ~α2 + 2~α3. (3.28)

In table 1 we indicate which representations these weights belong to and in figure 1 we

give a graphical presentation of the level decomposition. The weight ~α1 + ~α3 is put inside

a parenthesis since terms giving this particular dilaton exponent in the Gauss-Bonnet

combination are all absorbed into the equations of motion, and thus do not contribute

according to our compactification procedure. However, generically it will contribute for a

general second order curvature correction. We suspect the origin of this “missing” weight

is connected to the mismatch in the multiplicity counting, which we will discuss briefly

below. These results show that the Gauss-Bonnet term in D = 6 compactified on T 3

to three dimensions gives rise to strictly positive weights that can all be fit into the 84-

representation of sl(4, R).

Weight multiplicities. We have shown that the six-dimensional Gauss-Bonnet term

compactified to three dimensions gives rise to positive weights of the 84-representation of

sl(4, R). However, we have not yet addressed the issue of weight multiplicities. It is not

clear how to approach this problem. Naively, one might argue that if k distinct terms in the

Lagrangian are multiplied by the same dilaton exponential, corresponding to some weight
~λ, then this weight has multiplicity k. Unfortunately, this type of counting does not seem

to work, one of the reasons being that the notion of distinctness is not clearly defined.
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Figure 1: Graphical presentation of the representation structure of the compactified Gauss-Bonnet

term. The black nodes arise from distinct dilaton exponents in the three-dimensional Lagrangian.

The figure displays the level decomposition of the 84-representation of sl(4, R) into representations

of sl(3, R). Only positive levels are displayed. The black nodes correspond to positive weights of 84

of sl(4, R). Nodes with no rings represent the positive weights of the level zero representation 27,

nodes with one ring represent the positive weights of the level one representations 15 and 3, while

nodes with two rings represent the positive weights of the level two representation 6. The shaded

lines complete the representations with non-positive weights which are not displayed explicitly. The

missing weight is put into a parenthesis.

Consider, for instance, the representations at ℓ = 1. Both representations 15 and 3

contain the weights ~f1, ~f2 and ~f3. In 15 these have all multiplicity 2, while in 3 they have

multiplicity 1. Thus, in total these weights have multiplicity 3 as weights of sl(3, R). Now,

a detailed investigation reveals that the dilaton exponent ~fa appears in the Gauss-Bonnet

term accompanied with various different constraints on the index a, the no constraint case

given in eq. (3.21) is merely the “most unconstrained” one. It can be easily shown that

weights with lower value on index a have higher multiplicity. We therefore deduce that for

all these weights there appears to be a mismatch in the multiplicity.

We suggest that the correct way to interpret this discrepancy in the weight multiplic-
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ities is as an indication of the need to introduce transforming automorphic forms in order

to restore the SL(4, Z)-invariance. This will be discussed more closely in section 4.

Including the Dilaton prefactor. We will now revisit the analysis from section 3.3, but

here we include the contribution from the overall exponential factor e−2ϕ in the Lagrangian

eq. (2.20). This factor arises as follows. The determinant of the D-dimensional vielbein

is given by ê = eDϕẽ, because of the Weyl-rescaling. Moreover, upon compactification

the determinant of the rescaled vielbein splits according to ẽ = eẽint, where e represents

the external vielbein and ẽint the internal vielbein. The Weyl-rescaling is then chosen to

be defined as ẽint = e−(D−2)ϕ. This represents the volume of the n-torus, upon which

we perform the reduction. Thus, the overall scaling contribution from the measure is

eDϕe−(D−2)ϕ = e2ϕ. In addition, we have a factor of e−4ϕ from Weyl-rescaling the Gauss-

Bonnet term (see eq. (A.20) and eq. (A.21)). This gives a total overall dilaton prefactor of

e−2ϕ, which, after inserting ϕ = 1
6~g · ~φ, becomes e−

1

3
~g·~φ.

The importance of the volume factor for compactified higher derivative terms was

emphasized in [7], using the argument that after dualisation this factor is no longer invariant

under the extended symmetry group SL(n + 1, R) and so must be included in the weight

structure. We shall see that the inclusion of this factor drastically modifies the previously

presented structure.

The fundamental weights of sl(4, R). In order to perform this analysis, it is useful to

first rewrite the simple roots and fundamental weights in a way which makes a comparison

with [7] possible. We define arbitrary 3-vectors in R3 as follows

~̂v = v1
~Λ1 + v2

~Λ2 + vg~g =
(
~v, vg

)
=
(
v1, v2, vg

)
, (3.29)

where ~Λ1 and ~Λ2 are the fundamental weights of sl(3, R) and ~g is the basis vector taking

us from the weight space R2 of sl(3, R) to the weight space R3 of sl(4, R). Note that

~Λ1 · ~g = ~Λ2 · ~g = 0, (3.30)

by virtue of eq. (3.7) and eq. (3.11), which implies

~̂v · ~̂u = ~v · ~u + vgug~g · ~g. (3.31)

The scalar products may all be deduced using the orthonormal basis ~ei of R3. Re-

stricting to D = 6 and n = 3 gives

~fa =
√

2~ea +
2

9
~g, (3.32)

and thus

~ωa = ~fa −
4

9
~g. (3.33)
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The relevant scalar products become

~g · ~g =
27

2
,

~g · ~fa = 6,

~fa · ~fb = 2δab + 2,

~ωa · ~ωb = 2δab −
2

3
. (3.34)

The simple roots of sl(3, R) may now be written as

~̂α1 =
(
~α1, 0

)
=
(
2,−1, 0

)
,

~̂α2 =
(
~α2, 0

)
=
(
− 1, 2, 0

)
, (3.35)

and the third simple root becomes

~̂α3 = ~f3 = ~ω3 +
4

9
~g = −~Λ2 +

4

9
~g =

(
0,−1,

4

9

)
. (3.36)

In addition, the associated fundamental weights ~̂Λi, i = 1, 2, 3, of sl(4, R), defined by

~̂αi · ~̂Λj = 2δij , (3.37)

become

~̂Λ1 =

(
1, 0,

1

9

)
, ~̂Λ2 =

(
0, 1,

2

9

)
, ~̂Λ3 =

(
0, 0,

1

3

)
. (3.38)

Let us check that these indeed correspond to the fundamental weights of sl(4, R), by com-

puting the highest weight 2~̂Λ1 + 2~̂Λ3 explicitly,

2~̂Λ1 + 2~̂Λ3 = 2~Λ1 +
2

9
~g +

2

3
~g

= 2

(
~ω1 +

4

9
~g

)
= 2~f1

= 2~̂α1 + 2~̂α2 + 2~̂α3. (3.39)

This result is consistent with being the highest weight of the 84 representation of sl(4, R)

as can be seen in figure 1.

Dualisation and the overall Dilaton factor. Let us now include the dilaton prefactor

in the analysis. In terms of sl(4, R)-vectors the volume factor can be identified with a

negative shift in ~̂Λ3, i.e.,

e−
1

3
~g·~φ = e−

~̂Λ3·~φ. (3.40)

As already mentioned above, this factor is irrelevant before dualisation because ~g · ~φ is

invariant under SL(3, R). Thus, before dualisation the manifest SL(3, R)-symmetry of the

compactified Gauss-Bonnet term is associated with the 27-representation of sl(3, R).
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After dualisation, all the dilaton exponents in eq. (3.20) and eq. (3.21) become shifted

by a factor of −~̂Λ3. In particular, the new highest weight is

(
2~̂Λ1 + 2~̂Λ3

)
− ~̂Λ3 = 2~̂Λ1 + ~̂Λ3, (3.41)

corresponding to the 36 representation of sl(4, R), with Dynkin labels [2, 0, 1]. This is

consistent with the general result of [7] that a generic curvature correction to pure Einstein

gravity of order l/2 should be associated with an sl(n + 1, R)-representation with highest

weight l
2
~̂Λ1 + ~̂Λn.

However, this is not the full story. A more careful examination in fact reveals that

the 36 representation cannot incorporate all the dilaton exponents appearing in the La-

grangian, in contrast to the 84-representation of figure 1. To see this, let us decompose 36

in terms of representations of sl(3, R). The result is:

36 = 15 ⊕ 8⊕ 6⊕ 3 ⊕ 3̄⊕ 1,

[2, 0, 1] = [2, 1] + [1, 1] + [2, 0] + [1, 0] + [0, 1] + [0, 0]. (3.42)

Comparing this with eq. (3.25), we see that the representations 27, 1̄5 and 6̄ are no longer

present. For the latter two this is not a problem since they were never present in the

previous analysis. What happens is that the 6 of 84 gets shifted “downwards” and becomes

the 6 of 36. Similarly, the 15 and 3 of 84 become the 15 and 3 of 36. This takes into

account all the shifted dilaton exponents arising from the dualisation process. However,

since there is not enough “room” for the 27 of sl(3, R) in eq. (3.42), some of the dilaton

exponents (the ones corresponding to 2~f2 − 2~f3, ~f1 + ~f2 − 2~f3, 2~f1 − 2~f3, 2~f1 − ~f2 − ~f3 and

2~f1 − 2~f2) arising from the pure P̃ -terms remain outside of 36. In fact, due to the shift

of −~̂Λ3 these have now become negative weights of sl(4, R), because they are below the

hyperplane defined by ~g · ~x = 0. Although we know that these weights still correspond to

positive weights of the 27 representation of sl(3, R), we are not able to determine which

representation of sl(4, R) they belong to.

By a straightforward generalisation of this analysis to compactifications of quadratic

curvature corrections from arbitrary dimensions D, we may conclude that the highest

weight 2~̂Λ1 + ~̂Λn, can never incorporate the dilaton exponents associated with the [2, 0,

. . . , 0, 2]-representation of sl(n, R) before dualisation.

4. Discussion and conclusions

It is clear from the analysis in the previous section that the overall dilaton factor e−
~̂Λ3·~φ (or,

more generally, e−
~̂Λn·~φ) complicates the interpretation of the dilaton exponents in terms of

sl(n+1, R)-representations. A similar problem has arisen in attempts at incorporating the

representation structure of the hyperbolic Kac-Moody algebra E10(10) into curvature cor-

rections to string and M-theory [16, 17]. There it is the “lapse function” N which plays the

role of the volume factor. Similarly to our findings, the work of [16, 17] reveals that curva-

ture corrections to, e.g., eleven-dimensional supergravity, fit into negative weights of E10(10)
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if the contribution from the lapse function is included. In addition, there are indications

that the relevant representations of E10(10) are so-called non-integrable representations,

which are not well understood.

Given these considerations, it would be desirable to have an alternative interpretation

of the results where one neglects the overall volume factor (or, in the E10(10)-case, the lapse

function) in the analysis of the weight structure.

First, what information does the weight structure contain? Apart from the overall

dilaton factor, the reduction of any higher derivative term ∼ Rp will give rise to terms

with P2p (and terms with more derivatives and fewer P’s), where P represents any of the

“building blocks” P , H and ∂φ (we suppress all 3-dimensional indices). The appearance

of weights of sl(n+1, R) (without the uniform shift from the overall dilaton factor) reflects

the fact that we use fields which are components of the symmetric part of the left-invariant

Maurer-Cartan form P of sl(n + 1, R). Moreover, the dilaton factor contains information

about the number of such fields. A term Rl/2 will generically give weights in the weight

space of the representation [l/2, 0, . . . , 0, l/2] of sl(n+1, R), and fill out the positive part of

this weight space.7 This much is clear from the observation that the overall dilaton factor

really is “overall”.

The presence of the overall dilaton factor shifts this weight space uniformly in a neg-

ative direction. This shift happens to be by a vector in the weight lattice of sl(n + 1, R)

for any value of p. However, we emphasize that the dilaton exponents still lie in the

weight space of the representation [l/2, 0, . . . , 0, l/2], albeit shifted “downwards”. From

this point of view, the weight space of the representation with the shifted highest weight

of [l/2, 0, . . . , 0, l/2] as highest weight – for example, the representation [2, 0, 1] in the case

discussed above — does not contain all the weights that appear in the reduced Lagrangian,

and therefore does not appear to be relevant.

4.1 An SL(n + 1, Z)-invariant effective action

Consider now the fact that it is really the discrete “U-duality” group SL(n + 1, Z) ⊂
SL(n+1, R) which is expected to be a symmetry of the complete effective action. Therefore,

the compactified action should be seen as a remnant of the full U-duality invariant action,

arising from a “large volume expansion” of certain automorphic forms.

Schematically, a generic, quartic, scalar term in the action after compactification of

the Gauss-Bonnet term is of the form∫
d3x
√

|g|e−~̂Λn·~φF (P), (4.1)

where F (P) is a quartic polynomial in the components of the Maurer-Cartan form men-

tioned above. F will be invariant under SO(n) by construction, but generically not under

SO(n + 1).

To obtain an action which is a scalar under SO(n + 1) we must first “lift” the result

of the compactification to a globally SL(n + 1, Z)-invariant expression. This can be done

7We note that the representation structure encountered here is of the same type as for the lattice of

BPS charges in string theory on T
n [28].
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by replacing e−
~̂Λn·~φF (P) by a suitable automorphic form contracted with four P’s:

ΨI1...I8(X)PI1I2PI3I4PI5I6PI7I8 , (4.2)

where the I’s are vector indices of SO(n + 1). Here, Ψ(X) is an automorphic form trans-

forming in some representation of SO(n + 1), and is constructed as an Eisenstein series,

following, e.g., refs. [8, 9]. We must demand that when the large volume limit, ~̂Λn ·~φ → −∞,

is imposed, the leading behaviour is

ΨI1...I8(X)PI1I2PI3I4PI5I6PI7I8 −→ e−
~̂Λn·~φF (P). (4.3)

This limit was taken explicitly in [8, 9]. This gives conditions on which irreducible SO(n+1)

representations the automorphic forms transform under (from the tensor structure), as well

as a single condition on the “weights” of the automorphic forms (from the matching of the

overall dilaton factor). Automorphic forms exist for continuous values of the weight (unlike

holomorphic Eisenstein series) above some minimal value derived from convergence of the

Eisenstein series. It was proven in [9] that any SO(n)-covariant tensor structure can be

reproduced as the large volume limit of some automorphic form, and that the weight

dictated by the overall dilaton factor is consistent with the convergence criterion.

Under the assumption that these arguments are valid, we may conclude that the rep-

resentation theoretic structure of the dilaton exponents in the polynomial F should be

analyzed without inclusion of the volume factor e−
~̂Λn·~φ, and hence, for the Gauss-Bonnet

term (l = 4), it is the [2, 0, . . . , 0, 2]-representation which is the relevant one (in the sense

above, that we are dealing with products of four Maurer-Cartan forms), and not the repre-

sentation [2, 0, . . . , 0, 1]. Another indication for why the representation with highest weight

2~̂Λ1 + ~̂Λn cannot be the relevant one is that it is not contained in the tensor product of the

adjoint representation [1, 0, . . . , 0, 1] of sl(n + 1, R) with itself.

The present point of view also suggest a possible explanation for the discrepancy of the

weight multiplicities observed in the previous section. In the complete SL(n+1, Z)-invariant

four-derivative effective action the multiplicities of the weights in the [2, 0, . . . , 0, 2]-

representation necessarily match because the action is constructed directly from the

sl(n + 1, R)-valued building block P. When taking the large volume limit, eq. (4.3), a

lot of information is lost (see, e.g., [9]) and it is therefore natural that the result of the

compactification does not display the correct weight multiplicities. Thus, it is only af-

ter taking the non-perturbative completion, eq. (4.2), that we can expect to reproduce

correctly the weight multiplicities of the representation [2, 0, . . . , 0, 2].

4.2 Algebraic constraints on curvature corrections

Our results have additional implications for the interpretations of the weight structure laid

forward in [7]. In the analysis of the compactification of eleven-dimensional supergravity

to three dimensions these authors include the volume factor when investigating the weight

structure of E8(8). This implies that an arbitrary weight for the l/2:th order correction

terms contains a factor of (1
3 − l

6)~̂Λ8. In our example above this precisely corresponds to the
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volume factor ~̂Λn. Including this factor and demanding that all dilaton exponents should

be on the weight lattice of E8(8) gives the constraint

1

3
− l

6
∈ Z ⇐⇒ l = 6k + 2, (k = 0, 1, 2, . . . ). (4.4)

This implies that these can only be on the weight lattice of E8(8) if the orders of the

curvature correction are the celebrated powers l
2 = 3k + 1, k = 0, 1, 2, . . . . However, if

our interpretation is correct, the volume factor should be left outside of the representation

structure and so this argument about the restrictions on l does not seem to be applicable

from a purely mathematical point of view, since also intermediate values can be reproduced

by automorphic forms with some (continuous) weight.8

This, of course, does not mean that the result itself is incorrect (it is well known,

e.g., that the first higher-derivative correction allowed by supersymmetry is of order R4,

as is the first correction obtained by superstring calculations), only that the arguments

used in order to reach it have to be refined. In order to obtain the result in the present

context, one would need information restricting the weights of the automorphic forms

that may enter to some discrete values. Real automorphic forms defined by Eisenstein

series, unlike the holomorphic ones of SL(2, R) (or Sp(2n) in general), are defined for

continuous values of the weight, bounded from below only by the convergence of the series.

When one-loop calculations in eleven-dimensional supergravity have been used to derive

automorphic forms occurring in d = 9 [12], it is clear how well-defined values of the weights

arise. The corresponding picture for compactification to lower dimensions is less clear,

due to the presence of membrane and 5-brane instantons [28, 29], but there is no doubt

a corresponding mechanism at play, although we lack enough insight into the microscopic

degrees of freedom to make a clear statement about it.

We suspect that a reasoning along similar lines may be used for the case of E10(10),

and that it may again lead to the conclusion that the shifted highest weight should not be

interpreted as the highest weight of a new (non-integrable) representation. Instead, it may

be possible to deal with automorphic forms transforming in some integrable representations

of the maximal compact subgroup of E10(10).
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A. Squared curvature terms

Here we present all the detailed computations of the compactification.

A.1 Weyl-rescaling

Weyl-rescaling the D-dimensional metric by a factor e2ϕ:

ĝMN = e2ϕg̃MN , (A.1)

yields the rescaled Riemann tensor

R̂ABCD = e−2ϕ
[
R̃ABCD − 2

(
η[A|C|∇̃B]∂̃Dϕ − η[A|D|∇̃B]∂̃Cϕ

)
+2
(
η[A|C|∂̃B]ϕ∂̃Dϕ − η[A|D|∂̃B]ϕ∂̃Cϕ

)
− 2η[A|C|ηB]D(∂̃ϕ)2

]
, (A.2)

Ricci tensor

R̂AB = e−2ϕ
[
R̃AB−ηAB�̃ϕ−(D−2)∇̃A∂̃Bϕ+(D−2)∂̃Aϕ∂̃Bϕ−(D−2)ηAB(∂̃ϕ)2

]
, (A.3)

and curvature scalar

R̂ = e−2ϕ
[
R̃ − (D − 1)(D − 2)(∂̃ϕ)2 − 2(D − 1)�̃ϕ

]
. (A.4)

Squaring the curvature terms we find

(R̂ABCD)2 = e−4ϕ

[
(R̃ABCD)2 + 8

(
R̃AB − 1

2
ηABR̃

)
∂̃Aϕ∂̃Bϕ − 8R̃AB∇̃A∂̃Bϕ + 4(�̃ϕ)2

+4(D − 2)(∇̃A∂̃Bϕ)(∇̃A∂̃Bϕ) + 8(D − 2)(∂̃ϕ)2�̃ϕ

−8(D − 2)∂̃Aϕ∂̃Bϕ∇̃A∂̃Bϕ + 2(D − 1)(D − 2)(∂̃ϕ)2(∂̃ϕ)2
]
, (A.5)

(R̂AB)2 = e−4ϕ
[
(R̃AB)2 − 2R̃�̃ϕ − 2(D − 2)R̃AB∇̃A∂̃Bϕ + (3D − 4)(�̃ϕ)2

+2(D − 2)
(
R̃AB − ηABR̃

)
(∂̃Aϕ)(∂̃Bϕ) + (D − 2)2(∇̃A∂̃Bϕ)(∇̃A∂̃Bϕ)

+(D − 1)(D − 2)2(∂̃ϕ)4 + 2(D − 2)(2D − 3)(�̃ϕ)(∂̃ϕ)2

−2(D − 2)2(∇̃A∂̃Bϕ)(∂̃Aϕ)(∂̃Bϕ)
]
, (A.6)

R̂2 = e−4ϕ
[
R̃2 − 4(D − 1)R̃�̃ϕ − 2(D − 1)(D − 2)R̃(∂̃ϕ)2 + 4(D − 1)2(�̃ϕ)2

+4(D − 1)2(D − 2)(�̃ϕ)(∂̃ϕ)2 + (D − 1)2(D − 2)2(∂̃ϕ)4
]
. (A.7)

Combining these, the Gauss-Bonnet combination can be written as

R̂2
GB = e−4ϕ

{
R̃2

GB + (D − 3)

[
8

(
R̃AB − 1

2
ηABR̃

)
∇̃A∂̃Bϕ − 8R̃AB ∂̃Aϕ∂̃Bϕ

−2(D − 4)R̃(∂̃ϕ)2 + 4(D − 2)(D − 3)(∂̃ϕ)2�̃ϕ + 8(D − 2)(∇̃A∂̃Bϕ)∂̃Aϕ∂̃Bϕ

+4(D − 2)[(�̃ϕ)2 − (∇̃A∂̃Bϕ)(∇̃A∂̃Bϕ)] + (D − 1)(D − 2)(D − 4)(∂̃ϕ)4
]}

.

(A.8)
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The Gauss-Bonnet Lagrangian, including the measure ê = eDϕẽ, can now be conve-

niently grouped in terms of equations of motion and total derivatives. This is achieved

using integrations by parts, where no explicit appearance of ∇̃(A∂̃B)ϕ is required. The

resulting Lagrangian is

LGB = ẽe(D−4)ϕ

{
R̃2

GB − (D − 3)(D − 4)

[
2(D − 2)(∂̃ϕ)2�̃ϕ + (D − 2)(D − 3)(∂̃ϕ)4

+4

(
R̃AB − 1

2
ηABR̃

)
(∂̃Aϕ)(∂̃Bϕ)

]}

+2(D − 3)ẽ∇̃A

{
e(D−4)ϕ

[
(D − 2)2(∂̃ϕ)2∂̃Aϕ + 2(D − 2)(�̃ϕ)∂̃Aϕ

−(D − 2)∂̃A(∂̃ϕ)2 + 4

(
R̃AB − 1

2
ηABR̃

)
∂̃Bϕ

]}
. (A.9)

Notice that the total derivative terms in this expression will remain total derivatives after

the compactification as well.

A.2 Compactification

In compactification of gravity from D to d = (D − n) dimensions the vielbein one-form is

given by

ẽA = (ẽα, ẽa) =
(
eα, [dxm + Am

(1)]ẽ
a

m

)
, (A.10)

with the determinant denoted by ẽ = eẽint. Dropping all dependence on the torus coordi-

nates, i.e., d̃ = d = dxµ∂µ, the compactified spin connection one-form is found to be

ω̃α
β = ωα

β − 1

2
ẽcF̃ α

c β,

ω̃α
b =

1

2
eγF̃ α

bγ − ẽcP̃α
cb,

ω̃a
b = eγQ a

γ b, (A.11)

where P̃ bc
α = ẽm(b∂αẽ

c)
m , Q bc

α = ẽm[b∂αẽ
c]

m and F̃ a
βγ = 2ẽ a

m eµ
[βeν

γ]∂µAm
ν .

Using the spin connection it is now straightforward to compute the compactified Rie-

mann tensor

R̃αβγδ = Rαβγδ −
1

2

(
F̃cα[γF̃ c

|β|δ] + F̃cαβF̃ c
γδ

)
,

R̃αβγd = D[αF̃|d|β]γ − F̃ c
αβP̃γcd,

R̃αβcd =
1

2
F̃

γ
[c|α| F̃d]γβ − 2P̃ e

α [cP̃|β|d]e,

R̃αbγd = −DαP̃γbd − P̃ e
αb P̃γde +

1

4
F̃bγǫF̃

ǫ
dα ,

R̃abγd = F̃[a|γǫ|P̃
ǫ
b]d,

R̃abcd = −2P̃ǫa[cP̃
ǫ
|b|d], (A.12)
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which contracted yields the Ricci tensor

R̃αβ = Rαβ − 1

2
F̃cǫαF̃ cǫ

β − P̃αcdP̃
cd

β − tr(DαP̃β),

R̃αb =
1

2

(
DǫF̃

ǫ
bα + F̃cαδP̃

δc
b + F̃bαǫtrP̃

ǫ
)
,

R̃ab = −DǫP̃ǫab − P̃ǫabtrP̃
ǫ +

1

4
F̃aγδ F̃

γδ
b , (A.13)

and the curvature scalar

R̃ = R − 1

4
F̃ 2 − P̃ 2 − (trP̃ )2 − 2tr(DǫP̃

ǫ). (A.14)

The trace is always taken over the internal indices, also F̃ 2 ≡ F̃aβγ F̃ aβγ and P̃ 2 ≡ P̃αbcP̃
αbc.

The covariant derivative D is defined as D ≡ ∇+Q ≡ ∂+ω+Q, where ωαβγ is the spacetime

spin connection and Qαbc can be thought of as a gauge connection for the SO(n)-symmetry.

Squaring the curvature tensor components we find:

(R̃αβγδ)
2 = RαβγδR

αβγδ − 3

2
RαβγδF̃

αβ
e F̃ eγδ +

3

8
F̃cαβF̃ αβ

d F̃ c
γδF̃

dγδ

+
3

8
F̃cαβF̃ c

γδF̃
αγ

d F̃ dβδ,

(R̃αβγd)
2 = (D[αF̃|d|β]γ)(DαF̃ dβγ) − 2(DαF̃dβγ)F̃ cαβP̃ γd

c + F̃ a
γδP̃ǫabP̃

ǫbcF̃ γδ
c ,

(R̃αβcd)
2 = 2tr(P̃αP̃αP̃βP̃ β) − 2tr(P̃αP̃βP̃αP̃ β) +

1

8
F̃cγαF̃ cγ

βF̃ α
dδ F̃ dδβ

−1

8
F̃cαβF̃ c

γδF̃
αγ

d F̃ dβδ − F̃ c
βγP̃δceP̃

γedF̃ βδ
d + F̃ c

βγP̃ γ
ceP̃

ed
δ F̃ βδ

d ,

(R̃αbγd)
2 = (DαP̃γbd)(D

αP̃ γbd) + 2(DαP̃γbd)P̃
αbeP̃ γd

e −
1

2
(DαP̃γbd)F̃

bαǫF̃ dγ
ǫ

+tr(P̃αP̃αP̃γP̃ γ) +
1

16
F̃cαβF̃ c

γδF̃
αγ

d F̃ dβδ − 1

2
F̃ b

βγP̃δbeP̃
γedF̃ βδ

d ,

(R̃abγd)
2 =

1

2

[
F̃ α

c δF̃
cβδtr(P̃αP̃β) − F̃ a

βγP̃δadP̃
γdbF̃ βδ

b

]
,

(R̃abcd)
2 = 2tr(P̃αP̃β)tr(P̃αP̃ β) − 2tr(P̃αP̃βP̃αP̃ β). (A.15)

The compactified Ricci tensor and curvature scalar squared are

(R̃αβ)2 = RαβRαβ − RαβF̃ α
cδ F̃ cδβ − 2Rαβtr(P̃αP̃ β) − 2Rαβtr(DαP̃ β)

+tr(DαP̃β)tr(DαP̃ β) + 2tr(DαP̃β)tr(P̃αP̃ β) + tr(P̃αP̃β)tr(P̃αP̃ β)

+tr(DαP̃β)F̃ α
cδ F̃ cδβ + tr(P̃αP̃β)F̃ α

cδ F̃ cδβ +
1

4
F̃cγαF̃ cγ

βF̃ α
dδ F̃ dδβ ,

(R̃αb)
2 =

1

4

[
(DγF̃ γ

bα )(DδF̃
bαδ) + 2(DγF̃ γ

bα )F̃ bαβtrP̃β + 2(DγF̃ γ
cα )P̃ cd

β F̃ αβ
d

+F̃ c
βγP̃ γ

ceP̃
ed

δ F̃ βδ
d + 2F̃bαγ P̃ bc

β F̃ αβ
c trP̃ γ + F̃bαγ F̃ bα

δ(trP̃
γ)(trP̃ δ)

]
,

(R̃ab)
2 = tr(DαP̃αDβP̃ β) + 2(DαP̃αbc)P̃βbctrP̃

β − 1

2
(DαP̃αbc)F̃bγδF̃

γδ
c

+tr(P̃αP̃β)(trP̃α)(trP̃ β) − 1

2
F̃bαβP̃ bc

γ F̃ αβ
c trP̃ γ +

1

16
F̃cαβF̃ αβ

d F̃ c
γδF̃

dγδ ,

(A.16)
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and

R̃2 = R2 − 1

2
RF̃ 2 − 4Rtr(DαP̃α) − 2RP̃ 2 − 2R(trP̃ )2 +

1

16
(F̃ 2)2 + F̃ 2tr(DαP̃α)

+
1

2
F̃ 2P̃ 2 +

1

2
F̃ 2(trP̃ )2 + 4[tr(DαP̃α)]2 + 4tr(DαP̃α)P̃ 2 + 4tr(DαP̃α)(trP̃ )2

+(P̃ 2)2 + 2P̃ 2(trP̃ )2 + ((trP̃ )2)2. (A.17)

Choosing a basis where all explicit derivatives appearing are either divergences or total

derivatives, we can rewrite three of the quadratic curvature components as

(R̃αβγd)
2 =

1

2

[
RαβγδF̃

αγ
e F̃ eβδ − RαβF̃ α

eγ F̃ eγβ + (Dγ F̃ γ
bα )(DδF̃

bαδ)

−F̃cαβ(DγP̃ γcd)F̃ αβ
d + F̃ a

γδP̃ǫabP̃
ǫbcF̃ γδ

c − F̃ c
βγP̃ γ

ceP̃
ed

δ F̃ βδ
d

+3F̃ c
βγP̃δceP̃

γedF̃ βδ
d

]
+

1

2
∇α

[
(DγF̃ α

eβ )F̃ eβγ − (DγF̃ γ
eβ )F̃ eβα

+F̃cβγP̃αcdF̃ βγ
d

]
,

(R̃αbγd)
2 =

1

2
(DαF̃ α

cβ )P̃ cd
γ F̃ βγ

d − 1

8
F̃cαβ(DγP̃ γcd)F̃ αβ

d + tr[(DαP̃α)(Dβ P̃ β)]

−tr[(DαP̃α)P̃βP̃ β] − Rαβtr(P̃αP̃ β) +
1

16
F̃cγαF̃ cγ

βF̃ α
dδ F̃ dδβ

−1

4
F̃ a

γδP̃ǫabP̃
ǫbcF̃ γδ

c + 2tr(P̃αP̃βP̃αP̃ β) − tr(P̃αP̃αP̃βP̃ β) + ∇α

[
tr(P̃αP̃βP̃ β)

+tr(P̃βDβP̃α − P̃αDβP̃β) +
1

8
F̃cβγP̃αcdF̃ βγ

d − 1

2
F̃cβγP̃ γcdF̃ βα

d

]
,

(R̃αβ)2 = RαβRαβ − RαβF̃ α
cδ F̃ cδβ − 2Rαβtr(P̃αP̃ β) − RαβtrP̃αtrP̃ β − Rtr(DαP̃α)

−(DαF̃ α
cδ )F̃ cδβtrP̃β − 2tr[(DαP̃α)P̃ β ]trP̃β + tr(DαP̃α)tr(DβP̃ β)

+
1

4
tr(DαP̃α)F̃ 2 + tr(DαP̃α)tr(P̃βP̃ β) +

1

4
F̃cγαF̃ cγ

βF̃ α
dδ F̃ dδβ

+
1

2
F̃cβγP̃αcdF̃ βγ

d trP̃α − F̃cβγP̃ γcdF̃ βα
d trP̃α + F̃cδαF̃ cδ

βtr(P̃αP̃ β)

+tr(P̃αP̃β)tr(P̃αP̃ β) + ∇α

[
tr(DαP̃β)trP̃ β − tr(DβP̃β)trP̃α − 1

4
F̃ 2trP̃α

−2(Rαβ − 1

2
ηαβR)trP̃β + F̃ cδαF̃ β

cδ trP̃β + 2tr(P̃αP̃ β)trP̃β − P̃ 2trP̃α
]
. (A.18)

This choice of basis is only possible for the curvature terms squared; for general powers

of the Riemann tensor no such basis exists. The square of the uncompactified curvature

terms can now be written as a sum of the quadratic compactified curvature components

(R̃ABCD)2 = R̃αβγδR̃
αβγδ + 4R̃αβγdR̃

αβγd + 2R̃αβcdR̃
αβcd + 4R̃αbγdR̃

αbγd

+4R̃abγdR̃
abγd + R̃abcdR̃

abcd,

(R̃AB)2 = R̃αβR̃αβ + 2R̃αbR̃
αb + R̃abR̃

ab. (A.19)

Since the total volume measure is ê = eDϕeẽint, the factor eDϕẽint has to be moved inside

the total derivatives using integration by parts. The Riemann tensor squared will then be
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given by

êe−4ϕ
(
R̃ABCD

)2
= ee(D−4)ϕẽint

{
RαβγδR

αβγδ − 1

2
RαβγδF̃

αβ
e F̃ eγδ − 2Rαβ

[
F̃ α

cδ F̃ cδβ + 2tr(P̃αP̃ β)
]

+2DαF̃ α
cδ

[
DβF̃ cδβ + P̃ cd

β F̃ δβ
d + trP̃βF̃ cδβ + (D − 4)∂βϕF̃ cδβ

]
+ 4tr(DαP̃αDβP̃ β)

−4tr[(DαP̃α)P̃βP̃ β ] − 5

2
F̃cαβ(DγP̃ γcd)F̃ αβ

d + 4tr(P̃αDβP̃ β)
[
trP̃α + (D − 4)∂αϕ

]
+

1

2
tr(DαP̃α)

[
F̃ 2 + 4P̃ 2

]
+

3

8
F̃cαβF̃ αβ

d F̃ c
γδF̃

dγδ +
1

2
F̃cγαF̃ cγ

βF̃ α
dδ F̃ dδβ

+
1

8
F̃cαβF̃ c

γδF̃
αγ

d F̃ dβδ + 2F̃ c
βγP̃δceP̃

γedF̃ βδ
d + F̃ a

γδP̃ǫabP̃
ǫbcF̃ γδ

c + 2tr(P̃αP̃βP̃αP̃ β)

+2tr(P̃αP̃β)F̃ α
cδ F̃ cδβ − 3

2
F̃cβγP̃αcdF̃ βγ

d

[
trP̃α + (D − 4)∂αϕ

]
+ 2tr(P̃αP̃β)tr(P̃αP̃ β)

+
1

2

(
F̃ 2 + 4P̃ 2

)[
(trP̃ )2 + 2(D − 4)trP̃α∂αϕ + (D − 4)2(∂ϕ)2 + (D − 4)�ϕ

]
−4tr(P̃αP̃αP̃β)

[
trP̃ β + (D − 4)∂βϕ

]}
+ e∇α

{
e(D−4)ϕẽint

[
− 2(DβF̃ β

cδ )F̃ cδα

−4tr(P̃αDβP̃ β)+
3

2
F̃cβγP̃αcdF̃ βγ

d +4tr(P̃αP̃βP̃ β)−
[
trP̃α+(D−4)∂αϕ

]
(F̃ 2+4P̃ 2)

]
+Dα

[
e(D−4)ϕẽint

(
1

2
F̃ 2 + 2P̃ 2

)]}
(A.20)

and the Ricci tensor squared is given by

êe−4ϕ
(
R̃AB

)2
= ee(D−4)ϕẽint

{
Rαβ

[
Rαβ−F̃ α

cδ F̃ cδβ−2tr(P̃αP̃ β)+trP̃αtrP̃ β+2(D − 4)trP̃α∂βϕ
]

−R
[
tr(DαP̃α) + (trP̃ )2 + (D − 4)trP̃α∂αϕ

]
+ (DαF̃ α

bγ )

[
1

2
DβF̃ bγβ + P̃ bc

δ F̃ γδ
c

]

+(DαP̃α
bc)

[
DβP̃ βbc − 1

2
F̃ b

γδF̃
cγδ

]
+

1

4
F̃cγαF̃ cγ

βF̃ α
dδ F̃ dδβ +

1

16
F̃cαβF̃ αβ

d F̃ c
γδF̃

dγδ

+tr(DαP̃α)

[
tr(DβP̃ β) +

1

4
F̃ 2 + P̃ 2 +

3

2
(trP̃ )2 + (D − 4)trP̃β∂βϕ

]

+
1

2
F̃ c

βγP̃ γ
ceP̃

ed
δ F̃ βδ

d + F̃cδαF̃ cδ
β

[
tr(P̃αP̃ β) − 1

2
trP̃αtrP̃ β − (D − 4)trP̃α∂βϕ

]
+

1

4
F̃ 2
[
(trP̃ )2 + (D − 4)trP̃α∂αϕ

]
+ P̃ 2

[
(trP̃ )2 + (D − 4)trP̃α∂αϕ

]
+tr(P̃αP̃β)

[
tr(P̃αP̃ β) − trP̃αtrP̃ β − 2(D − 4)trP̃α∂βϕ

]
+

1

2
(trP̃ )2

[
(trP̃ )2 + 2(D − 4)trP̃α∂αϕ + (D − 4)2(∂ϕ)2 + (D − 4)�ϕ

]}
+e∇α

{
e(D−4)ϕẽint

[(
− 2Rαβ + ηαβR + F̃ α

cδ F̃ cδβ + 2tr(P̃αP̃ β)

−(D − 4)∂αϕtrP̃ β
)
trP̃β −

(
1

4
F̃ 2 + tr(DβP̃ β) + tr(P̃βP̃ β) + (trP̃ )2

)
trP̃α

]

+
1

2
Dα
[
e(D−4)ϕẽint(trP̃ )2

]}
. (A.21)
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Using also �̃ϕ = �ϕ+∂αϕtrP̃α and (∂̃ϕ)2 = (∂ϕ)2 we have all the ingredients to extract the

compactified Gauss-Bonnet Lagrangian, eq. (A.9). Notice that ê(∇̂AX̂A) = ∂̂M (êX̂M ) =

∂µ(êX̂µ) holds after the compactification as well, implying that the total derivative terms

in eq. (A.9) will still be total derivatives even after the compactification. Together with the

result from the Weyl-rescaling, eq. (A.9), the complete result after the compactification is

êR̂2
GB =

√
|g|ẽinte

(D−4)ϕ

{
[RαβγδR

αβγδ − 4RαβRαβ + R2] − 1

2
[RαβγδF̃

αβ
c F̃ cγδ + RF̃ 2

−4RαβF̃ α
cδ F̃ cδβ] +

1

8
F̃cαβF̃ c

γδF̃
αγ

d F̃ dβδ − 1

2
F̃cγαF̃ cγ

βF̃ α
dδ F̃ dδβ +

(D − n)

16(D − n − 2)
(F̃ 2)2

+2F̃ c
βγP̃δceP̃

γedF̃ βδ
d + F̃ 2

(
1

2
(trP̃ )2 + (D − 4)trP̃β∂βϕ +

(D − 4)2

2
(∂ϕ)2

)
−1

2
F̃cβγP̃αcdF̃ βγ

d (trP̃α + (D − 4)∂αϕ) − 2F̃cβγP̃ γcdF̃ βα
d (trP̃α + (D − 4)∂αϕ)

+2tr(P̃αP̃βP̃αP̃ β) + 2tr(P̃αP̃β)tr(P̃αP̃ β) − (P̃ 2)2 − 4(D − 2)tr(P̃αP̃β)∂αϕ∂βϕ

−4tr(P̃αP̃αP̃ β)(trP̃β + (D − 4)∂βϕ) − 4(D − 4)(trP̃ )2trP̃α∂αϕ

+2P̃ 2((trP̃ )2 + 2(D − 4)trP̃α∂αϕ + (D2 − 7D + 14)(∂ϕ)2) − (trP̃ )2(trP̃ )2

−2(D2 − 7D + 14)(trP̃ )2(∂ϕ)2 − 4(D2 − 8D + 14)(trP̃α∂αϕ)2

−4(D − 4)(D2 − 7D + 11)trP̃α∂αϕ(∂ϕ)2 − (D − 2)(D − 3)(D − 4)(D − 5)(∂ϕ)2(∂ϕ)2

+

[
Rαβ − 1

2
ηαβR − 1

2
F̃cδαF̃ cδ

β +
1

8
ηαβF̃ 2 − tr(P̃αP̃β) +

1

2
ηαβP̃ 2 + (D − 2)∂αϕ∂βϕ

−(D − 2)

2
ηαβ(∂ϕ)2

]
(4tr(P̃αP̃ β) − 4trP̃αtrP̃ β − 8(D − 4)trP̃α∂βϕ

−4(D − 3)(D − 4)∂αϕ∂βϕ)

+[DαF̃ α
cδ + P̃ e

αc F̃ α
eδ ](−2F̃ δγ

d P̃ cd
γ + 2F̃ cδγtrP̃γ + 2(D − 4)F̃ cδγ∂γϕ)

+

[
DαP̃α

cd −
1

4
F̃cαβF̃ αβ

d − 1

(D − 2)
δcdtr(DαP̃α)

](
− 1

2
F̃ c

γδF̃
dγδ − 4P̃ c

γe P̃ γed

+4P̃ γcdtrP̃γ + 4(D − 4)P̃ γcd∂γϕ

)

+
1

(D − 2)

[
tr(DαP̃α) − (D − 2)

4(D − n − 2)
F̃ 2

](
(D − 3)

2
F̃ 2 + 2(D − 4)P̃ 2 − 2(D − 4)(trP̃ )2

−4(D − 3)(D − 4)trP̃β∂βϕ − 2(D − 2)(D − 3)(D − 4)(∂ϕ)2
)

+2(D − 4)

[
�ϕ +

1

4(D − n − 2)
F̃ 2

](
1

4
F̃ 2 + P̃ 2 − (trP̃ )2 − 2(D − 3)trP̃β∂βϕ

−(D − 2)(D − 3)(∂ϕ)2
)}

+LTD, (A.22)
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where the last term, LTD, is a total derivative which is given explicitly by

LTD =
√

|g|Dα

{
Dα

[
ẽinte

(D−4)ϕ

(
1

2
F̃ 2 + 2P̃ 2 − 2(trP̃ )2

)]
+ ẽinte

(D−4)ϕ

[

+8

[
Rαβ − 1

2
ηαβR − 1

2
F̃cδαF̃ cδ

β +
1

8
ηαβF̃ 2 − tr(P̃αP̃β) +

1

2
ηαβP̃ 2 + (D−2)∂αϕ∂βϕ

−(D − 2)

2
ηαβ(∂ϕ)2

]
trP̃ β − 4

[
DβP̃ βcd − 1

4
F̃ c

βγF̃ dβγ − 1

(D − 2)
δcdtr(DβP̃ β)

]
P̃αcd

−2[DγF̃ cδγ + P̃ ce
γ F̃ δγ

e ]F̃cδα + 4
(D − 3)

(D − 2)

[
tr(DβP̃ β) − (D − 2)

4(D − n − 2)
F̃ 2

]
trP̃α

+
1

2
F̃cβγP̃ cd

α F̃ βγ
d + 2F̃cβαP̃ cd

γ F̃ βγ
d +

(n − 1)

(D − n − 2)
F̃ 2trP̃α − (D − 4)F̃ 2∂αϕ

+4tr(P̃αP̃βP̃ β) + 4((trP̃ )2 − tr(P̃βP̃ β))(trP̃α + (D − 4)∂αϕ)

+(D2 − 9D + 16)(4∂αϕtrP̃β − 2trP̃α∂βϕ)∂βϕ

]}
. (A.23)

All terms are thus grouped according to equations of motion and total derivatives. The

first two square parenthesis in eq. (A.22) — containing terms involving only the Riemann

tensor and F̃ — will vanish identically when compactifying to three dimensions.

Varying the compactified Einstein-Hilbert action, LEH = êR̂, the tree-level equations

of motion are found to be

0 = Rαβ − P̃αcdP̃
cd

β − 1

2
F̃cαδF̃

c δ
β +

1

4(D − n − 2)
ηαβF̃ 2 + (D − 2)∂αϕ∂βϕ,

0 = DγF̃ βγ
a + P̃γadF̃

dβγ ,

0 = DγP̃ γ
ab −

1

4
F̃aγδF̃

γδ
b − 1

4(D − n − 2)
δabF̃

2. (A.24)

Notice that tracing the last equation in eq. (A.24), one finds �ϕ + 1
4(D−n−2) F̃

2 = 0 for the

dilatons. Except for the equations of motion, the fields will also obey the Bianchi identities

∇[aF̃
m

βγ] = 0, (A.25)

and the Maurer-Cartan equations

0 = D[αP̃β]cd,

0 = ∇[αQβ]cd − Q
e

[α|c| Qβ]de + P̃
e

[α|c| P̃β]de. (A.26)

References

[1] J. Ehlers, Konstruktionen und Charakterisierung von Lösungen der Einsteinschen
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1. Introduction and Summary

String theory compactified on a compact manifold X typically leads to a low energy ef-
fective action with an often large number of massless scalar fields valued in a moduli
space M. In general, the Riemannian metric on M is deformed by perturbative and non-
perturbative quantum corrections, making it very difficult to determine the exact form of
the quantum effective action. In this paper we study the particular case of compactifica-
tions of type IIA string theory on a rigid Calabi-Yau threefold X (i.e. with Betti number
h2,1(X ) = 0). In this case, the hypermultiplet part of the moduli space M is known to
be described, at tree-level in the string perturbative expansion, by the symmetric space
MUH = SU(2, 1)/(SU(2) × U(1)). We analyze the quantum corrections to this classical
geometry, and in particular conjecture the form of D2-brane and NS5-brane instanton con-
tributions. Before entering into details, we begin by discussing some of the ideas leading
up to our proposal.

1.1 Rigid Moduli Spaces for N ≥ 4 and Eisenstein series

For compactifications preserving N ≥ 4 supersymmetry in D = 4, the moduli space is
always locally a symmetric space M = G/K, with G being a global symmetry and K,
the maximal compact subgroup of G, being a local R-symmetry. In particular, M has
restricted holonomy group K and is rigid (see, e.g., [1] for a nice discussion). Quantum
corrections are encoded in the global structure of M, given by a double coset

Mexact = G(Z)\G/K (1.1)

where G(Z) is typically an arithmetic subgroup of G, known as the S-, T - or U -duality
group, depending on the context [2–4]. For example, M-theory compactified on T 7 (or type
IIA/B on T 6), gives rise to N = 8 supergravity in four dimensions, whose exact moduli
space is conjectured to be E7(7)(Z)\E7(7)/(SU(8)/Z2) [2]. In such cases, the quantum
effective action is expected to be invariant under G(Z), which gives a powerful constraint
on possible quantum corrections.

This idea was exploited with great success in the seminal work [5] in the context
of type IIB supergravity in ten dimensions, where the higher-derivative R4-type correc-
tions were proposed to be given by a non-holomorphic Eisenstein series ESL(2,Z)

3/2 (τ, τ̄) as
a function of the “axio-dilaton” τ = C(0) + ie−φ valued on the Poincaré upper half plane
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M = SL(2,Z)\SL(2,R)/SO(2). This proposal reproduced the known tree-level and one-
loop corrections [6,7], predicted the absence of higher loop corrections, later verified by an
explicit two-loop computation [8], and suggested the exact form of D(-1)-instanton con-
tributions, later corroborated by explicit matrix model computations [9, 10]. From the
mathematical point of view, perturbative corrections and instanton contributions corre-
spond to the constant terms and Fourier coefficients of the automorphic form ESL(2,Z)

3/2 .
This work was extended for toroidal compactifications of M-theory on Tn, where the R4-
type corrections were argued to be given by Eisenstein series of the respective U-duality
group [11–13], predicting the contributions of Euclidean Dp-brane instantons, and, when
n ≥ 6, NS5-branes. Unfortunately, extracting the constant terms and Fourier coefficients
of Eisenstein series is not an easy task, and it has been difficult to put the conjecture to the
test. Part of our motivation is to develop the understanding of Eisenstein series beyond
the relatively well understood case of G(Z) = SL(n,Z).

1.2 The Hypermultiplet Moduli Space of N = 2 Supergravity

Compactifications with fewer unbroken supersymmetries (N ≤ 2 in D = 4) lead to moduli
spaces which are generically not symmetric spaces. An interesting example, which we will
be mainly concerned with in this paper, is type IIA string theory compactified on a Calabi-
Yau threefold X, leading to N = 2 supergravity in four dimensions coupled to h1,1 vector
multiplets and h2,1 + 1 hypermultiplets. The moduli space locally splits into a direct prod-
uctM =MV×MH, whereMV is a 2h1,1-dimensional special Kähler manifold, andMH a
4(h2,1 +1)-dimensional quaternionic-Kähler manifold, respectively. MV encodes the (com-
plexified) Kähler structure of X, whileMH encodes deformations of the complex structure.
MV is exact at tree-level in the perturbative string expansion, and well understood thanks
to classical mirror symmetry (see e.g. [14] for an extensive introduction). In this paper
we focus on the less understood hypermultiplet moduli space MH. Note however that
upon further compactification on a circle, MV is extended to a 4(h1,1 + 1)-dimensional
quaternionic-Kähler manifold by the c-map, and the vector and hypermultiplet moduli
spaces become equally complicated, being exchanged under T-duality along the circle [15].

Contrary to MV, the hypermultiplet moduli space MH receives perturbative and
non-perturbative corrections in the string perturbative expansion [16, 18–21]. The non-
perturbative corrections are due to Euclidean D2-branes wrapping special Lagrangian sub-
manifolds in X, as well as Euclidean NS5-branes wrapping the entire Calabi-Yau three-
fold [16].1 It has been an outstanding problem to understand how these effects modify the
geometry of the moduli spaceMH, mainly due to the fact that quaternionic-Kähler geom-
etry is much more complicated than special Kähler geometry. Recently, however, it has
become apparent that twistor techniques can be efficiently applied to quaternionic-Kähler
geometry. In particular, deformations of the quaternionic-Kähler geometry of MH are in
one-to-one correspondance with deformations of its twistor space ZMH

, a CP 1 bundle over
MH [22–24] (see [25–29] for a physics realization of this equivalence). One virtue of this
approach is that, contrary toMH, the twistor space ZMH

is Kähler, and therefore quantum

1See [17] for a recent analysis of these effects in the heterotic framework.
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corrections to MH can in principle be described in terms of the Kähler potential on its
twistor space ZMH

. Furthermore, ZMH
being a complex contact manifold, it can be de-

scribed by holomorphic data, corresponding to the complex symplectomorphisms between
complex Darboux coordinate patches.

Using these techniques, much headway has been made in summing up part of the
instanton corrections to hypermultiplet moduli spaces in both type IIA and IIB string the-
ory [30–32,28,29,33,34]. These techniques were combined with the SL(2,Z)-invariance of
the four-dimensional effective action in [30], to obtain the quantum corrections to geom-
etry of MIIB

H due to D(-1), F1 and D1 instantons2. In this context, the Eisenstein series
ESL(2,Z)

3/2 (τ, τ̄), discussed above, reappears as the D(-1) instanton contribution to the Kähler
potential on the twistor space of MIIB

H . This result was then mapped over to the IIA side
using mirror symmetry [31], resulting in a description of the corrected geometry of MH

due to Euclidean D2-branes wrapping A-cycles in X. Subsequently, in [28], also the contri-
bution from D2-branes wrapping B-cycles was obtained by covariantizing the result of [31]
under “electric-magnetic duality” between A- and B-cycles in the Calabi-Yau. By the T-
duality argument mentioned above, this also provides the contributions of 4D BPS black
holes to the vector multiplet moduli space in type IIA or IIB string theory compactified
on X × S1. However, the NS5-brane contributions (or the Kaluza-Klein monopole contri-
butions on the vector multiplet side) have so far proven to be considerably more elusive,
although they can be in principle reached following the “roadmap” proposed in [31]. By
postulating invariance under a larger discrete group SL(3,Z), a subset of the NS5-brane
contributions corresponding to the “extended universal hypermultiplet” was conjectured
in [35]. This analysis (and presumably also the analysis in [30]) breaks down for rigid
Calabi-Yau threefolds, the sector which we address in this work.

1.3 Rigid Calabi-Yau threefolds and the Picard Modular Group

In the present paper, we study the hypermultiplet moduli spaceMH in a restricted setting,
namely for type IIA string theory compactified on a rigid Calabi-Yau threefold X i.e. such
h2,1(X ) = 0. By the T-duality argument indicated above, our analysis applies equally
to the vector multiplet moduli space in type IIB string theory compactified on X × S1.
Rigid Calabi-Yau threefolds are rather rare, but examples can be found in the mathematics
(see, e.g., [36]) and the physics literature (see, e.g., [37–40]). One of their peculiarities is
that they do not admit a mirror Calabi-Yau threefold in the usual sense, since h1,1(X ) is
always greater than one3. Thus, it is no longer clear that MH should admit an isometric
action of SL(2,Z). Moreover, rigid Calabi-Yau threefolds do not admit a K3 fibration, so
heterotic/type II duality cannot be applied [41].

2The twistorial realization of SL(2, Z) has been recently clarified in [34].
3It is possible that the superconformal field theory on X admits a mirror description as a Landau-

Ginzburg model LG, but it is not obvious that this equivalence should extend at the non-perturbative level.

Put differently, it is unclear whether type IIA on LG can still be lifted to M-theory, or whether type IIB

on LG still exhibits SL(2, Z) symmetry.
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For such Calabi-Yau threefolds then, the hypermultiplet sector consists solely of the
“universal hypermultiplet”. It is given at tree-level by the quaternionic-Kähler4 symmetric
space MUH(X ) = SU(2, 1)/

(
SU(2)× U(1)

)
[15], with left-invariant metric

ds2
MUH

= 2
(
dφ2 + e2φ

(
dχ2 + dχ̃2

)
+ e4φ

(
dψ + χdχ̃− χ̃dχ

)2)
, (1.2)

where eφ is the four-dimensional dilaton, χ + iχ̃ is the component of the ten-dimensional
Ramond-Ramond 3-form C(3) on H3,0, and ψ is the NS-NS axion, dual to the 2-form Bµν
in D = 4. From the equivalent point of view of type IIB string theory on X × S1, eφ is
instead the inverse radius of the circle in 4D Planck units, while χ+ iχ̃ is the component
of the ten-dimensional Ramond-Ramond 4-form C(4) on H3,0 × S1. The fate of the global
symmetry SU(2, 1) when higher derivative corrections in D = 4 are included in this set up
will be analyzed in a follow-up paper [42].

At this stage it should be emphasized that even though the scalar fields just mentioned
occur universally in any Calabi-Yau manifold, it is not true that the “universal hypermul-
tiplet manifold” (1.2) is a universal subsector of the hypermultiplet moduli space MH(X)
when X is non rigid [1].5 (this is in contrast to the generalized universal hypermultiplet
sector introduced in [35]). However, in cases where M is a symmetric space, it can often
be written as a fiber bundle overMUH. One example is type II string theory compactified
on T 7, where the moduli space can be written as the fiber bundle [15,1]

E7(7)

SU(8)/Z2
→ SU(2, 1)

SU(2)× U(1)
× SL(2,R)

SO(2)
. (1.3)

A similar decomposition occurs for very special N = 2 supergravity theories, where the
second factor on the r.h.s. is replaced by a non-compact version of the 5-dimensional U-
duality group REF?. Thus, it is possible that the construction in this paper generalizes
beyond the case of rigid Calabi Yau threefolds.

While quantum corrections are bound to break the continuous isometric action of
G = SU(2, 1), we posit that they preserve a discrete arithmetic subgroup G(Z) (note
however that we do not assume thatMexact

UH is a double coset G(Z)\G/K). This subgroup
should contain

1. A discrete Heisenberg groupN(Z), acting by discrete (Peccei-Quinn) shift symmetries
on the axions χ, χ̃ and ψ [43]:

χ 7−→ χ+ a ,

χ̃ 7−→ χ̃+ b ,

ψ 7−→ ψ +
1
2
c− aχ̃+ bχ, (1.4)

where a, b, c ∈ Z, while leaving the dilaton invariant. The breaking of the continuous
shifts of χ and χ̃ are due to D2-brane instantons, while the breaking of the shift of ψ
is due to NS5-brane instantons. The factor 1/2 appearing in front of c is in agreement
with the quantisation condition on the NS5-brane instantons derived in [43].

4Actually, the classical MUH is also Kähler, an exception among quaternionic-Kähler manifolds.
5We thank Nick Halmagyi for discussions on this issue.
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2. The “electric-magnetic duality” R which interchanges the R-R scalars χ and χ̃ [43]:

R : (χ, χ̃) 7−→ (−χ̃, χ). (1.5)

Microscopically, this corresponds to a phase shift on the holomorphic 3-form Ω3 ∼
dz1 ∧ dz2 ∧ dz3 of X .

3. Finally and as the most significant hypothesis in this work, we assume that a discrete
subgroup SL(2,Z) of the four-dimensional S-duality (or, on the type IIB side, Ehlers
symmetry), acting in the standard non-linear way on the complex parameter τ =
χ + ie−φ on the slice χ̃ = ψ = 0, is left unbroken by quantum corrections. As in
earlier endeavours [44–48], it is difficult to justify this assumption rigorously, but the
fact, demonstrated herein, that it leads to physically sensible results can be taken as
support for this assumption.

Based on these assumptions, we show that G(Z) must be the Picard modular group6

SU(2, 1; Z[i]), defined as the intersection (see e.g. [49])

SU(2, 1; Z[i]) := SU(2, 1) ∩ SL(3,Z[i]), (1.6)

where Z[i] = Z + iZ denotes the Gaussian integers. The fact that a discrete subgroup of
SU(2, 1) satisfying these physical requirements exists at all is already remarkable and by
no means trivial.

1.4 Eisenstein series for the Picard Modular Group

Having identified (1.6) as a candidate symmetry group, we apply standard machinery to
construct automorphic forms of SU(2, 1; Z[i]). For the sake of completeness, and because
they mutually enlighten each other, we shall present three equivalent constructions of
Eisenstein series for the Picard group:

• First, we generalize the construction in [13] of non-holomorphic Eisenstein series for
real classical groups over Z to unitary groups over Z[i]. This is a representation in
terms of a sum over a constrained lattice and leads to the Eisenstein series

Es(K) :=
′∑

~ω∈Z[i]3,~ω†·η·~ω=0

[
~ω† · K · ~ω

]−s
, (1.7)

where K is a matrix parametrizing the coset space SU(2, 1)/
(
SU(2)×U(1)

)
, and the

sum runs over non-zero triplets of Gaussian integers ~ω subject to a certain quadratic
constraint (3.3). The prime on the sum indicates that the point where all summation
variables are equal to zero is to be excluded from the summation. We will use this
notation throughout the paper.

6The nomenclature “Picard group” is not unique, in fact our Picard group is a member of a family of

similar groups PSU(1, n+1; Z[i]) of which the case n = 0, corresponding to PSL(2, Z[i]) is also often called

the Picard group. In this paper we will always mean SU(2, 1; Z[i]) when speaking of the Picard group.
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• Second, we construct the SU(2, 1; Z[i])-invariant Poincaré series

Ps(Z) :=
∑

γ∈N(Z)\SU(2,1;Z[i])

F(γ · Z)s, (1.8)

where F(Z) is a function on SU(2, 1)/
(
SU(2)× U(1)

)
which is manifestly invariant

under the Heisenberg subgroup N(Z) ⊂ SU(2, 1; Z[i]).

• Third, in Appendix A we apply the general adelic method for constructing automor-
phic forms as explained [50–52] to obtain

Ψ(V) :=
′∑

(C1,C2)∈Q[i]2

δ
(
|C1|2 − 2=(C2)

)[ ∏
p<∞

fp(C1, C2)
]
ρ(V) · fK(C1, C2), (1.9)

where V is a representative for the coset space SU(2, 1)/
(
SU(2)×U(1)

)
, ρ is a linear

representation of SU(2, 1) in the principal continuous series, fK is the SU(2)×U(1)-
invariant spherical vector from [53], fp is its p-adic analog, and the infinite product
runs over all prime numbers.

As we show in Section 3, the first two methods produce the same automorphic form,
up to normalization, and in Appendix A we also verify that the same Eisenstein series can
be constructed using techniques from p-adic number theory.

We work out explicitly the Fourier expansion of Es in Section 4, including the constant
terms and (non-)Abelian Fourier coefficients, and find that it takes the form

Es(φ, χ, χ̃, ψ) = 4ζQ[i](s)
[
e−2sφ +

Z(2− s)
Z(s)

e−2(2−s)φ
]

+ e−2φ
′∑

(`1,`2)∈Z2

C
(A)
`1,`2

(s)K2s−2

(
2πe−φ

√
`21 + `22

)
e2πi(`1χ+`2χ̃)

+
′∑

k∈Z

∑
`∈Z/(4kZ)

∑
n∈Z+ `

4k

C
(NA)
k,` (φ, χ̃− n; s)e−8πiknχ+4πik(ψ+χχ̃),

(1.10)

where the first line represents the constant terms, corresponding to the leading terms in an
expansion about the cusp eφ → 0. Here ζQ[i](s) is the Dedekind zeta function and Z(s) is de-
fined in (4.60). The second line is the Abelian contribution, corresponding to an expansion
with respect to the Abelian part of the Heisenberg group N ⊂ SU(2, 1). The numeri-
cal Fourier coefficients C(A)

`1,`2
(s) are computed in Section 4.5 and Ks denotes the modified

Bessel function. Finally, the third line is the non-Abelian contribution, representing the
expansion of Es(φ, χ, χ̃, ψ) with respect to the non-Abelian part of the Heisenberg group.
The non-Abelian coefficients C

(NA)
k,` (φ, χ̃− n; s) are discussed in more detail in Section 4.

1.5 Eisenstein Series and the Exact Universal Hypermultiplet Geometry

We propose that the SU(2, 1; Z[i])-invariant Eisenstein series Es(φ, χ, χ̃, ψ) for s = 3/2 gives
a non-perturbative completion of the contact potential eΦ(xµ,z) on the north pole z = 0
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of the twistor space ZMUH
of the universal hypermultiplet. In this context, the constant

terms of the Fourier expansion (1.10) represent the classical and one-loop perturbative
correction to the metric on the universal hypermultiplet moduli space. The Abelian term
then contains the effects from D2-brane instantons arising from charge (`1, `2) Euclidean
D2-branes wrapping supersymmetric 3-cycles in the rigid Calabi-Yau manifold X . The
Abelian Fourier coefficients C(A)

`1,`2
(3/2) are related via (4.72) to the instanton measure

µ3/2(`1, `2) which counts homology classes `1A+`2B ∈ H3(X ), and generalizes the familiar
D(−1) instanton measure µ3/2(N) of [5] which is also known to capture the effects of pure
charge N A-type D2-brane instantons [31] (corresponding to `2 = 0). The non-Abelian
term also encodes the contribution from pure charge k NS5-brane instanton corrections,
together with effects of bound states of D2- and NS5-brane instantons. Thus, in this special
example of rigid Calabi-Yau compactifications, we are able to evade the difficulties arising
due to NS5-branes in generic Calabi-Yau compactifications.

1.6 Outline

In Section 2 we give a detailed description of the group SU(2, 1), the symmetric space
SU(2, 1)/(SU(2)×U(1)) and the Picard modular group SU(2, 1; Z[i]). In Section 3 we use
two different methods to construct an SU(2, 1; Z[i])-invariant Eisenstein series Es(φ, χ, χ̃, ψ)
in the principal continuous series of SU(2, 1). We then proceed in Section 4 to compute
in detail the Fourier expansion of Es, extracting explicit forms for the constant terms as
well as the Abelian and non-Abelian Fourier coefficients. Finally, in Section 5, we use the
automorphic form Es(φ, χ, χ̃, ψ) at order s = 3/2 to conjecture the exact form of the D2-
brane and NS5-brane instanton corrections to the universal hypermultiplet moduli space
MUH. For completeness, we give in Appendix A a third construction of the Eisenstein
series Es(φ, χ, χ̃, ψ) using results from p-adic number theory. This construction generalizes
the analysis of [53] to the automorphic setting. In Appendix B we also give some number-
theoretic details on the derivation of the Abelian instanton measure.

2. On the Picard Modular Group SU(2, 1; Z[i])

As indicated in the introduction, an important role in this paper is played by the symmetric
space SU(2, 1)/(SU(2)×U(1)). This space describes the tree-level geometry of the universal
hypermultiplet in type IIA string theory compactified on a rigid Calabi-Yau threefold,
and also as the scalar coset manifold of the Einstein–Maxwell system when dimensionally
reduced from D = 4 to D = 3 dimensions on a spacelike circle. In this section, we set up
notations for the group SU(2, 1), give two equivalent descriptions of the symmetric space
SU(2, 1)/(SU(2)× U(1)), and introduce the Picard modular group SU(2, 1; Z[i]).

2.1 The Group SU(2, 1) and its Lie Algebra su(2, 1)

The Lie group SU(2, 1) is defined as a subgroup of the group GL(3,C) of invertible (3× 3)
complex matrices via

SU(2, 1) =
{
g ∈ GL(3,C) : g†ηg = η and det(g) = 1

}
. (2.1)
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Here, the defining metric η is given by

η =

 0 0 −i
0 1 0
i 0 0

 (2.2)

and has signature (++−). We note that the condition g†ηg = η already implies |det(g)| = 1
and so we can also think of SU(2, 1) as the set of unitary matrices U(2, 1) modulo a
pure phase, SU(2, 1) ∼= PU(2, 1), with the projectivization P referring to the equivalence
relation g ∼ geiα for α ∈ [0, 2π). The diagonal matrices eiαdiag(1, 1, 1) form the center of
the group U(2, 1).

The Lie group SU(2, 1) as defined in (2.1) has as Lie algebra of real dimension 8

su(2, 1) =
{
X ∈ gl(3,C) : X†η + ηX = 0 and tr(X) = 0

}
. (2.3)

It consists of four compact and four non-compact generators, the maximal real torus is
one-dimensional. Since we will have ample opportunity to refer to specific generators we
define the non-compact and compact Cartan generators

H =

 1 0 0
0 0 0
0 0 −1

 , J =

 i 0 0
0 −2i 0
0 0 i

 , (2.4)

the positive step operators

X1 =

 0 −1 + i 0
0 0 1− i
0 0 0

 , X̃1 =

 0 1 + i 0
0 0 1 + i

0 0 0

 , X2 =

 0 0 1
0 0 0
0 0 0

 , (2.5)

and the negative step operators

Y−1 =

 0 0 0
1 + i 0 0

0 −1− i 0

 , Ỹ−1 =

 0 0 0
−1 + i 0 0

0 −1 + i 0

 , Y−2 =

 0 0 0
0 0 0
−1 0 0

 . (2.6)

The subscript refers to the eigenvalue under the adjoint action of the non-compact Cartan
generator H, e.g. [H,X1] = X1 — the adjoint action of the compact Cartan generator J
is not diagonalisable over the real numbers. Furthermore, the generators satisfy[

X1, X̃1

]
= −4X2 , (2.7)

such that the positive step operators form a Heisenberg algebra. Furthermore, the negative
step operators Y are minus the Hermitian conjugate of the positive step operator X.

The Lie algebra su(2, 1) has a natural five grading by the generator H as a direct sum
of vector spaces

su(2, 1) = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2 , (2.8)
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with

g−2 = RY−2 , g−1 = RY−1 ⊕ RỸ−1 , g0 = RH ⊕ RJ , g1 = RX1 ⊕ RX̃1 , g2 = RX2 .(2.9)

One sees that the H-eigenspaces with eigenvalue ±1 are degenerate. This is a characteristic
feature of the reduced root system BC1 underlying the real form su(2, 1) of sl(3,C). There
is a single root α since the real rank of su(2, 1) is one, and there are non-trivial root spaces
g1 and g2 corresponding to α and 2α, respectively.7 The sl(2,R) subalgebra associated
with the 2α root space is canonically normalised and can be given a standard basis for
example with H, E = X2 and F = −Y−2, so that [E,F ] = H. The corresponding SL(2,R)
subgroup of SU(2, 1) is given by matrices of the form

 a 0 b

0 1 0
c 0 d

 : a, b, c, d ∈ R and ad− bc = 1

 ⊂ SU(2, 1) . (2.10)

Under this embedding, the fundamental representation of SU(2, 1) decomposes as 3 = 2⊕1.
There exists a second, non regular embedding of SL(2,R) inside SU(2, 1), consisting of
matrices of the form

SL(2,R) =


 a2 (−1 + i)ab ib2

(−1− i)ac ad+ bc (1− i)bd
−ic2 (1 + i)cd d2

 : a, b, c, d ∈ R and ad− bc = 1

 .

(2.11)
Under this embedding, the fundamental representation of SU(2, 1) remains irreducible.
The two subgroups (2.10) and (2.11) together generate the whole of SU(2, 1).

The Iwasawa decomposition of the Lie algebra su(2, 1) reads

su(2, 1) = n+ ⊕ a⊕ k, (2.12)

where the non-compact (Abelian) Cartan subalgebra a = RH while the nilpotent subspace
n+ = RX1⊕RX̃1⊕RX2 is spanned by the positive step operators. The compact subalgebra
of su(2, 1) is k = su(2)⊕ u(1) as a direct sum of Lie algebras.8 The generators of su(2) and
u(1) are given explicitly by the anti-Hermitian matrices

K̂1 =
1
4

(X1 + Y−1) , K̂2 =
1
4

(
X̃1 + Ỹ−1

)
, K̂3 =

1
4

(X2 + Y−2 + J) ,

Ĵ =
3
4

(X2 + Y−2)− 1
4
J . (2.13)

These satisfy
[
Ĵ , K̂i

]
= 0 and

[
K̂i, K̂j

]
= −εijkK̂k. The Weyl group of the reduced root

system BC1 is
W(su(2, 1)) =W(BC1) ∼= Z2 , (2.14)

corresponding to the Weyl reflection with respect to α.
7A discussion of the restricted root system can for example be found in [54].
8By contrast, the Iwasawa decomposition (2.12) is only a direct sum of vector spaces and not of Lie

algebras.
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2.2 Complex Hyperbolic Space

The group SU(2, 1) acts transitively and isometrically on the complex two-dimensional
space9

CH2 =
{
Z = (z1, z2) ∈ C2 : F(Z) > 0

}
, (2.15)

equipped with the Kähler metric

ds2 =
1
4
F−2 [dz1dz̄1 + iz2dz1dz̄2 − iz̄2dz2dz̄1 + 2=(z1)dz2dz̄2] . (2.16)

The “height function” F : C2 → R is defined by

F(Z) := =(z1)− 1
2
|z2|2 > 0 , (2.17)

and provides a Kähler potential for the metric (2.16),

KCH2(Z) = − logF(Z) . (2.18)

The action of SU(2, 1) on Z ∈ CH2 is via fractional linear transformations

g · Z =
AZ +B

CZ +D
for g =

(
A B

C D

)
, (2.19)

where the blocks A, B, C and D have the sizes (2 × 2), (2 × 1), (1 × 2) and (1 × 1),
respectively, so that the denominator is a complex number. Since the height function
transforms as

F(g · Z) =
F(Z)

|CZ +D|2
, (2.20)

the condition F(Z) > 0 is preserved and the action is isometric. In fact, when verifying
(2.20) one only requires the condition g†ηg = η so that (2.19) defines an action of all of
U(2, 1) on complex hyperbolic two-space. Since elements from the center act trivially, one
can restrict to PU(2, 1) ∼= SU(2, 1) to obtain a simply transitive action. We will refer
to the space CH2 defined in (2.15) as the complex hyperbolic space, or the complex upper
half plane. The slice z2 = 0,=(z1) > 0 inside CH2 is preserved the action of the SL(2,R)
subgroup in (2.10), and gives an embedding of the standard Poincaré upper half plane
inside CH2.

2.3 Relation to the Scalar Coset Manifold SU(2, 1)/(SU(2)× U(1))

The complex hyperbolic upper half plane is isomorphic to (a connected component of) the
Hermitian symmetric space

CH2 ∼= SU(2, 1)/(SU(2)× U(1)) , (2.21)

where the right hand side should properly be restricted to the connected component of the
identity. The Hermitian symmetric space is of real dimension four and can be parametrized

9This is referred to as the unbounded hyperquadric model in [49].
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by four real variables {φ, χ, χ̃, ψ} in triangular gauge, using the Iwasawa decomposition
(2.12), as

V = eχX1+χ̃X̃1+2ψX2e−φH =

 e−φ χ̃− χ+ i(χ+ χ̃) eφ
(
2ψ + i(χ2 + χ̃2)

)
0 1 eφ (χ+ χ̃+ i(χ̃− χ))
0 0 eφ

 . (2.22)

The symmetric space is a right coset in our conventions and the element V transforms as
V → gVk−1 with g ∈ SU(2, 1) and k ∈ SU(2) × U(1). The four scalar fields can take
arbitrary real values.

It is convenient to define the Hermitian matrix

K = VV† (2.23)

that transforms as K → gKg† under the action of g ∈ SU(2, 1). Explicitly, this matrix
reads

K =

 e−2φ + |λ|2 + e2φ|γ|2 iλ̄+ e2φλ̄γ e2φγ

−iλ+ e2φλγ̄ 1 + e2φ|λ|2 e2φλ

e2φγ̄ e2φλ̄ e2φ

 , (2.24)

where, for later convenience, we defined the complex variables

λ := χ+ χ̃+ i(χ̃− χ), γ := 2ψ +
i

2
|λ|2. (2.25)

From K one can define the metric on the symmetric space via

ds2 = −1
8

tr
(
dK d(K−1)

)
=

1
8

tr
(
V−1dV + (V−1dV)†

)2
. (2.26)

Working this out for the coset element (2.22) one finds the following SU(2, 1) invariant
metric

ds2 = dφ2 + e2φ(dχ2 + dχ̃2) + e4φ(dψ + χdχ̃− χ̃dχ)2 . (2.27)

Comparing (2.27) to (2.16) leads to the identification

z1 = 2ψ + i

(
e−2φ +

1
2
|z2|2

)
= 2ψ + i

(
e−2φ + χ2 + χ̃2

)
,

z2 = χ+ χ̃+ i(χ̃− χ) . (2.28)

Note that z1 = γ + ie−2φ, z2 = λ, and the condition F(Z) > 0 is automatically satisfied.
In the variables Z = (z1, z2) given by (2.28), the matrix K of (2.23) takes the simple form

K = K̃ + η , (2.29)

where η is the defining matrix of SU(2, 1) given in (2.2) and

K̃ = e2φ

 |z1|2 z1z̄2 z1

z̄1z2 |z2|2 z2

z̄1 z̄2 1

 , (2.30)
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bearing in mind that e2φ = F(Z)−1. The relations (2.28) together with (2.19) allow
to determine the action of an element of SU(2, 1) in the real coordinates φ, χ, χ̃, ψ. In
particular, one may check that on the slice χ̃ = ψ = 0, the SL(2,R) subgroup (2.11) acts
by fractional linear transformations on the complex modulus τ = χ+ ie−φ. This action is
the remnant of the SL(2,R) S-duality in ten-dimensional type IIB string theory.

In Section 3 it will prove convenient to use the complex variable γ rather than z1.

2.4 Coset Transformations and Subgroups of SU(2, 1)

We now study the effect of some particular elements of SU(2, 1) on complex hyperbolic
two-space. The specific transformations we investigate are the ones with an immediate
physical interpretation.

Heisenberg Translations

Let N denote the exponential of the nilpotent algebra of positive step operators n+. We
define the following elements of N

T1 =

 1 −1 + i i

0 1 1− i
0 0 1

 , T̃1 =

 1 1 + i i

0 1 1 + i

0 0 1

 , T2 =

 1 0 1
0 1 0
0 0 1

 . (2.31)

These are such that T1 = exp(X1) etc. Any element n ∈ N can be written as

n = (T1)a(T̃1)b(T2)c+2ab = eaX1+bX̃1+cX2

=

 1 a(−1 + i) + b(1 + i) c+ i(a2 + b2)
0 1 a(1− i) + b(1 + i)
0 0 1

 (2.32)

for a, b, c ∈ R. The effect of this transformation on Z = (z1, z2) is

z1 7−→ z1 +
[
a(−1 + i) + b(1 + i)

]
z2 + c+ i(a2 + b2) ,

z2 7−→ z2 + a(1− i) + b(1 + i) , (2.33)

or in terms of the four scalars fields of (2.22)

φ 7−→ φ ,

χ 7−→ χ+ a ,

χ̃ 7−→ χ̃+ b ,

ψ 7−→ ψ +
1
2
c− aχ̃+ bχ . (2.34)

The appearance of the shift parameters a and b in the transformation of ψ is due to the
non-Abelian structure of n+ given by the Heisenberg algebra (2.7). This effect is also
evident in the first line of the expression (2.32) for the general element of N . From the
point of view of the coset, the Heisenberg translations do not require any compensating
transformation as they preserve the Borel gauge.
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Rotations

Rotations are generated by the compact Cartan element J of su(2, 1) given in (2.4). Let

R = exp(πJ/2) =

 i 0 0
0 −1 0
0 0 i

 , (2.35)

then the most general transformation of this type is given by Rσ, for σ ∈ [0, 4), and acts
on Z = (z1, z2) via

z1 → z1 , z2 → eiπσ/2z2 . (2.36)

In terms of the four scalar fields this transformation reads

φ 7−→ φ ,

χ 7−→ cos(πσ/2)χ− sin(πσ/2)χ̃ ,

χ̃ 7−→ sin(πσ/2)χ+ cos(πσ/2)χ̃ ,

ψ 7−→ ψ (2.37)

and so rotates the two scalars χ and χ̃ among each other while leaving the other two in-
variant. The compensating transformation to restore the Borel gauge for the coset element
(2.22) is k = Rσ.

Involution

The last transformation of interest is the following involution

S =

 0 0 i

0 −1 0
−i 0 0

 , (2.38)

which acts on Z = (z1, z2) according to

z1 7→ −
1
z1
, z2 7→ −i

z2

z1
, (2.39)

corresponding to the non-trivial generator in the Weyl group (2.14). For the real scalars
themselves we find the following transformation

φ 7−→ −1
2

ln
[

e−2φ

4ψ2 + [e−2φ + χ2 + χ̃2]2

]
,

χ 7−→ 2ψχ̃− (e−2φ + χ2 + χ̃2)χ
4ψ2 + [e−2φ + χ2 + χ̃2]2

,

χ̃ 7−→ 2ψχ+ (e−2φ + χ2 + χ̃2)χ̃
4ψ2 + [e−2φ + χ2 + χ̃2]2

,

ψ 7−→ − ψ

4ψ2 + [e−2φ + χ2 + χ̃2]2
. (2.40)

It is straightforward to check that the required compensating transformation in this case
indeed belongs to the maximal compact subgroup SU(2)× U(1).
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2.5 The Picard Modular Group

We finally discuss the Picard modular group SU(2, 1; Z[i]). This group can be defined as
the intersection [49]

SU(2, 1; Z[i]) := SU(2, 1) ∩ SL(3,Z[i]), (2.41)

where Z[i] denotes the Gaussian integers

Z[i] = {z ∈ C : <(z),=(z) ∈ Z} = {m1 + im2 : m1,m2 ∈ Z} . (2.42)

This definition implies that any element g ∈ SU(2, 1) which has only Gaussian integer
matrix entries belongs to SU(2, 1; Z[i]). In view of the discussion of PU(2, 1) ∼= SU(2, 1)
the Picard modular group can also be called PU(2, 1; Z[i]).

Let us now examine the particular SU(2, 1)-transformations of the previous subsection
to check whether they belong to the Picard group. The Heisenberg group N ⊂ SU(2, 1)
contains a subgroup N(Z) := N ∩ SU(2, 1; Z[i]). By inspection of Eq. (2.32) we see that
N(Z) must be of the form

N(Z) =
{
eaX1+bX̃1+cX2 : a, b, c ∈ Z

}
. (2.43)

In view of (2.32), a natural set of generators for N(Z) is given by the three matrices in
(2.31) T1, T̃1 and T2. The action of these discrete shifts are then as given in (2.34) with
parameters a, b, c ∈ Z. The translations (2.31) are of infinite order in the Picard modular
group.

The rotation Rσ defined in (2.35) only is an element for the discrete values of the
exponent σ = 0, 1, 2, 3, and R is an element of order 4 in the Picard modular group. The
action of R on the scalar fields is

R : (χ, χ̃) 7−→ (−χ̃, χ). (2.44)

Physically speaking, this corresponds to electric-magnetic duality, which is expected to be
preserved in the quantum theory [43].

Finally, we will examine the involution S in Eq. (2.38). Clearly, the involution is an
element of the Picard modular group. The involution S is of order 2 in the Picard modular
group. As already noted above, the involution (2.38) corresponds to the Weyl reflection of
the restricted root system BC1 of the non-split real form su(2, 1). The Weyl reflection is
associated with the (long) root 2α. We can also give an interpretation to the rotation R.
This is a transformation that rotates within the degenerate, two-dimensional α root space,
spanned by the generators X1 and X̃1.

The Picard modular group acts discontinuously on the complex hyperbolic space CH2.
A fundamental domain for its action has been given by Francsics and Lax in [49]. Recently,
they have also proven that the Picard modular group SU(2, 1; Z[i]) is generated by the
translations T1 and T2, together with the rotation R and the involution S [55].10

Since the two translations T1 and T̃1 are related through “electric-magnetic duality”
by T̃1 = RT1R

−1, one may equivalently choose either of the translations T1 or T̃1 associated

10We are very grateful to G. Francsics and P. Lax for communicating this result to us prior to publication.
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with the α root space in the theorem. Since all three translations T1, T̃1 and T2 will turn out
to have a clear physical interpretation we present the Picard modular group as generated
(non-minimally) by the following five elements:

T1 =

 1 −1 + i i

0 1 1− i
0 0 1

 , T̃1 =

 1 1 + i i

0 1 1 + i

0 0 1

 , T2 =

 1 0 1
0 1 0
0 0 1

 ,

R =

 i 0 0
0 −1 0
0 0 i

 , S =

 0 0 i

0 −1 0
−i 0 0

 . (2.45)

In accordance with the SL(2,R) subgroup identified in (2.10) we note that there is an
SL(2,Z) ⊂ SU(2, 1; Z[i]) that acts on the slice z2 = 0 of complex hyperbolic space as the
usual modular group on the remaining variable z1.

3. Eisenstein Series for the Picard Modular Group

In this section we shall construct Eisenstein series for the Picard modular group in the
principal continuous series representation of SU(2, 1). We shall give three different con-
structions, which despite being equivalent mutually enlighten each other. In Section 3.1
we construct a manifestly SU(2, 1; Z[i])-invariant function on SU(2, 1)/(SU(2)×U(1)) by
summing over points in the three-dimensional Gaussian lattice Z[i]3. This produces a non-
holomorphic Eisenstein series Es, parametrized by s, which will be the central object of
study in the remainder of this paper. In Section 3.2, we use the isomorphism between the
coset space SU(2, 1)/(SU(2)× U(1)) and the complex upper half plane CH2 to construct
a Poincaré series Ps on CH2. This turns out to be the same to Es up to an s-dependent
Dedekind zeta function factor. For completeness, in Appendix A we give a third con-
struction using standard adelic techniques, which illuminates the representation-theoretic
nature of Es.

3.1 Lattice Construction and Quadratic Constraint

Following [13], a non-holomorphic function on the double quotient

SU(2, 1; Z[i])\SU(2, 1)/(SU(2)× U(1)) (3.1)

can be constructed as the Eisenstein series

Es(K) :=
′∑

~ω∈Z[i]3, ~ω†·η·~ω=0

[
~ω† · K · ~ω

]−s
, ~ω =

 ω̄3

ω̄2

ω̄1

 , (3.2)

where K = VV† is the “generalized metric” which was constructed explicitly in Eq. (2.24),
and the sum runs over 3-vectors of Gaussian integers ~ω 6= (0, 0, 0) subject to the quadratic
constraint

~ω† · η · ~ω = |ω2|2 − 2=(ω1ω̄3) = 0 (3.3)
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and the point ~ω = 0 is excluded from the sum as indicated by the prime. The Eisenstein
series defined in (3.2) converges absolutely for <(s) > 2. Writing out Eq. (3.2) yields11

Es(φ, λ, γ) =
′∑

~ω∈Z[i]3, ~ω†·η·~ω=0

e−2sφ
[
|ω1+ω2λ+ω3γ|2+e−2φ|ω2+iω3λ̄|2+e−4φ|ω3|2

]−s
. (3.4)

The variables λ and γ were defined as functions of Z = (z1, z2) in (2.25). To explain the
role the quadratic constraint (3.3), it is convenient to the isomorphism between the coset
space SU(2, 1)/(SU(2) × U(1)) and the complex hyperbolic space CH2, as discussed in
Section 2.3. We recall from (2.30) that in terms of the variable Z = (z1, z2) ∈ CH2, the
matrix K reads

K = K̃ + η, (3.5)

where η is the SU(2, 1)-invariant metric, Eq. (2.2), and the matrix K̃ is given by

K̃ = e2φ

 |z1|2 z1z̄2 z1

z̄1z2 |z2|2 z2

z̄1 z̄2 1

 = ṼṼ† for Ṽ = eφ

 0 0 z1

0 0 z2

0 0 1

 . (3.6)

In this new parametrization, the Eisenstein series becomes

Es(Z) =
′∑

~ω∈Z[i]3, ~ω†·η·~ω=0

[
~ω† ·K̃ ·~ω+~ω† ·η ·~ω

]−s
=

′∑
~ω∈Z[i]3, ~ω†·η·~ω=0

e−2sφ|ω1 +ω2z2 +ω3z1|−2s .

(3.7)
The constraint (3.3) can now be motivated as follows [13]. Since the coset representative
V ∈ SU(2, 1)/(SU(2)×U(1)) transforms in the fundamental representation R of SU(2, 1),
the generalized metric K = VV† transforms in the symmetric tensor product R ⊗s R.
As reflected in (3.5), this tensor product is not irreducible. In order for Es to be an
eigenfunction of the Laplacian on CH2, it is necessary to project out the singlet component
in (3.5), hence to enforce the constraint (3.3) in the sum. To be specific, the Laplacian on
the coset space CH2, written in terms of the real variables {y = e−2φ, χ, χ̃, ψ}, is given by

∆CH2 =
1
4
y(∂2

χ + ∂2
χ̃) +

1
4

(y2 + y(χ2 + χ̃2))∂2
ψ +

1
2
y(χ̃∂χ − χ∂χ̃)∂ψ + y2∂2

y − y∂y. (3.8)

Taking into account the quadratic constraint (3.3), it is straightforward to check that Es is
an eigenfunction of the Laplacian,

∆CH2Es(φ, λ, γ) = s(s− 2) Es(φ, λ, γ) . (3.9)

Since SU(2, 1) admits two Casimir operators of degree 2 and 3, and since ∆CH2 repre-
sents the action of the quadratic Casimir on the space of (square-integrable) functions on
SU(2, 1)/(SU(2) × U(1)), one may ask whether Es is also an eigenvector of an invariant
differential operator of degree 3. It turns out however, as already noticed in [53], that the
representation of the cubic Casimir in the space of functions on SU(2, 1)/(SU(2)× U(1))

11We note that the same summand and constraint appear in the analysis of [56].
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vanishes identically. In terms of the parametrization of the Casimir eigenvalues by the
complex variables (p, q) used in [57,53], the Eisenstein series Es is attached to the principal
spherical representation with p = q = s− 2 (see Appendix A for more details).

Let us also comment on the functional dimension of the representation associated to
Es. The summation ranges over the lattice Z[i]3 ∼ Z6. Since both the summand and the
constraint are homogeneous in ~ω one can factor out an overall common Gaussian integer.
Among the remaining four real integers the (real) quadratic constraint |ω2|2−2=(ω1ω̄3) = 0
eliminates one of the summation variables, so that we are effectively summing over three
integers only. This is consistent with the functional dimension of the continuous series
representation mentioned in the previous paragraph, and also with the expected number
of instanton charges.

3.2 Poincaré Series on the Complex Upper Half Plane

In the mathematical literature, a standard way of constructing non-holomorphic Eisenstein
series on a symmetric space G/K is in terms of Poincaré series. For the case of the coset
space SL(2,R)/SO(2), parametrized by a complex coordinate τ , such a Poincaré series is
obtained by summing the function =(γ · τ)s over the orbit γ ∈ Γ∞\SL(2,Z), where Γ∞ is
generated by T : τ 7→ τ + 1. This indeed produces a non-holomorphic Eisenstein series on
the double quotient SL(2,Z)\SL(2,R)/SO(2) with eigenvalue s(s−1) under the Laplacian
on SL(2,R)/SO(2) (for a very nice treatment, see [58]).

Here we would like to generalize this construction to a Poincaré series on the complex
upper half plane CH2, parametrized by the variable Z = (z1, z2). The generalization of
=(τ) is then given by the N(Z)-invariant function F(Z), constructed in (2.17) [59].12 The
invariance of F(Z) under N(Z) can be checked by direct substitution of the Heisenberg
translations in Eq. (2.33). As we have seen in Section 2, the Picard modular group
SU(2, 1; Z[i]) acts by fractional transformations on Z ∈ CH2 such that the function F(Z)
transforms as

F(γ · Z) =
F(Z)

|CZ +D|2
, γ =

(
A B

C D

)
∈ SU(2, 1; Z[i]). (3.10)

A Poincaré series for the Picard group may now be constructed as follows

Ps(Z) :=
∑

γ∈N(Z)\SU(2,1;Z[i])

F(γ · Z)s =
∑

γ∈N(Z)\SU(2,1;Z[i])

( F(Z)
|CZ +D|2

)s
. (3.11)

Taking C ≡ (ω3, ω2) ∈ Z[i]2 and D ≡ ω1 ∈ Z[i], and recalling F(Z) = e−2φ, then repro-
duces the same form of the Eisenstein series as in Eq. (3.7), i.e.

Ps(Z) =
∑

γ∈N(Z)\SU(2,1;Z[i])

e−2sφ|ω1 + ω2z2 + ω3z1|−2s. (3.12)

The sum over orbits in N(Z)\SU(2, 1; Z[i]) is equivalent to the sum over the Gaussian
lattice Z[i]3 modulo the constraint ~ω† · η · ~ω = 0, and with a coprime condition on the

12We are grateful to Genkai Zhang for helpful discussions on this construction.
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summation variables ~ω [60]:

Ps(Z) =
′∑

~ω′∈Z[i]3, ~ω′†·η·~ω′=0

(ω′1,ω
′
2,ω
′
3)=1

|ω′1 + ω′2z2 + ω′3z1|−2s. (3.13)

Defining ~ω = ~ω′β with β = gcd(ω1, ω2, ω3) ∈ Z[i] and inserting this into (3.4) we then have
the relation

Es(φ, λ, γ) = 4ζQ[i](s)Ps(Z), (3.14)

where ζQ[i](s) is the Dedekind zeta function for the quadratic extension Q[i] of the rational
numbers. This will be discussed in more detail in Section 4.2 (see Eq. (4.19)).

4. Fourier Expansion of Es(φ, χ, χ̃, ψ)

In this section we shall compute the Fourier expansion of the Eisenstein series Es(φ, χ, χ̃, ψ).
We begin by describing the general structure of the expansion which depends only on the
Heisenberg subgroup N ⊂ SU(2, 1), after which we use Poisson resummation to compute
the explicit form of the Fourier coefficients which contain the arithmetic data of the group
SU(2, 1; Z[i]).

4.1 General Considerations

We recall from Eq. (3.4) that the Eisenstein series takes the form

Es(φ, λ, γ) =
′∑

~ω∈Z[i]3, ~ω†·η·~ω=0

e−2sφ
[
|ω1+ω2λ+ω3γ|2+e−2φ|ω2+iω3λ̄|2+e−4φ|ω3|2

]−s
, (4.1)

where
λ = χ+ χ̃+ i(χ̃− χ), γ = 2ψ +

i

2
|λ|2. (4.2)

The summation is over the Gaussian integers

ω1 = m1 + im2, ω2 = n1 + in2, ω3 = p1 + ip2, (4.3)

excluding the term ~ω = (ω1, ω2, ω3) = (0, 0, 0), and subject to the constraint

~ω† · η · ~ω = |ω2|2 − 2=(ω1ω̄3) = n2
1 + n2

2 + 2m1p2 − 2m2p1 = 0, (4.4)

where η is the SU(2, 1)-invariant metric defined in Eq. (2.2). The main complication of the
Fourier expansion is the fact that the nilpotent group N ⊂ SU(2, 1) is non-Abelian, as is
clear from (2.7). It is isomorphic to a three-dimensional Heisenberg group, where the center
Z = [N,N ] is parametrized by ψ. The Fourier expansion therefore splits into an Abelian
part and a non-Abelian part. The Abelian term corresponds to an expansion with respect
to the abelianized group N/Z, while the non-Abelian terms represent the expansion with
respect to the center Z. This general structure of the Fourier expansion of automorphic
forms for the Picard modular group is discussed in detail by Ishikawa [61], to which we refer
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the interested reader. A similar discussion may also be found in the mathematics [62, 63]
and physics [35] literature for the case of automorphic forms on SL(3,R)/SO(3).

We have seen in Section 2 that the action of N(Z) = N ∩ SU(2, 1; Z[i]) on χ, χ̃ and ψ
is given by:

N : χ 7−→ χ+ a,

χ̃ 7−→ χ̃+ b,

ψ 7−→ ψ +
1
2
c− aχ̃+ bχ (4.5)

for a, b, c ∈ Z. We denote an arbitrary element of the Heisenberg group N(Z) by Ua,b;c.
Since the Eisenstein series (4.1) is in particular invariant under N(Z) we can organize
the Fourier expansion by diagonalizing different subgroups of the non-Abelian Heisenberg
group N(Z).

Explicitly, we write the general form of the Fourier expansion as

Es(φ, χ, χ̃, ψ) = E(const)
s (φ) + E(A)

s (φ, χ, χ̃) + E(NA)
s (φ, χ, χ̃, ψ), (4.6)

where E(const)
s (φ) is the constant term and

E(A)
s (φ, χ, χ̃) =

′∑
(`1,`2)∈Z2

C
(A)
`1,`2

(φ; s)e−2πi(`1χ+`2χ̃),

E(NA)
s (φ, χ, χ̃, ψ) =

′∑
k∈Z

C
(NA)
k (φ, χ, χ̃; s)e−4πikψ (4.7)

are called the Abelian and non-Abelian terms, respectively. Following [61,35], we proceed
to extract an additional phase factor in the non-Abelian term which accounts for the shifts
of ψ along the non-central directions. This yields the following structure of the non-Abelian
term

E(NA)
s (φ, χ, χ̃, ψ) =

′∑
k∈Z

4|k|−1∑
`=0

∑
n∈Z+ `

4|k|

C
(NA)
k,` (φ, χ̃− n; s)e8πiknχ−4πik(ψ+χχ̃) (4.8)

The Abelian term is manifestly invariant under shifts of the form Ua,b;0 ∈ N(Z)/Z. In the
non-Abelian term, invariance under

U1,0;0 : χ 7−→ χ+ 1

: ψ 7−→ ψ − χ̃ (4.9)

is manifest since 4kn ∈ Z. On the other hand, the transformation

U0,1;0 : χ̃ 7−→ χ̃+ 1

: ψ 7−→ ψ + χ (4.10)

requires a compensating shift n 7→ n + 1 on the summation, under which the variation of
the total phase cancels. Note also the restricted dependence on χ̃ in the Fourier coefficient;
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upon shifting χ̃ 7→ χ̃ + 1 and compensating n 7→ n + 1 the coefficient is indeed invariant.
Finally, invariance under U0,0;1 is manifest since this gives an overall phase e−4πik/2 = 1.

Note that in writing the non-Abelian term (4.8) we have made an explicit choice of
polarization, in the sense that we have manifestly diagonalized the action of Heisenberg
shifts of the restricted form Ua,0;c. We could have chosen the other polarization in which
we instead diagonalize the action of U0,b;c. In this case, the non-Abelian term reads

E(NA)
s (φ, χ, χ̃, ψ) =

′∑
k∈Z

4|k|−1∑
`′=0

∑
ñ∈Z+ `′

4|k|

C̃
(NA)
k,`′ (φ, χ− n; s)e−8πikñχ̃−4πik(ψ−χχ̃). (4.11)

The Fourier coefficients C
(NA)
k,` and C̃

(NA)
k,`′ in the two different polarizations are related via a

Fourier transform (see [35]). In what follows we shall for definiteness choose to work within
the first polarization above.

Besides invariance under the Heisenberg group we can also use invariance under the
electric-magnetic duality transformation R : (χ, χ̃) 7→ (−χ̃, χ) of (2.44). On the Abelian
term this implies that the coefficient C

(A)
`1,`2

is invariant under π/2 rotations of (`1, `2). On
the non-Abelian term (4.8) application of R leads to

E(NA)
s (φ, χ, χ̃, ψ) =

′∑
k∈Z

4|k|−1∑
`=0

∑
n∈Z+ `

4|k|

C
(NA)
k,` (φ, χ− n; s)e−8πiknχ̃−4πik(ψ−χχ̃) (4.12)

and hence we have C
(NA)
k,` = C̃

(NA)
k,`′ , relating the two choices of polarization as to be expected

from electric-magnetic duality. Applying R again shows that C
(NA)
k,` (φ, χ̃−n; s) must be an

even function of χ̃− n.
Finally, we can use the Laplacian condition on the Eisenstein series Es (see Eq. (3.9))

to further constrain the Fourier coefficients C
(A)
`1,`2

and C
(NA)
k,` and determine their functional

dependence on the moduli. In all cases, we require normalizability of the solution, which
physically means a well-behaved ‘weak-coupling’ limit eφ → 0. Plugging in the abelian
term E(A)

s into the eigenvalue equation (3.9) yields an equation for the φ-dependence of the
coefficients which is solved by a modified Bessel function. More precisely, we find that the
Abelian term in the expansion takes the form

E(A)
s (φ, χ, χ̃, ψ) = e−2φ

′∑
(`1,`2)∈Z2

C
(A)
`1,`2

(s)K2s−2

(
2πe−φ

√
`21 + `22

)
e−2πi(`1χ+`2χ̃), (4.13)

where the remaining coefficients C(A)
`1,`2

(s) are now independent of φ and encode the arith-
metic information of the group SU(2, 1; Z[i]). The precise form of these numerical coef-
ficients will be computed in Section 4.5 below. Turning to the non-Abelian term (4.8),
the Laplacian condition on the coefficient separates into a harmonic oscillator equation
in the variable x = χ̃ − n, with solution given by a Hermite polynomial H, as well as a
hypergeometric equation in the variable y = e−2φ whose solution can be written in terms
of a Whittaker function W . The separation of variables induces a sum over the eigenvalues
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of the Harmonic oscillator and we finally find the following structure of the non-Abelian
term:

E(NA)
s (φ, χ, χ̃, ψ) = e−φ

′∑
k∈Z

4|k|−1∑
`=0

∑
n∈Z+ `

4k

∞∑
r=0

C
(NA)
r,k,` (s) |k|1/2−se−4π|k|(χ̃−n)2

×H2r

(√
8π|k|(χ̃− n)

)
W−2r− 1

2
,s−1

(
4π|k|e−2φ

)
e8πiknχ−4πik(ψ+χχ̃),

(4.14)

where the numerical coefficients C(NA)
r,k,` (s) will be further discussed in Section 4.6.

We shall now proceed to compute the explicit form of the Fourier expansion; that is,
determine the constant term E(const)

s as well as the Abelian and non-Abelian numerical
Fourier coefficients C(A)

`1,`2
(s) and C

(NA)
r,k,` (s).

4.2 First Constant Term

The constant term13 is defined generally as

E(const)
s (φ) =

1∫
0

dχ

1∫
0

dχ̃

1/2∫
0

dψ Es(φ, χ, χ̃, ψ), (4.15)

where the integral over the NS-scalar ψ runs from 0 to 1/2 because of the extra factor of
2 in front of ψ in our parametrization of N in Eq. (2.22). Since the Cartan subgroup A

appearing in the Iwasawa decomposition of SU(2, 1) is one-dimensional, the constant term
only depends on the dilatonic scalar φ. Moreover, recall from the discussion in Section 2.4
that the Weyl group of su(2, 1) is the Weyl group of the restricted root system BC1, which
is isomorphic with Z2. Hence, the constant term E(const)

s (φ) consists of two contributions,
E(0)
s and E(1)

s , which are permuted by Z2 [64].14

The powers of eφ in E(const)
s (φ) may be determined by the Laplacian condition on Es.

In Section 3.2 we have seen that the Eisenstein series is an eigenfunction of the Laplacian
∆CH2 with eigenvalue s(s− 2). This implies that all the constant terms must individually
be eigenfunctions of ∆CH2 with the same eigenvalue. It turns out that there is a unique
solution to this, and we find that E(0)

s must be of the form

E(const)
s (φ) = E(0)

s + E(1)
s = A(s)e−2sφ +B(s)e−2(2−s)φ. (4.16)

Below we will compute the coefficients A(s) and B(s). The first constant term E(0)
s corre-

sponds to the leading order term in an expansion about the cusp eφ → 0, which physically
is equivalent to a weak-coupling expansion.

Our strategy for performing the Fourier expansion is to first consider the term ω3 = 0.
By virtue of the constraint (4.4) we then also have ω2 = 0. The remaining sum over

13The terminology constant term is derived from holomorphic Eisenstein series where these terms are

truly constant and independent of the scalar fields. For non-holomorphic Eisenstein series, as the one

studied here, the constant terms retain a dependence on the fields corresponding to Cartan generators.
14We are grateful to Pierre Vanhove for helpful discussions on the constant terms.
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ω + 1 6= 0 yields the first constant term E(0)
s . Then we will consider the case ω3 6= 0 and

solve the constraint (4.4) explicitly using Bézout’s identity which reduces the remaining
sum to that over three integers. On these we will perform Poisson resummations to uncover
the second constant and the Abelian Fourier coefficients as well as the non-Abelian ones.

Therefore we start our analysis by extracting the ω3 = 0 (implying ω2 = 0) part of the
sum in the Eisenstein series, E(0)

s , leaving a remainder A(s)

Es(φ, λ, γ) = E(0)
s +A(s), (4.17)

where the leading order term is now only a sum over ω1 = m1 + im2

E(0)
s = e−2sφ

′∑
(m1,m2)∈Z2

1
(m2

1 +m2
2)s

= 4ζQ[i](s)e
−2sφ , (4.18)

where ζQ[i](s) is the Dedekind zeta function over the Gaussian integers

ζQ[i](s) =
1
4

′∑
ω∈Z[i]

|ω|−2s =
1
4

′∑
(m,n)∈Z2

1
(m2 + n2)s

. (4.19)

The factor 4 is related to the center of the Gaussian integers.
The Dedekind zeta function ζQ[i](s) satisfies a functional equation that can be best

described using its completed version

ζQ[i]∗(s) := π−sΓ(s)ζQ[i](s) , (4.20)

in terms of which one has
ζQ[i]∗(1− s) = ζQ[i]∗(s) . (4.21)

Using results from class field theory, the Dedekind function over a quadratic number field
can be written as a Dirichlet L-function times the standard Riemann zeta function. In our
case this reads [65]

ζQ[i](s) = β(s)ζ(s), (4.22)

where the standard Riemann zeta function is

ζ(s) :=
∞∑
n=1

n−s =
∏

p prime

1
1− p−s

for <(s) > 1 (4.23)

and β(s) is the Dirichlet beta function,

β(s) :=
∞∑
n=0

(−1)n(2n+ 1)−s for <(s) > 0. (4.24)

We also note that β(s) has an Euler product representation of the form

β(s) =
∏

p:p=1 [4]

1
1− p−s

∏
p:p=3 [4]

1
1 + p−s

, (4.25)
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which together with the Euler product form of the Riemann zeta function ζ(s) above will
be useful later. The functional relation for β(s) is again best stated using its completion

β∗(s) :=
(π

4

)− s+1
2 Γ

(
s+ 1

2

)
β(s), (4.26)

for which the functional relation takes the simple form

β∗(s) = β∗(1− s). (4.27)

In conclusion, we have found that the first coefficient A(s) in (4.16) is given by the
Dedekind function ζQ[i](s) and that it is related to the term ω3 = 0 in the sum over the
Gaussian integers. We will now proceed to evaluate the terms with ω3 6= 0, contained in
A(s) of (4.17). We note that the term with ω3 = 0 and ω2 6= 0 vanishes identically because
of the quadratic constraint (4.4). Thus, A(s) only contains terms for which ω3 6= 0.

4.3 Solution of Constraint and Poisson Resummation

To solve the constraint (4.4) we shall make use of Bézout’s identity, which states that for
integers p1 and p2 the equation

q1p2 − q2p1 = d (4.28)

has integer solutions for q1 and q2 if and only if d divides gcd(p1, p2). The most general
solution can then be written as a particular solution plus appropriate integer shifts. More
precisely, in the case of our constraint (4.4) we find that for ω3 = p1 + ip2 6= 0 there are
solutions in Z[i]3 if and only if

|ω2|2

2d
∈ Z , where d = gcd(p1, p2) (4.29)

and the most general solution for ω1 = m1 + im2 is then

m1 = −|ω2|2

2d
q1 +m

p1

d
,

m2 = −|ω2|2

2d
q2 +m

p2

d
. (4.30)

Here, q1 and q2 is any particular solution of q1p2− q2p1 = d and m ∈ Z is an unconstrained
integer. Therefore, we can rewrite the constrained sum as∑

ω3 6=0

∑
ω2∈Z[i]

2d |ω2|2

∑
m∈Z

(4.31)

where in the summand ω1 = m1 + im2 has to be replaced by the expression from (4.30).
Let us study this in the case of our Eisenstein series. After solving the constraint, the

first term in the bracket of (4.1) becomes

|ω1 + ω2λ+ ω3γ|2 =
|ω3|2

d2

[(
m− |ω2|2

2|ω3|2
(q1p1 + q2p2) + ˜̀

1χ+ ˜̀
2χ̃+ 2dψ

)2

+
1

16d2

(
(˜̀

1 + 2dχ̃)2 + (˜̀
2 − 2dχ)2

)2
]
, (4.32)
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where we defined

˜̀
1 :=

d

|ω3|2
[
(p1 − p2)n1 + (p1 + p2)n2

]
,

˜̀
2 :=

d

|ω3|2
[
(p1 + p2)n1 − (p1 − p2)n2

]
. (4.33)

Extracting an overall factor of |ω3|2/d2 the total summand may be written as follows

d2

|ω3|2
ω† · K · ω =

[
m− |ω2|2

2|ω3|2
(q1p1 + q2p2) + ˜̀

1χ+ ˜̀
2χ̃+ 2dψ

]2

+
e−4φ

d2

[
d2 +

e2φ

4

(
(˜̀

1 + 2dχ̃)2 + (˜̀
2 − 2dχ)2

)]2

. (4.34)

The integer m is now unconstrained and is amenable to Poisson resummation using the
standard formula ∑

m∈Z
e−πx(m+a)2+2πimb =

1√
x

∑
m̃∈Z

e−
π
x

(m̃+b)2−2πi(m̃+b)a. (4.35)

Implementing this on the remainder A(s) defined in (4.17) yields

A(s) =
πs

Γ(s)
e−2sφ

∑
m̃∈Z

′∑
(p1,p2)∈Z2

∑
(n1,n2)∈Z2

2d|n2
1+n2

2

d

|ω3|
e
−2πim̃

(
− |ω2|

2

2|ω3|2
(q1p1+q2p2)+˜̀

1χ+˜̀
2χ̃+2dψ

)

×
∞∫

0

dt

ts+1/2
e
−πt d2

|ω3|2
m̃2−π

t
|ω3|

2

d4
e−4φ

[
d2+ e2φ

4

(
(˜̀

1+2dχ̃)2+(˜̀
2−2dχ)2

)]2

, (4.36)

where we have indicated explicitly the constraint from (4.29) that 2d must divide |ω2|2.
Recall that the Abelian terms in the Fourier expansion correspond physically to in-

stantons with zero NS5-brane charge, independent of the NS-NS scalar ψ. We therefore
split off the non-Abelian contribution with m̃ 6= 0:

A(s) = D(s) + E(NA)
s , (4.37)

where E(NA)
s denotes the non-Abelian term with m̃ 6= 0, to be considered later. From D(s)

we will be able to extract the second constant term E(1)
s as well as the Abelian Fourier

coefficients C
(A)
s,`1,`2

. Explicitly we have

D(s) =
πs

Γ(s)
e−2sφ

′∑
(p1,p2)∈Z2

∑
(n1,n2)∈Z2

2d|n2
1+n2

2

d

|ω3|

∞∫
0

dt

ts+1/2
e
−π
t
e−4φ|ω3|

2

d4

[
d2+ e2φ

4

(
(˜̀

1+2dχ̃)2+(˜̀
2−2dχ)2

)]2

.

(4.38)
To get rid of the square in the exponent, we shall perform the integration over t and then
choose a new integral representation of the summand. The current form of the exponent
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will be convenient for the evaluation of the non-Abelian terms below, but for our present
purposes we shall begin to rewrite it in the following way

e−4φ|ω3|2

d4

[
d2 +

e2φ

4
(
(˜̀

1 + 2dχ̃)2 + (˜̀
2 − 2dχ)2

)]2

=
1

4|ω3|2
[
|Y|2 + 2e−2φ|ω3|2

]2
, (4.39)

where we defined the new variable Y = Y1 + iY2, with

Y1 := n1 + (p1 − p2)χ̃− (p1 + p2)χ,

Y2 := n2 + (p1 + p2)χ̃+ (p1 − p2)χ. (4.40)

Evaluating the integral over t then yields

D(s) =
22s−1√πΓ(s− 1/2)

Γ(s)
e−2sφ

′∑
(p1,p2)∈Z2

∑
(n1,n2)∈Z2

2d|n2
1+n2

2

d

|ω3|2−2s

{[
|Y|2 + 2e−2φ|ω3|2

]}1−2s

.

(4.41)
After replacing the term within brackets by its integral representation we obtain

D(s) =
22s−1π2s−1/2Γ(s− 1/2)

Γ(s)Γ(2s− 1)
e−2sφ

′∑
(p1,p2)∈Z2

∑
(n1,n2)∈Z2

2d|n2
1+n2

2

d

|ω3|2−2s

∞∫
0

dt

t2s
e−

π
t

[
|Y|2+2e−2φ|ω3|2

]
.

(4.42)
Since all values of n1 and n2 are almost degenerate we shall perform a further Poisson
resummation on these variables. Here we must take into account the remaining constraint
that 2d divides n2

1 + n2
2. The set of solutions to this constraint can be written as

n1 = n0
1 + δn1 , n2 = n0

2 + δn2, (4.43)

where (δn1, δn2) runs over the lattice L

L = {δ(n1, δn2)} =
{
d(k1 + k2, k1 − k2) : (k1, k2) ∈ Z2

}
(4.44)

and (n0
1, n

0
2) runs over all solutions of the quadratic equation n2

1 + n2
2 = 0 mod 2d in a

fundamental domain. We take this fundamental domain to be 0 ≤ n0
1 < d and 0 ≤ n0

2 < 2d,
and it has area 2d2. The set of such solutions in the fundamental domains will be written
as

F(d) :=
{
n0

1 + in0
2 : n2

1 + n2
2 = 0 mod 2d, 0 ≤ n0

1 < d , 0 ≤ n0
2 < 2d

}
. (4.45)

The cardinality of this set gives the number of solutions

N(d) := ]F(d) (4.46)

This series is multiplicative but not completely multiplicative [66] and we will give more
details on it below and in Appendix B.
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After inserting (4.43) into (4.42) and performing a Poisson resummation on δn1 and
δn2, we obtain

D(s) =
22s−2π2s−1/2Γ(s− 1/2)

Γ(s)Γ(2s− 1)
e−2sφ

′∑
(p1,p2)∈Z2

∑
ω̃2∈L∗

∑
f∈F(d)

1
d|ω3|2−2s

×e2πi<(ω̃2f)

∞∫
0

dt

t2s−1
e−πt(ñ

2
1+ñ2

2)− 2π
t
e−2φ|ω3|2+2πi(`1χ+`2χ̃),

(4.47)

where L∗ is the lattice dual to L,

L∗ =
{
ω̃2 = ñ1 + iñ2 =

1
2d

(k̃1 + k̃2, k̃1 − k̃2) : (k̃1, k̃2) ∈ Z2

}
, (4.48)

the set F(d) denotes the elements in the fundamental domain contributing to (4.45) for
d = gcd(p1, p2), and we defined the new charges

`1 := ñ1(p1 + p2)− ñ2(p1 − p2) ,

`2 := ñ1(p2 − p1)− ñ2(p1 + p2) . (4.49)

4.4 Second Constant Term

We may now extract the second constant term from the `1 = `2 = 0 part of the sum, and
accordingly we split D(s) as

D(s) = E(1)
s + E(A)

s , (4.50)

where E(A)
s is the Abelian term in the Fourier expansion to be considered below. The

`1 = `2 = 0 part arises from the ω̃2 = 0 term which reads

E(1)
s =

22s−2π2s−1/2Γ(s− 1/2)
Γ(s)Γ(2s− 1)

e−2sφ
′∑

(p1,p2)∈Z2

∑
f∈F(d)

1
d|ω3|2−2s

∞∫
0

dt

t2s−1
e−

2π
t
e−2φ|ω3|2 .

(4.51)
The sum over f ∈ F(d) is now identified with the multiplicative function N(d) in (4.46)
and the integral can be explicitly evaluated with the result

E(1)
s =

π3/2Γ(s− 1/2)Γ(2s− 2)
Γ(s)Γ(2s− 1)

e−2(2−s)φ
′∑

(p1,p2)∈Z2

N(d)
1

d|ω3|2s−2
. (4.52)

The sum can be evaluated in terms of Riemann and Dedekind zeta functions as follows.
Extract the greatest common divisor of p1 and p2, defining p1 = dp′1, p2 = dp′2 with d =
gcd(p1, p2) and gcd(p′1, p

′
2) = 1. This yields a sum over d and coprime (p′1, p

′
2)

′∑
(p1,p2)∈Z2

N(d)d−1|p|2−2s =

(∑
d>0

N(d)d1−2s

)  ∑
(p′1,p

′
2)=1

1
(p′21 + p′22 )s−1

 . (4.53)
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The second sum may be rewritten as a ratio of Riemann and Dedekind zeta functions as
follows ∑

(p′1,p
′
2)=1

1
(p′21 + p′22 )s−1

=
4ζQ[i](s− 1)
ζ(2s− 2)

. (4.54)

Let us now consider the first sum on the right hand side of (4.53). This involves the
combinatorial function N(d) of (4.46) (see also [66]). It gives rise to a Dirichlet series via

L(N, s) :=
∞∑
d=1

N(d)d−s (4.55)

that converges for <(s) > 2. We shall evaluate this Dirichlet series using its Euler product
presentation. To this end we note that the multiplicative series N(d) exhibits the following
properties [66]

N(2m) = 2m , N(pm) =

{
(m(p− 1) + p)pm−1 , p = 1[4]
pm−(m mod 2) , p = 3[4].

(4.56)

Therefore, the Dirichlet series (4.55) has an Euler product representation (see Appendix B
for the derivation)

L(N, s) =
1

1− 21−s

∏
p;p=1[4]

1− p−s

(1− p1−s)2

∏
p;p=3[4]

1 + p−s

(1− p1−s)(1 + p1−s)
, (4.57)

where the product runs over all primes p > 2. Comparing to the Euler product presen-
tations of the Dirichlet beta function (4.25) and the Riemann zeta function (4.23), we
deduce

L(N, s) =
β(s− 1)ζ(s− 1)

β(s)
. (4.58)

Putting everything together we then find the following expression for the constant term

E(1)
s = 4

π3/2Γ(s− 1/2)Γ(2s− 2)
Γ(s)Γ(2s− 1)

L(N, 2s− 1)
ζ(2s− 2)

ζQ[i](s− 1)e−2(2−s)φ. (4.59)

Referring back to the completed Dedekind zeta function (4.20) and Dirichlet beta function
(4.26) we define a completed “Picard Zeta function” by

Z(s) := ζQ[i]∗(s)β∗(2s− 1). (4.60)

In terms of this function the two constant terms can be neatly summarized by

E(const)
s = E(0)

s + E(1)
s = 4ζQ[i](s)

{
e−2sφ +

Z(2− s)
Z(s)

e−2(2−s)φ
}
. (4.61)
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4.5 Abelian Fourier Coefficients

We now turn to the Abelian Fourier coefficients, corresponding to the terms (ñ1, ñ2) 6= 0
in (4.47). The integral over t leads to a modified Bessel function,

E(A)
s =

2π2s−1/2Γ(s− 1/2)
Γ(s)Γ(2s− 1)

e−2φ
′∑

(p1,p2)∈Z2

′∑
(k̃1,k̃2)∈Z2

∑
f∈F(d)

1
d2s−1

|u|2s−2

×e
πi
d
<[uf(1−i)] K2s−2

(
2πe−φ|Λ|

)
e2πi(`1χ+`2χ̃) , (4.62)

where we have introduced the following additional notation

u = k̃1 + ik̃2 , Λ = `2 − i`1 (4.63)

for
`1 =

1
d

(k̃1p2 + k̃2p1) , `2 =
1
d

(k̃2p2 − k̃1p1). (4.64)

These charges are manifestly integral since d divides p1 and p2. This last relation can also
be written as

Λ =
uω3

d
= uω′3, (4.65)

where ω′3 = ω3/d is a Gaussian number with coprime real and imaginary part. To extract
the Abelian Fourier coefficients C

(A)
s`1,`2

(φ) we therefore replace the sum over ω3 and u by a
sum over d, Λ and ω′3 where the primitive Gaussian integer ω′3 has to be a Gaussian divisor
of Λ, to wit

E(A)
s = C(A)

s e−2φ
′∑

Λ∈Z[i]

∑
ω′3|Λ

∣∣∣∣ Λ
ω′3

∣∣∣∣2s−2
∑
d>0

1
d2s−1

∑
f∈F(d)

e
πi
d
<
[

Λ
ω′3
f(1−i)

]
×K2s−2

(
2πe−φ|Λ|

)
e2πi(`1χ+`2χ̃) , (4.66)

where the coefficient is given by

C(A)
s =

2π2s−1/2Γ(s− 1/2)
Γ(s)Γ(2s− 1)

=
8ζQ[i](s)β(2s− 1)

Z(s)
. (4.67)

To make contact with the general discussion in Section 4.1 above, we write this result as a
sum over the real variables `1 and `2:

E(A)
s = 2ζQ[i](s)

e−2φ

Z(s)

′∑
(`1,`2)∈Z2

µs(`1, `2)
[
`21 + `22

]s−1
K2s−2

(
2πe−φ

√
`21 + `22

)
e2πi(`1χ+`2χ̃),

(4.68)
where we defined the summation measure

µs(`1, `2) := 4β(2s− 1)
∑
ω′3|Λ

|ω′3|2−2s

∑
d>0

d1−2s
∑

f∈F(d)

e
πi
d
<
[

Λ
ω′3
f(1−i)

] (4.69)
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containing the sum over primitive Gaussian divisors of Λ = `2− i`1. The sum over d in the
parentheses may be carried out for fixed Λ and ω′3 to give the Gaussian divisor function
(see Appendix B for the derivation)∑

d>0

d1−2s
∑

f∈F(d)

e
πi
d
<
[

Λ
ω′3
f(1−i)

]
=

1
4β(2s− 1)

∑
z| Λ
ω′3

|z|4−4s , (4.70)

whence the instanton measure (4.69) simplifies to

µs(`1, `2) =
∑
ω′3|Λ

|ω′3|2−2s
∑
z| Λ
ω′3

|z|4−4s . (4.71)

Thus, the abelian summation measure (4.71) involves both a sum over primitive divisors of
Λ and a sum over all divisors of Λ/ω′3. By comparing (4.68) to (4.13) we may now extract
the numerical abelian Fourier coefficients:

C
(A)
`1,`2

(s) =
2ζQ[i](s)

Z(s)
µs(`1, `2)

[
`21 + `22

]s−1
. (4.72)

4.6 Non-Abelian Fourier Coefficients

Finally we consider the non-Abelian term E(NA)
s in (4.37). This term reads

E(NA)
s =

πs

Γ(s)
e−2sφ

′∑
m̃∈Z

∑
(n1,n2)∈Z2

2d|n2
1+n2

2

′∑
(p1,p2)∈Z2

d

|ω3|
e
−2πim̃

(
− |ω2|

2

2|ω3|2
(q1p1+q2p2)+˜̀

1χ+˜̀
2χ̃+2dψ

)

×
∞∫

0

dt

ts+1/2
e
−πt d2

|ω3|2
m̃2−π

t
|ω3|

2

d4
e−4φ

[
d2+ e2φ

4

(
(˜̀

1+2dχ̃)2+(˜̀
2−2dχ)2

)]2

. (4.73)

The integral is of Bessel type and yields

E(NA)
s =

2πs

Γ(s)
e−2sφ

′∑
m̃∈Z

∑
(n1,n2)∈Z2

2d|n2
1+n2

2

′∑
(p1,p2)∈Z2

[
d

|ω3|

]s+1/2[ |m̃|2

<(S`1,`2,k)

]s−1/2

×Ks−1/2

(
2π<(S`1,`2,k)

)
e−2πi=(S`1,`2,k)e−

πi
2kd

(`21+`22)(q1p1+q2p2), (4.74)

where the real and imaginary parts of S`1,`2,k are given by

<(S`1,`2,k) = |k|e−2φ +
1

4|k|

[
(`1 + 2kχ̃)2 + (`2 − 2kχ)2

]
,

=(S`1,`2,k) = `1χ+ `2χ̃+ 2kψ, (4.75)

and we also defined15

k := m̃d,

`1 := m̃˜̀
1 =

k

|ω3|2
[
(p1 − p2)n1 + (p1 + p2)n2

]
,

`2 := m̃˜̀
2 =

k

|ω3|2
[
(p1 + p2)n1 − (p1 − p2)n2

]
. (4.76)

15The non-Abelian charges `i defined in (4.76) should not be confused with the Abelian charges `i in

(4.49).
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In Gaussian notation, Λ = `2 − i`1, the last two relations amount to

Λ =
(1− i)kω̄2

ω̄3
. (4.77)

By comparing the expression (4.74) with the general form of the non-Abelian term (4.14)
it is clear that they don’t match. More precisely, the non-Abelian term (4.74) is currently
written as a sum of Gaussian wavefunctions in the (χ, χ̃) plane, while the general form (4.14)
is written in terms of an basis of invariant wavefunctions on the twisted torus parametrized
by (χ, χ̃, ψ). These are eigenmodes of ∂χ and ∂ψ+χχ̃ and the associated charges kn and
k are naturally quantized. However, it is clear from (4.74) that in the Gaussian basis all
the charges are not quantized since (`1, `2) are not integral. To extract the correct non-
Abelian Fourier coefficients C(NA)

k,` (s) we must therefore transform (4.74) into the correct
basis. This can be achived through Fourier transform on the variable χ (or χ̃ in the other
polarization).

To perform the Fourier transform we go back to the integral representation in (4.73).
The integrand is quartic in χ and therefore not immediately amenable for Fourier transform.
To remedy this we make the following change of integration variables:

t −→ t|ω3|2A
k2

, (4.78)

where

A(y, χ, χ̃) = k
[
y +

(
χ+

`1
2k

)2
+
(
χ̃− `2

2k

)2]
, (4.79)

and we recall that y = e−2φ. Implementing this in (4.73) we obtain

E(NA)
s =

πs

Γ(s)
ys

′∑
m̃∈Z

∑
(n1,n2)∈Z2

2d|n2
1+n2

2

′∑
(p1,p2)∈Z2

d|k|2s−1

|ω3|2s

×e−2πim̃
(
− |ω2|

2

2|ω3|2
(q1p1+q2p2)+˜̀

1χ+˜̀
2χ̃+2dψ

) ∞∫
0

dt

ts+1/2
A1/2−se−π

(
t+ 1

t

)
A, (4.80)

which is now Gaussian in both χ and χ̃. We proceed to rewrite this expression as follows

E(NA)
s =

πs

Γ(s)
ys

′∑
m̃∈Z

∑
(n1,n2)∈Z2

2d|n2
1+n2

2

′∑
(p1,p2)∈Z2

d|k|2s−1

|ω3|2s
e
πim̃|ω2|

2

2|ω3|2
(q1p1+q2p2)

×e−4πikψ−2πi`2χ̃

∞∫
0

dt

ts+1/2
e−πk

(
t+ 1

t

)[
y+
(
χ̃+

`1
2k

)2]
f(y, χ, χ̃; t), (4.81)

where all the χ-dependence is contained in the function

f(y, χ, χ̃; t) = A1/2−se−πk
(
t+ 1

t

)(
χ− `2

2k

)2
−2πi`1χ. (4.82)

– 31 –



The Fourier transform over χ is implemented as follows

f(y, χ, χ̃; t) = e−4πikχχ̃

∫
dnf̂(n)e8πiknχ, (4.83)

with
f̂(n) = 4|k|

∫
dξ e−8πiknξ+4πikξχ̃f(y, ξ, χ̃; t). (4.84)

To perform the integral over ξ we shall utilize the following formula (Eq. 3.462.3 in [67])

∞∫
−∞

dx (ix)νe−β
2x2−iqx =

√
π2−ν/2β−ν−1e

− q2

8β2Dν

( q√
2β

)
, (4.85)

where Dν is the parabolic cylinder function. In order to make use of this formula we
must further manipulate the expression in (4.82) such that we separate the variables in the
prefactor A1/2−s. This can be done using the binomial expansion which is justified at the
cusp y →∞ and yields

A1/2−s(y, ξ, χ̃) =
∞∑
q=0

Γ(s− 1
2 + q)

Γ(q + 1)Γ(s− 1
2)

[
y +

(
χ̃+

`1
2k

)2]1−2s−2q[
i
(
ξ − `2

2k
)]2q

. (4.86)

Inserting this into (4.81) and Fourier transforming over χ we obtain

E(NA)
s =

4πs

Γ(s)
ys

′∑
m̃∈Z

∑
(n1,n2)∈Z2

2d|n2
1+n2

2

′∑
(p1,p2)∈Z2

∞∑
q=0

d||k|2s

|ω3|2s
e
πim̃|ω2|

2

2|ω3|2
(q1p1+q2p2) Γ(s− 1

2 + q)
Γ(q + 1)Γ(s− 1

2)

[
y +

(
χ̃+

`1
2k

)2]1−2s−2q
∞∫

0

dt

ts+1/2
e−πk

(
t+ 1

t

)[
y+
(
χ̃+

`1
2k

)2] ∫
dn e−

πi
k
`2(`1−4kn)

×
{∫

dξ
[
i
(
ξ − `2

2k
)]2q

e−πk
(
t+ 1

t

)(
ξ− `2

2k

)2

e−i(2π`1−4πkχ̃+8πkn)
(
ξ− `2

2k

)}
×e8πiknχ−4πik(ψ+χχ̃). (4.87)

After evaluating the integral over ξ using Eq. (4.85) the non-Abelian term becomes

E(NA)
s =

4πs

Γ(s)
ys

′∑
m̃∈Z

∑
(n1,n2)∈Z2

2d|n2
1+n2

2

′∑
(p1,p2)∈Z2

∞∑
q=0

d|k|2s−q−1/2

(4π)q|ω3|2s
e
πim̃|ω2|

2

2|ω3|2
(q1p1+q2p2)

×
Γ(s− 1

2 + q)
Γ(q + 1)Γ(s− 1

2)

[
y +

(
χ̃+

`1
2k

)2]1−2s−2q
∞∫

0

dt

ts+1/2
e−πk

(
t+ 1

t

)[
y+
(
χ̃+

`1
2k

)2]

×
(
t+

1
t

)−q−1/2
∫
dn e−

πi
k
`2(`1−4kn)e

−π
k

(`1−2kχ̃+4kn)2

(t+1/t) H2q

(√
π

k

`1 − 2kχ̃+ 4kn√
t+ 1/t

)
×e8πiknχ−4πik(ψ+χχ̃), (4.88)
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where we have also used the fact that for integral index the parabolic cylinder function
Dm(x) can be written in terms of Hermite polynomials as follows

Dν(x) = 2−ν/2e−x
2/4Hν

(
x√
2

)
. (4.89)

This has the advantage of explicitly extracting the leading order behaviour of Dν(x) in the
limit of large argument

Dν(x) ∼ xνe−x2/4. (4.90)

Let us now comment on the structure of Eq. (4.88). After Fourier transforming we see
that the non-Abelian term indeed corresponds to an expansion in terms of the invariant
wavefunctions on the twisted torus as in the general form of Eq. (4.14). However, we have
unfortunately not been able to further manipulate Eq. (4.88) into the form displayed in
(4.14) and therefore we cannot extract the numerical Fourier coefficients C(NA)

k,` (s) in as
compact a form as the Abelian coefficients (4.72). Nevertheless, as a consistency check
of our analysis we shall show that the leading order exponential behaviour of (4.88) near
the cusp y → ∞ coincides with that of Eq. (4.14). To this end we may take the saddle
point approximation for the integral over t in (4.88) for which the saddle point is located
at t = 1. We thus find that the leading exponential dependence of (4.88) at the saddle
point is given by e−S with

S = 2π|k|
[
y +

(
χ̃+

`1
2|k|

)]
+

π

2|k|
(
`1 − 2|k|χ̃+ 4|k|n

)2
. (4.91)

Rearranging terms, this can be written as

S = 2π|k|y + 4π|k|
(
χ̃− n

)2 + 4π|k|
(
n+

`1
2|k|

)2
. (4.92)

Using the asymptotic behaviour of the Whittaker function Wk,m(x) ∼ e−x/2 one may indeed
verify that the first two terms in (4.92) exactly coincide with the leading behaviour of the
general expression (4.14) in the limit y →∞. The last term in (4.92) is moduli-independent
and should presumably be absorbed into the measure after summing over `1 and `2. We
further expect that the summation over `1 and `2 (or, more precisely, over ω2 and ω3)
will restrict the integral over n such that it localizes on the points in Z + `/(4|k|) as is
expected from the general expression (4.14). We stress that the result (4.92) is valid in the
polarization (4.8) we have chosen. There is an analogous result for the other polarization.

4.7 Functional Relation for the Poincaré series

The expression (4.61) for the two constant terms suggests a functional relation for the
SU(2, 1; Z[i]) Poincaré series defined in (3.11). As a consequence of (3.14), the constant
terms of the Poincaré series of orders s and 2− s satisfy the relation

Z(s)P(const)
s = Z(2− s)P(const)

2−s . (4.93)

Eq. (4.61) can be viewed as an extension of Langlands’s constant term formula [64] for
Eisenstein series for special linear groups to the case of the unitary group SU(2, 1). The
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completed Picard zeta function Z(s) plays the same role as the completed Riemann zeta
function ξ(s) = π−s/2Γ(s/2)ζ(s) in Langlands’s formula. The completed Riemann zeta
function has the functional relation ξ(s) = ξ(1 − s); there is no analogous relation for
our completed Picard zeta function Z(s). Note also that (4.61) is consistent with the fact
the constant terms are permuted by the restricted Weyl group of SU(2, 1), which acts by
s↔ 2− s.

On general grounds, the functional relation for the constant terms should extend to
the full Eisenstein series [64]. This is manifest for the Abelian terms (4.68) when the in-
stanton measure (4.71) is combined with the factor |Λ|2(s−1) = [`21 +`22]s−1 and recalling the
symmetry of the Bessel function K2s−2(x) = K2−2s(x). By these arguments, the functional
relation satisfied by the Poincaré series for the Picard modular group SU(2, 1; Z[i]) reads

Z(s)Ps = Z(2− s)P2−s . (4.94)

This functional relation must also hold on the non-Abelian terms but due to their unwieldy
form this is not manifest.

5. Instanton Corrections to the Universal Hypermultiplet

In this section we use the Eisenstein series for the Picard modular group constructed in
Sections 3 and 4 to conjecture the exact form of the D2 and NS5 instanton corrections to
the universal hypermultiplet metricMUH. We start by recalling some aspects of quantum
corrections to hypermultiplet moduli spaces in type II Calabi-Yau compactifications, with
particular emphasis on recent developments involving twistor theory.

5.1 Quantum Corrected Hypermultiplet Moduli Spaces in IIA and IIB

Perturbative corrections to hypermultiplet moduli spaces are well understood, and it has
been established that the metric on MH receives only tree-level and one-loop corrections,
but no perturbative corrections beyond one loop [18–21,68,69]. For the universal hypermul-
tiplet this was rigorously proven in [68]. The general form of the perturbative corrections
can be inferred from compactifications of higher derivative couplings in ten dimensions [18],
or via an explicit string theory calculations in D = 4 [21]. In the string frame, the tree-
level correction is of the form ζ(3)χXg

−2
s , where χX is the Euler number of the Calabi-Yau

threefold X. while the one-loop correction to the metric on MH is of the form ζ(2)χX .
The complete perturbatively corrected metric can be found in [69,28].

As discussed in Section 1, it is also known since [16] that MH should receive non-
perturbative corrections due to D2-brane and NS5-brane instantons. Computing these
contributions has remained a long standing problem, mainly due to the intricacies of
quaternionic-Kähler geometry, and and to the lack of instanton calculus techniques in
string theory. Nevertheless, in a series of recent papers [28–32, 70], a subset of the non-
perturbative corrections to MH have been understood. The key idea, following advances
in the mathematics [22–24] and physics literature [25–27] on quaternionic-Kähler spaces,
is that linear deformations of the hypermultiplet moduli space MH can be lifted to the
twistor space ZMH

, a CP 1 bundle over MH. In contrast to the latter, ZMH
admits a
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Kähler-Einstein metric, and quantum corrections to MH can in principle be encoded in
the Kähler potential, with suitable conditions to ensure that the Kähler metric is Ein-
stein. These conditions can be solved in terms of holomorphic data, by using the canonical
complex contact structure on ZMH

[29] (see, e.g., [71] for an introduction to contact geom-
etry). By Darboux’s theorem, the complex contact structure can be specified by provid-
ing complex contact transformations between local complex Darboux coordinate systems(
ξΛ

[i], ξ̃
[i]
Λ , α[i]

)
(Λ = 1, . . . , h2,1 + 1). These complex contact transformations are defined on

the overlap Ui ∩ Uj of two coordinate systems, and generated by holomorphic functions
Sij
(
ξΛ

[i], ξ̃
[j]
Λ , α[j]

)
, subject to co-cycle conditions, local contact transformations and reality

constraints. The geometry of the hypermultiplet moduli space can then be extracted by
determining the contact twistor lines, i.e. expressing the generic coordinates

(
ξΛ, ξ̃

Λ, α
)
, in

some patch U , in terms of the coordinates xµ ∈MH on the base manifold, and the complex
coordinate z ∈ CP 1 on the fiber. Deformations of the contact transformations Sij then
determine the corrections to the contact twistor lines, from which the corrected geometry
ofMH may be extracted in terms of the contact potential eΦ[i](x

µ,z), which determines the
Kähler potential on ZMH

through

K[i]
ZMH

= log
1 + zz̄

|z|
+ <

[
Φ[i](x

µ, z)
]
. (5.1)

For details on this construction we refer the reader to [28,29]. In Section 5.2 we will discuss
in more detail the twistor space of the universal hypermultiplet.

5.2 Twistorial Interpretation of the Eisenstein Series Es(φ, χ, χ̃, ψ)

As was briefly discussed in Section 5.1, the quantum corrected geometry of MH is prefer-
ably not described directly by its quaternionic-Kähler metric, but rather through certain
properties of its twistor space ZMH

, namely the contact twistor lines (ξΛ, ξ̃
Λ, α), in some

local patch U ⊂ ZMH
, and the contact potential eΦ(xµ,z) which determines the Kähler

potential on ZMH
. In this section we will take some initial steps in finding the exact de-

formed geometry of the twistor space ZMH
of the universal hypermultiplet in the presence

of D2-brane and NS5-brane instantons. More precisely, we shall propose a non-perturbative
completion of the contact potential eΦ(xµ,z) on the north pole z = 0 of the twistor space.
To find the global form of the deformed geometry, one must also provide a completion
of the twistor lines themselves, but this is beyond the scope of the present work. Before
we proceed, let us recall some of the salient features of the twistorial description of the
universal hypermultiplet.

On the Twistor Space of the Universal Hypermultiplet

The twistor space ZMUH
of the classical moduli spaceMUH can be nicely described group-

theoretically as follows. Viewing the CP 1 twistor fiber as S2 = SU(2)/U(1), the fibration
of SU(2)/U(1) over MUH is such that the SU(2) cancels: [72, 53]:

ZMUH
=
SU(2)
U(1)

n
SU(2, 1)

SU(2)× U(1)
=

SU(2, 1)
U(1)× U(1)

. (5.2)
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The twistor space ZMUH
is a complex 3-dimensional contact manifold, with local coordi-

nates (ξ, ξ̃, α). These coordinates parametrize the complexified Heisenberg group NC, or,
equivalently, coordinates on the complex coset space PC\SL(3,C), where PC is the com-
plexification of the parabolic subgroup P ⊂ SU(2, 1) discussed in Appendix A and SL(3,C)
is the complexification of SU(2, 1). In terms of the coordinates (ξ, ξ̃, α) on PC\SL(3,C)
the Kähler potential of ZMUH

takes the following form [53]

KZMUH
=

1
2

log
[((

ξ − ξ̄
)2 +

(
ξ̃ − ¯̃

ξ
)2)2

+ 4
(
α− ᾱ+ ξ̄ξ̃ − ξ ¯̃

ξ
)2
]
. (5.3)

The contact twistor lines for the unperturbed twistor space correspond to the change of
variables that relate the coordinates (ξ, ξ̃, α) on ZMUH

to the coordinates xµ = {eφ, χ, χ̃, ψ}
on the base MUH and the coordinate z on the fiber CP 1 = SU(2)/U(1). These twistor
lines were obtained in [53]. In our notations they read

ξ = −
√

2χ+
1√
2
e−φ
(
z − z−1

)
,

ξ̃ = −
√

2χ̃− i√
2
e−φ
(
z + z−1

)
,

α = 2ψ − e−φ
[
z(χ̃+ iχ)− z−1(χ̃− iχ)

]
. (5.4)

Plugging these into (5.3) we find that the Kähler potential for the twistor space of the
classical universal hypermultiplet, in the coordinates xµ ∈MUH and z ∈ CP 1, reads

KZMUH
= log

1 + zz̄

|z|
− 2φ, (5.5)

which indeed agrees with the general form of the Kähler potential in Eq. (5.1) upon
identifying the classical contact potential as follows

eΦclassical(x
µ,z) = e−2φ. (5.6)

Deformations of the twistor space may now be encoded in deformations of the Kähler po-
tential KZMUH

, or, equivalently, in deformations of the classical contact potential eΦclassical .

Non-Perturbative Completion of the Contact Potential

The purpose of the present work is to propose a non-perturbative completion of the classical
contact potential eΦclassical which includes the contributions from D2-brane and NS5-brane
instantons. Assuming SU(2, 1; Z[i])-invariance of the exact effective action, we thus wish
to complete the contact potential with the Eisenstein series Es(φ, χ, χ̃, ψ). We first observe
that the usual tree-level α′3 correction χXζ(3) to the type IIA hypermultiplet moduli space
is not expected to exist for compactification on a rigid Calabi-Yau. Indeed, it usually comes
from a degenerate contribution in the Gromov-Witten sum in type IIB on the mirror Calabi-
Yau, but, as we have stressed in Section 1, rigid Calabi-Yau threefolds do not have mirrors.
Another way to realize that the tree-level correction is absent for the universal sector is
that the corresponding contribution to the prepotential iζ(3)X2

0 can be reabsorbed into the
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classical prepotential iX2
0/2 of the universal hypermultiplet by a field redefinition. This is

of course not so for generic (non-rigid) Calabi-Yau manifolds.

Perturbative Contributions

We further note that by construction the Eisenstein series Es(φ, χ, χ̃, ψ) is independent of
the fiber coordinate z of the twistor space and may thus only be considered as a function
on the north pole z = 0 of ZMUH

. Our main conjecture is then that the exact contact
potential is given by16

eΦexact(xµ,z=0) = eφP3/2(φ, χ, χ̃, ψ), (5.7)

where Ps is the Poincaré series constructed in Section 3.2. The choice of order s = 3/2
in (5.7) is fixed by demanding that the constant terms in the Fourier expansion of Ps
reproduces the correct classical and one-loop contributions. By comparing (5.8) with (5.6)
we see that the perturbative terms indeed exhibit the correct dilaton powers to match
the expected classical and one-loop terms. From the results of the previous section on the
general Fourier expansion of Es = 4ζQ[i]Ps, we then find that the perturbative contributions
to (5.7) are

eΦexact = e−2φ + C1(3/2) + · · · (5.8)

where C1 is the one-loop coefficient

C1(3/2) =
Z(1/2)
Z(3/2)

= π2β(0)β(1/2)ζ(1/2)
β(3/2)β(2)ζ(3/2)

≈ −2.32607 (5.9)

where we made use of (4.60), (4.22). The numerical value does not directly correspond to
the known coefficient 2ζ(3) for the one-loop coefficient, a puzzle which we presently do not
know how to resolve.

Let us also emphasize that the exact contact potential eΦexact is not invariant under
SU(2, 1; Z[i]) but transforms as a modular form:

eΦexact 7−→ |C +DZ| eΦexact , (5.10)

where the overall weight is due to the transformation of the prefactor eφ (see Section 2.2).
This ensures that the Kähler potential KZMUH

transforms by a Kähler transformation, and
hence that the deformed metric on MUH remains SU(2, 1; Z[i])-invariant.

D2-Brane Instantons

Now let us look closer into the non-perturbative contributions. From the Fourier expansion
of Es presented in Section 4 we find that eΦexact takes the general form

eΦexact = eΦpert + eΦD2 + eΦD2/NS5 , (5.11)

where eΦD2 corresponds to the Abelian term containing the contributions from D2-brane
instantons, and eΦD2/NS5 corresponds to the non-Abelian term containing the combined
effects from D2- and NS5-brane instantons.

16A similar proposal for the SL(3, Z)-completion of the contact potential in type IIB on generic Calabi-

Yau threefolds was put forward in [35].
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In the weak-coupling limit gs = eφ → 0 we may utilize the asymptotic expansion of
the modified Bessel function

Kt(x) =
√

π

2x
e−x

∑
n≥0

Γ
(
t+ n+ 1

2

)
Γ(n+ 1)Γ

(
t− n+ 1

2

)(2x)−n =
√

π

2x
e−x
[
1 +O(1/x)

]
, (5.12)

and from Eq. (4.68) we find that eΦD2 is of the form

eΦD2 =
1

4Z(3/2)
e−φ/2

′∑
(`1,`2)∈Z2

µ3/2(`1, `2)(`21 + `22)1/4e−2πS`1,`2

[
1 +O(gs)

]
. (5.13)

We thus find that eΦD2 exhibits exponentially suppressed corrections in the limit gs → 0,
weighted by the instanton action

S`1,`2 = e−φ
√
`21 + `22 + i`1χ+ i`2χ̃. (5.14)

This is recognized as the action for Euclidean D2-branes wrapping special Lagrangian 3-
cycles in the homology class `1A+ `2B ∈ H3(X ), where A and B are the universal 3-cycles
of the rigid Calabi-Yau threefold X . The infinite series within the brackets in (5.13) should
in the spirit of [5] be interpreted as perturbative excitations in the instanton background.

Let us now comment on the summation measure µ3/2(`1, `2) in (5.13). The general
form of µs(`1, `2) was derived in Section 4.5 (see also Appendix B) and for s = 3/2 it takes
the form

µ3/2(`1, `2) =
∑
ω′3|Λ

|ω′3|−1
∑
z| Λ
ω′3

|z|−2 (5.15)

where we recall that Λ = `2 − i`1 is a complex combination of the electric and magnetic
charges (`1, `2). The instanton measure µ3/2(`1, `2) thus “counts” the degeneracy of Eu-
clidean D2-branes on the universal 3-cycles of the rigid Calabi-Yau manifold X . For the
special case of only A-type instantons with `2 = 0, the measure reduces to

µ3/2(`1, 0) =
∑
ω′3|`1

|ω′3|−1
∑
z| `1
ω′3

|z|−2 (5.16)

If `1 is a product of inert primes only (those of the form p = 4n + 3, see Appendix B),
the first sum collapses and the instanton measure is identical to that from the study of
D(−1) instantons in IIB string theory (see, e.g., [5]) where this measure is related to ways
of assembling a given instanton from ones of smaller charge. In the more general case there
are additional contributions from factoring an integer `1 over the Gaussian numbers, e.g.
2 = −i(1 + i)2 or 5 = (2 + i)(2 − i). This indicates a qualitatively different behaviour of
pure type A branes depending on their charge that can sometimes be composed of dyonic
instantons carrying both electric and magnetic charge.

Therefore we may conclude that SU(2, 1; Z[i])-invariance predicts additional contribu-
tions to the purely electric D2-brane instantons compared to the results of [29] restricted
to the special case of universal A-cycles. In [29] the instanton measure for electric D2-
branes on rigid 3-cycles was also dictated by SL(2,Z)-invariance through mirror symmetry
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from the type IIB side. This corresponds to the standard sum over divisors of the electric
charge and hence does not display the additional Gaussian divisors since it does not cap-
ture dyonic instantons. We interpret the extra contribution as a generic feature of rigid
Calabi-Yau compactifications where SL(2,Z) is not a natural duality group, but should
be replaced by SU(2, 1; Z[i]). Under the c-map, the measure (5.15) should also reproduce
the degeneracies of BPS black holes in type IIB arising from D3-branes wrapping special
Lagrangian 3-cycles. It would be interesting to investigate these issues further.

NS5-Brane Instantons

As mentioned above, the NS5-brane instanton contribution to the contact potential is
encoded in the non-Abelian term E(NA)

3/2 of the Fourier expansion in Section 4. Although
we have not been able to derive the summation measure in this case, we can still extract
the instanton action by taking the semiclassical limit. This corresponds to the asymptotic
behaviour of (4.14) in the limit y →∞, or, equivalently, to the saddle point approximation
of the t-integral in (4.88) as analyzed in Section 4.6. Expanding the Whittaker function
around ∞ yields

Wk,m(x) = e−x/2xk
∑
n≥0

Γ
(
m− k + n+ 1

2

)
Γ
(
m+ k + 1

2

)
Γ(n+ 1)Γ

(
m− k + 1

2

)
Γ
(
m+ k + n+ 1

2

)x−n
= e−x/2xk

[
1 +O

(
1/x
)]
. (5.17)

Implementing this in (4.14) and extracting the leading r = 0 term, we deduce that the
leading order contribution to eΦD2/NS5 is given by

eΦD2/NS5 ∼ eφ
′∑

k∈Z

4|k|−1∑
`=0

∑
n∈Z+ `

4|k|

Ck,`|k|−se−2πSk,q
[
1 +O

(
g4
s

)]
, (5.18)

where we have defined

Sk,q = |k|e−2φ + 2|k|
(
χ̃− n

)2 − 4iqχ+ 2ik(ψ + χχ̃). (5.19)

This is interpreted as the Euclidean action of combined D2/NS5-brane instantons with D2-
brane charge q ≡ nk and NS5-brane charge k. Note that even in the absence of D2-brane
instanton contributions, q = 0, the real part of the action receives a contribution from
the background Ramond-Ramond flux χ̃. This is similar to the D2/NS5-instanton action
found previously in [70].

We emphasize that the result (5.18) only displays the contribution from A-type D2-
brane instantons. The B-type D2-branes are exposed by going to the alternative polar-
ization displayed in (4.11), but then the A-type D2-brane effects are not visible. Hence,
SU(2, 1; Z[i])-invariance predicts that when the NS5-brane charge k is non-zero, is not
possible to exhibit instanton contributions with both types of D2-brane charges turned on
simultaneously. This is in contrast to the analysis of [35] in which case SL(3,Z)-invariance
was used to exhibit D(−1), D5 and NS5-brane effects in type IIB on Calabi-Yau three-
folds. Although in this case one must also choose a polarization for the diagonalization of
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the Heisenberg group of SL(3,Z), it turned out that the non-Abelian Fourier coefficients
contained an additional phase factor which encodes the effects of the B-type D2-brane
instantons after transforming to the type IIA language using mirror symmetry. There is
in fact a representation-theoretic explanation for this discrepancy. The semiclassical limit
of the spherical vector for the principal series of SL(3,R) exhibits a cubic phase factor [73]
which precisely accounts for the extra D2-brane contribution to the instanton action [35].
However, the corresponding spherical vector for SU(2, 1) does not exhibit such a phase fac-
tor [53], thus explaining the absence of B-type D2-brane effects in (5.18). This observation
reinforces our point of view that the case of rigid Calabi-Yau compactifications should be
analyzed separately from generic compactifications, and our results should therefore not be
directly compared to previous results on the type IIA side which relied on mirror symmetry
from type IIB [31,29].

Note further that in the special case when the D2-brane instantons are turned off,
q = 0, and with zero flux χ̃ = 0, the action (5.19) reproduces the well-known pure NS5-
brane instanton action of [16]:

Sk = |k|e−2φ + 2ikψ. (5.20)

We finally mention the interesting observation that through the expansion of the Whit-
taker function, SU(2, 1; Z[i])-invariance predicts an infinite series of perturbative excita-
tions around the NS5-brane instanton background. This is in marked contrast to the case of
type IIA Euclidean NS5-branes wrapping K3×T 2, in which case the instanton background
only receives perturbative corrections up to one loop [74].

A. Spherical Vector and p-Adic Eisenstein Series

There exists a general method for constructing automorphic forms on a coset space G/K,
as developed in [50–52]. In this Appendix, we explain this method and show that it may
be used to construct the Eisenstein series Es(φ, λ, γ) for the Picard modular group. This
alternative approach also sheds light on the relation between the quadratic constraint (3.3)
and the representation theoretic structure of the Eisenstein series. This Appendix may be
viewed as an extension of the analysis of [53] to the automorphic setting.

A.1 Formal Construction

In general, to construct an automorphic form Ψ on G/K, invariant under a discrete sub-
group G(Z) ⊂ G, we require three ingredients: (1) a K-invariant spherical vector fK ∈ H
(H being a Hilbert space of square integrable functions), (2) a linear representation ρ of G
acting on H, and (3) a G(Z)-invariant distribution fZ ∈ H? in the dual space of H. Using
the natural pairing 〈 , 〉 between H and H?, the automorphic form Ψ can then be defined
formally as

Ψ(g) := 〈fZ, ρ(g) · fK〉 , (A.1)

with g ∈ G. By virtue of the Iwasawa decomposition,

G = NAK, (A.2)
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an arbitrary group element g ∈ G splits as g = nak := Vk, and, since fK is K-invariant,
Ψ simplifies to

Ψ(V) = 〈fZ, ρ(V) · fK〉 . (A.3)

The coset representative V ∈ G/K transforms by k−1 ∈ K from the right and γ ∈ G(Z)
from the left,

V 7−→ γVk−1. (A.4)

On Ψ the right action by k−1 becomes a left action on fK , which is invariant by definition,
and the left action of γ becomes a right action on fZ, which is also invariant. Hence, Ψ(V)
is by construction a function on the double quotient G(Z)\G/K as desired.

Although very appealing, in practice this method is complicated by the fact that the
distribution fZ is in general difficult to obtain. There is however a powerful mathemat-
ical technique, developed in [50–52], to compute fZ using p-adic number theory. In this
approach, the distribution fZ is reinterpreted in terms of a p-adic spherical vector fp that
can be straightforwardly constructed from its real counterpart fK in a way that will be ex-
plained shortly. The automorphic form Ψ can then be rewritten in the following way [50–52]

Ψ(V) =
∑
~x∈Qn

[ ∏
p<∞

fp(~x)
]
ρ(V) · fK(~x), (A.5)

where ~x is a vector of rational numbers in Qn, and the product is over all prime numbers
p. We shall now see that the Eisenstein series Es(φ, λ, γ), constructed in Section 3.1, has a
natural interpretation in terms of Eq. (A.5).

A.2 Real and p-Adic Spherical Vector

To apply this method to obtain an Eisenstein series for the Picard modular group we
shall begin by explicitly constructing a spherical vector fK , invariant under SU(2)×U(1),
which belongs to the principal continuous series of SU(2, 1)-representations. This means
that fK belongs to the Hilbert space H = L2(P\SU(2, 1)) of real-valued, square-integrable
functions on the coset space P\SU(2, 1), where P is the parabolic subgroup of SU(2, 1)
corresponding to the Lie algebra

p = g−2 ⊕ g−1 ⊕ g0 ⊂ su(2, 1), (A.6)

associated with the 5-grading of su(2, 1) defined in (2.8). The parabolic group P thus
corresponds to the subgroup of lower-triangular matrices,

P =


 t1
∗ t2
∗ ∗ t3

 ∈ SU(2, 1) : t1t2t3 = 1

 . (A.7)

The coset space P\SU(2, 1) can be identified with the Heisenberg group N , which is
parameterized as follows

n = exX1+x̃X̃1+yX2 =

 1 iC̄2 C1

1 C2

1

 ≡
 ~r1

~r2

~r3

 ∈ N, (A.8)
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where
C1 := 2y +

i

2
|C2|2 , C2 := x+ x̃+ i(x̃− x) (A.9)

and the last equality in (A.8) defines the row vectors of the Heisenberg group element. It
is important to note that the two complex variables are not independent, but obey the
relation

|C2|2 − 2=(C1) = 0 . (A.10)

This relation is of course obvious in the present context, but we will see that this is exactly
what gives rise to the quadratic constraint in the lattice construction of Section 3.1.

Any function f ∈ L2(P\SU(2, 1)) obeys

ρ(g) · f(n) = f(ng) = f(pn′) = χ(p)f(n′), p ∈ P, n′ ∈ P\SU(2, 1), (A.11)

where χ(p) is an infinitesimal character. For ρ in the principal continuous series we may
choose the character:

χs(p) := t−2s
1 , p =

 t1
∗ t2
∗ ∗ t3

 ∈ P, (A.12)

where we added a subscript on the character to indicate that the principal series de-
pends on a single real parameter s. We are therefore interested in functions f(x, x̃, y) ∈
L2(P\SU(2, 1)) of three real variables which transform by the overall character t−2s

1 .
As was apparent from Eq. (A.11), a general group element g ∈ SU(2, 1) acts on

n ∈ P\SU(2, 1) from the right, and since this will destroy the upper triangular structure,
a compensating transformation of p ∈ P from the left is needed to restore the upper
triangular form of n. This left-action of P on the second and third rows, ~r2 and ~r3, of
n is quite complicated, while the action on the first row ~r1 is very simple: p ∈ P simply
modifies ~r1 by an overall factor of t1. Moreover, the action of k ∈ SU(2) × U(1) leaves
invariant the (complex) norms of the rows ~ri. We may therefore construct a spherical
vector fK ∈ L2(P\SU(2, 1)) as the norm of the first row ~r1 of n, raised to the appropriate
power of s [53]17:

fK(x, x̃, y) := |~r1|−2s =
(
1 + |C1|2 + |C2|2

)−s =
(

1 + 2(x2 + x̃2) + 4y2 + (x2 + x̃2)2
)−s

.

This object is indeed invariant under SU(2) × U(1), since the right action of k on n is a
“rotation” that preserves the norm, while the compensating left action of p merely modifies
fK by an overall factor t2s1 , which in turn is canceled against the character χs(p) = t−2s

1

which is present since fK is in the principal series. We have thus found our desired spherical
vector.

The next step is to compute the action of ρ(V) on fK . Following the prescription
above, this can be done by first computing n · V = p0 · n′, with

p0 =

 e−φ

1
eφ

 ∈ P, n′ =

 1 ieφ(λ̄+ C̄2) e2φ(γ + iC̄2λ+ C1)
1 eφ(λ+ C2)

1

 ∈ P\SU(2, 1).

(A.13)
17See also [73] for a similar construction in the context of SL(3, R).
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Applying this to the spherical vector fK(x, x̃, y) = fK(n) yields

ρ(V) · fK(n) = fK(nV) = fK(p0n
′) = χs(p0)fK(n′) = e2sφ|~r ′1 |−2s, (A.14)

which may be written explicitly in the form

ρ(V) · fK(C1, C2) = e−2sφ
(
|C̄1 − iC2λ̄+ γ̄|2 + e−2φ|C2 + λ|2 + e−4φ

)−s
. (A.15)

The p-adic spherical vector fp(C1, C2) can now be found by the following method [50–52]:
replace the complex norm | · | in the real spherical vector fK by the p-adic counterpart
| · |Q[i]

p . Actually, this differs slighthly from the analysis in [50–52] (which dealt with the
real Euclidean norm ||·||) in the sense that we must here consider the p-adic norm associated
with the quadratic extension Q[i] of the rational numbers Q. In this case the complex p-adic
norm is defined as follows [75]:

|z|Q[i]
p :=

√∣∣zz̄∣∣
p
, z ∈ Q[i], (A.16)

where the right hand side is evaluated using the standard p-adic norm | · |p since zz̄ ∈ Q.
For more information on p-adic numbers we refer the reader to [75]. The p-adic spherical
vector is then given by

fp(C1, C2) :=
[∣∣v1

∣∣Q[i]

p

]−2s
= max

(
1,
√∣∣C1C̄1

∣∣
p
,
√∣∣C2C̄2

∣∣
p

)−2s
. (A.17)

A.3 Product over Primes

The automorphic form Ψ(V) in this representation now reads

Ψ(V) =
∑

(x,x̃,y)∈Q3

[ ∏
p<∞

max
(

1,
√∣∣C1C̄1

∣∣
p
,
√∣∣C2C̄2

∣∣
p

)−2s
]
ρ(V) · fK(x, x̃, y). (A.18)

We can also write the summation over the complex rational variables (C1, C2) ∈ Q[i]2

instead of the rational variables (x, x̃, y) ∈ Q3, if we incorporate the constraint from Eq.
(A.10) as follows

Ψ(V) =
∑

(C1,C2)∈Q[i]2

δ
(
|C2|2 −=(C1)

)[ ∏
p<∞

fp(C1, C2)
]
ρ(V) · fK(C1, C2). (A.19)

Next we must evaluate the infinite product over prime numbers. To this end we split the
rational variables C1 and C2 in the following way:18

C1 =
ω1

ω3
, C2 =

iω̄2

ω̄3
, (A.20)

with ωj ∈ Z[i], for j = 1, 2, 3 and gcd(ω1, ω2) = 1. We can now evaluate the infinite product
over primes with the simple result∏

p<∞
max

(
1,
√∣∣∣ω1ω̄1

ω3ω̄3

∣∣∣
p
,

√∣∣∣ω2ω̄2

ω3ω̄3

∣∣∣
p

)−2s
= |ω3|−2s. (A.21)

18We note that the greatest common divisor in Q[i] is defined up to Gaussian units which are a subgroup

of order 4 in the Gaussian integers Z[i].
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We also multiply the constraint |C2|2 −=(C1) by a factor of |ω3|2 which yields

|ω3|2
(
|C2|2 −=(C1)

)
= |ω2|2 − 2=(ω1ω̄3) = ~ω† · η · ~ω = 0. (A.22)

Combining Eqs. (A.19), (A.21) and (A.22) then yields the final form of Ψ(V):

Ψ(V) =
∑
~ω∈Z[i]3

ω3 6=0, gcd(ω1,ω2)=1

δ(~ω† ·η ·~ω)e−2sφ
[
|ω̄1 +ω̄2λ̄+ω̄3γ̄|2 +e−2φ|ω̄2−iω̄3λ|2 +e−4φ|ω3|2

]−s
,

(A.23)
which we recognize as the Eisenstein series Es(φ, λ, γ) constructed in Section 3.1. More
correctly, this result is equal to Es(φ, λ, γ) modulo the term in the sum with ω3 = 0, since
this term is not allowed in Eq. (A.23) by virtue of Eq. (A.20). The same phenomenon also
happens when constructing non-holomorphic SL(2,Z)-invariant Eisenstein series using the
p-adic approach [50,52].

B. Gaussian Integers, Dirichlet series and the Abelian measure

In this appendix, we collect for the reader’s convenience some standard facts about Dirichlet
series, Gaussian integers and analyse the norm constraint (4.29) entering at various places
in the Fourier expansion in detail.

B.1 Euler products and Dirichlet series

A series a(n) for n ∈ N is called multiplicative iff a(n1n2) = a(n1)a(n2) whenever n1 and
n2 are coprime [76]. The associated Dirichlet series

L(a, s) =
∑
n>0

a(n)n−s (B.1)

constructed from a multiplicative a(n) can be recast as an Euler product over the primes
(p > 1)

L(a, s) =
∏

p prime

P (p, s) , (B.2)

where
P (p, s) =

∑
k≥0

a(pk)p−ks . (B.3)

As an example consider the multiplicative series (4.46). One finds

P (2, s) =
∑
k≥0

(21−s)k =
1

1− 21−s (B.4)

and for Pythagorean primes p = 1 mod 4

P (p, s) =
∑
k≥0

(p1−s)k +
p− 1
1− s

∂p
∑
k≥0

(p1−s)k =
1− p−s

(1− p1−s)2
. (B.5)

For primes of the form p = 3 mod 4 one has

P (p, s) =
∑
k≥0

(p2−2s)k + p−s
∑
k≥0

(p2−2s)k =
1 + p−s

(1− p1−s)(1 + p1−s)
, (B.6)

whence one recovers (4.57).
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B.2 Inert, split and ramified structure of Gaussian primes

The Gaussian integers Z[i] are a principal ideal domain [77,78]. There are four units given
by ±1 and ±i; prime factorization over Z[i] is uniquely defined up to unit migration. The
prime factors entering can be of three types. We will use the notation g for Gaussian
primes and p for standard primes:

(i) The ramified case corresponds to g = 1 + i, arising from the standard prime p = 2
by taking a square root.

(ii) Inert primes g = p = 4n+ 3 (for some n ∈ N), coming from such prime numbers over
the usual integers.

(iii) Split primes coming in complex conjugate pairs g and ḡ, arising from usual prime
numbers of the form p = 4n+ 1. These are called Pythagorean primes since they are
of the form p = a2 + b2 and then g = a + ib. By Fermat’s theorem on the sums of
squares these are exactly the primes in N admitting a factorization of this type.

The structure of Gaussian primes over the usual primes is recorded by the Dirichlet beta
function.

B.3 Analysis of norm constraint

The norm constraint (4.29) requires to find, for a fixed integer d, all Gaussian integers with
norm squared divisible by 2d. In this appendix we write this constraint as

|α|2 ≡ 0 mod 2d. (B.7)

B.3.1 Multiplicative structure

The solutions to the norm constraint possess a multiplicative structure. Let d1 and d2 be
coprime integers and let α1 and α2 be Gaussian integers such that 2di divides |αi|2. Then
clearly α1α2 satisfies the norm constraint for d1d2. Due to prime factorization of Gaussian
integers we know that this describes all solutions and it is therefore sufficient to study the
solutions to the norm constraint for powers of primes d = pk. There are three qualitatively
different cases.

(i) p = 2, whence d = 2k. The structure of the set of solutions looks different for k even
and odd. For k even one has that

α = 2k/2(n1 + n2) for n1 + n2 ∈ 2Z (B.8)

solves the constraint, whereas for k odd

α = 2(k+1)/2(n1 + n2) (B.9)

solves the constraint without restriction on the integers n1 and n2.
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(ii) p = 4n+3. Again one has to distinguish k even and k odd in solving (B.7) for d = pk.
For k even one has

α = pk/2(n1 + n2) for n1 + n2 ∈ 2Z (B.10)

solves the constraint, whereas for k odd

α = p(k+1)/2(n1 + n2) for n1 + n2 ∈ 2Z (B.11)

solves the constraint. Note that there are restrictions on the integers n1 and n2 in
both cases.

(iii) p = 4n+1. This case is the most complicated one. Any such prime can be written as
p = a2 + b2 for some integers a and b and we assume a > b without loss of generality.
To describe the set of solutions to (B.7) for d = pk we again distinguish even and odd
k. An important auxiliary definition is furnished by

ek = (a− ib)k(1 + i) ⇒ |ek|2 = 2pk , (B.12)

providing an elementary solution of the constraint. With the help of the Gaussian
integer ek one can define the following pairs of lattices for k odd and j = 0, . . . , k−1

2

Λj+1 =
{
pj(k1ek−2j + k2iek−2j) : k1, k2 ∈ Z

}
,

Λ̄j+1 =
{
pj(k1ēk−2j + k2iēk−2j) : k1, k2 ∈ Z

}
. (B.13)

The set of all solutions for k odd is then given by

(k−1)/2⋃
j=0

(Λj+1 ∪ Λ̄j+1) . (B.14)

For k even one also requires the lattice

Λk+1 =
{
pk/2(k1 + ik2) : k1, k2 ∈ Z and k1 + k2 ∈ 2Z

}
(B.15)

and then all solutions are given by

k/2−1⋃
j=0

(Λj+1 ∪ Λ̄j+1) ∪ Λk+1 . (B.16)

Pictures of the three kinds of solution sets will be given momentarily when discussing
the restriction to a fundamental domain under the action of a translation group.

B.3.2 Restriction to fundamental domain

In the abelian measure we made use of writing the solution to the constraint in terms of
solutions in a fundamental domain in (4.43). We denote by

F(d) =
{
α ∈ Z[i] : |α|2 ≡ 0 mod 2d and 0 ≤ <(α) < d, 0 ≤ =(α) < 2d

}
(B.17)
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Figure 1: Left: The set F(24) is a π/4 rotated and rescaled square lattice. Right: The set F(53)
as the intersection of four lattices with common points.

the set of solutions to (B.7) in the fundamental domain. From the analysis above we know
that for d1 and d2 coprime the following holds

F(d1d2) ∼= F(d1)×F(d2) (B.18)

where the solutions are of the form d2f1 + d1f2 for fi ∈ F(di) up to translation by the
lattice L of (4.44) defining the fundamental domain. Therefore it is sufficient to restrict to
d = pk being a power of a prime. For describing (B.17) more explicitly we have to make
recourse to the results of the preceding section and distinguish three cases.

(i) d = 2k. Here one simply restricts the integers n1 and n2 in (B.8) and (B.9). The
number of points in the fundamental domain is

]F(2k) = 2k = N(2k) (B.19)

in agreement with (4.56). The easiest way of doing the counting is by computing the
sizes of the fundamental cell of the lattices and comparing to the total area of the
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fundamental domain 2d2. A typical lattice is depicted on the left of fig. 1. For k = 1
there are two points in the fundamental domain.

(ii) d = pk for p = 4n+ 3. The counting works similar but one has to take into account
the additional constraint in (B.11) leading to

]F(pk) = pk−(k mod 2) = N(pk) . (B.20)

The form of the lattice is identical to that of the left part of fig. 1. For k = 1 there
is only a single point α = 0 in the fundamental domain.

(iii) d = pk for p = 4n + 1. The counting of points in the fundamental domain is now
more involved since the individual lattices in (B.14), or (B.16), have common points
that should not be overcounted. Each lattice has pk points but, for example, there
are p2j common points for the lattices Λj+1 and Λ̄j+1 forming the square lattice

Λj+1 ∩ Λ̄j+1 =
{
pk−j(k1 + ik2) : k1 + k2 ∈ 2Z

}
, (B.21)

implying
]
(
(Λj+1 ∪ Λ̄j+1) ∩ F(d)

)
= 2pk − p2j . (B.22)

One can also show that

]
(
(Λj+1 ∪ Λ̄j+1) ∩ (Λj+2 ∪ Λ̄j+2) ∩ F(d)

)
= 2pk−1 − p2j (B.23)

and that all common points between pairs of lattices whose indices are farther apart
are already contained in the intersection above. Putting everything together one
arrives at the following count of points in the fundamental domain for k odd

]F(pk) = 2pk−p0 +
(k−1)/2∑
j=1

(
2pk−p2j−(2pk−1−p2j−2)

)
= (k+1)pk−kpk−1 = N(pk) .

(B.24)
For k even the analysis is similar. An example of lattices with intersection points can
be found on the right of fig. 1.

B.4 Rewriting the abelian measure

We now turn to deriving (4.71) from the abelian measure (4.69). This involves mainly
demonstrating the equality (4.70). To this end we introduce an additional function on the
Gaussian integers

νs(q) = |q|2s−2β(2s− 1)

∑
d>0

d1−2s
∑

f∈F(d)

e
πi
d
<[qf(1−i)]


= |q|2s−2 β(2s− 1)

∑
d>0

d1−2saq(d) . (B.25)

The function νs(q) is related to the l.h.s. of (4.70) in an obvious way.
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B.4.1 Evaluation of the auxiliary functions aq(d) and νs(q)

The first observation is that the series aq(d) is multiplicative in d for fixed q (but not in q).
This follows from (B.18) and a simple rewriting of the exponent. Therefore it is sufficient
to determine aq(d) for d = pk. This is where the description of the sets F(pk) enters. The
series νs(q) can be shown to be multiplicative so we only require aq(d) for q = gm as a
power of a Gaussian prime and d = pk the power of standard prime.

The next observation is that

agm(pk) =
∑

f∈F(pk)

e
πi

pk
<[gmf(1−i)]

=
∑

f∈gmF(pk)

e
πi

pk
<[f(1−i)]

(B.26)

by rotating (and rescaling) the set of fundamental solutions. If g does not divide p then
the rotated set is an equivalently good fundamental set of solutions. Hence

agm(pk) = a1(pk) if g does not divide p. (B.27)

For this reason we will first evaluate a1(pk) and treat the case when g divides p afterwards.
It turns out that it suffices to count the number of times the lattice containing only

the point α = 0 in F(pk) appears in the sum over F(pk). For all other lattices the sum
over phases is zero. Hence one finds immediately

a1(2k) = 0 for k > 0 (B.28)

and for p = 4n+ 3 that

a1(pk) =

{
1 , k = 1
0 , k > 1

. (B.29)

For p = 4n + 1 one has to count more carefully due to the intersection points. For k = 1
the origin is the only common point in Λ1 and Λ̄1 and hence is overcounted once leading
to a1(p) = −1. For k > 1 this is offset by the intersection with Λ2 ∪ Λ̄2, making a1(pk)
vanish. In total one has therefore for the Pythagorean primes

a1(pk) =

{
−1 , k = 1
0 , k > 1

. (B.30)

Constructing the Dirichlet series in (B.25) via its Euler product therefore leads to, after
referring back to (4.25)∑

d>0

d1−2sa1(d) =
1

β(2s− 1)
⇒ νs(1) = 1 . (B.31)

For q = gm one can perform a scaling of the lattices involved. Starting with the case
of g = 1 + i the value p = 2 is important and one has

(1 + i)mF(2k) ∼= [F(2k−m)]2
m

(B.32)
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defining the right hand side to consist only of the origin for k ≤ m. Counting now the
number of times the origin appears leads to

a(1+i)m(2k) =

{
0 for k > m

2k = N(2k) for k ≤ m
. (B.33)

The corresponding auxiliary series (B.25) is then

νs((1 + i)m) = 2m(s−1)β(2s− 1)

(
1 +

m∑
k=1

2k(2−2s)

)∑
d>0

d1−2sa1(d)

=
1
4

2m(1−s)
∑

z|(1+i)m

|z|4s−4 (B.34)

and so is the usual divisor function multiplied by the right power to make it symmetric
under s↔ 2− s.

A similar analysis can be carried out for inert primes leading to

apm(pk) =

{
0 for k ≥ 2(m+ 1)

pk−k mod 2 = N(pk) for k < 2(m+ 1)
. (B.35)

Therefore the full result for (B.25) for inert primes is

νs(pm) = p2m(s−1)β(2s− 1)

(
1 +

2m+1∑
k=1

pk−(k mod 2)+k(1−2s)

)∑
d>0 d

1−2sa1(d)
1 + p1−2s

=
1
4
p2m(1−s)

∑
z|pm
|z|4s−4. (B.36)

For split primes one finds

agm(pk) =


0 for k > m+ 1
−pm for k = m+ 1

pk−1(p− 1) for k < m+ 1
. (B.37)

Therefore the full result for split primes is

νs(gm) =
pm(s−1)

1− p1−2s

(
1 +

m∑
k=1

(p− 1)pk−1+k(1−2s) − pm+(m+1)(1−2s)

)

=
1
4
|g|2m(1−s)

∑
z|gm
|z|4s−4 . (B.38)

In summary the function νs(q) defined in (B.25) takes the value

νs(q) =
1
4
|q|2−2s

∑
z|q

|z|4s−4 , (B.39)

for any Gaussian integer q 6= 0 and therefore is a Gaussian divisor function in disguise.
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B.4.2 The abelian instanton measure

The abelian instanton measure of (4.69) is thus given by a sum over primitive divisors of
Λ = `2 − i`1

µs(`1, `2) = 4
∑
ω′3|Λ

|Λ|2−2sνs

(
Λ
ω′3

)
, (B.40)

which, together with (B.39), leads to (4.71).
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