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Oscar Kleväng
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Abstract
In this thesis we give an introduction to automorphic forms in string theory
by examining a well-known case in ten-dimensional Type IIB superstring the-
ory. An automorphic form, constructed as a non-holomorphic Eisenstein series
ESL(2,Z)

3/2 , is known to encode all perturbative and non-perturbative quantum
corrections in the genus expansion for the R4-term included in the asymptotic
string expansion for the effective action. Explicit calculations are shown, and
group- and algebra theoretical aspects are thoroughly explained.

Furthermore, we study Type IIA superstring theory compactified on a rigid
Calabi-Yau threefold, which is the topic of the recent paper [9]. Here, our
focus is more on the explicit calculations and less on physical interpretations.
A discrete group SU(2, 1;Z[i]), called the Picard modular group, is believed to
be a preserved symmetry of the quantum theory, and an automorphic form,
constructed as a non-holomorphic Eisenstein series ESU(2,1;Z[i])

3/2 , is conjectured
to encode the quantum corrections to the metric of the hypermultiplet moduli
space, which classically is a coset space SU(2, 1)/(SU(2) × U(1)). To read off
the loop corrections arising from the string coupling gs = eφ, as well as the non-
perturbative instanton corrections, we want to rewrite the Eisenstein series as
a Fourier series. The general Fourier series is decomposed into a constant,
abelian and non-abelian part, referring to the action of the maximal nilpotent
subgroup H3(Z) ⊂ SU(2, 1;Z[i]). The main complication arises when trying to
identify the coefficients in the non-abelian part of the Fourier expansion. We
try to bring some clarity to this issue.

Keywords
Automorphic form, Eisenstein series, Fourier series, Type IIA and Type IIB
superstring theory, coset space, double coset, modular group, Picard modular
group.
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“There is a theory which states that if ever anyone discovers
exactly what the Universe is for and why it is here,

it will instantly disappear and be replaced
by something even more bizarre and inexplicable.

There is another theory which states that this has already happened.”

– Douglas Adams (The Restaurant at the End of the Universe)
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1
Introduction

1.1 Background
The cosmos is a remarkable place in every sense. At the risk of being too
poetic, we shall immediately put on our “physical glasses” and switch to
“scientific mode”. We see a world consisting of space(time) and interacting
matter. The interaction is governed by four observed physical forces: elec-
tromagnetism, the strong force, the weak force and gravity. The world seems
rather deterministic and classical until one zooms in on the microcosm where
we see a world ruled by quantum mechanics.

Guided by principles of unification and reductionism, theoretical physicists
have advanced in the quest to find a fundamental theory that would summarize
the physical world in a simple way1. This line of action has been proven to be
very fruitful in the past. For example, Newton unified the seemingly two differ-
ent phenomena of the falling apple and the moon orbiting the earth, Maxwell
unified electricity and magnetism, Einstein unified space and time and Feyn-
man amongst others unified quantum mechanics and electromagnetism. The
list can be made long. Naturally, one might think that the unification will go
on and reduce the number of loose ends down to one unified theory of physics
from which one would be able to obtain all other experimentally verified effec-
tive theories, that is, theories only valid as approximations in certain settings.
The language used is that of mathematics and the most important tool is the
identification and use of symmetries that somehow are a very fundamental
principle of nature. In mathematics, symmetries are explained by groups and
algebras.

Note that finding a unified fundamental theory, or a theory of everything,
will not make us know “everything”, although very much. We would know

1Then naturally, one asks what a simple explanation is, but this philosophical question
will not be answered here. Practically this question is often not a problem for theoretical
physicists, or is it?!

1



2 Chapter 1: Introduction

only the “rules of the game”. To know the rules of chess does not imply that
you are a chess master.

Today, we have on one hand by studying the microcosmos arrived at the
standard model, based on the Lie group SU(3)×SU(2)×U(1), describing quite
satisfactory the interaction of all observed particles neglecting gravity. On the
other hand, by studying the macrocosm we have arrived at the general theory
of relativity giving an explanation of how mass geometrically affects spacetime
and causes gravity. The standard model is a quantum mechanical theory
whereas the general relativity is not. Sadly, the two otherwise so successful
theories cannot be combined in a consistent way. Another way of saying this
is that we have not found a good way of quantizing gravity. Physicists have
instead began trying to find a more fundamental theory, incorporating both
the standard model and the general relativity.

The most promising candidate for a fundamental theory of everything to-
day is string theory. Firstly, a reason for this is that string theory is a quan-
tum mechanical theory that naturally incorporates gravity. In some sense one
could actually say that string theory predicts general relativity when assuming
Lorentz invariance! Secondly, the string theory works quite well as a perturba-
tive field theory in line with the standard model. And it generically includes
supersymmetry, the symmetry between bosons and fermions, that is of some
physicists believed to exist in nature. As this is being written, scientists at
LHC2 are making measurements that will hopefully soon give an answer to
the physical relevance of supersymmetry. Thirdly, string theory has a great
potential of being a fundamental theory drawing from the fact that the only
free dimensionful parameter in string theory is the string length ls, whereas
for instance in the standard model there are 19 adjustable parameters such as
the lepton masses and the quark masses.

The fundamental constituents in string theory are one-dimensional strings
that vibrate in different modes, much as a cello string can vibrate in different
harmonics. The different vibrations are supposed to give rise to the different
particles such as the quarks and the electron. The strings can be open and
closed. If we hypothetically had a particle accelerator with infinite energy we
would be able to probe into the inner “stringy” structure of the particles. How-
ever, the energies required are way beyond practical reach in the foreseeable
future. One has instead to seek methods giving evidence for the strings more
indirectly. Besides the strings there are higher dimensional objects in string
theory, the most prominent examples being the NS5-brane and the D-branes.

Since we have encountered both bosonic and fermionic particles in the
world, for a theory of everything we need also a string theory that incorporates
both bosonic and fermionic strings. When constructing such a theory, a so-
called superstring theory, one comes to the conclusion that it naturally includes
supersymmetry and that it must exist in ten-dimensional spacetime to be
consistent. It turns out that there are five superstring theories, namely:

2The Large Hadron Collider.
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• Type I

• Type IIA

• Type IIB

• E8 × E8 heterotic

• SO(32) heterotic.

The physicists E. Witten, C. M. Hull and P. K. Townsend, amongst others,
discovered that all five theories are related to one another via certain duality
transformations and that there is a unifying theory of the superstring theories
in eleven dimensions called M-theory [28,41].

An apparent problem is to get from the ten-dimensional superstring the-
ory to an effective four-dimensional theory, capable of explaining our observed
world. A reasonable scenario is that the six extra spatial dimensions are curled
up and very small, so that they are not directly seen unless in extreme circum-
stances. Depending on what these extra dimensions look like, one gets differ-
ent effective four-dimensional theories as candidates for the observed universe.
This process is called compactification and can be seen as a generalization of
Kaluza-Klein theory, which tries to unify gravity with electromagnetism by
making one spatial dimension compact in a five-dimensional spacetime.

Despite the successes of string theory there are many subtleties and some
problems with using the theory as a theory of everything. The most obvi-
ous problem is perhaps the difficulty of making experimental verifications.
Another problem is the anthrophic landscape, which refers to the immensely
large number of possible configurations (∼ 10500(!)) of string theories that
could be a theory explaining the observed universe [5, 17]. This derives from
the fact that one has a large freedom in choosing the space to compactify the
theory on. String theoreticians have come up with possible solutions to this
problem using multiverse ideas combined with the anthropic principle [14].
This is a hot field of ongoing research and it depends strongly on the most
recent experimental data acquired from outer space, by measuring the back-
ground radiation, down to the LHC measuring probably never before seen
particles.

Many people believe that the significance of string theory is still very high
although one may have to let go of the expectation of it to give a unique theory
of everything. Instead, one can view string theory as a framework, much as
quantum mechanics, in which other important theories can be formulated.
Also notable is the ongoing progress with the AdS/CFT correspondence, first
proposed by J. Maldacena in [32], and its recent applications to for example
quantum chromodynamics.

For a first introduction to string theory the reader is referred to [42] and
[30].
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1.2 Prerequisites
Mathematics
The reader should have taken an introductory course in Lie groups and Lie
algebras. However, many of the algebraic parts of the thesis are more carefully
explained in the appendices. The reader should also have taken courses in
Fourier analysis and complex analysis.

Physics
The reader is recommended to have basic knowledge of special and general
relativity, quantum field theory, supersymmetry and string theory.

1.3 Constants and Definitions
Mathematics
The real and imaginary part of a complex number τ are denoted as

%(τ) and &(τ). (1.1)

Summations will for simplicity be denoted as:
∑

n

=
∑

n∈Z
,

∑

n #=0
=

∑

n∈Z\{0}
,

∑

(m,n)#=(0,0)
=

∑

m

∑

n

except m = n = 0. (1.2)

The latter sum can also be denoted by a prime. This holds in general for a
sum over components of a vector "m = (a, b, . . .):

∑′

"m

=
∑

a

∑

b

. . . except a = b = . . . = 0. (1.3)

The sign function is denoted as

sgn(x) =






1 for x > 0
0 for x = 0
−1 for x < 0.

(1.4)

There will appear a number of different kinds of special functions. They will
all be properly introduced in the text; an exception is the Gamma function,
which is defined for positive integers as

Γ(n) = (n + 1)!, ∀n ∈ N. (1.5)



1.4 Automorphic Forms 5

For complex numbers with a positive real part there is the standard integral
representation

Γ(z) =
∫ ∞

0
tz−1e−tdt, ∀z ∈ C and %(z) > 0. (1.6)

As convention we will write groups in roman type, e.g.: G, N, A, K and their
corresponding Lie algebras as g, n, a, k. Group representatives are written in
italics e.g.: V , N , A. ⊕ stands for direct sum of vector spaces, and will be
used when decomposing Lie algebras into vector subsets. The group K will in
this thesis always be the maximal compact subgroup of G. For simplicity we
will adopt the following notation

[k, p] ⊆ k, (1.7)

which simply means

{∀x ∈ k, y ∈ p | [x, y] = z ∈ k}. (1.8)

Physics
Throughout the thesis we will use the natural units c = ! = 1 for elegance
and simplicity. As mentioned before, the only dimensionful parameter in string
theory is the string length ls. It is related to the slope parameter (or worldsheet
coupling) α′, and also to the string tension T0 through

α′ = l2s , T0 = 1
2πl2s

. (1.9)

Any of the three parameters is as good to use as any other, but it is common
to use α′ which we will do henceforth.

All string theories contain a scalar field φ called the dilaton, which governs
the strength of string interactions. Indeed, the string coupling constant gs

is by definition determined by the vacuum expectation value of the dilaton
gs := e〈φ〉.

1.4 Automorphic Forms
This thesis have two purposes:

• to give an introduction to the automorphic forms in string theory that is
intended to be understood by students with a master’s degree in funda-
mental physics. The introduction will be made by studying an already
well-known case in Type IIB superstring theory. We will introduce gen-
eral mathematical techniques that can be used in other cases as well,
including the one below.
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• to investigate further into a problem in the recent paper [9], where one
studies Type IIA superstring theory compactified on a rigid Calabi-Yau
threefold. More specifically, we will try to identify the coefficients in a
non-abelian Fourier expansion of a specific automorphic form.

For some generality, we state the definition of an automorphic form: given
a Lie group G one can construct the coset space

G/K, (1.10)

where K is the maximal compact subgroup of G. A function f living on the
coset G/K is an automorphic form if it:

i. transforms under a discrete group G(Z) ⊂ G as

f(γ · x) = jγ(x)f(x), γ ∈ G(Z) and x ∈ G/K (1.11)

where jγ(x) is called the factor of automorphy

ii. is an eigenfunction of all the Casimir operators of G

iii. is satisfying some conditions at infinity.

The domain of the automorphic forms is then the double coset

G(Z)\G/K, (1.12)

which is parameterized by a number of parameters (these will be related to the
scalar fields in the string theory in question). This space is called the moduli
space. The automorphic forms can be scalar-valued or vector-valued.

In this thesis we will deal with a special case of automorphic forms con-
structed as non-holomorphic3 Eisenstein series Es, which form a subset of the
so-called Maass wave forms (the other subset being cusp forms, which are
deemed non-physical for supersymmetric reasons). They are scalar-valued
and the important properties (for our purposes) of these functions are:

i. invariance under a discrete group G(Z) ⊂ G, that is

Es(γ · x) = Es(x), γ ∈ G(Z) and x ∈ G/K (1.13)

ii. the functions are eigenfunctions of the Laplace-Beltrami operator4 on
the coset G/K, that is

∆G/KEs = λEs, λ ∈ C (1.14)
3A holomorphic function is a complex-valued function that is complex-differentiable in a

neighborhood of every point in its domain; a non-holomorphic function is not.
4The Laplace-Beltrami operator on G/K is defined as ∆G/K = |g|−1/2∂i(

√
|g|gij∂j) where

gij is the metric on G/K.
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iii. the functions are well-behaved at infinity (cusp). In practice this means
that our Eisenstein series should not diverge in the low-coupling limit
gs = eφ −→ 0. The dilatonic field will be the only non-compact argument
of our functions.

I.e., the factor of automorphy is identically one, and one of the Casimir op-
erators is the Laplace-Beltrami operator on G/K, which is quadratic in the
derivatives and will have a physical importance.5 The subscript s is called
the order of the series and we will later see the significance of its value. The
double cosets (1.12) that we will treat and construct Eisenstein series on are
for the Type IIB case SL(2,Z)\SL(2,R)/SO(2), and for the Type IIA case
SU(2, 1;Z[i])\SU(2, 1)/(SU(2) × U(1)).

For an introduction to automorphic forms and Eisenstein series in string
theory see for instance [37], [34] and [8]. N. A. Obers and B. Pioline were
the first to investigate the relevance of the automorphic forms in string theory
more rigorously in [33]. There are also the books by Terras [39] and [40] that
explains the automorphic forms from a more mathematical point of view in a
quite elementary way.

1.5 Cosets and Double Cosets
The superstring theories, as almost all physical theories, rely on symmetries of
various kinds. The language used to describe these are that of continuous and
discrete Lie groups, and their corresponding Lie algebras. In this thesis it is im-
portant to fully understand the coset spaces (1.10) and the double coset spaces
(1.12), specifically for the cases mentioned above: SL(2,Z)\SL(2,R)/SO(2)
and SU(2, 1;Z[i])\SU(2, 1)/(SU(2) × U(1)). A large part of the thesis is de-
voted to this understanding. The group- and algebra theoretic details are
treated quite extensively in the appendices.

To get a feeling for the process in constructing a double coset, we now pro-
vide a cursory explanation of a way to see this in the case of SL(2,Z)\SL(2,R)/
SO(2). First of all, one can show, by constructing a Riemannian metric on
the Lie group SL(2,R), that the group is isomorphic to a three-dimensional
hyperbolic space with a compact direction. When dividing out the maximal
compact subgroup SO(2), one effectively takes away the compact dimension.
The resulting coset space is isomorphic to the upper complex half-plane H,
parameterized by the complex variable τ = τ1 + iτ2 with τ2 > 0.6

5The functions are still eigenfunctions of all possible Casimir operators.
6Actually, to be exact, the isomorphism is

H ! PSL(2,R)/SO(2), (1.15)

where the P stands for projective and PSL(2,R) = SL(2,R)/{ , − }; this is also discussed
in Section 2.1. The coset SL(2, R)/SO(2) is isomorphic to two disjoint two-dimensional
hyperbolic surfaces. We will henceforth always refer to the projective special linear group
when writing SL(2,R), which is a common convention in the literature.
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The result of dividing out the discrete subgroup SL(2,Z) is then that one
enforces periodicity conditions on this half-plane. The whole group SL(2,Z) is
generated by two elements7: a translation and an involution, which act on the
complex number as τ -−→ τ + 1 and τ -−→ −1/τ , respectively. Points in the
upper half-plane that are related to each other via the two transformations
are identified. This yields a fundamental domain, which we can pick as

D = {∀τ ∈ H | |τ | ≥ 1 and |%(τ)| ≤ 1/2}, (1.16)

that essentially represents the double coset. See figure 1.1.

%(τ)

&(τ)

1−1

1 (τ1, τ2)

D

Figure 1.1: The fundamental domain in the upper complex plane representing
SL(2,Z)\SL(2,R)/SO(2).

As a side remark, the involution transformation above is precisely the S-
duality symmetry of Type IIB superstring theory. The dilaton field (coupling
constant) is related to the parameter τ2 = e−φ, so one sees the fantastic fact
that S-duality relates a theory with large coupling constant to one with small
coupling constant and vice versa.

1.6 String Interactions
Obviously a very important thing in string theory is to know how strings
interact, how they scatter. The question one likes to answer is: if two strings
collide what are the possible final states and what is the likelihood of these
states? The physical quantity of interest is the scattering cross section. The
cross section is proportional to the absolute square of the scattering amplitude
A, which includes all the dynamics of the interaction. A is the non-trivial

7For more information see Appendix D.



1.7 The Type IIB Case 9

factor that we want to calculate for different interactions in the string theory,
whereas the rest of the cross section is given by known field theory methods.
Having an explicit expression (in our case we will have a perturbative and non-
perturbative series expansion) for the action of the theory in question makes
it possible to calculate A.

To calculate the scattering amplitude in superstring theories turns out to
be a hard task. As in ordinary quantum field theory one uses perturbative
methods, but in string theory there are also important non-perturbative con-
tributions originating from so-called instantons, which are objects localized in
spacetime.

At first sight, it seems insurmountable to calculate scattering amplitudes
more than up to a small order, but it turns out that one can use the string
dualities (S, T and U) as a tool for doing this. The dualities are realized
as discrete groups G(Z). The fact that the superstring theories are invariant
under G(Z) restricts the possible form, and also value, of the terms in the
perturbative and non-perturbative expansion. Here the automorphic forms
become important. They are by construction functions of the physical fields
in the theory, as well as invariant under G(Z). They can in some circumstances
encode the terms in the string action expansion.

1.7 The Type IIB Case
As mentioned before we will treat a case of Type IIB superstring theory, which
will serve as a good introductory example of the significance of automorphic
forms. The method and calculations follow [23] and [34]. We will study the
effective theory, that is, the theory valid as an approximation in the low-
energy limit, for small α′. The effective theory can be used to describe how
the massless states interact, e.g., the bosonic graviton interactions. The effec-
tive quantum theory action consists of a classical part plus additional terms
originating from quantum corrections. Moreover, there are non-perturbative
corrections due to the presence of instantons. For Type IIB superstring theory
it occurs that the classical part of the effective action is Type IIB supergravity.
This is one of the very attractive features of superstring theory.

In the effective theory for small α′ one can write an asymptotic series
expansion of a closed string scattering amplitude as follows8

A =
∞∑

n=0

∞∑

g=0
(α′)n−4g2(g−1)

s A(n,g), (1.17)

where g denotes the genus of the string worldsheet and A(n,g) denotes the
amplitude of order n − 4 in α′ for the string worldsheet with genus g. The
expansion (1.17) represents an effective string action containing terms to all
orders in α′ and gs. The leading order (n, g) = (0, 0) gives the ten-dimensional

8See [25] and the references there in.
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Type IIB supergravity. If we for simplicity only consider the terms made of the
Riemann tensor Rµνρσ , we have the following ten-dimensional Einstein-Hilbert
action in the string frame9

S(0,0) = (α′)−4
∫

d10x
√

|g| e−2φR. (1.18)

gµν is the metric on the Minkowski space. Let us step a bit further in the
n power series. By supersymmetric reasons the terms S(1,0) and S(2,0) can
be shown to be zero [25]. The next non-zero contribution is the term S(3,0),
which can be explicitly calculated, coming from the tree-level four-graviton
scattering, to be

S(3,0) = (α′)−4
∫

d10x
√

|g| e−2φ(α′)3R4, (1.19)

where R4 is a certain combination of the curvature scalar R, the Ricci tensor
Rµν and the Riemann tensor Rµνρσ. As can be seen from dimensional analysis,
the term has eight derivatives on the metric gµν since α′ has the dimension of
length squared10. The particular form of R4 is not relevant for the discussion.
One can step further in the n-expansion but it quickly gets very difficult to find
explicitly the correct terms in the action, although there are several methods
for simplifying these calculations.

When going to higher order in gs, that is adding loop-corrections, one sees
that there are no corrections to the first term n = 0. However, there are
corrections for n = 3 to the R4-term in (1.19)

S(3,g) = (α′)−4
∫

d10x
√

|g| e−2φ(α′)3
∞∑

g=0
cge2(g−1)φR4, (1.20)

with unknown coefficients cg. It turns out that one can determine those coef-
ficients and as a bonus also determine non-perturbative contributions, which
are not seen in the asymptotic expansion. Namely, the quantum corrections
are encoded in an automorphic form. This relies on the fact that the Type
IIB superstring theory is invariant under the S-duality group SL(2,Z) [41].
The invariance shall hold for the effective theory as well, and it must hold
individually for each order n in the asymptotic expansion since the discrete
group transformations does not change orders of α′.

One can show that the additional non-perturbative corrections are coming
from D-brane instantons. The instanton corrections are needed to make the

9We can make a Weyl rescaling of the metric tensor gµν −→ eφ/2gµν in the string action.
This does not change the physics, i.e., scattering cross sections, and it means that we can
write the action in different equivalent ways. The case when we have a dilaton factor e−2φ

in front of the Riemann curvature scalar is referred to as the string frame, the other case
without this factor is referred to as the Einstein frame.

10There is always a factor α′−4 making the measure dimensionless. This can be seen from
the fact that there should be a factor 1/G(10)

N together with the R-term, and we have that
16πG(10)

N = (2π)7(α′)4g2
s .
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asymptotic expansion valid for large gs, and it is very crucial that they actually
pop up in the automorphic forms. The non-perturbative nature of the factors
is seen from the fact that they have a dependence of gs of the form e−1/gs ,
which lack a Taylor expansion around gs = 0, and therefore the factors are
not seen in (1.17).

Green and Gutperle in [23] made it reasonable to think that the exact
expression of the gs-terms for order n = 3 should be of the form11

S(3,<∞) = (α′)−1
∫

d10x
√

|g| f(τ1, τ2)R4, (1.21)

where f(τ1, τ2) is a function parameterized on the coset upper half plane

τ = τ1 + iτ2 ∈ H 0 SL(2,R)/SO(2), (1.22)

invariant under the discrete duality group SL(2,Z). There are two scalar
fields in the Type IIB superstring theory, the dilaton eφ and an axion χ, and
they are related to the real and complex part of τ as τ1 = χ and τ2 = e−φ.
The function f(τ1, τ2) should be an eigenfunction of the Laplace-Beltrami
operator on SL(2,R)/SO(2) due to supersymmetric reasons, and it should be
well-behaved in the low-coupling limit gs = τ−1

2 −→ 0. I.e., f(τ1, τ2) is an
automorphic form on the double coset SL(2,Z)\SL(2,R)/SO(2).

The first two coefficients, to the tree-level and one-loop term with g = 0, 1
have been calculated by explicit methods [24,26] to

c0 = 2ζ(3) and c1 = 4ζ(2), (1.23)

where ζ(z) denotes the Riemann zeta function. This implies that the function
f(τ1, τ2) must include these leading terms in gs, that is

f(τ1, τ2) = 2ζ(3)τ3/2
2 + 4ζ(2)τ−1/2

2 + . . . . (1.24)

Note that the orders of gs = eφ = τ−1
2 does not match the asymptotic expan-

sion. This is because we are in the Einstein frame. However, the factors differ
with an order g2

s = τ−2
2 , which must be unchanged after a Weyl-rescaling. We

will see that there is indeed a unique way of determining the function (1.24)
by constructing it as a non-holomorphic Eisenstein series ESL(2,Z)

s . The correct
leading terms are recovered by a specific choice of the parameter s.

1.8 The Type IIA Case
It is tempting to study the automorphic forms in other similar cases. With the
knowledge from the Type IIB case we will be able to treat the more intricate
case where we compactify ten-dimensional Type IIA superstring theory on a

11Here we have with a Weyl-rescaling transformed to the Einstein frame. For the classical
action in this frame, there is a global SL(2,R) invariance as we will show in Chapter 2.
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so-called rigid Calabi-Yau threefold. The resulting four-dimensional theory
possesses an N = 2 supersymmetry, which includes, amongst others, a uni-
versal hypermultiplet with four scalar fields. We will confine our studies to
this universal hypermultiplet. In the classical theory, the moduli space of the
scalar fields is a coset space SU(2, 1)/(SU(2) × U(1)). The question is then
how this classical symmetry group will be broken when taking into account
quantum corrections.

We follow [9] where one conjectures that the quantum corrections leave
an invariance under the discrete group SU(2, 1;Z[i]) called the Picard mod-
ular group. There are reasons then to think that, like in the Type IIB case
above, there should exist an automorphic form, in this case on the double
coset SU(2, 1;Z[i])\SU(2, 1)/(SU(2) × U(1)), that somehow sits in an asymp-
totic expansion of the string action. However, unlike the Type IIB case where
we studied corrections to the R4-term, we here investigate how the moduli
space metric in the sigma model for the scalar fields is deformed by the quan-
tum corrections. It will not be possible to directly see how this automorphic
form should sit in the effective action as in the Type IIB case. For this, more
advanced theory is needed; in [9] certain twistor techniques are used. Unfortu-
nately, this is beyond the scope of this thesis. In Chapter 6 we will construct
the automorphic form sought after, as a non-holomorphic Eisenstein series
ESU(2,1;Z[i])

s .

1.9 Outline of the Thesis
We begin in Chapter 2 to show how the symmetric coset space SL(2,R)/SO(2)
for the scalar fields in Type IIB supergravity manifests itself. We will then
shortly discuss how symmetric coset spaces arise when one compactifies Type
IIA supergravity. In particular the space SU(2, 1), when compactifying on a
certain rigid three-dimensional complex Calabi-Yau manifold.

To get some more understanding from the group-theoretical point of view,
we will in Chapter 3 describe how one can construct an action on a coset. We
will then produce the nonlinear sigma model actions appearing in the Type
IIB and Type IIA cases by choosing explicitly the cosets SL(2,R)/SO(2) and
SU(2, 1)/(SU(2) × U(1)). However, the method is general and can be used
with any coset space.

In Chapter 4 we will show how the quantum corrections and instanton
corrections to a classical part of a string theory are connected with the ap-
pearance of invariance of the theory under discrete symmetry groups. We will
give the background on how to construct the automorphic forms as Eisenstein
series that encode the quantum corrections with help of the double coset asso-
ciated with the theory in question. To read off the physics we need to find an
equivalent expression for the Eisenstein series in the form of a Fourier series.
The Fourier series is found using a nilpotent subgroup described in Section
4.1.
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In Chapters 5 and 6 we will explicitly derive the general Fourier series and
the Eisenstein series for the two cases Type IIB and Type IIA and extract the
precious Fourier coefficients needed for the effective string action expansions.
However, in the Type IIA case we have not found a complete solution for this
yet, the complication being when identifying the Fourier coefficients in the
non-abelian term. Section 6.4 is devoted to this problem.

In Section 6.5 we elaborate on the possibility of writing the series of prod-
ucts of Hermite polynomials and Whittaker functions, appearing in the non-
abelian term in the general Fourier series (6.79). The motive is to make it
easier to connect to the non-abelian part of the Eisenstein series (6.118).

In Appendix A we review some important Lie algebra theory that is used
throughout the thesis. In Appendices B and C the important Lie groups
SL(2,R) and SU(2, 1), as well as their corresponding Lie algebras are treated
carefully. In particular the Iwasawa decompositions are given and their maxi-
mal compact subgroups are derived. In Appendices D and E we give a detailed
review of the discrete groups SL(2,Z) and SU(2, 1;Z[i]). In Appendix F we
derive the important Laplace-Beltrami operators. In Appendix G we derive
a Poisson resummation formula that will be used when rewriting the Eisen-
stein series to get to the Fourier series expansion. Finally, in Appendix H we
examine the Whittaker functions that are solutions to a differential equation
showing up in the Type IIA case when demanding the general Fourier series
to be an eigenfunction of the Laplace-Beltrami operator on the coset space.



2
Coset Symmetries of Actions

2.1 Type IIB Supergravity
We begin by studying symmetry properties of the scalar fields in the bosonic
sector of Type IIB supergravity, which is a ten-dimensional theory that de-
scribes the low-energy limit of Type IIB superstring theory. The supermul-
tiplet in Type IIB supergravity includes a graviton (gµν), two scalar fields
(φ,χ), two antisymmetric tensors (B2,C2), one “self-dual” four-form (C4), one
complex Weyl gravitino (ψµ) and one complex Weyl dilatino (λ). Remember
that in Section 1.7 we wrote down only the part consisting of the curvature
scalar. Now, we will instead restrict ourselves to the two scalar fields and we
have the following action in the Einstein frame:

S(φ,χ) ∝ (α′)−4
∫

d10x
√

|g|
[
−1

2(∂µφ∂
µφ + e2φ∂µχ∂

µχ)
]

. (2.1)

There is a SL(2,R)-invariance of the action that can be seen by first combining
the scalar fields into a complex field

τ = τ1 + iτ2 = χ + ie−φ. (2.2)

Using this substitution in (2.1) yields

∂µτ = ∂µχ − ie−φ∂µφ

τ2
2 = e−2φ =⇒

=⇒ S(φ,χ) ∝
∫

d10x
√

|g|
(

−1
2
∂µτ∂µτ̄

τ2
2

)
, (2.3)

omitting the slope parameter factor. In this parameterization the SL(2,R)-
invariance is now realized as a Möbius transformation with parameters (a, b,
c, d ∈ R) on τ

τ -−→ aτ + b

cτ + d
. (2.4)

14
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It is a fractional linear transformation, but it transforms the scalar fields non-
linearly. In the next chapter this symmetry is made linear by introducing a
gauge field.

The Möbius transformations are in a one-to-two correspondence to the
group elements

SL(2,R) 3 g =
(

a b
c d

)

, ad − bc = 1, a, b, c, d ∈ R, (2.5)

which can be seen by performing two group actions and comparing with two
transformations. It is one-to-two since the group elements g and (− ) · g cor-
respond to the same Möbius transformation. So actually, we should rather
consider the group PSL(2,R) = SL(2,R)/{± } that is in a one-to-one cor-
respondence with the Möbius transformations. As mentioned in a footnote
above, we will be a bit sloppy and just write SL(2,R) instead of PSL(2,R)
everywhere. We verify that the action term indeed is invariant under the
transformation

τ -−→ aτ + b

cτ + d
=⇒

∂µτ -−→ a∂µτ

cτ + d
− c∂µτ(aτ + b)

(cτ + d)2 = ∂µτ(
=1︷ ︸︸ ︷

ad − bc)
(cτ + d)2 = ∂µτ

(cτ + d)2

&(τ) = 1
2i(τ − τ̄) -−→ 1

2i

(
aτ + b

cτ + d
− aτ̄ + b

cτ̄ + d

)
= &(τ)

|cτ + d|2

=⇒ ∂µτ∂µτ̄

&(τ)2 -−→
∂µτ∂µτ̄ 1

(cτ+d)2(cτ̄+d)2

&(τ)2 1
|cτ+d|4

= ∂µτ∂µτ̄

&(τ)2 . (2.6)

To understand the symmetry more thoroughly we can use the fact that
the action (2.3) is an example of a nonlinear sigma model. In general, the
dynamical part of the classical action for scalar fields is a nonlinear sigma
model.

In a nonlinear sigma model we consider mappings ξ from a Riemannian
space X to another Riemannian space M , called the target space. Let
us call the metric tensor on these spaces gµν and γab, respectively, and
call the coordinates on the spaces xµ (µ = 1, ..., p = dim X) and ξa

(a = 1, ..., q = dim M). The general nonlinear sigma model action then
reads

S = −1
2

∫

X
dpx

√
|g|gµν(x)∂µξ

a(x)∂νξ
b(x)γab(ξ(x)). (2.7)

When varied we get equations of motion that give ξα as functions of xµ.

Let us write our action (2.3) on the nonlinear sigma model form. The space
X corresponds to the ten-dimensional Minkowski space. The target space
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coordinates are nothing but the real and complex parts of the complex field
(ξ1, ξ2) = (τ1, τ2) = (χ, e−φ). We have

S(φ,χ) = −1
2

∫
d10x

√
|g|

[
∂µτ∂µτ̄

τ2
2

]
= −1

2

∫
d10x

√
|g|gµν

[
∂µτ1∂ντ1 + ∂µτ2∂ντ2

τ2
2

]
=

= −1
2

∫
d10x

√
|g|gµν∂µξ

a∂νξ
bγab, (2.8)

where the metric on the target space is identified as

γab = 1
τ2

2

(
1 0
0 1

)

. (2.9)

This we recognize as the Poincaré metric on the upper half complex plane [13]

H = {∀τ = τ1 + iτ2 ∈ C | &(τ) > 0}. (2.10)

Indeed our τ lies in the upper half plane since &(τ) = τ2 = e−φ > 0. This
shows that the target space M is isomorphic to H, which is a two-dimensional
hyperbolic space. Now, it is known that the metric preserving automorphisms,
i.e. isometries, of the upper half plane is precisely the Möbius transformations
(2.4). This is the reason for the invariance (2.6). The isometry group to H is
SL(2,R) as can be seen from the correspondence between group elements and
Möbius transformations (2.5).

A crucial fact that is essential for this thesis, is that the target space
M 0 H equipped with the metric (2.9) is also isomorphic to the coset space
SL(2,R)/SO(2). To see this we begin with reminding ourselves of the fact that
a group element g ∈ SL(2,R) acted on H through the Möbius transformation.
Furthermore, we have that

∀τ,υ ∈ H ∃ g =
(

a b
c d

)

∈ SL(2,R) | υ = aτ + b

cτ + d
. (2.11)

So, by the group action we can reach all points in the space from any other
point. One then says that the group SL(2,R) acts transitively on H. As was
said before, the group SL(2,R) is also the isometry group of H. However, there
is also an isotropy subgroup SO(2) ⊂ SL(2,R), i.e., a subgroup that leaves a
point in the space fixed. Namely, τ = i is a fixed point with respect to the
action of

SO(2) 3 k : τ -−→ τ cos θ + sin θ

−τ sin θ + cos θ , θ ∈ R (2.12)

Since SL(2,R) acts transitively we can reach τ = i with a group action from
any other point in H, i.e., no point is unique. This means that to get a
one-to-one mapping between group elements and points in the space (needed
for an isomorphism), we should identify all elements in SL(2,R) differing
by the action of an element k ∈ SO(2), that is, construct the coset space
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SL(2,R)/SO(2). In general a right coset G/K is defined as the set of equiva-
lence classes [g] = {gk | ∀k ∈ K}. We could just as well work with left cosets
K\G, this is purely a matter of convention. The coset space G/K has the
dimension dim G − dim K; in this case we have dim G/K = 3 − 1 = 2, which
is indeed the dimension of H.

A simpler example of the case above is the isomorphism

S2 0 SO(3)/SO(2).

S2 means here the two-dimensional unit sphere embedded in R3. Choosing
Euclidean coordinates (x, y, z), the manifold is given by the constraint

x2 + y2 + z2 = 1.

The rotation group SO(3) acts transitively since by a three-dimensional rota-
tion we can reach all points on the sphere from a given point. SO(3) is also
the isometry group of S2. The isotropy group is SO(2) as can be seen from the
fact that the point (1, 0, 0) is unchanged when performing rotations around
the x-axis. This shows the isomorphism.

Importantly, for the coset SL(2,R)/SO(2) we are interested in, SO(2) is
the maximal compact subgroup of SL(2,R). This holds in general for coset
spaces that arise from toriodal compactification of eleven-dimensional super-
gravity as we will mention in the next section. The fact that we want to
divide away the maximal compact subgroup will make it possible for us in the
next chapter to construct the action corresponding to the coset by using the
Iwasawa decomposition. We will choose a parameterization, with help of the
so-called Borel gauge, of the scalar fields in the theory that will turn out to
be the same parameterization as the first one stated in this section (2.1), i.e.,
using (φ,χ). Writing the nonlinear sigma model with the fields (φ,χ), we get
the following moduli space metric

γab =
(

1 0
0 e2φ

)

. (2.13)

We will acquire this metric in the next chapter by starting with the coset
space SL(2,R)/SO(2). A nonlinear sigma model where the target space is a
manifold isomorphic to a coset G/K equipped with a G-invariant Riemannian
metric, is also called a quotient space nonlinear sigma model.

For more on coset spaces, and their connection to supergravities, the reader
is referred to [18].

2.2 Compactified Type IIA Supergravity
Type IIA supergravity is the low-energy limit theory of Type IIA superstring
theory. The coset symmetries of the supergravity theory is therefore of high
importance also for the superstring theory. When trying to connect to the
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real world, one needs to deal somehow with the six extra spatial dimensions
of the superstring theories. The standard way is to follow T. Kaluza and O.
Klein’s idea and compactify some of the spatial dimensions. To get to four
dimensions we need to compactify on a six-dimensional manifold of some kind.
The topology of the manifold will give rise to different physical properties of
the theory. Examples of possible manifolds to compactify on are the tori Tn

and Calabi-Yau n-folds. The procedure of compactification, as well as the
topological properties of the different manifolds, are beyond the scope of this
thesis. We will merely state a few facts.

Type IIA supergravity and Type IIB supergravity are both sub-theories
of eleven-dimensional supergravity, which is the low-energy limit theory of
M-theory. E.g., Type IIA supergravity is derived by compactifying the eleven-
dimensional theory on a circle S1. When dimensionally reducing eleven-
dimensional supergravity to 11 − n dimensions, by compactifying on a Tn

torus, one can show that the resulting scalar fields parameterize the symmet-
ric cosets spaces G/K, where G is a non-compact group and K is the maximal
compact subgroup of G, see Table 2.1. This was first done by E. Cremmer and
B. Julia in their famous paper [15]. So, starting with Type IIA supergravity

Dim G K
11 1 1
10, Type IIA SO(1,1;R)/Z2 1
10, Type IIB SL(2,R) SO(2)
9 SL(2,R)×O(1,1;R) SO(2)
8 SL(3,R)×SL(2,R) U(2)
7 SL(5,R) USp(4)
6 O(5,5;R) USp(4)×USp(4)
5 E6 USp(8)
4 E7 SU(8)
3 E8 Spin(16)

Table 2.1: Coset symmetries arising from toroidal compactification of eleven-
dimensional supergravity.

we could compactify on a T6 torus to get to the four-dimensional spacetime.
To compactify on a torus is the firstmost natural thing to do since the torus
has a simple topology. However, the resulting theory has a large amount of
supersymmetry, which needs to be broken in a physical reasonable theory.
Promising candidates for which one can break supersymmetry in a controlled
fashion are the Calabi-Yau threefolds CY3 (they are complex and have six real
dimensions).

The compactification of Type IIA supergravity on CY3 leads to N = 2
supergravity in four dimensions. There are some different kinds of multiplets
in this theory: a gravity multiplet, a universal hypermultiplet, a number of
vector multiplets and a number of hypermultiplets. The number of vector-
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and hyper-multiplets depend on the topological properties of the Calabi-Yau
manifold. The moduli space splits locally into a direct product

M(CY3) = MV × MH, (2.14)

where the fields in the vector multiplets parameterize a complex special Kähler
manifold MV, and the fields in the hypermultiplets parameterize a real quat-
ernionic-Kähler manifold MH [6]. We will throughout the whole thesis only
treat the bosonic degrees of freedom in the theories (actually we treat only
the scalar fields).

This thesis follows [9] where one studies the case where compactification
of Type IIA is made on a so-called rigid Calabi-Yau threefold. We study
this case to get more insight into the vast field of symmetries of superstring
theories and the connection to, and application of, automorphic forms. Our
main focus is not on connecting to the reality. In the special case of a rigid
CY3 it turns out that there is only one hypermultiplet, namely the universal
hypermultiplet, and there are four real scalar fields in this multiplet: φ, χ, χ̃
and ψ. The moduli space is again locally a direct product

MV × MUH, (2.15)

The rigid Calabi-Yau manifold is a special case in the sense that we get a
coset moduli space, which appears in general only for torus compactifications.
We will in the next chapter construct the nonlinear sigma model action on
this coset.

In Type IIA superstring theory compactified on the rigid CY3, the com-
pactified supergravity theory above serves as the tree-level in the effective
action.



3
Constructing an Action on a

Coset Space

3.1 Through Gauging

One way of calculating the action SG/K with fields parameterized on a coset
space G/K is to construct an action for a group element V (x) ∈ G, x ∈ X
(remember that X is the spacetime that our fields map from), so that it has
a gauge symmetry that corresponds to the subgroup K. I.e.

SG/K −→ SG/K for V (x) -−→ V (x)k(x), ∀k(x) ∈ K. (3.1)

The physics will not depend on the transformation under the subgroup, i.e.,
it is a gauge transformation. Therefore the physical fields will parameterize
the coset space. The action SG/K will be invariant under Gglobal × Klocal-
transformations, which are both linear transformations on V . We use the
denotations global and local if the transformation is independent of X or not.

For a more careful review of the group- and algebra theoretical tools we
will use later on, the reader is referred to Appendix A. We will work with
the Lie algebra g of G and write it in the Chevalley basis with a number of
step operators e and f as well as Cartan subalgebra generators h. This is
done explicitly in Appendix B for the case g = sl(2,R) and in Appendix C
for g = su(2, 1). It is crucial that in our two coset space cases we have that
K is the maximal compact subgroup of G. The corresponding algebra to K
is denoted by k, and this maximal compact algebra is fixed by the Cartan
involution τ on g, see Section A.4.

In the case g = sl(n,R) we have that k = so(n). Therefore the elements
k ∈ K obey kTk = and all elements T ∈ k are anti-symmetric, that is,
T = −T T. In this case, the Cartan involution is also referred to as the

20
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Chevalley involution1, which we will denote as ω, and indeed it acts on the
triple basis elements (ei, f i, hi) as: ω(·) = −(·)T, leaving the elements in so(n)
invariant. For simplicity we will first do the calculations in this section using
the Chevalley involution, then we will explain how to modify our calculations
to fit with the general case.

Beginning with an element V ∈ G, we can form the bi-invariant metric
from the Maurer-Cartan form and Killing form (see for instance [18]) as

ds2 = γabdξadξb = Tr[(V −1dV )(V −1dV )] (3.2)

where d = dxµ∂µ is the exterior derivative. The metric tensor γab is the
same as in the nonlinear sigma model (2.8) where we had L = ∂µξa∂µξbγab.
This makes it possible to associate to ds2, a lagrangian L that has the same
symmetry properties in the target space as ds2:

ds2 = −1
2γabdξadξb ←→ L = −1

2γab∂µξ
a∂µξb. (3.3)

Note that V −1dV is invariant under global G-transformations acting from the
left V -−→ gV , g ∈ G. The metric (3.2) is invariant under both left and
right global transformations (remember that the trace is cyclic); this is the
reason it is called bi-invariant. We make the theory invariant under gauge
transformations

V (x) -−→ V (x)k(x), k(x) ∈ K (3.4)
by introducing a covariant derivative (henceforth the x-dependence is sup-
pressed)

DV = dV − V A, (3.5)

with a gauge potential A transforming as

A -−→ kTAk + kTdk (3.6)

making the covariant derivative transform as it should

DV -−→ (DV )k.

Our gauged one-form V −1DV then transform as

V −1DV -−→ k−1V −1DV k for V -−→ V k,

and the gauged metric is then invariant under the local transformations. The
relationship A = −AT is unchanged by the transformation (3.6), as well as
the trace of A (note that Tr(kTdk) = 0 since kTdk ∈ k). This implies that
A is in fact an element of the maximal compact subalgebra, A ∈ k. Using

1A Chevalley involution is the Cartan involution of a split real form, in this case sl(n,R)
is the split real form of sl(n,C).
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the covariant derivative (3.5) in (3.2) (with a factor of −1 that will give the
correct factor in the end) yields

ds2 = −Tr(V −1dV V −1dV − AV −1dV − V −1dV A + A2)
= −Tr(V −1dV V −1dV − 2AV −1dV + A2). (3.7)

The metric (lagrangian) must be stationary with respect to the gauge potential
A due to Hamilton’s principle. This will make it possible to solve for A

δ(ds2) = −Tr((−2V −1dV + 2A)δA + (...)δG) = 0
=⇒ Tr((−2V −1dV + 2A)δA) = 0.

The anti-symmetry of A implies that the symmetric part of the first term
−2V −1dV will vanish when multiplied with δA. Moreover, since the variation
δA is arbitrary (except for its anti-symmetric nature), the anti-symmetric part
of the matrix inside the trace must be identically zero. We get the condition
on A:

A − 1
2(V −1dV − (V −1dV )T) = 0, (3.8)

or expressed with the Chevalley involution ω (Cartan involution in the general
case)

A = (V −1dV )ω=1. (3.9)

Recall that the maximal compact subalgebra is defined by invariance under the
Chevalley involution ω = 1, i.e., A = −AT. So, we got the correct condition
on A by using Hamilton’s principle. Plugging (3.8) into the expression (3.7)
gives

ds2 = −1
2Tr

[
(V −1dV )2 + V −1dV (V −1dV )T

]
. (3.10)

This can be written more concisely if we introduce the generalized metric2

M := V V T, (3.11)

and we find
LG/K ∼ ds2 = 1

4Tr(dM−1dM). (3.12)

By construction this metric/action is invariant under Gglobal × Klocal- trans-
formations.

Now, as was mentioned in the beginning of this chapter, the expression
for the generalized metric (3.11) and (3.12) is only valid for the special case
g = sl(n,R) and k = so(n). In general, the involution used to construct the

2The name derives from the fact that for the cases when V ∈ GL(n,R)/SO(n) there is a
direct correspondence with the metric in n dimensions written with veilbeins gij = ea

i eb
jδab,

and M = V V T. Both are elements in GL(n,R) and both are invariant under local SO(n)-
transformations of the veilbein and V respectively.
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action is not the Chevalley involution ω, which here corresponded to ordinary
matrix transpose, but a Cartan involution τ with another realization on the
matrix representation. However, we can make all our expressions valid in the
general case by changing the matrix transpose to a generalized transpose T
defined as

(·)T := −τ(·). (3.13)
The proper definition of the generalized metric is thus

M = V V T . (3.14)
The action of global and local transformations (V (x) -−→ gV (x)k(x)) on M
are

G : M -−→gMgT , g ∈ G
K : M -−→V k(x)(V k(x))T = V k(x)k(x)T V T = M, k(x) ∈ K. (3.15)

3.2 Through Projection with the Involution
To explain the gauging procedure more generally and from a mathematical
point of view, we follow [34] and make use of the Cartan involution. As a first
thought, one can wonder why we cannot just pick a coset representative V
and put in the non-gauged expression (3.2) and recover an acceptable metric.
The reason is that although we choose V ∈ G/K the one-forms V −1dV , which
lie in the algebra g, generally do not lie in the algebra of interest, namely t
(whose elements are fixed by the Cartan involution). So, what we essentially
do when we gauge the theory and solve algebraically for the gauge potential
and put it back into the expression, is that we write V −1dV as an even and
odd part under the Cartan involution τ (in the special case when g = so(n) it
is also an anti-symmetric and symmetric part as in (3.8))

V −1dV = 1
2(V −1dV + τ(V −1dV )) + (∈ k)

+ 1
2(V −1dV − τ(V −1dV )) = (∈ p)

= 1
2(V −1dV − (V −1dV )T ) +

+ 1
2(V −1dV + (V −1dV )T ), (3.16)

and throw away the even part ∈ k, which is exactly our gauge potential A.
I.e., we project on the odd part under the involution τ . The decomposition of
the algebra (3.16) is called the Cartan decomposition, see Appendix A.

One can directly verify that we get the same expression as in (3.10) by
noting that

(V −1dV )2 + V −1dV (V −1dV )T = (V −1dV )((V −1dV ) + (V −1dV )T) =
= (V −1dV + (V −1dV )T)(V −1dV + (V −1dV )T),
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since the anti-symmetric part ∈ k of V −1dV cancels when multiplied with the
symmetric part ∈ p.

Writing the odd part as

P = 1
2(V −1dV − τ(V −1dV )), (3.17)

we get a remarkably easy expression for the lagrangian (ds2)

LG/K ∼ Tr(P · P ). (3.18)

3.3 An Action on SL(2,R)/SO(2)
We now use the method above to construct an action on the coset space
SL(2,R)/SO(2), that indeed will turn out to be the same as (2.1). Since we
are interested in the gauge invariant degrees of freedom we must somehow fix
the gauge. A way of doing this is to use the Iwasawa decomposition G = NAK
where N is a nilpotent subgroup, A is an abelian subgroup and K is the
maximal compact subgroup. To fix the gauge we can put K = Id and hence
consider V = NA. Due to the Iwasawa decomposition, for matrix groups,
the coset representative V can be chosen to be an upper triangular matrix.
This choice of parameterization is called the Borel gauge. A group action on
V will in general destroy the upper triangular form (the gauge choice), so we
need a compensating K-transformation to restore the form. Remember that
in the coset G/K all elements differing by K-transformations are identified. A
general transformation of V ∈ G/K thus reads

V (x) -−→ gV (x)k(g, V (x)), g ∈ G, k(g, V (x)) ∈ K. (3.19)

This is a nonlinear realization of the group action since the compensating
transformation k(g, V (x)) depends nonlinearly on V (x).

For the particular case G = SL(2,R) and K = SO(2) we have (see (B.12)):

V = NA =
(

e− φ
2 χeφ

2

0 eφ
2

)

=⇒ M = V V T =
(

e−φ + χ2eφ χeφ

χeφ eφ

)

=⇒ ds2 = 1
4Tr(dM−1dM) =

= 1
4Tr

[ (
eφdφ −eφdχ − χeφdφ

−eφdχ − χeφdφ (χ2eφ − e−φ)dφ + 2χeφdχ

)

(
(χ2eφ − e−φ)dφ + 2χeφdχ eφdχ + χeφdφ

eφdχ + χeφdφ eφdφ

) ]

=

= −1
2(dφ2 + e2φdχ2). (3.20)
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Thus we recover the same lagrangian as we had for the scalar fields in Type
IIB supergravity (2.8) when interpreting the lagrangian, with (3.3), as

LSL(2,R)/SO(2) = −1
2(∂µφ∂

µφ + e2φ∂µχ∂
µχ). (3.21)

3.4 An Action on SU(2, 1)/(SU(2) × U(1))
When compactifying Type IIA supergravity on a rigid Calabi-Yau manifold it
turns out, as was mentioned in Section 2.2, that the resulting symmetry group
of the scalar fields is the coset space SU(2, 1)/(SU(2) × U(1)). Therefore we
want to make a similar explicit calculation of this action as in Section 3.3
above, to use later on when constructing the automorphic forms. For a review
of SU(2, 1) and its maximal compact subgroup, see Appendix C. SU(2, 1) is
eight-dimensional and SU(2)×U(1) is four-dimensional. Hence the coset space
SU(2, 1)/(SU(2) × U(1)) is four-dimensional and we get four scalar fields in
the theory: φ, χ, χ̃ and ψ. φ is the dilaton and the other fields are referred to
as axions. A convenient representation of the Lie algebra su(2, 1) is given in
(C.32) and (C.33). It consists of two Cartan generators H1 (compact) and H2
(non-compact), three positive step-operators X(1), X̃(1) and X(2), and three
negative step-operators Y(−1), Ỹ(−1) and Y(−2).

First we need a coset representative V . It is calculated as before using the
Iwasawa decomposition. This is explicitly done in Section C.5, and the result
is

V = NA = eχX(1)+χ̃X̃(1)+2ψX(2) e−φH1 =

=




e−φ −χ + χ̃ + i(χ + χ̃) eφ(i(χ2 + χ̃2) + 2ψ)
0 1 eφ(χ + χ̃ + i(−χ + χ̃))
0 0 eφ



 . (3.22)

Now, we use the Cartan involution to project on the coset space. It is acting
on the generators as

τ(X) = −X†, (3.23)

see (C.22). So, the odd part under the involution (belonging to the coset
algebra) is

P = 1
2(V −1dV − τ(V −1dV )) = 1

2(V −1dV + (V −1dV )†). (3.24)

Our generalized metric reads

M = V V † =
(

e−2φ+2(χ2+χ̃2)+e2φ((χ2+χ̃2)2+4ψ2) (1+i)(iχ+χ̃)(1+e2φ(χ2+χ̃2−2iψ)) ie2φ(χ2+χ̃2−2iψ)
(−1−i)(χ+iχ̃)(1+e2φ(χ2+χ̃2+2iψ)) 1+2e2φ(χ2+χ̃2) (1+i)e2φ(−iχ+χ̃)

−ie2φ(χ2+χ̃2+2iψ) (1+i)e2φ(χ−iχ̃) e2φ

)
.

(3.25)
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We can present it somewhat cleaner by defining two new complex variables

ξ := χ + χ̃ + i(χ̃ − χ), ζ := 2ψ + i
2 |ξ|2, (3.26)

this yields

M =




e−2φ + |ξ|2 + e2φ|ζ|2 iξ̄ + e2φξ̄ζ e2φζ

−iξ + e2φξζ̄ 1 + e2φ|ξ|2 e2φξ
e2φζ̄ e2φξ̄ e2φ



 . (3.27)

The bi-invariant metric is preferably not calculated by hand. The result is (we
choose a factor of −1

8 giving the correct factor in the end):

ds2 = −1
8(dM−1dM) = . . . =

= dφ2 + e2φ(dχ2 + dχ̃2) + e4φ(χdχ̃ − χ̃dχ + dψ)2, (3.28)

from which we infer the lagrangian

LSU(2,1)/(SU(2)×U(1)) =
= ∂µφ∂

µφ + e2φ(∂µχ∂
µχ + ∂µχ̃∂

µχ̃) + e4φ(χ∂µχ̃ − χ̃∂µχ + ∂µψ)2. (3.29)



4
Quantum Corrections,

Instantons and Eisenstein Series

When adding quantum corrections to the classical supergravity theories to
reach an effective superstring theory, the global symmetry G(R) of the scalar
fields in classical action is broken due to the appearance of D-branes (instan-
tons) [28]. A discrete subgroup symmetry G(Z) ⊂ G(R) is conjectured to
remain unbroken, and there is a possibility that the quantum corrections and
the instanton effects are all encoded into automorphic forms. These forms
can be constructed so that they fulfill all demands, namely by constructing
them as Eisenstein series. The Eisenstein series are parameterized by a coset
representative V ∈ G/K, which we can choose in the Borel gauge like in the
preceding chapter, where G is a Lie group and K is its maximal compact
subgroup. The series are manifestly invariant under the discrete subgroup
G(Z). I.e., they effectively live on the double coset space G(Z)\G/K. More-
over, they are eigenfunctions to the Laplace-Beltrami operator on the coset
space with a certain eigenvalue. This is required because of supersymmetric
reasons. E.g., performing supersymmetry transformations on the R4-term in
Type IIB superstring theory takes one to another term in the lagrangian, but
performing a transformation again gives partly back the first R4 but with a
Laplace-Beltrami operator acting on the coefficient (i.e. the automorphic func-
tion constructed as an Eisenstein series). This enforces the laplacian condition
with a specific eigenvalue. Furthermore, the Eisenstein series are well-behaved
in the weak coupling limit gs −→ 0, which is physically demanded, as we will
see proof of.

For the Type IIA case treated in Chapter 6, the story is a bit different.
Unlike the Type IIB superstring theory, which has a double coset moduli
space G(Z)\G/K, the Type IIA compactified on a rigid CY3 has a universal
hypermultiplet moduli space, which classically is a coset space but will deform
to some other kind of exact moduli space due to quantum corrections. This

27
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deformation should somehow be encoded in an automorphic form living on the
double coset SU(2, 1;Z[i])\SU(2, 1)/(SU(2) × U(1)). The laplacian condition
on this automorphic form is harder to justify, more on this in Chapter 6.

It is possible to write down the Eisenstein series explicitly with a so-called
lattice method explained in Section 4.2. However, the series are then not on
a form where we can read off the physics. This is because the fields mix in
the series in one or several infinite sums in a non-trivial way. Depending on
what kind of limit in the string theory we would like to study, we have to
expand the Eisenstein series correspondingly. For instance, in the Type IIB
case we would like to have an expression from which one can directly read
off the perturbative contributions (tree-level and loop-terms) as well as the
non-perturbative corrections. Specifically, we want to see the first two terms
in (1.24), namely

2ζ(3)τ3/2
2 + 4ζ(2)τ−1/2

2 . (4.1)
This is accomplished by writing the Eisenstein series as a Fourier series with
help of the maximal nilpotent subgroup N(Z) ⊂ G(Z), introduced later in
Section 4.1. The terms (4.1) are the zero mode of the Fourier series; they are
called constant terms and they depend only on the dilaton τ2 = e−φ, which
is unaffected by the actions of N(Z). In addition, we will in general have
abelian and non-abelian terms referring to the action of N(Z). These two
types of terms are then contributing non-perturbatively to the lagrangian, its
contributions can be interpreted as coming from instantons of various kinds.

The general form of the Fourier series is derived from the requirements that
the function must be an eigenfunction to the Laplace-Beltrami operator on the
coset space G/K, and in the same time invariant under the nilpotent subgroup
N(Z) ∈ G(Z). This gives a number of differential equations of various types.
In a dream scenario we would then be able to, by raw calculations, find the
unknown coefficients making our general Fourier series invariant under the rest
of the elements in the discrete subgroup G(Z). If that would succeed we would
have the correct function sought after. This way proves to be very difficult
much due to an involution transformation S in the two cases treated in this
thesis. Our only working method by now is to use the exact function derived
from the Eisenstein series to find the coefficients in the general Fourier series.

4.1 The Nilpotent Subgroup and the General Fourier
Series

This section is based on Chapter 10 in [34]. It is a non-trivial task to choose
the correct discrete subgroup G(Z) ⊂ G(R) that is supposed to encode the
quantum corrections and instanton corrections. The discrete group has to
satisfy a number of properties drawn from the physics. A constraint on the
discrete group that helps us to determine the structure of the general Fourier
series of the automorphic forms, is the fact that there should be a nilpotent
subgroup N(Z) ⊂ G(Z), which is also a discrete subgroup of the nilpotent
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group N(R) in the Iwasawa decomposition G=NAK of the real Lie group
G(R). This fact can be seen by studying the axion fields in the theory.

We are dealing with matrix algebras and in general we can write a nilpotent
group element as an upper triangular matrix. E.g.

N(R) 3 N =




1 α γ
0 1 β
0 0 1



 , α,β, γ ∈ R. (4.2)

This particular three-by-three matrix happens to be a general element also
in the three-dimensional Heisenberg group H3; it will turn out that both in
the Type IIB and Type IIA case our nilpotent groups will be of Heisenberg
type. The Heisenberg groups Hn are special cases of nilpotent groups. For
dim H = 2m + 1, m ∈ N, we can explicitly write a matrix representation as

H2m+1 3 h =




1 "a c

0 m
"b T

0 0 1



 (4.3)

where "a and "b are some m-dimensional vectors, c is a real scalar and m is
the m × m unit matrix. One acquires a discrete subgroup of a nilpotent group
simply by restricting the field to the integer numbers Z. Our definition of
N(Z) is then doing this procedure on the nilpotent group N(R) in the Iwasawa
decomposition of G(R). Restricting the field to Z in (4.2) yields the discrete
Heisenberg group H3(Z).

Now, to see why the knowledge of the discrete nilpotent group helps us
when constructing the general Fourier series for the automorphic forms, we
first recall that our physical fields are parameterized on cosets G/K for which
we constructed coset representatives V = NA in the Borel gauge. As an
example we will study the Heisenberg group H3 with a matrix representation
as in (4.2). The axion fields are then α, β and γ. The abelian subgroup A
is parameterized by one field; in our case this is the dilaton φ. Acting from
the left on the coset representative V with a general element in the discrete
nilpotent group yields




1 m p
0 1 n
0 0 1








1 α γ
0 1 β
0 0 1



 A =




1 α + m γ + βm + p
0 1 β + n
0 0 1



 A,

m, n, p ∈ Z, α,β, γ ∈ R. (4.4)

We see that the fields, the dilaton φ in our case, included in A are unaffected
by the action of the discrete nilpotent group. When writing down a N(Z)-
invariant function, the dependence on φ is arbitrary. There will be a constant
term in the Fourier series only dependent on φ, and this is the zero-mode of
the Fourier series. Furthermore, the action from the discrete nilpotent group
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on the axions is

α -−→ α + m

β -−→ β + n

γ -−→ γ + p + βm. (4.5)

We see that the action is non-abelian since the transformation on γ includes β
as well. For example, performing first the transformation (m, n, p) = (1, 1, 1)
and then (m, n, p) = (1, 1, 0) is not the same as doing it the other way around.
To simplify our calculations later on, it is convenient to decompose the group
N(Z) into an abelian and a non-abelian part. Correspondingly we decompose
the Fourier expansion into an abelian and a non-abelian part. In the example
above, this amounts to:

f(φ,α,β, γ) = f (C)(φ) + f (A)(φ,α,β) + f (NA)(φ,α,β, γ). (4.6)

This method will be used in the Type IIA case in Chapter 6 to help us divide
our problem into smaller pieces and make it easier to identify the coefficients
from the exact Eisenstein series later on. This type of decomposition of Fourier
series is treated for the case SU(2,1) in [29]. D. Persson and P. Pioline made the
first detailed treatment of a non-abelian Fourier series decomposition appear-
ing in physics, in [36], where they treated automorphic forms on the double
coset SL(3,Z)\SL(3,R)/SO(3).

Neglecting γ, we see that we have an abelian action on the fields α and β
and we can directly write down a Fourier expansion of the part f (A), which is
manifestly invariant under the discrete nilpotent subgroup, namely:

f (A)(α,β) =
∑

l1,l2

Cl1,l2e2πi(l1α+l2β). (4.7)

So, for abelian nilpotent groups N(Z) it is easy to find the structure of the
general Fourier series. See more below.

To find f (NA)(φ,α,β, γ) we need to take the last non-abelian transforma-
tion in (4.5) into account. We need a corresponding non-abelian Fourier series
invariant under this transformation which is considerably harder to find; we
have to treat case by case. For the Type IIA case see Section 6.1.

More generally, for a nilpotent group N(R) we can write an element as

n = exp




∑

α∈Φ+

χαeα



 , (4.8)

where the positive step-operators eα are enumerated by the positive roots
α ∈ Φ+, and χα denotes the different axion fields (using the physics terminol-
ogy).

If it is the case that the group N(R) is abelian, the discrete group N(Z)
will act on the axions as

χα -−→ χα + nα, nα ∈ Z. (4.9)
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The Fourier series for an invariant function under these translations is

f(χα) =
∑

lα∈ZD

Clα exp



2πi
∑

α∈Φ+

lαχα



 , (4.10)

where D = dim N(R).
If the nilpotent group on the other hand is non-abelian we decompose the

Fourier series into an abelian part and a non-abelian part. The abelian part
will depend on all the fields that transform translationary as (4.9). Call those
fields χi, i = 1, . . . , D (for some D ∈ N), and we have

χi -−→ χi + mi, mi ∈ Z. (4.11)

The non-abelian part will depend on all the fields. Call the rest of the fields
transforming in a mixed fashion (as γ in (4.5)) for ψj , j = 1, . . . , D̃. We have
then dim N(R) = D + D̃. The fields ψj will transform in general as

ψj -−→ ψj + m̃j + gj(χ1, . . . ,χD,ψ1, . . . ,ψj−1,ψj+1, . . . ,ψD̃), m̃j ∈ Z,
(4.12)

where gj is some linear combination of all the fields, except ψj, with integer
coefficients (many coefficients are identically zero). The form of gj depends
on the type of nilpotent group. In our cases, gj will not depend on the mixing
fields ψj and we can then schematically write the non-abelian part of the
Fourier expanded function as

f (NA)(χi,ψj) =
∑

"n=(n1,...,nD̃)∈ZD̃

C"n(χ1,χ2, . . . ,χD) exp



2πi
D̃∑

a=1
naψa



 . (4.13)

However, a lot of constraints on the coefficients C"n to make the expression
invariant under all discrete nilpotent transformations. Obviously, it must first
be invariant under the translations of the fields χi, but then it must also cope
with the transformations on ψj , which will yield exponential terms dependent
on some of the fields χi. In the Type IIA case there is only one field ψ, and
we make the function invariant under some of the types of transformations on
this field by a shift in the summation.

4.2 Eisenstein Series
We want to be able to write down an automorphic form1 on the moduli space
G(Z)\G(R)/K, which is a function invariant under the discrete subgroup G(Z)
and whose arguments lie in the symmetric coset space G(R)/K. There are a
number of different ways of constructing these automorphic forms; one can
use a lattice construction, Poincaré series or spherical vectors.

1see Section 1.4.
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In this thesis we will use the lattice construction method that will yield the
automorphic form as an Eisenstein series EG(Z)

s , whose properties were stated
in Section 1.4. This method was first used by N. A. Obers and B. Pioline
in [33] and is especially convenient for our purposes. For the definition of
the series we invoke the Iwasawa decomposition G=NAK and construct the
coset representative V = NA ∈ G/K in the Borel gauge, that we used when
constructing the action on the coset space; see the end of Section 3.1 and
Section 3.3. We form again the generalized metric (3.14)

M := V V T , (4.14)

where T was the generalized transpose defined in (3.13). The definition of the
Eisenstein series of order s is then

EG(Z)
s (M) :=

∑′

"m∈ΛZ

δ("m ∧ "m)
[
"mT · M · "m

]−s
. (4.15)

The summation is over a discrete lattice ΛZ that is invariant under an action
of the discrete group G(Z), i.e., elements in G(Z) acts as automorphisms of the
lattice. The delta function provides the summation with a certain quadratic
constraint

"m ∧ "m = 0, (4.16)

which we will discuss further below. The parameter s that sits in the expo-
nent is free for us to adjust and by this freedom we can get the series to be
eigenfunctions to the Laplace-Beltrami operator on the coset with different
eigenvalues. The series converges absolutely for %(s) > n/2 if we sum over an
n-dimensional lattice λZ of integers [40].

By the definition (4.15) the function EG(Z)
s (M) fulfills the demands of liv-

ing on the double coset space. First of all, it is a function on G/K since it is
a function of the coset representative V . It is manifestly invariant under K
since the generalized metric is invariant under these maximal compact sub-
group transformations; see (3.15) where we also showed that M transforms
covariantly under G

M -−→ gMgT .

The Eisenstein series is then also invariant under the discrete group because
given an element γ ∈ G(Z) we get

γ : EG(Z)
s (M) -−→

∑′

"m∈ΛZ

δ("m ∧ "m)
[
"mT · γMγT · "m

]−s
=

=
∑′

"m′∈ΛZ

δ("m′ ∧ "m′)
[
"m′T · M · "m′

]−s
= EG(Z)

s (M), (4.17)
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where we have just changed summation variable "m′ = γT "m, which runs
through all of ΛZ since γT ∈ G(Z). Note that we must also demand the
quadratic constraint to be invariant under the discrete transformation

"m ∧ "m = γT "m ∧ γT "m. (4.18)

As was explained in Section 1.4 we seek automorphic forms that are eigen-
functions to the Laplace-Beltrami operator on the coset space G/K. This is
precisely the reason why we need the quadratic constraint, which is a certain
integer-valued product of the lattice vectors. Without digging any further we
just state that for the Type IIB case, when we are dealing with the mod-
uli space SL(2,Z)\SL(2,R)/SO(2), we do not need the quadratic constraint
since the Eisenstein series are automatically eigenfunctions to the Laplace-
Beltrami operator. Whereas in the Type IIA case we have the moduli space
SU(2, 1;Z[i])\SU(2, 1)/(SU(2) × U(1)) and on this space, when summing over
gaussian integers "m ∈ Z[i]3, the Eisenstein series are not eigenfunctions unless
we impose the constraint

"m ∧ "m := "m† · η · "m. (4.19)

Here

η =




0 0 −i
0 1 0
i 0 0





is the defining metric for the group SU(2, 1), i.e., with the property

g†ηg = η, ∀g ∈ SU(2, 1), (4.20)

showing also that the quadratic constraint is invariant under the discrete group
(4.18) since in this case we have that the generalized transpose equals conju-
gate transpose, see Appendix C. For a more general treatment of the quadratic
constraint see [33].
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With the Section 1.7 in mind, we will explicitly find the automorphic form

f(τ1, τ2) = 2ζ(3)τ3/2
2 + 4ζ(2)τ−1/2

2 + . . . , (5.1)

which is supposed to sit in the (n, g) = (3, <∞) term in the expansion of the
Type IIB action (1.21):

S(3,<∞) = (α′)−1
∫

d10x
√

|g| e−2φf(τ1, τ2)R4. (5.2)

Remember that we are limiting ourselves to the scalar fields (φ,χ) in the
Type IIB superstring theory. As was shown in Chapter 2, the Type IIB
supergravity posesses a SL(2,R)/SO(2) coset symmetry of the scalar fields.
The parameterization of the coset space (upper half complex plane H) was

H 3 τ = τ1 + iτ2 = χ + ie−φ, (τ2 > 0). (5.3)

The classical coset symmetry is then broken when adding quantum cor-
rections, as the R4-term, yielding the effective string theory. The scalar
fields are though still parameterizing the coset space SL(2,R)/SO(2), and
we have f = f(τ1, τ2). There will be a surviving discrete symmetry com-
ing from the fact that the Type IIB superstring theory is invariant under
the S-duality group G(Z) = SL(2,Z), as was mentioned in the introduc-
tion. The function f(τ1, τ2) ought then to be a function on the double coset
SL(2,Z)\SL(2,R)/SO(2).

As we will see, it is possible to construct f(τ1, τ2) as an Eisenstein series to
agree with all demands; this includes the demand of the correct constant part
in (5.1) that had been calculated by other methods. For more mathematical
details about the Lie groups the reader is referred to the Appendices B and
D.

34
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5.1 General Fourier Series
In Appendix D it is made apparent that the whole modular group SL(2,Z) is
generated by combinations of two fundamental elements (transformations), a
translation T and an involution S. Since we are working with a parameteriza-
tion on the upper half plane H, we are interested in the realization of the two
transformations on the complex parameter τ . They act as following

T : τ -−→ τ + 1, S : τ -−→ −1
τ

. (5.4)

And when expressed in the real and complex component of τ

%(τ) = τ1 = χ

&(τ) = τ2 = e−φ,

they act as

T : τ2 -−→ τ2 + 1, S :





τ1 -−→ − τ1

τ2
1 +τ2

2

τ2 -−→ τ2
τ2

1 +τ2
2

. (5.5)

If the function f(τ1, τ2) is invariant under these transformations it is invariant
under the whole group SL(2,Z).

The general Fourier series of f(τ1, τ2) shall be diagonalized with respect
to the discrete maximal nilpotent group N(Z) ⊂ SL(2,Z). As is explained in
the appendix, the nilpotent group is generated solely by the T -transformation.
The action on the axion χ (τ1) is

χ -−→ χ + n, n ∈ Z. (5.6)

In this particularly easy case, with only one parameter, a manifest periodic
Fourier expansion of a general function f(φ,χ) with respect to the nilpotent
discrete subgroup can directly be written down

f(φ,χ) =
∑

n∈Z
Cn(φ)e2πinχ. (5.7)

It is convenient for the subsequent calculations to use instead the components
τ1 and τ2, and also to extract the constant term in the Fourier series:

f(τ1, τ2) = C0(τ2) +
∑

n #=0
Cn(τ2)e2πinτ1 . (5.8)

Laplacian Eigenfunction Equation
The automorphic function is an eigenfunction to the Laplace-Beltrami oper-
ator on the coset space SL(2,R)/SO(2). The Laplace-Beltrami operator is
derived in F.1 to:

∆ = τ2
2

(
∂2

∂τ2
1

+ ∂2

∂τ2
2

)

. (5.9)
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The eigenfunction equation
∆f(τ1, τ2) = λf(τ1, τ2) (5.10)

will give us more information on the structure of the function. We will see
later that the eigenvalue λ will depend on the parameter s in the Eisenstein
series as λ = s(s − 1). Beginning with the constant term we get

τ2
2
∂2

∂τ2
2

C0(τ2) = λC0(τ2), (τ2 > 0). (5.11)

This is a special case of Euler’s differential equation and it is solved by making
the ansatz

C0(τ2) = τm
2 , m ∈ C. (5.12)

Plugging the ansatz into (5.11) we get

τ2
2

∂

∂τ2
(mτm−1

2 ) =λτm
2

m(m − 1)τm
2 =λτm

2 =⇒ m(m − 1) = λ =⇒

=⇒ m =1
2 ±

√
λ + 1

4 . (5.13)

The solution for the constant term is therefore

C0(τ2) = Aτ
1
2 +

√
λ+ 1

4
2 + Bτ

1
2 −

√
λ+ 1

4
2 , (5.14)

where A and B are coefficients dependent on the discrete symmetries and are
to be determined later with help of the Eisenstein series.

Applying (5.10) on the other terms yields
[

τ2
2

(
∂2

∂τ2
1

+ ∂2

∂τ2
2

)

− λ

]
∑

n #=0
Cn(τ2)e2πinτ1 = 0, (5.15)

which gives the following differential equation for the coefficients
(

τ2
2
∂2

∂τ2
2

− 4πn2τ2
2 − λ

)

Cn(τ2) = 0. (5.16)

This is a modified Bessel differential equation in disguise1 and it is solved by
first making a suitable change

Cn(τ2) = √
τ2C̃n(τ2) =⇒

∂2

∂τ2
2

Cn(τ2) = ∂

∂τ2

(
1

2√
τ2

C̃n(τ2) + √
τ2

∂

∂τ2
C̃n(τ2)

)

=

=
(

−1
4τ

− 3
2

2 + 1
√
τ2

∂

∂τ2
+ √

τ2
∂2

∂τ2
2

)

C̃n(τ2). (5.17)

1The modified Bessel differential equation has the general form:

x2 d2y
dx2 + dy

dx
− (x2 + α2)y = 0.
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Substituting this into (5.16) gives
(

τ2 ∂2

∂τ2
2

+ τ2
∂

∂τ2
−

(
4π2n2τ2

2 + λ + 1
4

))

C̃n(τ2) = 0. (5.18)

Now, we need to get rid of the factors sitting with the τ2
2 -term. This is done

by a change of the argument

τ̃2 = 2π|n|τ2 =⇒

=⇒ ∂

∂τ2
= 2π|n| ∂

∂τ̃2
and

∂2

∂τ2
2

= 4πn2 ∂2

∂τ̃2
2

. (5.19)

Finally, we get the differential equation
[

τ̃2
2

∂2

∂τ̃2
2

+ τ̃2
∂

∂τ̃2
−

(
τ̃2

2 + λ + 1
4

)]

C̃n(τ̃2) = 0, n ∈ Z\{0}. (5.20)

This is the standard form of the modified Bessel differential equation with
the two linearly independent functions Iα(τ̃2) and Kα(τ̃2) as solutions, α2 =
λ + 1/4. However, from the physics we require that the solution must not
diverge in the weak-coupling limit, i.e., when gs = eφ −→ 0 or equivalently
τ2 = e−φ −→ ∞ and τ̃2 −→ ∞. This rules out the function Iα and we are left
with the solution

C̃n(τ̃2) = D(n)Kα(τ̃2) =⇒
Cn(τ2) = D(n)√τ2K√

λ+ 1
4
(2π|n|τ2) (5.21)

with some unknown coefficients D(n). Note that the possibility

α = −
√
λ + 1/4

is not taken into account due to the property: Kν = K−ν of the modified
Bessel function of the second kind.

Substituting (5.14) and (5.21) in the general Fourier series (5.8) yields

f(τ1, τ2) = Aτ
1
2 +

√
λ+ 1

4
2 +Bτ

1
2 −

√
λ+ 1

4
2 +√

τ2
∑

N #=0
D(N)K√

λ+ 1
4
(2π|N |τ2)e2πi|N |τ1 .

(5.22)
The capitalization of the summation variable will turn out to suit the sub-
sequent calculations. The unknown coefficients A, B and D(N) are to be
determined from the Eisenstein series. They will have a structure making the
function invariant under the involution S as well; that is, making the function
invariant under the whole group SL(2,Z).
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5.2 Eisenstein Series
The Eisenstein series is constructed with help of the defining formula (4.15):

EG(Z)
s (M) =

∑′

m∈ΛZ

[
mT · M · m

]−s
. (5.23)

For the case G(Z) = SL(2,Z) we do not need the quadratic constraint m∧m =
0 since the function is automatically an eigenfunction to the Laplace-Beltrami
operator, which we will verify below. The lattice ΛZ, left invariant by the
action of the discrete group SL(2,Z), is nothing but the two-dimensional lattice
of integers "m = (m, n) ∈ Z2. The generalized transpose (·)T is for the case
G = SL(n,R) ordinary matrix transpose, and we will henceforth denote it
as usual (·)T. The generalized metric M = V V T was already calculated in
Appendix B for the construction of the metric in Section 3.3. We pick again
the coset representative V in the Borel gauge

V =
(

e− φ
2 χeφ

2

0 eφ
2

)

=⇒

M = V V T =
(

e−φ + χ2eφ χeφ

χeφ eφ

)

. (5.24)

We get

ESL(2,Z)
s (χ,φ) =

∑′

"m∈Z2

[
"mT · M · "m

]−s
=

=
∑

(m,n)#=(0,0)
[eφ(m2 + e2φ(mχ + n)2)]−s. (5.25)

Expressing the Eisenstein series in the real and complex part of τ instead, we
get

ESL(2,Z)
s (τ1, τ2) =

∑

(m,n)#=(0,0)
[τ−1

2 (m2τ2
2 + (mτ1 + n)2)]−s =

=
∑

(m,n)#=(0,0)

τ s
2

[m2τ2
2 + (mτ1 + n)2)]s (5.26)

or

ESL(2,Z)
s (τ1, τ2) =

∑

(m,n)#=(0,0)

τ s
2

|mτ + n|2s
. (5.27)

One can explicitly verify the invariance under the transformations of the dis-
crete group T and S (5.4). Remember that an accompanying transformation of
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the lattice is needed to explicitly see the invariance. E.g., the T -transformation
τ1 -−→ τ1 + 1 is cancelled by shifting the lattice parameter n -−→ n − m.

Applying the Laplace-Beltrami operator (5.9) on the Eisenstein series yields

∆ESL(2,Z)
s (τ1, τ2) = . . . = s(s − 1)

∑

(m,n)#=(0,0)

τ s
2

[m2τ2
2 + (mτ1 + n)2)]s . (5.28)

So, it is indeed an eigenfunction with the eigenvalue

λ = s(s − 1). (5.29)

Using the eigenvalue in the general Fourier series expression (5.22) gives

f(τ1, τ2) = Aτ s
2 + Bτ1−s

2 + √
τ2

∑

N #=0
D(N)Ks−1/2(2π|N |τ2)e2πi|N |τ1 .

(5.30)

This expression is valid for s > 1/2 and it will later turn out to be consistent
with our purposes.

Now, how do we connect the two seemingly different expressions (5.30)
and (5.26)? The Eisenstein series is exact, i.e., there are no undetermined
coefficients as in the general Fourier series. Indeed, the Eisenstein series is the
correct function sitting in the asymptotic expansion of the string action, but
as was pointed out earlier there is no obvious way to read off the physics. We
can not interpret the different terms in the series as terms in a perturbative
expansion for the fields χ and φ, and in particular we do not see the first
two terms (5.1). We need to rewrite the Eisenstein series (5.26) on the form
(5.30). The unknown coefficients A, B and D(N) in (5.30) will get specific
values, precisely the values making the Fourier expansion invariant under the
whole discrete group SL(2,Z). A trick to use for rewriting the Eisenstein series
is needed, and luckily it exists; it is Poisson resummation.

5.3 Identification of the Fourier Coefficients
The following calculations are based on [34] and [33]. Without too much effort
we can identify A already by extracting the term m = 0 from the sum (5.26):

ESL(2,Z)
s (τ1, τ2) =

∑

n #=0

1
n2s

τ s
2 +

∑

m#=0

∑

n

τ s
2

[m2τ2
2 + (mτ1 + n)2)]s , (5.31)

and

A =
∑

n #=0

1
n2s

= 2
∞∑

n=1

1
n2s

= 2ζ(2s), (5.32)
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using the definition of the Riemann zeta function

ζ(s) :=
∞∑

n=1
n−s. (5.33)

Comparing the coefficient (5.32) to (5.1) we see immediately that if we have
s = 3/2 we will get the first correct term! However, we will still proceed and
extract B and D(N) keeping the parameter s unspecified.

The following steps are not trivial and comes from a sort of intelligent
guessing. But the amount of trial and error needed for this calculation is fairly
small compared to what is needed for the much more complicated Type IIA
case treated in the next chapter. We know that the end result must include
the modified Bessel function Ks−1/2. There are integral representations for
this function that can be used. Furthermore, one of the sums over m or n
must be separated and included in the coefficients so that the remaining one
corresponds to the modes of the Fourier expansion.

We begin by utilizing an integral representation (see 3.381 no.4 in [22]) for
the quotient

1
(m2τ2

2 + (mτ1 + n)2)s
= 1

Γ(s)

∫ ∞

0
xs−1e−(m2τ2

2 +(mτ1+n)2)x dx. (5.34)

This is valid for (m2τ2
2 + (mτ1 + n)2) > 0 and s > 0, which is also the case.

The aim is to use the following Poisson resummation formula
∑

n

e− π
x (mτ1+n)2 =

√
x

∑

ñ

e−πxñ2−2πiñmτ1 . (5.35)

This resummation helps us to move out τ1 from the integral with the correct
exponential form as we will see later. For a derivation of (5.35) see Appendix
G. To use (5.35) we need to make a change of the integration variable in (5.34)

x −→ π

x
=⇒ dx −→ − π

x2 dx =⇒

=⇒ 1
(m2τ2

2 + (mτ1 + n)2)s
= πs

Γ(s)

∫ ∞

0

dx

xs+1 e− π
x (m2τ2

2 +(mτ1+n)2). (5.36)

Applying (5.35) and inserting the resulting expression for the quotient into
(5.31) gives

ESL(2,Z)
s (τ1, τ2) = 2ζ(2s)τ s

2 + πsτ s
2

Γ(s)
∑

m#=0

∑

ñ

e−2πiñmτ1
∫ ∞

0

dx

xs+1/2 e−πxñ2− π
x m2τ2

2 .

(5.37)
Extracting the term ñ = 0 in the sum yields

ESL(2,Z)
s (τ1, τ2) = 2ζ(2s)τ s

2 + πsτ s
2

Γ(s)
∑

m#=0

∫ ∞

0

dx

xs+1/2 e− π
x m2τ2

2 +

+ πsτ s
2

Γ(s)
∑

m#=0

∑

ñ #=0
e−2πiñmτ1

∫ ∞

0

dx

xs+1/2 e−πxñ2− π
x m2τ2

2 . (5.38)
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The middle term can be further simplified using the integral representation
(5.34) (this time backwards) and the definition of the Riemann zeta function
(5.33). We obtain

ESL(2,Z)
s (τ1, τ2) = 2ζ(2s)τ s

2 + 2
√
π

Γ(s − 1/2)
Γ(s) ζ(2s − 1)τ1−s

2 +

+ πsτ s
2

Γ(s)
∑

m#=0

∑

ñ #=0
e−2πimñτ1

∫ ∞

0

dx

xs+1/2 e−πxñ2− π
x m2τ2

2 . (5.39)

We can now identify the second coefficient B in (5.30) sitting with the factor
τ1−s

2 :
B = 2

√
π
Γ(s − 1/2)

Γ(s) ζ(2s − 1). (5.40)

For the choice s = 3/2 we get the correct second term in (5.1)!
The remaining integral is conveniently of Bessel type (see 8.432 no. 6, [22]):
∫ ∞

0

dx

xs+1/2 e−πxñ2− π
x m2τ2

2 = 2
∣∣∣∣

ñ

m

∣∣∣∣
s−1/2

τ1/2−s
2 Ks−1/2(2π|mñ|τ2). (5.41)

The last term in (5.39) becomes

2πs

Γ(s)
√
τ2

∑

m#=0

∑

ñ #=0

∣∣∣∣
ñ

m

∣∣∣∣
s−1/2

Ks−1/2(2π|mñ|τ2)e−2πimñτ1 . (5.42)

Looking at (5.30) we see that we want to sum over a variable N = −mñ ∈
Z\{0}. It is actually possible to make this variable and summation change.
Note first that the product −mñ indeed will take all values in the set Z\{0}.
However, it will take values multiple times equal to the number of divisors to
the product. For instance

∑

p #=0

∑

q #=0
f(|pq|) = {P = pq} =

∑

P #=0

∑

q|P
f(|P |). (5.43)

Having a quotient p/q = pq/q2 as well we get

∑

p #=0

∑

q #=0

∣∣∣∣
p

q

∣∣∣∣ f(|pq|) = {P = pq} =
∑

P #=0

∑

q|P

∣∣∣∣
P

q2

∣∣∣∣ f(|P |). (5.44)

Application of this on the last term (5.42) yields (using N = −mñ):

2πs

Γ(s)
√
τ2

∑

N #=0

∑

m|N

∣∣∣∣
N

m2

∣∣∣∣
s−1/2

Ks−1/2(2π|N |τ2)e2πiNτ1 =

= 2πs

Γ(s)
√
τ2

∑

N #=0
µ1−2s(N)|N |s−1/2Ks−1/2(2π|N |τ2)e2πiNτ1 , (5.45)
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where we have used the so-called instanton measure defined as

µt(N) :=
∑

m|N
|m|t. (5.46)

We can now identify the last coefficient(s) D(N) in (5.30):

D(N) = 2πs

Γ(s) |N |s−1/2µ1−2s(N). (5.47)

Finally, collecting all terms we get:

ESL(2,Z)
s (τ1, τ2) = 2ζ(2s)τ s

2 + 2
√
π
Γ(s − 1/2)

Γ(s) ζ(2s − 1)τ1−s
2 +

+ 2πs

Γ(s)
√
τ2

∑

N #=0
µ1−2s(N)|N |s−1/2Ks−1/2(2π|N |τ2)e2πiNτ1 . (5.48)

And as we have seen when comparing the terms with the coefficients A and B
we need to put s = 3/2 yielding

ESL(2,Z)
3/2 (τ1, τ2) = 2ζ(3)τ3/2

2 + 4ζ(2)τ−1/2
2 +

+ 2π3/2

Γ(3/2)
√
τ2

∑

N #=0
µ2(N)|N |K1(2π|N |τ2)e2πiNτ1 . (5.49)

There are many indications that the Eisenstein series (5.49) is the correct
function f(τ1, τ2) sitting with the R4-factor in the Type IIB action. The first
two terms agreed with calculations by other methods, and the function has
the correct symmetry properties as well as is an eigenfunction to the Laplace-
Beltrami operator. It is fascinating that the discrete symmetry SL(2,Z) helped
us to fully determine the function. That is, we have an expression for all
loop-corrections to the order n = 3 (1/α′ see (1.17)) as well as all instanton
corrections. Cf. quantum field theory where we in general need to explicitly
calculate loop diagrams to a specific order.

The last term in (5.49) encodes the instanton corrections. The non-per-
turbative nature of the term comes from the modified Bessel function. To see it
we can use an asymptotic expression (see 11.127, [4]) valid in the low-coupling
limit, i.e., for small gs (large τ2):

K1(2π|N |τ2) ∼
√

1
4|N |τ2

e−τ2(1 + O(τ−1
2 )) =

=
√

gs

4|N | e− 1
gs (1 + O(gs)). (5.50)
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The Type IIA Case:

SU(2, 1;Z[i])\SU(2, 1)/(SU(2) ×
U(1))

The focus of this thesis is on the construction of the automorphic forms and
the identification of the coefficients in the general Fourier series. Therefore,
we will now give a purely schematic background to the physics. As was
discussed in Section 2.2 the result of compactifying ten-dimensional Type
IIA supergravity on a rigid Calabi-Yau threefold is that, amongst others,
we get a universal hypermultiplet consisting of four scalar fields: φ, χ, χ̃
and ψ. The fields parameterize the symmetric four-dimensional coset space
MUH = SU(2, 1)/(SU(2) × U(1)). We have already derived the lagrangian
(3.29) for the scalar fields via the nonlinear sigma model with target space
MUH. The action reads

S(φ,χ,χ̃,ψ) ∝
∫

d4x
√

|g|gµν(x)∂µξ
a(x)∂νξ

b(x)γab(ξ(x)) =

=
∫

d4x
√

|g|
(
∂µφ∂

µφ + e2φ(∂µχ∂
µχ + ∂µχ̃∂

µχ̃)+

+e4φ(χ∂µχ̃ − χ̃∂µχ + ∂µψ)2
)

. (6.1)

This serves as the classical part, for the scalar field hypermultiplet, of the
effective Type IIA superstring theory compactified on the rigid CY3. Unlike
in the Type IIB case in the last chapter, where we studied the quantum cor-
rections sitting with the R4-term in the effective action, we will now study
how the quantum corrections deform the metric γab of the moduli space for
the scalar fields in the effective Type IIA superstring action. I.e., there will be
corrections for the terms in (6.1), and we can no longer write down the action
with help of the method described in Chapter 3 since the moduli space will
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no longer be a coset space. The moduli space after the quantum corrections
is referred to as the exact moduli space Mexact

UH .
In some way there ought to be an automorphic form f encoding the quan-

tum corrections. This since due to dualities of the string theory the exact
moduli space should have a discrete symmetry G(Z) ⊂ SU(2, 1). By studying
the physical properties of the scalar fields in the universal hypermultiplet, as
well as topological properties of the rigid Calabi-Yau threefold, it is made rea-
sonable in [9] that the discrete subgroup should be the Picard modular group
defined as

SU(2, 1;Z[i]) := SU(2, 1) ∩ SL(3,Z[i]). (6.2)

This together with the fact that f should be a function of the fields in the uni-
versal hypermultiplet, which parameterize the coset space SU(2, 1)/(SU(2) ×
U(1)), points towards that f is an automorphic form on SU(2, 1;Z[i])\SU(2, 1)/
(SU(2) × U(1)). We will construct a tentative proposal, given by a non-
holomorphic Eisenstein series ESU(2,1;Z[i])

s , with help of the lattice sum method
in Section 6.2. Before that, we want to know the general Fourier series struc-
ture, from which we later on can read off the different orders of loop-corrections
in gs (there will only be a tree-level and a one-loop term as in the Type IIB
case) and instanton corrections coming in this case from D2- and NS5-branes;
for more about the different kinds of instantons see [34] and [8]. The Fourier
series structure is due to the fact that there is a maximal nilpotent subgroup
N(Z) = H3 (the Heisenberg group) of the Picard modular group, as well as
the constraint on f(φ,χ, χ̃,ψ) that it must be an eigenfunction to the Laplace-
Beltrami operator on SU(2, 1)/(SU(2)×U(1)). This laplacian constraint holds
since the Eisenstein series we construct fulfill the Laplace eigenfunction equa-
tion. The eigenvalue will depend on the order of the Eisenstein series, and
we will crave the specific order s = 3/2 that can be argued for by studying
the fields in the series, see [34]. However, it is not yet made clear from super-
symmetric reasons, as in the Type IIB superstring theory, that the Laplace-
Beltrami operator is the correct operator to use. Instead, a corresponding
constraint from supersymmetry is in this case that the moduli space Mexact

UH
must be quaternionic-Kähler, see [34] and [7]. It may be that one should seek
another type of automorphic form than the non-holomorphic Eisenstein se-
ries. In [9] one discusses the possibility of constructing an automorphic form
attached to the quaternionic discrete series of SU(2, 1).

The identification of the Fourier coefficients from the exact Eisenstein series
ESU(2,1;Z[i])

s prove to be difficult. As described in Section 4.1 the Fourier series
is decomposed into three parts: a constant, an abelian and a non-abelian part.
Most subtleties arise when trying to understand the non-abelian part; Section
6.4 is devoted to this problem.

We will in this thesis gloss over the apparent issue how to relate the au-
tomorphic form f with the metric on Mexact

UH . In Type IIB superstring theory
we had that the automorphic form (Eisenstein series) were the coefficient to
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the R4-term in the effective action. In the compactified Type IIA case it is
not as straightforward. In [9] one presents a way of doing this using so-called
twistor techniques1.

We will for convenience set y = e−2φ in most of the subsequent calculations.

6.1 General Fourier Series
The details of the Picard modular group SU(2, 1;Z[i]) are treated in Appendix
E. The group is generated (non-minimally) by three translations, one reflec-
tion and one involution:

T1 =




1 −1 + i i
0 1 1 − i
0 0 1



 , T̃1 =




1 1 + i i
0 1 1 + i
0 0 1



 , T2 =




1 0 1
0 1 0
0 0 1



 ,

R =




i 0 0
0 −1 0
0 0 i



 , S =




0 0 i
0 −1 0

−i 0 0



 . (6.3)

As mentioned in Chapter 4, the general Fourier series is diagonalized with re-
spect to the maximal nilpotent group N(Z) ⊂ SU(2, 1;Z[i]) which, in this case,
is isomorphic to the discrete Heisenberg group H3 generated by the Heisenberg
translations T1, T̃1 and T2. A general action of the nilpotent group transforms
the scalar fields as

T(a,b,c) : φ -−→ φ (y -−→ y)
χ -−→ χ + a

χ̃ -−→ χ̃ + b

ψ -−→ ψ + 1
2c − aχ̃ + bχ, a, b, c ∈ Z. (6.4)

A function is then invariant under all translations if it is invariant under
T(1,0,0), T(0,1,0), and T(0,0,1) separately. The nilpotent group is non-abelian as
is seen from the transformation on ψ. Therefore, our Fourier expansion will
be non-abelian and much more complicated than in the Type IIB case in the
preceding chapter.

6.1.1 Using Invariance under the Nilpotent Subgroup
As described in 4.1, it is possible to divide the general Fourier series into a
constant, abelian and non-abelian part with respect to the nilpotent group
N(Z). This will be used to simplify our calculations considerably by chopping
up the problem into smaller more manageable pieces. Using (6.4) we can
directly read off the dependence on the four fields of the respective parts

f(y,χ, χ̃,ψ) = f (C)(y) + f (A)(y,χ, χ̃) + f (NA)(y,χ, χ̃,ψ). (6.5)
1For more about twistors see for instance [1] and [2]



46 Chapter 6: The Type IIA Case: SU(2, 1;Z[i])\SU(2, 1)/(SU(2) × U(1))

For the constant term, we cannot deduce anything from the discrete symme-
tries since it solely depends on the non-compact field y = e−2φ. For the abelian
term we can directly write down the general structure of the Fourier expansion
using the requirement of invariance under the Heisenberg translations of χ and
χ̃:

f (A)(y,χ, χ̃) =
∑

(l1,l2)#=(0,0)
C(A)

l1,l2(y)e2πil1χe2πil2χ̃, (6.6)

where C(A)
l1,l2(y) is some coefficient2 whose structure will be explained in more

detail later after we have applied the laplacian constraint. Note the important
fact that the zero mode l1 = l2 = 0 is not included because it is in fact f (C)(y).

Naturally, the general structure of the non-abelian term is not as simple
to write down. The following calculation is based on [34]. We use first the
T(0,0,1)-transformation to see that we must have

f (NA)(y,χ, χ̃,ψ) =
∑

k #=0
C(NA)

k (y,χ, χ̃)e−4πikψ, (6.7)

note that for k = 0 we would recover the abelian term (6.6) again. The minus
sign in the exponent is chosen just to fit with the calculations in [34] and [9].
Now, using T(1,0,0) on (6.7) yields

∑

k #=0
C(NA)

k (y,χ + 1, χ̃)e−4πikψ+4πikχ̃, (6.8)

which implies the following constraint on the coefficient

C(NA)
k (y,χ, χ̃) = C(NA)

k (y,χ + 1, χ̃)e4πikχ̃. (6.9)

We can, with help of (6.9), easily construct a function invariant under T(1,0,0)
namely

C(NA)
k (y,χ, χ̃)e4πikχχ̃. (6.10)

Indeed we have

T(1,0,0) : C(NA)
k (y,χ, χ̃)e4πikχχ̃ -−→ C(NA)

k (y,χ + 1, χ̃)e4πikχχ̃+4πikχ̃ =
= {use (6.9)} = C(NA)

k (y,χ, χ̃)e4πikχχ̃. (6.11)

This implies that there must be a Fourier expansion in χ. I.e.

C(NA)
k (y,χ, χ̃)e4πikχχ̃ =

∑

p∈Z
C(NA)

k,p (y, χ̃)e2πipχ. (6.12)

2We will use C throughout as a kind of coefficient in the Fourier series. Since there will
be many coefficients we will use superscripts to denote if they correspond to the constant,
abelian or non-abelian part; as well as subscripts denoting the dependence on the summation
variables. The reader should also note that the arguments are important, e.g., C(A)(y, χ, χ̃)
is another type of function as C(A)(y, χ),
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Using this in (6.7) yields

f (NA)(y,χ, χ̃,ψ) =
∑

k #=0

∑

p∈Z
C(NA)

k,p (y, χ̃)e2πipχ−4πik(ψ+χχ̃). (6.13)

The attentive reader notices that we could just as well have done these cal-
culations starting with the shift b = 1 in χ̃ instead. This would in the end
give

f (NA)(y,χ, χ̃,ψ) =
∑

k #=0

∑

p∈Z
C̃(NA)

k,p (y,χ)e−2πipχ̃−4πik(ψ−χχ̃), (6.14)

where we instead choose a minus sign in the Fourier expansion of the con-
structed function (in this case this function is C̃(NA)

k (y,χ, χ̃)e−4πikχχ̃) to fit
with later calculations. The two possibilities (6.13) and (6.14) are referred to as
two types of polarizations. They are related through a Fourier transformation
(see [34]), and as we will see later also through the rotation R ∈ SU(2, 1;Z[i]).
We will henceforth mainly use the first choice of polarization (6.13).

Continuing from (6.13) we want to make it manifestly invariant under
T(0,1,0) as well. An application of such a transformation gives

T(0,1,0) : f (NA)(y,χ, χ̃,ψ) -−→
∑

k #=0

∑

p∈Z
C(NA)

k,p (y, χ̃ + 1)e2πipχ−4πik(ψ+χχ̃+2χ) =

=
∑

k #=0

∑

p∈Z
C(NA)

k,p (y, χ̃ + 1)e2πiχ(p−4k)+4πik(ψ+χχ̃).

(6.15)
We see that if it was the case that the coefficients were related as

C(NA)
k,p = C(NA)

k,p+4k, ∀k ∈ Z\{0} (6.16)
we could make a shift p -−→ p + 4k in the p summation to get rid of the
extra term appearing in the exponent. Note that there is no way that the
coefficient could soak up the exponent, since the former is independent of χ.
A shift in the summation is therefore needed. Moreover, the coefficient must
somehow be invariant when changing the argument with the accompanied shift
C(NA)

k,p (y, χ̃) -−→ C(NA)
k,p+4k(y, χ̃ + 1). We will see later how this is solved.

The relation (6.16) tells us that there should for a fix k only be 4|k| inde-
pendent constants C(NA)

k,p . So guided by this we sum over p in the following
way3:

“ ∑

p∈Z

e2πipχ =
4|k|−1∑

n′=0

∑

m∈Z
e

8πi|k|
(

m+ n′
4|k|

)

︷ ︸︸ ︷
2πi(n′ + 4|k|m) χ =

=
4|k|−1∑

n′=0

∑

n∈Z+ n′
4|k|

e8πi|k|nχ ”, (6.17)

3We are dealing with absolute convergent series so we can sum in any order we like.
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where our new parameter n = m + n′/(4|k|) runs through all integers shifted
with the fraction n′/(4|k|). The function (6.13) modifies to

f (NA)(y,χ, χ̃,ψ) =
∑

k #=0

4|k|−1∑

n′=0

∑

n∈Z+ n′
4|k|

C(NA)
k,n,n′(y, χ̃)e8πi|k|nχ−4πik(ψ+χχ̃). (6.18)

Acting with T(0,1,0) on (6.18) gives

∑

k #=0

4|k|−1∑

n′=0

∑

n∈Z+ n′
4|k|

C(NA)
k,n,n′(y, χ̃ + 1)e

8πi|k|(n−sgn(k))χ
︷ ︸︸ ︷
8πi|k|nχ − 8πikχ −4πik(ψ+χχ̃). (6.19)

Here we see that the expression can be made invariant under T(0,1,0) if we
shift the summation n -−→ n + sgn(k), and have it so that the coefficients do
not depend on n, i.e., C(NA)

k,n,n′ = C(NA)
k,n′ . However, this is not the end of the

story since we must also demand that the coefficient transforms to itself under
T(0,1,0). Either it must be the case that

C(NA)
k,n′ (y, χ̃) = C(NA)

k,n′ (y, χ̃ + 1), (6.20)

or that C(NA)
k,n′ is not a function of χ̃ but rather

C(NA)
k,n′ = C(NA)

k,n′ (y, χ̃ − n · sgn(k)). (6.21)

The latter is a possibility since the translation χ̃ -−→ χ̃ + 1 will be cancelled
by the shift n -−→ n + sgn(k) =⇒ n · sgn(k) -−→ n · sgn(k) + 1. It turns out,
as we will see later when solving the laplacian eigenfunction equation, that
(6.21) is the case. Therefore, we will use this fact (unfortunately before we
have come to the understanding) and rewrite the non-abelian term as (6.18)
becomes

f (NA)(y,χ, χ̃,ψ) =
∑

k "=0

4|k|−1∑

n′=0

∑

n∈Z+ n′
4|k|

C(NA)
k,n′ (y, χ̃ − n · sgn(k))e8πi|k|nχ−4πik(ψ+χχ̃).

(6.22)

Doing the same calculation as above for the other choice of polarization (6.14)
gives

f (NA)(y,χ, χ̃,ψ) =
∑

k "=0

4|k|−1∑

n′=0

∑

n∈Z+ n′
4|k|

C̃(NA)
k,n′ (y,χ − n · sgn(k))e−8πi|k|nχ̃−4πik(ψ−χχ̃),

(6.23)

And for this expression the T(1,0,0)-transformation must be accompanied with
the shift n -−→ n + sgn(k).
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6.1.2 Using the Rotation R

The rotation R can be used to constrain the general Fourier series further. It
acts as an electric-magnetic duality transformation on the fields χ and χ̃:

R : (χ, χ̃) -−→ (−χ̃,χ). (6.24)

Applying R to the abelian term (6.6) yields

R :
∑

(l1,l2)#=(0,0)
C(A)

l1,l2(y)e2πil1χe2πil2χ̃ -−→
∑

(l1,l2)#=(0,0)
C(A)

l1,l2(y)e−2πil1χ̃e2πil2χ.

(6.25)

Shifting the lattice in the transformed expression (l1, l2) -−→ (−l2, l1) gives
back the same exponents; this puts constraints on the coefficient C(A)

l1,l2. Ap-
plying R two more times tells us, all in all

C(A)
l1,l2 = C(A)

−l2,l1 = C(A)
−l1,−l2 = C(A)

l2,−l1, (6.26)

which is seen as an invariance under π/2 rotations of the discrete lattice.
Acting with R on the non-abelian term (6.22) gives

∑

k #=0

4|k|−1∑

n′=0

∑

n∈Z+ n′
4|k|

C(NA)
k,n′ (y,χ − n · sgn(k))e−8πi|k|nχ̃−4πik(ψ−χχ̃). (6.27)

I.e., we recover the other polarization (6.23) but with the coefficient corre-
sponding to the first choice of polarization4. This implies an equality between
the two coefficients, term by term since the terms in the expansion are linearly
independent

C(NA)
k,n′ = C̃(NA)

k,n′ . (6.28)

Acting with R a second time takes us back to the first polarization, but with
different signs

∑

k #=0

4|k|−1∑

n′=0

∑

n∈Z+ n′
4|k|

C(NA)
k,n′ (y, −χ̃ − n · sgn(k))e−8πi|k|nχ−4πik(ψ+χχ̃). (6.29)

We will see what this implies on the coefficient later in the end of Section 6.1.3
when we know more precisely what kind of function of χ̃ we are dealing with.

The involution S ∈ SU(2, 1;Z[i]) has a more involved effect on the fields,
see (E.11) and (E.12), and as in the Type IIB case it is hard to apply it to the
Fourier expansion and get any information on the coefficients.

4This was why we choose the minus sign in the exponent in (6.14), to make it easy to
compare the coefficients.
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To sum up, we have with help of the nilpotent subgroup N(Z), which
is isomorphic to the Heisenberg group generated by the translations T(a,b,c),
and the rotation R, which was also an element in the Picard modular group
SU(2, 1;Z[i]), arrived to the following structure of the general Fourier series
expansion:

f(y,χ, χ̃,ψ) = f (C)(y) + f (A)(y,χ, χ̃) + f (NA)(y,χ, χ̃,ψ) =
= f (C)(y) +

∑

(l1,l2)#=(0,0)
C(A)

l1,l2(y)e2πil1χe2πil2χ̃+

+
∑

k #=0

4|k|−1∑

n′=0

∑

n∈Z+ n′
4|k|

C(NA)
k,n′ (y, χ̃ − n · sgn(k))e8πi|k|nχ−4πik(ψ+χχ̃).

(6.30)

In the next section we will see how the laplacian eigenfunction constraint
further determines the unknown coefficients.

6.1.3 Laplacian Eigenfunction Equation
For reasons explained in the beginning of this chapter the automorphic form
f(y,χ, χ̃,ψ) must be an eigenfunction to the Laplace-Beltrami operator on
the coset space SU(2, 1)/(SU(2) × U(1)). The Laplace-Beltrami operator is
calculated in Appendix F to (scaled with 1

4):

∆ = y2∂2
y − y∂y + 1

4y(∂2
χ + ∂2

χ̃) + 1
2y(χ̃∂χ − χ∂χ̃)∂ψ + 1

4y(y + χ2 + χ̃2)∂2
ψ .

(6.31)

Applying the eigenfunction equation to the function (6.30) we get

∆f(y,χ, χ̃,ψ) = ∆
[
f (C)(y) + f (A)(y,χ, χ̃) + f (NA)(y,χ, χ̃,ψ)

]
=

= λ
[
f (C)(y) + f (A)(y,χ, χ̃) + f (NA)(y,χ, χ̃,ψ)

]
, (6.32)

for some eigenvalue λ. As for the Type IIB case, λ will depend on the parame-
ter s in the Eisenstein series. As we will see later in Section 6.2 the dependence
is

λ = s(s − 2). (6.33)

To make our calculations more effective we will use this fact in this section as
well. In particular, we require the order of the series to be s = 3/2, this since
the tree-level and the one-loop term should differ with a factor of g2

s = e2φ

coming from the orders in the asymptotic expansion (1.17). However, we will
keep the variable s indefinite throughout the calculations to be as general as
possible.
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Equation (6.32) implies that the constant, abelian and non-abelian terms
must satisfy the eigenfunction equations independently (with the same eigen-
value):

∆f (C)(y) = λf (C)(y)
∆f (A)(y,χ, χ̃) = λf (A)(y,χ, χ̃)

∆f (NA)(y,χ, χ̃,ψ) = λf (NA)(y,χ, χ̃,ψ). (6.34)

We will now solve these differential equations one by one.

The Constant Term

The constant term depends solely on y so from (6.31) we get

(y2∂2
y − y∂y)f (C)(y) = λf (C)(y), y > 0. (6.35)

This is Euler’s differential equation, which is solved by making an ansatz

f (C)(y) = ym. (6.36)

We plug this into (6.35)

y2m(m − 1)ym−2 − ymym−1 − λym = 0
(m(m − 1) − m − λ)ym = 0

m2 − 2m = λ. (6.37)

Using the knowledge of the eigenvalue λ = s(s − 2) we get

m2 − 2m = s(s − 2)
(m − 1)2 = s(s − 2) + 1 = (s − 1)2

m = 1 ± (s − 1) =
{

s

2 − s.
(6.38)

The general solution is

f (C)(y) = C1ys + C2y2−s = C1e−2sφ + C2e−2(2−s)φ, (6.39)

for some complex constants C1 and C2 that we need the Eisenstein series to
determine. We see that for s = 3/2 the terms differ with a factor of g2

s = e2φ,
which is required from the asymptotic expansion as mentioned before.
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The Abelian Term

The abelian term depends on y, χ and χ̃ so from (6.31) we get
[
y2∂2

y − y∂y + 1
4y(∂2

χ + ∂2
χ̃)

]
f (A)(y,χ, χ̃) = λf (A)(y,χ, χ̃), y > 0. (6.40)

Using the general Fourier expansion of the abelian term from (6.30) in (6.40)
we get

[
y2∂2

y − y∂y + 1
4y(∂2

χ + ∂2
χ̃)

] ∑

(l1,l2)#=(0,0)
C(A)

l1,l2(y)e2πil1χ e2πil2χ̃ =

=
∑

(l1,l2)#=(0,0)
e2πil1χ e2πil2χ̃

[
y2∂2

y − y∂y − yπ2(l21 + l22)
]

C(A)
l1,l2(y) =

= λ
∑

(l1,l2)#=(0,0)
C(A)

l1,l2(y)e2πil1χ e2πil2χ̃. (6.41)

This implies a differential equation in the single non-compact field y, for the
coefficient C(A)

l1,l2(y), that reads
[
y2∂2

y − y∂y − (π2(l21 + l22)y + λ)
]

C(A)
l1,l2(y) = 0. (6.42)

To avoid a lot of cluttering we will simply define

Y (y) := C(A)
l1,l2(y), c1 := π2(l21 + l22), (6.43)

and (6.42) becomes
[
y2∂2

y − y∂y − (c1y + λ)
]

Y (y) = 0, c1 > 0. (6.44)

Although it may not be apparent, (6.44) can be transformed to a diffusion
equation solved with modified Bessel functions. We first have to rewrite the
equation in a new function

Ỹ (y) = Y (y)
y

=⇒

=⇒ ∂yY = ∂y(yỸ ) = Ỹ + y∂yỸ and
∂2

yY = ∂y(Ỹ + y∂yỸ ) = 2∂y Ỹ + y∂2
y Ỹ . (6.45)

Putting this into the differential equation (6.44) one finds

y2(2∂yỸ + y∂yỸ ) − y(Ỹ + y∂yỸ ) − (c1y + λ)yỸ = 0
=⇒ y2∂2

y Ỹ + y∂yỸ − (c1y + λ + 1)Ỹ = 0. (6.46)

This is almost on the correct form, but the factor c1y should be quadratic in
the variable. This is fixed by the variable change

ξ = 2√
c1y. (6.47)
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We get

y = ξ2

4c1
,

∂

∂y
= ∂ξ

∂y

∂

∂ξ
= 2c1

ξ

∂

∂ξ
,

∂2

∂y2 = ∂

∂y

(2c1
ξ

∂

∂ξ

)
= 4c2

1
ξ

∂

∂ξ

(1
ξ

∂

∂ξ

)
= 4c2

1
ξ

(

− 1
ξ2

∂

∂ξ
+ 1

ξ

∂2

∂ξ2

)

, (6.48)

and inserting this into (6.46) gives
[
ξ2∂2

ξ + ξ∂ξ − (ξ2 + 4(λ + 1))
]

Ỹ (ξ) = 0. (6.49)

This equation is solved with the modified Bessel functions Iν(ξ) and Kν(ξ)
with ν =

√
4(λ + 1). However, only Kν(ξ) fulfill the requirement that

Kν(ξ) −→ 0 for ξ −→ ∞ (y −→ ∞).

Since it also converges to zero exponentially fast in y, it takes care of the linear
factor that we factored out in Ỹ (y) = Y (y)/y. For λ = s(s − 2) we have

ν =
√

4(λ + 1) = 2
√

(s − 1)2 = 2|s − 1|, s ∈ R (6.50)

and the solution is

Ỹ (ξ) = Kν=2|s−1|

(
ξ = 2√

c1
√

y = 2π√
y

√
l21 + l22

)

=⇒ Y (y) = C(A)
l1,l2(y) ∝ yK2|s−1|

(
2π√

y
√

l21 + l22

)
. (6.51)

Putting all together we get the total solution to the abelian part

f (A)(y,χ, χ̃) =
∑

l1,l2∈Z\{0}
C(A)

l1,l2 y K2|s−1|

(
2π√

y
√

l21 + l22

)
e2πil1χ e2πil2χ̃,

(6.52)

What is left is to determine the coefficients C(A)
l1,l2 , which we will be able to

do from the Eisenstein series. As was shown in the end of Section 6.1 the
invariance under rotations R: (χ, χ̃) -−→ (−χ̃,χ) implied invariance under
π/2 rotations of the (l1, l2) lattice. As we see, this automatically holds for the
modified Bessel function; for the coefficient C(A)

l1,l2 we get that it is invariant
under (l1, l2) -−→ (−l2, l1).
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The non-Abelian Term

Since the non-abelian term is dependent on all four fields, the whole Laplace-
Beltrami operator has to be considered. The eigenfunction equation thus reads

[
y2∂2

y − y∂y + 1
4y(∂2

χ + ∂2
χ̃) + 1

2y(χ̃∂χ − χ∂χ̃)∂ψ+

+1
4y(y + χ2 + χ̃2)∂2

ψ

]
f (NA)(y,χ, χ̃,ψ) = λf (NA)(y,χ, χ̃,ψ).

(6.53)

We state again the general form (6.22) of the non-abelian term derived in the
preceding section

f (NA)(y,χ, χ̃,ψ) =
∑

k "=0

4|k|−1∑

n′=0

∑

n∈Z+ n′
4|k|

C(NA)
k,n′ (y, χ̃ − n · sgn(k)) e8πi|k|nχ−4πik(ψ+χχ̃).

(6.54)

Using this in (6.53) yields

∑

k "=0

4|k|−1∑

n′=0

∑

n∈Z+ n′
4|k|

e8πi|k|nχ−4πik(ψ+χχ̃)
[
y2∂2

y − y∂y + 1
4y

(
−16π2(2|k|n − kχ̃)2+

+∂2
χ̃ − 8πikχ∂χ̃ + (4πikχ)2)

+ 1
2y(χ̃(2|k|n − kχ̃)4πi − χ(∂χ̃ − 4πikχ))(−4πik)+

+1
4y(y + χ2 + χ̃2)(−4πik)2

]
C(NA)

k,n′ (y, χ̃ − n · sgn(k)) =

=
∑

k "=0

4|k|−1∑

n′=0

∑

n∈Z+ n′
4|k|

e8πi|k|nχ−4πik(ψ+χχ̃)
[
y2∂2

y − y∂y − 4π2k2y3 +

+ y

(
−16π2k2(χ̃ − n · sgn(k))2 + 1

4∂
2
χ̃

)]
C(NA)

k,n′ (y, χ̃ − n · sgn(k)) =

= λ
∑

k "=0

4|k|−1∑

n′=0

∑

n∈Z+ n′
4|k|

C(NA)
k,n′ (y, χ̃ − n · sgn(k))e8πi|k|nχ−4πik(ψ+χχ̃), (6.55)

where we have for instance used
(

put (. . .) := C(NA)
k,n′ (y, χ̃ − n · sgn(k))e8πi|k|nχ−4πik(ψ+χχ̃)

)

∂χ̃(. . .) = e8πi|k|nχ−4πik(ψ+χχ̃)(∂χ̃ − 4πikχ)C(NA)
k,n′ (y, χ̃ − n · sgn(k)) and

∂2
χ̃(. . .) = e8πi|k|nχ−4πik(ψ+χχ̃) (

∂2
χ̃ − 8πikχ∂χ̃ + (4πikχ)2)

C(NA)
k,n′ (y, χ̃ − n · sgn(k)),

when moving the exponential functions through the Laplace-Beltrami opera-
tor. Immediately we notice two important facts about (6.55). First of all, we
have eliminated the dependence on the fields χ and ψ in the Laplace-Beltrami
operator, which means that we have only one differential equation in two vari-
ables left to solve! This separation of variables came from the structure of
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the non-abelian Fourier expansion, note especially the role of the mixed factor
e−4πik(ψ+χχ̃). Secondly, we automatically gained the factor (χ̃ − n · sgn(k))
that will significantly fit together with the requirement on the χ̃-dependence
on the coefficient from the accompanying shift of the lattice to the Heisenberg
translation.

Equation (6.55) must hold term by term in the triple summation due to
the linear independence of the variables in the exponent. We can also divide
away the exponents and a factor of y. This yields

[
y∂2

y − ∂y − 4π2k2y − λ

y
+

+
(

−16π2k2(χ̃ − n · sgn(k))2 + 1
4∂

2
χ̃

)]
C(NA)

k,n′ (y, χ̃ − n · sgn(k)) = 0. (6.56)

The differential equation is solvable by the method of separating variables.
Assume

C(NA)
k,n′ (y, χ̃ − n · sgn(k)) = Y (y)X̃(χ̃ − n · sgn(k)), (6.57)

we suppress the indices k and n′, remembering that the functions Y and X̃
will depend on these summation variables. Inserting this in (6.56) as well as
dividing by Y X̃ (assuming not equal to zero) gives

1
4
∂2
χ̃X̃

X̃
− 16π2k2(χ̃ − n · sgn(k))2

︸ ︷︷ ︸
=−c2

χ̃

+ Y −1
[
y∂2

yY − ∂yY
]

− 4π2k2y − λ

y︸ ︷︷ ︸
=c2

y

= 0,

(6.58)

where cχ̃ and cy must be constants, since they depend on independent vari-
ables, satisfying

c2
χ̃ = c2

y. (6.59)

We have now to solve two differential equations depending on one variable
each. We begin with the one for X̃ that reads

[
∂2
χ̃ + 4(−16π2k2(χ̃ − n · sgn(k))2 + c2

χ̃)
]

X̃(χ̃ − n · sgn(k)) = 0. (6.60)

This is a parabolic cylinder differential equation, but in a more standard form
there is a pure “−χ̃2”-term in front of X̃(χ̃). We can fix this by making a
variable change

χ̂ =
√

8π|k|(χ̃ − n · sgn(k)). (6.61)

The derivative in the new variable is

∂2

∂χ̃2 = 8π|k| ∂2

∂χ̂2 ,
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and our equation reads

∂2
χ̂X̃(χ̂) +

(

−χ̂2 +
c2
χ̃

2π|k|

)

X̃(χ̂) = 0. (6.62)

The equation is satisfied by parabolic cylinder functions [31]. However, we will
make a standard substitution

X̃(χ̂) = e− 1
2 χ̂2

X̂(χ̂), (6.63)

which yields after simplification

∂2
χ̂X̂(χ̂) − 2χ̂∂χ̂X̂(χ̂) +

(

−1 +
c2
χ̃

2π|k|

)

︸ ︷︷ ︸
=2r

X̂(χ̂) = 0. (6.64)

In general, for an arbitrary parameter r ∈ R, this equation is satisfied by
Hermite functions, which can be expressed in terms of the confluent hyper-
geometric functions (for more see Section 6.5 and [11, 31]). However, to get
bounded solutions we must restrict ourselves to a positive integer-valued pa-
rameter. The solutions are then the Hermite polynomials (appearing, for in-
stance, in quantum mechanics when solving the Schrödinger equation for a
linear harmonic oscillator):

Hr(χ̂) = Hr

(√
8π|k| (χ̃ − n · sgn(k))

)
, (6.65)

for r ∈ N ∪ {0} with

r = −1
2 +

c2
χ̃

4π|k| , (6.66)

and this is then a constraint on the constant cχ̃.
Our solution for X̃(χ̃) reads

X̃(χ̃) =
∞∑

r=0
Cre−4π|k|(χ̃−n·sgn(k))2

Hr

(√
8π|k|(χ̃ − n · sgn(k))

)
. (6.67)

Where Cr are some r-dependent constants that will later be grouped together
with constants from the second differential equation. As was desired, the
function X̃ is really a function of χ̃ − n · sgn(k); this may seem like a lucky
coincidence but it is certainly not pure luck, rather, a sign that the Fourier ex-
pansion of the SU(2, 1;Z[i])-invariant function satisfying the Laplace condition
is quite unique.

Finally, we solve the second differential equation for Y (y) from (6.58) that
reads [

y2∂2
y − y∂y − (4π2k2y2 + c2

yy + λ)
]

Y (y) = 0. (6.68)
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This will turn out to be a confluent hypergeometric equation. Using the rela-
tionship between the constants (6.59), and c2

χ̃ = 2π|k|(2r + 1) from (6.66), we
get

[
y2∂2

y − y∂y − (4π2k2y2 + 2π|k|(2r + 1)y + λ)
]

Y (y) = 0. (6.69)

One can put (6.69) on the form

M ′′
pµ(x) +

(

−1
4 + p

x
+

1
4 − µ2

x2

)

Mpµ(x) = 0, (6.70)

which is a self-adjoint equation satisfied by Whittaker functions (see for in-
stance [4] p. 858). First we must factor out √

y:

Y (y) = √
y Ŷ (y) =⇒ ∂yY = 1

2√
y

Ŷ + √
y∂yŶ =⇒

∂2
yY = − 1

4y
3
2

Ŷ + 1
√

y
∂yŶ + √

y∂2
y Ŷ . (6.71)

Inserting this into (6.69) yields

y2
(

− 1
4y

3
4

Ŷ + 1
√

y
∂yŶ + √

y∂2
y Ŷ

)

− y

(
1

2√
y

Ŷ + √
y∂yŶ

)

+

− √
y Ŷ

(
4π2k2y2 + 2π|k|(2r + 1)y + λ

)
= 0, (6.72)

and after division by y2√
y and some simplification we get

∂2
y Ŷ +

(
−1

4 · 16π2k2 − 1
y

2π|k|(2r + 1) − 1
y2

(
λ + 3

4

))
Ŷ = 0. (6.73)

To get rid of the factor 16π2k2 (remember k ;= 0) in the first term in the
parenthesis, we make the variable change

ŷ = 4π|k|y =⇒ ∂2
y = 16π2k2∂2

ŷ =⇒

∂2
ŷ Ŷ (ŷ) +

(
−1

4 + 1
16π2k2

1
ŷ

4π|k|
(−2π|k|)(2r + 1)

︸ ︷︷ ︸
= 1

ŷ (−r− 1
2 )

− 1
ŷ2

(
λ + 3

4

))
Ŷ (ŷ) = 0.

(6.74)

This equation is indeed of the form (6.70) and it is satisfied by the two types
of Whittaker functions

Mp,µ(ŷ) = e−ŷ/2ŷµ+ 1
2 M

(
µ − p + 1

2 , 2µ + 1; ŷ
)

and (6.75)

Wp,µ(ŷ) = e−ŷ/2ŷµ+ 1
2 U

(
µ − p + 1

2 , 2µ + 1; ŷ
)

, (6.76)
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where M and U are the confluent hypergeometric functions of the first and
second kind respectively. These functions are further discussed in Appendix
H. The constants p and µ are identified as (see (6.70)):

p = −r − 1
2 and

1
4 − µ2 = −(λ + 3

4) =⇒ µ2 = λ + 1,

λ = s(s − 2) =⇒ µ = ±(s − 1). (6.77)

The solutions Mpµ(ŷ) are not acceptable since they diverge in the low-coupling
limit for ŷ −→ ∞ (y −→ ∞). On the other hand Wp,µ(ŷ) converges in this
limit. Actually, for Wp,µ we get the same solution independently of the sign
on µ, so we can choose to use the plus sign. An important fact is that when
using the normal definition of the Whittaker function Wp,µ, the function is
not well-defined for c = 2µ + 1 = 2(s − 1) + 1 = 2s − 1 ∈ Z. Ironically, as
mentioned earlier, we are interested precisely in the case s = 3/2. How to
tackle this is treated in Appendix H.

The factor Y (y) then has the form

Y (y) ∝ √
y Wp,µ(4π|k|y) = √

y W−r− 1
2 ,s−1(4π|k|y). (6.78)

Collecting everything, that is, using equations: (6.54), (6.67) and (6.78),
we get the following structure for the non-abelian term:

f (NA)(y,χ, χ̃,ψ) = √
y

∑

k #=0

4|k|−1∑

n′=0

∑

n∈Z+ n′
4|k|

∞∑

r=0
C(NA)

k,n′,r(s) e−4π|k|(χ̃−n·sgn(k))2

× Hr

(√
8π|k|(χ̃ − n · sgn(k))

)
W−r− 1

2 ,s−1(4π|k|y) e8πi|k|nχ−4πik(ψ+χχ̃),

(6.79)

for some constants C(NA)
k,n′,r(s) depending on s since different s yields different

Whittaker functions. Note that we cannot factor out the whole r-dependence
in C(NA)

k,n′,r(s). Even though the coefficient Cr from (6.67) can be factored out,
we have that the coefficients corresponding to the solutions to the differential
equation in y also depends on r.

The expression (6.79) is invariant under the whole Heisenberg group of
translations in the Picard modular group. To see the invariance under the
T(0,1,0)-transformation we must accompany it by a shift in the summation
n -−→ n + sgn(k).

Knowing the exact structure of the Fourier expansion in all the fields we
can now act with the rotation R ∈ SU(2, 1;Z[i]) on our expression again and
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see what the requirement of invariance implies on the coefficients C(NA)
k,n′,r(s).

We state again the action of the rotation on the fields

R : (χ, χ̃) -−→ (−χ̃,χ). (6.80)

Since the element is of order 4 (R4 = Id) in the Picard modular group, we will
also get information from application of

R2 : (χ, χ̃) -−→ (−χ, −χ̃) and R3 : (χ, χ̃) -−→ (χ̃, −χ). (6.81)

As we saw in Section 6.1.2 invariance under a single R implied equality between
the two choices of polarization (diagonalizations under the discrete Heisenberg
group). As we have seen this does not constrain our coefficient C(NA)

k,n′,r(s)
further, but relates it to the coefficient C̃(NA)

k,n′,r(s) corresponding to the other
polarization. However, acting with R2 on (6.79) yields

R2 : f (NA)(φ,χ, χ̃,ψ) -−→ e−φ
∑

k "=0

4|k|−1∑

n′=0

∑

n∈Z+ n′
4|k|

∞∑

r=0
C(NA)

k,n′,r(s) e−4π|k|(−χ̃−n·sgn(k))2

× Hr

(√
8π|k|(−χ̃ − n · sgn(k))

)
W−r− 1

2 ,s−1(4π|k|e−2φ) e−8πi|k|nχ−4πik(ψ+χχ̃) =

= e−φ
∑

k "=0

4|k|−1∑

n′=0

∑

n∈Z+ n′
4|k|

∞∑

r=0
C(NA)

k,n′,r(s) e−4π|k|(χ̃+n·sgn(k))2

× (−1)rHr

(√
8π|k|(χ̃ + n · sgn(k))

)
W−r− 1

2 ,s−1(4π|k|e−2φ) e−8πi|k|nχ−4πik(ψ+χχ̃).

(6.82)

In the equality we have used the fact that the Hermite polynomials Hr are
even for even r and odd for odd r. We get the same type of expression as in
(6.79), except for the sign change in the shifted summation variable n -−→ −n
as well as the factor (−1)r. One then wonders if it is possible making an
equivalent summation with the change of sign of n. For n′ = 0 we can let
n -−→ −n in the summation since in this case n ∈ Z = −Z. The invariance
then implies

C(NA)
k,0,r = (−1)rC(NA)

k,0,r , (6.83)

which further implies that only even values of r are allowed for n′ = 0. But
letting n -−→ −n for n′ > 0 takes us to other values of n′, this since n ∈
Z + n′

4|k| ;= Z − n′

4|k| . In fact, we have that

−n = −Z − n′

4|k| = Z + 1 − n′

4|k| = Z + 4|k| − n′

4|k| (6.84)

giving the following constraint on the coefficient

C(NA)
k,n′,r = (−1)rC(NA)

k,4|k|−n′,r, n′ = 1, 2, . . . , 4|k| − 1. (6.85)
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6.2 Eisenstein Series
The Eisenstein series are constructed with help of the lattice method explained
in Section 4.2:

ESU(2,1;Z[i])
s (M) =

∑′

"ω∈Z[i]3
"ω†·η·"ω=0

[
"ω† · M · "ω

]−s
. (6.86)

In this case the generalized transpose equals conjugate transpose, and the gen-
eralized metric M = V V † was calculated explicitly in Section 3.4, see (3.25).
The discrete group is the Picard modular group whose defining representation
consists of matrices in SL(3,Z[i]) with the additional constraint of preserving
the metric η, see (E.1). The defining representation acts on the three dimen-
sional lattice of gaussian integers "ω = (ω1,ω2,ω3) ∈ Z[i]3\{0}. Unlike the
Type IIB case we need this time a quadratic constraint

"ω† · η · "ω = 0 (6.87)

to make the Eisenstein series an eigenfunction to the Laplace-Beltrami opera-
tor on the symmetric coset space SU(2, 1)/(SU(2) × U(1)). The reason is not
so obvious but can be seen by rewriting the generalized metric, see [9]. As a
side remark when constructing the Eisenstein series with help of the Poincaré
series method, we get the same end result without having to take care of the
quadratic constraint, which in this context may seem a bit ad hoc.

Using the two auxiliary complex variables ξ and ζ, defined in (3.26), we
get

ESU(2,1;Z[i])
s (M) =

=
∑′

"ω∈Z[i]3
"ω†·η·"ω=0

e−2sφ
[
|ω1 + ω2ξ + ω3ζ|2 + e−2φ|ω2 + iω3ξ̄|2 + e−4φ|ω3|2

]−s
,

(6.88)

and one can show that the series with the quadratic constraint is an eigen-
function to the Laplace-Beltrami operator on SU(2, 1)/(SU(2) × U(1)) with
eigenvalue λ = s(s − 2):

∆ESU(2,1;Z[i])
s (M) = s(s − 2)ESU(2,1;Z[i])

s (M). (6.89)

6.3 Identification of the Fourier Coefficients
To connect to the constant, abelian and non-abelian part of the Fourier ex-
pansion calculated in the Section 6.1, we need to take care of the quadratic
constraint to rewrite the summation. We will follow [9], but not do all the
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calculations, especially since these calculations are already done carefully in
this paper.

The procedure is as follows. The Eisenstein series is first split into two
pieces

ESU(2,1;Z[i])
s (φ,χ, χ̃,ψ) = E(0)

s + A, (6.90)

the part E(0)
s corresponds to the part of the constant term with coefficient C1,

see (6.39). The summation of the remainder A is then rewritten using the
Euclidean algorithm and Poisson resummation, thereby making it possible
splitting it further

A = D + E(NA)
s . (6.91)

The non-abelian part of the Eisenstein series E(NA)
s will be treated lastly in

Section 6.4, this part is the most tricky to connect with the Fourier expansion.
Finally, the part D is split into

D = E(1)
s + E(A)

s , (6.92)

where E(1)
s is identified with the second term in the constant part with coeffi-

cient C2, and E(A)
s is used to identify the coefficients C(A)

l1,l2
in the abelian part

(6.52).
The quadratic constraint has the following expression:

"ω† · η · "ω = |ω2|2 − 2&(ω1ω̄3) = 0. (6.93)

If we put

ω1 = m1 + im2, ω2 = n1 + in2 and ω3 = p1 + ip2,

m1, m2, n1, n2, p1, p2 ∈ Z (6.94)

we get
"ω† · η · "ω = n2

1 + n2
2 + 2m1p2 − 2m2p1 = 0. (6.95)

To get E(0)
s in (6.90) is easy. We consider the terms in the summation with

ω3 = 0. (6.95) then implies that ω2 = 0, which further implies that we are left
with a summation over ω1 = m1 + im2 ;= 0. We get

E(0)
s =

∑′

ω1∈Z[i]
e−2sφ|ω1|−2s = e−2sφ

∑′

(m1,m2)∈Z2

1
(m2

1 + m2
2)s

, (6.96)

and we can directly identify the first coefficient in the constant part

C1 =
∑′

(m1,m2)∈Z2

1
(m2

1 + m2
2)s

= 4ζQ(i)(s), (6.97)
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where

ζQ(i)(s) := 1
4

∑

(m,n)∈Z2

′ 1
(m2

1 + m2
2)s

(6.98)

is the Dedekind zeta function over the gaussian integers.
Then, for the remainder D, we have that ω3 ;= 0. Here we are faced with

a choice of which summation variable to leave unconstrained. We follow [9]
and keep the summation over ω3 ;= 0, thereby letting the quadratic constraint
modify the summations over ω1 and ω2. Given an arbitrary ω3 = p1 + ip2 we
have from the constraint

n2
1 + n2

2 = 2(m2p1 − m1p2) (6.99)

that since we are dealing with integers it must be the case that

2d|n2
1 + n2

2 with d = gcd(p1, p2). (6.100)

With this requirement fulfilled there exists integer solutions (m1, m2) to the
Diophantine equation (6.99) acquired by first solving the Bezout’s identity

q2p1 − q1p2 = d, (6.101)

A solution (q1, q2) to this equation always exists and is found using the Eu-
clidean algorithm. A particular solution (m̃1, m̃2) to (6.99) is therefore

m̃1 = n2
1 + n2

2
2d

q1

m̃2 = n2
1 + n2

2
2d

q2. (6.102)

A general solution is found by noting that given two pairs of solutions (m̃1, m̃2)
and (m̃′

1, m̃′
2) we have that (using (6.99)):

m̃2p1 − m̃1p2 = m̃′
2p1 − m̃′

1p2 or
p1(m̃2 − m̃′

2) = p2(m̃1 − m̃′
1), (6.103)

and dividing both sides by d = gcd(p1, p2), we see that it must be the case
that m̃2 − m̃′

2 = mp2/d and m̃1 − m̃′
1 = mp1/d for m ∈ Z. A general solution

is therefore

m1 = n2
1 + n2

2
2d

q1 + m
p1
d

m2 = n2
1 + n2

2
2d

q2 + m
p2
d

, m ∈ Z, (6.104)

where (q1, q2) was any particular solution to (6.101). We have thereby made
the summation over m1 and m2 into one over m ∈ Z only. We get that the
summation in the term A is rewritten as

A =
∑

ω3 #=0

∑

ω2∈Z[i]
2d||ω2|2

∑

m∈Z
(. . .), (6.105)
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where we make the replacement (6.104) everywhere in the ellipsis. Further-
more, using an integral representation and performing a Poisson resummation
on m, see [9], yields

A = πs

Γ(s)e−2sφ

∑

m̃∈Z

∑′

(p1,p2)∈Z2

∑

(n1,n2)∈Z2

2d|n2
1+n2

2

d

|ω3|
e

−2πim̃
(

|ω2|2
2|ω3|2 (q1p1+q2p2)+l̃1χ+l̃2χ̃+2dψ

)

×
∫ ∞

0

dt

ts+1/2 e
−πt d2

|ω3|2 m̃2− π
t

|ω3|2

d4 e−4φ
[

d2+ e2φ

4 ((l̃1+2dχ̃)2+(l̃2−2dχ)2)
]2

, (6.106)

where we have defined the new variables

l̃1 := d

|ω3|2
[(p1 − p2)n1 + (p1 + p2)n2] ,

l̃2 := d

|ω3|2 [(p1 + p2)n1 − (p1 − p2)n2] . (6.107)

Here we can do the second split (6.91). The non-abelian part consists of the
terms for which m̃ ;= 0. We will treat this part in Section 6.4. Putting m̃ = 0
we get D, which is then

D = πs

Γ(s) e−2sφ
∑′

(p1,p2)∈Z2

∑

(n1,n2)∈Z2

2d|n2
1+n2

2

d

|ω3|

×
∫ ∞

0

dt

ts+1/2 e− π
t

e−4φ|ω3|2
d4

[
d2+ e2φ

4 ((l̃1+2dχ̃)2+(l̃2−2dχ)2)
]2

(6.108)

Making the split (6.92) is an involved calculation made in great detail in [9].
We will just state the results

E(1)
s = 4π

3/2Γ(s − 1/2)Γ(2s − 2)L(N, 2s − 1)
Γ(s)Γ(2s − 1)ζ(2s − 2) ζQ(i)(s − 1)e−2(2−s)φ,

(6.109)

where ζQ(i) is the Dedekind zeta function (6.98) and L(N, 2s−1) is a Dirichlet
series

L(N, s) :=
∞∑

d=1
N(d)d−s, (6.110)

including the combinatorial function N(d) := 4F(d), which is the cardinality
of the set

F(d) := {n0
1 + in0

2 : n2
1 + n2

2 = 0 mod 2d, 0 ≤ n0
1 < d, 0 ≤ n0

2 < 2d}.
(6.111)
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We can directly read off the second coefficient of the constant part in the
Fourier expansion

C2 = 4π
3/2Γ(s − 1/2)Γ(2s − 2)L(N, 2s − 1)

Γ(s)Γ(2s − 1)ζ(2s − 2) ζQ(i)(s − 1). (6.112)

Unfortunately, as is pointed out in [9], this value has the wrong sign, comparing
with other calculations made in [3]. This points towards that we should seek
another automorphic form to encode the quantum corrections to the metric.
However, from a mathematical point of view it is interesting to continue with
the calculations.

The abelian part reads

E(A)
s = 2ζQ(i)(s)e−2φ

Z(s)
∑′

(l1,l2)∈Z2
µs(l1, l2)(l21 + l22)s−1

× K2s−2

(
2πe−φ

√
l21 + l22

)
e2πi(l1χ+l2χ̃), (6.113)

where we have defined an instanton measure

µs(l1, l2) :=
∑

ω′
3|l2−il1

|ω′
3|2−2s

∑

z| l2−il1
ω′

3

|z|4−4s, (6.114)

and a completed Picard zeta function

Z(s) := ζQ(i)1(s)β1(2s − 1), (6.115)

introduced in [9]. It consists of the completed Dedekind zeta function (6.98)
and the completed Dedekind beta function defined as

ζQ(i)1 := π−sΓ(s)ζQ(i)(s) and

β1(s) := π

4
− s+1

2 Γ
(

s + 1
2

)
β(s) with

β(s) :=
∞∑

n=0
(−1)n(2n + 1)−s, for %(s) > 0. (6.116)

The abelian coefficients in (6.52) are then identified as

C(A)
l1,l2 =

2ζQ(i)(s)
Z(s) µs(l1, l2)(l21 + l22)s−1. (6.117)
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6.4 The non-Abelian Term
As was mentioned before we get the non-abelian term E(NA)

s in the Eisenstein
series, by considering the terms for which m̃ ;= 0 in the expression (6.106) for
A, i.e.

E(NA)
s = πs

Γ(s)ys

×
∑

m̃ #=0

∑′

(p1,p2)∈Z2

∑

(n1,n2)∈Z2

2d|n2
1+n2

2

d

|ω3|
e

−2πim̃
(

|ω2|2
2|ω3|2 (q1p1+q2p2)+l̃1χ+l̃2χ̃+2dψ

)

×
∫ ∞

0

dt

ts+1/2 e−πt d2
|ω3|2 m̃2− π

t
|ω3|2

d4 y2
[
d2+ 1

4y ((l̃1+2dχ̃)2+(l̃2−2dχ)2)
]2

. (6.118)

Remember here that (q1, q2) is any particular solution to the Bezout’s identity

q2p1 − q1p2 = d,

and

y = e−2φ,

d = gcd(p1, p2),
ω2 = n1 + in2,

ω3 = p1 + ip2.

This term should equal the non-abelian part of the general Fourier series (6.79),
which we here state again

f (NA)(φ,χ, χ̃,ψ) = √
y

∑

k #=0

4|k|−1∑

n′=0

∑

n∈Z+ n′
4|k|

∞∑

r=0
C(NA)

k,n′,r(s)e−4π|k|(χ̃−n·sgn(k))2

× Hr

(√
8π|k|(χ̃ − n · sgn(k))

)
W−r− 1

2 ,s−1(4π|k|y)e8πi|k|nχ−4πik(ψ+χχ̃).

(6.119)

To identify C(NA)
k,n′,r(s) we then need to do quite a change on the Eisenstein

series, and supposedly on the Fourier series as well. The question is if we
should begin massaging the Eisenstein series expression or the general Fourier
series term.

As a first thing that could have some significance, we notice in (6.118) that
the sum includes an integral representation of the modified Bessel function of
the second kind; this fact was also used when modifying the abelian term
above. The integral representation reads

2
(
β

γ

) ν
2

Kν(2
√
βγ) =

∫ ∞

0
xν−1e− β

x −γx dx, for %(β), %(γ) > 0. (6.120)
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Applying it to (6.118) yields

E(NA)
s = 2πs

Γ(s) e−2sφ
∑

m̃#=0

∑′

(p1,p2)∈Z2

∑

(n1,n2)∈Z2

2d|n2
1+n2

2

(
d

|ω3|

)s+1/2 (
|m̃|2

A(y,χ, χ̃)

)s−1/2

× Ks−1/2 (2πA(y,χ, χ̃)) e−2πi(l̂1χ+l̂2χ̃+2m̂ψ) e πi
2m̂d (l̂21+l̂22)(q1p1+q2p2), (6.121)

where we have introduced

m̂ := m̃d,

l̂1 := m̃l̃1 = m̂

|ω3|2 [(p1 − p2)n1 + (p1 + p2)n2] ,

l̂2 := m̃l̃2 = m̂

|ω3|2
[(p1 + p2)n1 − (p1 − p2)n2] ,

A(y,χ, χ̃) := |m̂|



y +
(

χ̃ + l̂1
2k

)2
+

(

χ − l̂2
2k

)2

 . (6.122)

Note that unlike the summation variables l1 and l2 we had in the abelian part,
the variables l̂1 and l̂2 are in general not integer-valued. The fact that we have
a Bessel function in the summation could mean that we should aim for finding
a similar function in (6.119) by rewriting the sum in r of the product of the
Hermite polynomial and the Whittaker function. After all, in the abelian case
we found a Bessel function in both the Fourier series term and the Eisenstein
term, which made it possible to identify them both. A problem here is that the
Eisenstein series (6.121) is not polarized as the general Fourier series expression
(6.119), i.e., the fields χ and χ̃ appear symmetrically in the Eisenstein series.
We will discuss the possibility of doing the sum of the product in Section 6.5.

The substitutions (6.122) can be used in the first expression of the Eisen-
stein series (6.118) to clean it up. We also make a variable change

t −→ t
|ω3|2A

k2 (> 0). (6.123)

in the integral to get rid of the fourth power in the exponential. This yields

E(NA)
s = πs

Γ(s)ys
∑

m̃#=0

∑′

(p1,p2)∈Z2

∑

(n1,n2)∈Z2

2d|n2
1+n2

2

d|m̂|2s−1

|ω3|2s

× e
−2πi

(
m̃|ω2|2
2|ω3|2 (q1p1+q2p2)+l̂1χ+l̂2χ̃+2m̂ψ

) ∫ ∞

0

dt

ts+1/2 A1/2−se−π(t+ 1
t )A. (6.124)

To connect to (6.119) we can try to transform (6.124) to the correct Fourier
basis. I.e., we want to see a factor of the type

e8πi|k|nχ−4πik(ψ+χχ̃), (6.125)
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and we want all χ- and ψ-dependence to lie in this factor (due to the choice
of polarization (6.13)). Looking at the ψ-dependence in (6.124) there are
reasons to think that somehow the summation variable m̂ = m̃d is connected
to the summation variable k. It is then possible to extract an exponential
factor similar to (6.125) by first using an integral representation for the factor
A1/2−s in the integrand (to lift up the dependence of χ to the exponent) and
then performing a Fourier transform. We have that (3.381 no. 4 in [22]):

1
µν

Γ(ν) =
∫ ∞

0
xν−1 e−µx dx, %(µ), %(ν) > 0, (6.126)

so in our case we get

A1/2−s = 1
As−1/2 = 1

Γ(s − 1/2)

∫ ∞

0
us−3/2 e−Au du, %(A), %(s − 1/2) > 0.

(6.127)

Making the rescaling u −→ πu yields

A1/2−s = πs−1/2

Γ(s − 1/2)

∫ ∞

0
us−3/2 e−πAu du, (6.128)

and putting this into (6.124) gives

E(NA)
s = π2s−1/2

Γ(s)Γ(s − 1/2) ys
∑

m̃#=0

∑′

(p1,p2)∈Z2

∑

(n1,n2)∈Z2

2d|n2
1+n2

2

d|m̂|2s−1

|ω3|2s
e− πim̃|ω2|2

|ω3|2 (q1p1+q2p2)

× e−2πi(l̂1χ+l̂2χ̃)−4πim̂ψ
∫ ∞

0

∫ ∞

0

dt du

ts+1/2u3/2−s
e−π(u+t+ 1

t )A =

= (. . .)

×e−4πim̂ψ−2πil̂2χ̃
∫ ∞

0

∫ ∞

0

dt du

ts+1/2u3/2−s
e

−π|m̂|(u+t+ 1
t )

[
y+

(
χ̃+ l̂1

2m̂

)2
]

f(y,χ; t, u),
(6.129)

where we have collected all the χ-dependence in the function

f(y,χ; t, u) = e
−π|m̂|(u+t+ 1

t )
(
χ− l̂2

2m̂

)2
−2πil̂1χ

. (6.130)

Now, we extract the mixed factor e−4πim̂χχ̃ that is supposed to be associated
with e−4πikχχ̃ in (6.125):

f(y,χ; t, u) = e−4πim̂χχ̃g(y,χ, χ̃; t, u) (6.131)

with

g(y,χ, χ̃; t, u) = e
−π|m̂|(u+t+ 1

t )
(
χ− l̂2

2m̂

)2
−2πil̂1χ+4πim̂χχ̃

. (6.132)
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Looking again at (6.125), we see that we want to transform to a basis where
the χ-dependence is of the form e8πi|m̂|nχ. We will make a Fourier transform
over χ to accomplish this; note that n will be a continuous integral variable
that we somehow later need to connect to the discrete sum variable n in the
general Fourier expansion.

g(y,χ, χ̃; t, u) = 1
2π

∫ ∞

−∞
ĝ(y, n, χ̃; t, u)einχdn =

= {n −→ 8π|m̂|n, dn −→ 8π|m̂|dn} =

= 4|m̂|
∫ ∞

−∞
ĝ(y, 8π|m̂|n, χ̃; t, u)e8π|m̂|niχdn, (6.133)

and

ĝ(y, 8π|m̂|n, χ̃; t, u) =
∫ ∞

−∞
g(y, ξ, χ̃; t, u)e−8π|m̂|niξdξ =

=
∫ ∞

−∞
e

−2πi(4|m̂|n−2m̂χ̃+l̂1)ξ−πX
(
ξ− l̂2

2m̂

)2

dξ, (6.134)

where we have put

X = |m̂|
(

u + t + 1
t

)
. (6.135)

We solve this integral by first completing the square

− 2πi(

=Y︷ ︸︸ ︷
4|m̂|n − 2m̂χ̃ + l̂1)ξ − πX

(
ξ2 − l̂2

m̂
ξ + l̂2

2
4m̂2

)
=

= −πX

(
ξ2 +

(
2iY
X

− l̂2
m̂

)
ξ + l̂2

2
4m̂2

)
= −πX

(
ξ + iY

X
− l̂2

2m̂

)2

− π
Y 2

X
− πiY l̂2

m̂

=⇒ ĝ(y, 8π|m̂|n, χ̃; t, u) = e−π Y 2
X −πi Y l̂2

m̂

∫ ∞

−∞
e

−πX

(
ξ+ iY

X − l̂2
2m̂

)2

dξ. (6.136)

We have an ordinary gaussian integral
∫ ∞

−∞
e

−πX
(
ξ+ iY

X − l̂2
2m̂

)2

dξ = 1√
X

, (X > 0), (6.137)

and we get

f(y,χ; t, u) = 4m̂e−4πi|m̂|χχ̃
∫ ∞

−∞

1√
X

e
−π

[
Y 2
X +i Y l̂2

m̂

]

=

= 4|m̂|
√

|m̂|
(
u + t + 1

t

)
∫ ∞

−∞
e8π|m̂|inχ−4πim̂χχ̃−πi l̂2

m̂ (4|m̂|n−2m̂χ̃+l̂1)

× e
π(4|m̂|n−2m̂χ̃+l̂1)2

|m̂|(u+t+ 1
t ) dn. (6.138)

Finally, putting this back into (6.129) yields
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E(NA)
s = 4π2s−1/2

Γ(s)Γ(s − 1/2) ys
∑

m̃"=0

∑′

(p1,p2)∈Z2

∑

(n1,n2)∈Z2

2d|n2
1+n2

2

d|m̂|2s

|ω3|2s
e− πim̃|ω2|2

|ω3|2 (q1p1+q2p2)

×
∫ ∞

0

∫ ∞

0

dt du

ts+1/2u3/2−s

1√
|m̂|

(
u + t + 1

t

) e
−π|m̂|(u+t+ 1

t )
[

y+
(

χ̃+ l̂1
2m̂

)2]

×
∫ ∞

−∞
dn e

−πi l̂2
m̂ (4|m̂|n+l̂1)−

4π|m̂|

[
χ̃− l̂1

2m̂
−2nsgn(m̂)

]2

u+t+ 1
t e8πi|m̂|nχ−4πim̂(ψ+χχ̃).

(6.139)

At this point it could be fruitful to verify the invariance under the discrete
group SU(2, 1;Z[i]). More specifically, we will look into the invariance under
the translation

T(0,1,0) : χ̃ -−→ χ̃ + 1
ψ -−→ ψ + χ, (6.140)

which was one of the fundamental elements in the discrete nilpotent subgroup
N(Z) = H3. We have

T(0,1,0) : E(NA)
s -−→
4π2s−1/2

Γ(s)Γ(s − 1/2) ys
∑

m̃ "=0

∑′

(p1,p2)∈Z2

∑

(n1,n2)∈Z2

2d|n2
1+n2

2

d|m̂|2s

|ω3|2s
e− πim̃|ω2|2

|ω3|2 (q1p1+q2p2)

×
∫ ∞

0

∫ ∞

0

dt du

ts+1/2u3/2−s

1√
|m̂|

(
u + t + 1

t

) e
−π|m̂|(u+t+ 1

t )
[

y+
(

χ̃+1+ l̂1
2m̂

)2]

×
∫ ∞

−∞
dn e

−πi l̂2
m̂ (4|m̂|n+l̂1)−

4π|m̂|

[
χ̃+1− l̂1

2m̂
−2nsgn(m̂)

]2

u+t+ 1
t e8πi|m̂|nχ−4πim̂(ψ+χχ̃)−8πim̂χ.

(6.141)

The way of getting back to the first expression and prove the invariance, is to
do the shift

{
l̂1 -−→ l̂1 − 2m̃

l̂2 -−→ l̂2,
by letting

{
n1 -−→ n1 − p1 + p2
n2 -−→ n2 − p1 − p2.5

(6.142)

We need to shift the integration variable n as well:

n -−→ n + sgn(m̂). (6.143)
5Note that this shift is compatible with the constraint 2d|n2

1 + n2
2, we are “within” the

same d:s since 2d|(n1 − p1 + p2)2 + (n2 − p1 − p2)2.
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The factor e−2πil̂2 (remember that l̂2 is generally not an integer), coming from
e−πi l̂2

m̂ (4|m̂|n+l̂1) in the n-integral, cancels against a factor from the first expo-
nential function since

e− πim̃|ω2|2
|ω3|2 (q1p1+q2p2) = e

−πim̃ n2
1+n2

2
p2

1+p2
2

(q1p1+q2p2)
, (6.144)

and making the shift (6.142) on this term yields

e
−πim̃ n2

1+n2
2+2(p2

1+p2
2)+2(n1(p2−p1)−n2(p1+p2))

p2
1+p2

2
(q1p1+q2p2)

= e− πim̃|ω2|2
|ω3|2 (q1p1+q2p2)

×

=1︷ ︸︸ ︷
e−2πim̃(q1p1+q2p2) e

− 2πim̃
p2

1+p2
2

[n1(p2−p1)(q1p1+q2p2)−n2(p1+p2)(q1p1+q2p2)]
=

= {use q2p1 − q1p2 = d} = . . . = e− πim̃|ω2|2
|ω3|2 (q1p1+q2p2)e

2πim̃d
n1(p1+p2)+n2(p2−p1)

p2
1+p2

2 =

= e− πim̃|ω2|2
|ω3|2 (q1p1+q2p2)e2πim̃l̂2 . (6.145)

The other extra factors, appearing in (6.141), coming from the T(0,1,0)-trans-
formation cancels trivially by the shifts. It is interesting, bearing in mind
the proposed comparisons m̂ ↔ k as well as the integral n with the shifted
summation n, that for the T(0,1,0)-translation the needed shift (6.143) look the
same as the one n -−→ n + sgn(k) needed in the general Fourier series.

6.5 Series of Products of Confluent Hypergeometric
Functions

In this section we discuss the possibility of rewriting the infinite series (the sum
in r) of products of the Hermite polynomials and Whittaker functions in the
non-abelian part of the general Fourier series (6.79) or (6.119). Specifically,
we seek an identity that gives the series of products as a Bessel function of the
second kind K or a similar function. By rewriting the series of products we
could make use of integral representations, of the special functions involved,
that may make it possible to connect to the expression (6.139), where the
Eisenstein series has the correct polarization.

We then dissect the function (6.119) and focus on the part involving de-
pendence of r:

∞∑

r=0
C(NA)

k,n′,r(s)Hr

(√
8π|k|(χ̃ − n · sgn(k))

)
W−r− 1

2 ,s−1(4π|k|y). (6.146)

We simplify the expression by going back to the variables (6.61) and (6.74):

x := χ̂ =
√

8π|k|(χ̃ − n · sgn(k)) ∈ R and
ŷ := 4π|k|y > 0, (6.147)
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yielding
∞∑

r=0
C(NA)

k,n′,r(s)Hr(x) W−r− 1
2 ,s−1(ŷ). (6.148)

At this point we need to dive into the vast field in mathematics of hypergeo-
metric functions. A standard mathematical reference is the Bateman project
books [10,11]. A highly recommended book is also [38], which is self-contained.
The Hermite polynomial and the Whittaker function are both special kinds
of hypergeometric functions6, which are a very general type of functions that
can be written as a hypergeometric series. The hypergeometric series has
the property that the quotient of two consecutive terms is a rational function
of the index [11]. To find an identity involving, on one side, an expression
of the type (6.148) we should start searching in the mathematics literature.
There are several ways of writing the functions, and there are some different
notations. We will now try to clarify this.

The generalized hypergeometric series pFq is defined as

pFq(αr; ρt; z) :=
∞∑

n=1

(α1)n . . . (αp)n zn

(ρ1)n . . . (ρp)n n! , (6.149)

where we use the Pochhammer symbols defined in (H.9). Specifically, we have
that the confluent hypergeometric function of the first kind M (H.8) is written

M(a, c; x) = 1F1(a, c; x). (6.150)

In some literature, as [11], the two confluent hypergeometric functions M and
U are denoted Φ and Ψ, respectively.

There is a relation between the confluent hypergeometric function of the
second kind U and the generalized hypergeometric function 2F0 (see 6.6. (3)
[11]):

xαU(α,α − β + 1; x) = 2F0(α,β; −1/x). (6.151)

The Hermite Polynomial Hr(x)

The Hermite polynomials are a special kind of parabolic cylinder functions Dr

with integer index r, these are further related to the confluent hypergeometric
function of the second kind U (see 6.9.2 (32) in [11]):

Hr

(
x√
2

)
= 2 r/2ex2

4 Dr(x) = 2r−1/2x U

(
1
2 − r

2 ,
3
2; x2

2

)

(6.152)

or

Hr(x) = 2 r/2e
χ̂2
2 Dr(

√
2x) = 2rx U

(1
2 − r

2 ,
3
2; x2

)
. (6.153)

6Remember that the Whittaker function W consists of a confluent hypergeometric func-
tion, as explained in Section 6.1.3.
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Using (6.151) we have the identity

Hr(x) = (2x)r
2F0

(1 − r

2 , −r

2; − 1
x2

)
. (6.154)

The Hermite polynomials are also related to the confluent hypergeometric
function of the first kind M = 1F1 (or Φ), but here we need to distinguish
between even and odd r (see 10.13 (17) and (18) [10]):

H2r(x) = (−1)r (2r)!
r! M(−r, 1/2; x2),

H2r+1(x) = (−1)r (2r + 1)!
r! 2xM(−r, 3/2; x2), r = 0, 1, 2, . . . . (6.155)

The Whittaker Function W−r− 1
2 ,s−1(ŷ)

We have first the relationship between W and U , given in (6.76)

Wp,µ(ŷ) = e−ŷ/2ŷµ+ 1
2 U

(
µ − p + 1

2 , 2µ + 1; ŷ
)

. (6.156)

With our parameters we get
W−r− 1

2 ,s−1(ŷ) = e−ŷ/2ŷs−1/2U (r + s, 2s − 1; ŷ) . (6.157)

Using (6.151) we can also relate the function to the generalized hypergeometric
function 2F0:

W−r− 1
2 ,s−1(ŷ) = e−ŷ/2ŷ−r−1/2

2F0

(
r + s, r − s + 2; −1

ŷ

)
. (6.158)

The Modified Bessel Function Kν(z)

The modified Bessel function of the second kind Kν(z) is what potentially
could be the right hand side of our identity sought after. The function is
related to the confluent hypergeometric function of the second kind

Kν(z) =
√
π (2z)νe−zU(ν + 1/2, 2ν + 1; 2z). (6.159)

Ways of Writing the Series of Products

Using the different identities above, we can write the series of products (6.148)
as

∞∑

r=0
C(NA)

k,n′,r(s)Hr(x) W−r− 1
2 ,s−1(ŷ) =

xe−ŷ/2ŷs−1/2
∞∑

r=0
C(NA)

k,n′,r(s)2r U
(1

2 − r

2 ,
3
2; x2

)
U (r + s, 2s − 1; ŷ) =

e−ŷ/2
∞∑

r=0
C(NA)

k,n′,r(s)(2x)r
2F0

(1 − r

2 , −r

2; − 1
x2

)

× ŷ−r−1/2
2F0

(
r + s, r − s + 2; −1

ŷ

)
. (6.160)
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By dividing the sum into an even and an odd part we can use (6.155). Per-
forming this, and writing the Whittaker function as a confluent hypergeometric
function of the second kind, yields

e−ŷ/2ŷs−1/2
[ ∞∑

r=0
C(NA)

k,n′,2r(s)(−1)r (2r)!
r! M(−r, 1/2; x2) U (2r + s, 2s − 1; ŷ) +

+
∞∑

r=0
C(NA)

k,n′,2r+1(s)(−1)r (2r + 1)!
r! 2x M(−r, 3/2; x2) U (2r + 1 + s, 2s − 1; ŷ)

]

.

(6.161)

Transformation of Series of Products

There are numerous published papers on transformations of different kinds
of series involving confluent hypergeometric functions. What is usually the
subject of these papers is that of generating functions. Unfortunately, most
of them treat the first type of function M = 1F1, whereas we would prefer an
identity with at least one function of the second kind U = Ψ. E.g., in [19] one
shows (Eq. 17)

∞∑

r=0

(c − a)r(d − b)r

(c)r(d)rr! M(a, c + r; z)M(b, d + r; z)zr = ez
2F2(a, b; c, d; z).

(6.162)

And in [16] one obtains (Eq. 7)

∞∑

r=0
(−1)r 1

r! (σ − α)r(σ − β)rΓ(−σ − r + α + β)

× M(−r,σ − β; z)M(r + σ − α,β; −x) = Γ(α)Γ(β)
Γ(σ) M(α,σ; z − x). (6.163)

The idea is that if we find a way of doing the r-sum expansion of the products of
the Hermite polynomial and the Whittaker function, it would then determine
the dependence on r in the coefficients C(NA)

k,n′,r(s). This provided of course that
we somehow reach the Eisenstein expression (6.121) or (6.139).

We have tried to make a similar calculation as in [16] including instead a
function U on the left hand side, but without success. Note that we cannot
use the expression (6.163) for two reasons

• Our Whittaker function, which is related to to U , cannot be written as a
linear combination of M , as in (H.8). This since we are interested in the
value s = 3/2 yielding the logarithmic case, see Section H.4, for which
one has to use the integral representation of U (H.20).
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• Assume that we did not have the logarithmic case and we then were
able to use the expression for U (W ) in terms of M . Still, we cannot
divide the summation (6.163) into two parts (one for each M in U),
since the two terms in the relation (H.8) have a different dependence on
the summation variable r and the parameter s. Thereby, we will from
(6.163) predict different r- and s-dependence of the coefficient C(NA)

k,n′,r(s)
when forcing the identity, which is not acceptable.



7
Conclusions

In this thesis we have provided a short route for understanding the significance
of automorphic forms in string theory. There are two faces of the exposition:
the mathematical aspect, i.e., how the calculations are made technically; and
the physical aspect, i.e., in what physical settings do we need the mathematics.
The focus of this thesis was slightly more on the explicit calculations and the
needed mathematical machinery, including most notably: Lie algebra, discrete
Lie groups, Fourier analysis and special functions solving differential equations.

We have examined two different cases in string theory where automorphic
forms are essential. The first one was in ten-dimensional Type IIB superstring
theory where an automorphic form is known to sum up all the quantum correc-
tions to the R4-term in the effective string action, including non-perturbative
contributions from instantons. This case was well-suited as a first acquain-
tance with automorphic forms since, apart from being a well-known fact in the
string theory community, it is not so hard1 to treat from a mathematical point
of view. In the second case, we followed the recent paper [9] where one studies
how an automorphic form could encode the quantum corrections to the hy-
permultiplet moduli space metric in Type IIA superstring theory compactified
on a rigid Calabi-Yau threefold. The goal was here to acquire more insight
into an unsolved subtlety, namely how to determine the unknown non-abelian
Fourier coefficients from the Eisenstein series ESU(2,1;Z[i])

s .
In the introduction, Section 1.4, we began to state the definition of an

automorphic form. We confined ourselves to a certain kind of automorphic
forms, constructed as non-holomorphic Eisenstein series EG(Z)

s . The Eisenstein
series were parameterized on double cosets G(Z)\G/K, so it was crucial to
first study how coset symmetries G/K appear in the physics (more specifically
in supergravity theories) in Chapter 2. A more mathematical treatment of
actions of scalar fields with a coset moduli space G/K were given in Chapter 3,

1By this we mean “not so hard compared with other cases in string theory”.
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where we derived the actions on SL(2,R)/SO(2) and SU(2, 1)/(SU(2)×U(1)),
which were the two coset spaces appearing in the Type IIB case and the
compactified Type IIA case respectively.

In Chapter 4, we explained how the coset symmetries of the classical super-
gravity theories are broken by quantum corrections. As mentioned in Section
1.7, we study the effective string theories valid in the massless limit, i.e., for
a small value of the slope parameter α′. In this case one can make an asymp-
totic expansion of the scattering amplitude (1.17); there is an expansion for
the effective action with corresponding orders in the two parameters α′ and
the string coupling constant gs. The tree-level in both Type IIB superstring
theory, and Type IIA superstring theory compactified on a rigid Calabi-Yau
threefold, corresponded to a supergravity theory for which the scalar fields had
a coset moduli space G/K. Even though this moduli space is unaffected by
quantum corrections in the Type IIB superstring theory, adding higher orders
in gs to Type IIB supergravity still spoils the global SL(2,R)-invariance of the
scalar fields in the theory. We get, for instance, the higher order R4-term,
which does not exhibit the continuous invariance under SL(2,R). However,
due to dualities of the string theory, the effective theory is still invariant un-
der a discrete subgroup SL(2,Z) ⊂ SL(2,R). This was then the reason for the
Eisenstein series ESL(2,Z)

s on SL(2,Z)\SL(2,R)/SO(2) being the coefficient to
R4 in the effective action of Type IIB superstring theory.

For Type IIA superstring theory compactified on a rigid Calabi-Yau three-
fold, there was another story. Here the classical coset moduli space SU(2, 1)/
(SU(2) × U(1)), for the scalar fields: φ, χ, χ̃ and ψ in the hypermultiplet, was
bound to be deformed when adding quantum corrections by stepping further
in the gs-expansion. In [9] they conjectured the quantum corrected theory to
be invariant under the Picard modular group SU(2, 1;Z[i]), and they argued
that an automorphic form constructed as a non-holomorphic Eisenstein se-
ries on SU(2, 1;Z[i])\SU(2, 1)/(SU(2) × U(1)) could hypothetically encode the
quantum corrections to the metric on the moduli space.

To read off the perturbative and non-perturbative terms from the auto-
morphic form in question we needed to rewrite it as a Fourier series. The
general structure of the Fourier series was found using the maximal nilpotent
subgroup N(Z) ⊂ G(Z), as was explained in Section 4.1. To construct the
Eisenstein series we used the lattice method, attributed to Obers and Pio-
line [33], explained in Section 4.2.

In Chapter 5 we found, following [23, 34, 37], the general Fourier series
for the Type IIB case. We explicitly constructed the exact Eisenstein series
ESL(2,Z)

s and identified the coefficients in the Fourier series by rewriting the
Eisenstein series, using e.g., the Poisson resummation formula.

In Chapter 6 we followed [9,34] and found the general Fourier series to the
automorphic form on SU(2, 1;Z[i])\SU(2, 1)/(SU(2) × U(1)). We decomposed
the Fourier series in a constant, abelian and non-abelian part and applied the
laplacian condition to further determine the functional structure of the three
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parts. Specifically, the non-abelian part consisted of a series of products of
Hermite polynomials and Whittaker functions. In Section 6.2 we presented
a way of constructing the Eisenstein series ESU(2,1;Z[i])

s , and decomposing the
series accordingly to the Fourier series. Following [9] we extracted the coeffi-
cients in the constant and the abelian part of the Fourier series. However, the
first loop term in the constant part appeared to have the wrong sign compared
to other existing calculations. We moved quickly over this issue and continued
the pursuit of the Fourier expansion for the Eisenstein series, even though the
physics seemed to tell us that we need another automorphic form to correct
the metric. For the non-abelian part of the Eisenstein series, we could not
connect to the corresponding non-abelian part in the general Fourier series to
find the unknown coefficients C(NA)

k,n′,r(s). We performed a Fourier transform to
get to the correct basis, although we had to assume that different summation
variables were to be identified. In particular, we needed the integral over n
in some way to equal a summation over shifted integers as in the non-abelian
part of the Fourier series.

Finally, in Section 6.5 we tried to perform the summation of the product
of Hermite polynomials and Whittaker functions by finding a similar identity
in the mathematics literature. Such an identity could provide us with more
clues of how to perform the non-trivial summations in the non-abelian part
of the Eisenstein series. We had no success in finding this identity, however,
we pointed out a few facts about the relations between the different special
functions.
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A
A Touch of Lie Algebra

For a more thorough explanation of the following, the reader is referred to [21]
and [27].

A.1 The Chevalley-Serre Presentation
For any finite-dimensional, semi-simple Lie algebra g over the complex field
there is a so-called Chevalley-Serre presentation. For a rank r algebra this
presentation consists of 3r basic elements

{ei, f i, hi|i = 1, 2, . . . , r}. (A.1)

The superscript i refers to the simple root α(i) ∈ Φs, where Φs is the set of
simple roots of g. Each triple building block {ei, f i, hi} makes up an own
sl(2,R)-algebra with the commutation relations

[ei, f i] = hi, [hi, ei] = 2ei, [hi, f i] = −2f i. (A.2)

The Chevalley relations show how the sl(2,R)-algebras are intertwined with
one another

[hi, hj ] = 0
[hi, ej ] = Ajiej

[hi, f j ] = −Ajif j

[ei, f j ] = δijhi, i, j = 1, 2, . . . , r. (A.3)

The intertwining is encoded in the r ×r-matrix with integer entries Aij, called
the Cartan matrix. The Cartan matrix contains all important information of
the algebra. The rows of the Cartan matrix coincide with the components of
the simple roots in the Dynkin basis

Aij = (α(i))j . (A.4)
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It is the off-diagonal elements of Aij that tells us how the different sl(2,C)
“talk” to one other. E.g., in the case

Aij =
(

2 0
0 2

)

(A.5)

we have two separate sl(2,C) with no connection. This algebra is simply

sl(2,C) ⊕ sl(2,C).

Whereas for example the algebra sl(3,C), which will be treated in Appendix
C, has a Cartan matrix

Aij =
(

2 −1
−1 2

)

. (A.6)

The complete Chevalley-Serre presentation finally consists of the Serre
relations

1−Aji times︷ ︸︸ ︷
[ei, . . . , [ei, ej ] = 0,

1−Aji times︷ ︸︸ ︷
[f i, . . . , [f i, f j ] = 0, (A.7)

which also depends on the Cartan matrix. We can generate all elements in g
from multiple Lie brackets and linear combinations of the basic elements (A.1).
The Serre relations (A.7) then puts constraints on the multiple Lie brackets,
and for certain Cartan matrices this makes the algebra finite-dimensional.
Note that, e.g., the infinite-dimensional Kac-Moody algebras are also com-
patible with the Chevalley-Serre presentation, but with other restrictions on
the Cartan matrix. The Kac-Moody algebras can be defined and constructed
with finitely many base-triples (sl(2,C)-algebras); all its additional elements
are obtained by multiple commutations of these fundamental elements. It
would not be possible to write down the infinite-dimensional algebras in the
more standard way

[Ti, Tj ] = fij
kTk,

because we would need infinitely many structure constants fij
k. We will see

an explicit example of the multiple commutators when treating sl(3,C) in
Appendix C.

As an example, the Cartan matrix for the matrix Lie algebra sl(r + 1,C),
with r ≥ 1, is

Ar = sl(r + 1,C) : Aij =





2 −1 0 . . . 0 0
−1 2 −1 . . . 0 0
0 −1 2 . . . 0 0
...

...
... . . . ...

...
0 0 0 . . . 2 −1
0 0 0 . . . −1 2





. (A.8)
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From the Chevalley-Serre presentation one sees the important fact that
the Lie algebra g, as a vector space, can be decomposed as

g = g+ ⊕ h ⊕ g− (A.9)

called the triangular decomposition1 of g. Here the subspaces g+ and g− are
generated solely by ei- and f i-elements respectively, and they are nilpotent
subalgebras. h is an abelian subalgebra called the Cartan subalgebra consisting
of linear combinations of the hi-elements. We can also write

g =
r⊕

i=1
Cei ⊕

r⊕

i=1
Chi ⊕

r⊕

i=1
Cf i. (A.10)

For the matrix algebras that we will treat in this thesis, this decomposition
simply states that a general element in the algebra can be written as a sum of
an upper triangular, a diagonal and a lower triangular matrix.

By definition, a positive root that can be written as a linear combination of
the simple roots α(i) with positive integer coefficients. All elements in g+ are
then associated with a positive root, since, firstly we have that the Chevalley
basis step-operators ei are associated to a simple root each, and secondly
all elements generated by multiple Lie brackets of the positive step-operators
have a root that is a sum of the simple roots with positive integer coefficients.
E.g., pick two Chevalley basis elements e1 and e2 in an algebra for which the
commutator [ei, ej ] is non-zero. We then have for a Cartan subalgebra element
hk:

[hk, [ei, ej ]] = −[ei, [ej , hk]] − [ej , [hk, ei]] =
= (α(j))k[ei, ej ] − (α(i))k[ej , ei] = (α(i) + α(j))k[ei, ej ], (A.11)

using the Jacobi identity

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0, ∀x, y, z ∈ g, (A.12)

which is by definition satisfied by all Lie algebras g. The set of all positive
roots is denoted as Φ+. Correspondingly, the above definition for positive roots
holds for the negative roots, interchanging positive to negative everywhere.
The elements in the subalgebra g− are then associated to the negative roots
Φ−.

A.2 Real Forms
The above presentation is made to classify all complex semi-simple Lie alge-
bras, that is, Lie algebras with a base field C. The reason for this relies on the
fact that the complex field is algebraically closed, i.e., any algebraic equation
has a solution in the base field in contrast with the real numbers R. When

1Also Gauss decomposition or Cartan decomposition.
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choosing linearly independent elements of an algebra g that make up a diago-
nal basis for the whole algebra, like the elements hi above, we must require the
eigenvalues to the adjoint action of hi to be elements in the base field. Since
we get the eigenvalues from a characteristic equation, which is an algebraic
equation, we need an algebraically closed base field.

In physics one more often deals with the real Lie algebras; real Lie group
symmetries show up since the physical fields are often real. Luckily, we can
use the knowledge from the complex semi-simple Lie algebras to relate to
the real Lie algebras in a special way. Taking a look at the relations (A.3)
we see that all eigenvalues that are encoded in the Cartan matrix are real;
actually, as was mentioned before, they are even integers in this basis. This
implies that we can restrict ourselves to a real algebra from a complex one in
the Chevalley-Serre presentation by just choosing the base field to be R and
keeping the step-operators and Cartan subalgebra generators. The triangular
decomposition (A.10) becomes

gnormal =
r⊕

i=1
Rei ⊕

r⊕

i=1
Rhi ⊕

r⊕

i=1
Rf i. (A.13)

E.g., from sl(n,C) we would get sl(n,R). This real Lie algebra is called the
normal2 real form of the corresponding complex algebra.

By definition, a real form h of a complex simple Lie algebra g is a real
algebra whose complexification hC is isomorphic to g. The complexification is
defined as

hC := h ⊕ ih, (A.14)

where we now consider the algebra as a real vector field. The real dimension
of the real form is then half the real dimension of the complex algebra. The
isomorphism hC 0 g is equivalent to the statement that all elements z ∈ g can
uniquely be written as z = x + iy with x, y ∈ h.

A complex semi-simple Lie algebra has in general several different real
forms. The normal real form above is always one of them, and this algebra
corresponds to a Lie group that is as far as possible from being compact.
Moreover, there is always a so-called compact real form, which has a negative
definite Killing form, in an appropriate basis

Bab = −δab. (A.15)

As an example, sl(2,C) has two real forms: the compact real form su(2) and
the non-compact normal real form sl(2,R). In Appendix C we will treat the
real forms of sl(3,C): sl(3,R), su(3) and su(2, 1).

Just as one classifies the complex semi-simple algebras with Dynkin dia-
grams there is a corresponding classification of the real forms with help of the
so-called Satake diagrams. However, these diagrams will not be treated here.

2Sometimes also called the split real form.



A.3 Involutive Automorphisms 83

One can show that the real forms are obtained with help of so-called involutive
automorphisms, or involutions, on the algebra. These automorphisms will be
explained more in the next section. The Satake diagrams gives information
about these involutions.

A.3 Involutive Automorphisms
An automorphism ω of a Lie algebra g is an isomorphic map from g to itself.
That is, it is one-to-one and onto (bijection). It further respects the Lie algebra
structure, i.e.

ω([x, y]) = [ω(x),ω(y)], ∀x, y ∈ g. (A.16)

The set of all automorphisms of g is denoted Aut(g), and one can show that
this is indeed a group with the composition of maps as composition rule. We
denote multiple compositions of an automorphism by

ωn :=
n times︷ ︸︸ ︷

ω ◦ ω ◦ . . . ◦ ω . (A.17)

It can be the case that for an automorphism ω it holds that

ωN = Id, for some N ∈ N. (A.18)

The automorphism is then called finite and of order N (pick smallest possible
natural number). If N does not exist, the automorphism is naturally called
infinite.

We will interest ourselves with a special type of automorphisms called
involutions. These are of order two, i.e.,

ω2 = Id. (A.19)

Now, any element x in g can be decomposed into a part invariant x(0) and
anti-invariant x(1) under the involution ω, as

x = x(0) + x(1) = 1
2(x + ω(x)) + 1

2(x − ω(x)). (A.20)

This shows that we can decompose the whole algebra as a vector space into
two subsets with eigenvalues ±1 under the involution

g = g(0) ⊕ g(1). (A.21)

In this decomposition only g(0) with eigenvalue 1 is a subalgebra, called the
fixed point algebra of ω, as we will now show. Any element in g(0) can be
written as x + ω(x) where x is some element in g, let us take the Lie bracket
of two arbitrary elements in g(0):

[x + ω(x), y + ω(y)] = [x, y] + [x,ω(y)] + [ω(x), y] + [ω(x),ω(y)]. (A.22)
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The resulting element is also invariant under ω as can be seen by using the
property (A.16). So, g(0) is closed under commutations and is therefore a sub-
algebra of g. However, doing the same calculation for two arbitrary elements
in g(1) yields

[x − ω(x), y − ω(y)] = [x, y] + [y,ω(x)] + [ω(y), x] + [ω(x),ω(y)], (A.23)

and we see that this resulting element is also invariant under ω. This tells us
that the subset g(1) is not a subalgebra since it does not close. Furthermore,
the commutation of one element in g(0) and one in g(1) yields an element in
g(1), so we have the following bracket relations

[g(0), g(0)] ⊆ g(0), [g(0), g(1)] ⊆ g(1), [g(1), g(1)] ⊆ g(0). (A.24)

As a side remark, it generally holds for automorphisms of order N that they
decompose the Lie algebra into N eigenspaces of the automorphism (this is
a ZN -gradation of the algebra), and of these, only the invariant subset with
eigenvalue 1 is a subalgebra.

If we have that g is an algebra over R, we can with the subsets g(0) and
g(1) form another real algebra by the vector space direct sum

r := g(0) ⊕ ig(1). (A.25)

This is an algebra since we have that it closes under the Lie bracket

[g(0) ⊕ ig(1), g(0) ⊕ ig(1)] =
= [g(0), g(0)] + [g(0), ig(1)] + [ig(1), g(0)] + [ig(1), ig(1)] = g(0) ⊕ ig(1), (A.26)

where in the last equality we have used the commutation relations (A.24). It
is also a subalgebra of the complexification of g

gC = g ⊕ ig. (A.27)

One can then show that all real forms of gC are obtained by considering
all possible involutions of gC. There is a theorem that says that the finite-
dimensional semi-simple Lie algebras are in a one-to-one correspondence with
pairs (h,ω), where h is a finite-dimensional semi-simple complex Lie algebra,
and ω an involution of h [21].

A.4 Cartan Decomposition
For all semi-simple Lie algebras g0 over R there is a unique decomposition

g0 = k0 ⊕ p0, (A.28)

called the Cartan decomposition, where k0 is a maximal compact subalgebra
of g0 and p0 is a vector subspace. For a proof see [27]. The decomposition
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is accomplished by using an involution τ called the Cartan involution. Thus,
τ decomposes the algebra as in the general case (A.21). Here k0 is invariant
under τ and p0 has eigenvalue −1, i.e.,

τ(k) = k, τ(p) = −p, k ∈ k0, p ∈ p0. (A.29)

The Killing form

Bτ (x, y) = −B(x, τ(y)) (A.30)

has the property of being strictly positive definite showing that the subalgebra
k0 has a negative definite Killing form and is thus compact. In fact an involu-
tive automorphism of a Lie algebra is by definition a Cartan involution if the
bilinear form (A.30) is strictly positive definite.

The Cartan decomposition will be essential for us when constructing the
symmetric coset spaces. We want to divide a specific Lie group by its maximal
compact group and this group is obtained by exponentiation of the maximal
compact algebra to the corresponding Lie algebra. The realization of the
Cartan involution of the algebra elements is derived from the root system. In
our cases we are interested in the two types of algebras sl(2,R) and sl(3,C),
in the latter case we will use the the Cartan involution again on the real form
su(2, 1). For sl(2,R), and in fact for all algebras sl(n,R), the Cartan involution
act as

τ(x) = −xT, x ∈ sl(2,R). (A.31)

For sl(3,C), and for all sl(n,C), it acts on algebra elements as

τ(x) = −x†, x ∈ sl(3,C). (A.32)

In the specific case when considering the Cartan involution acting on a split
real form, it is also called the Chevalley involution. Loosely speaking, one can
say that the Cartan involution picks out the compact part of an algebra.

A.5 Iwasawa Decomposition
It is possible to combine the Cartan decomposition of a real semi-simple Lie al-
gebra with the triangular decomposition (A.9) of its complexification, thereby
yielding the Iwasawa decomposition. Starting with the Lie algebra g0 of a
connected semi-simple real Lie group G, the decomposition reads

g0 = n0 ⊕ a0 ⊕ k0, (A.33)

where n0 is a nilpotent subalgebra, a0 is an abelian subalgebra (the maxi-
mal abelian subalgebra of p0 in the Cartan decomposition (A.28)) and k0 is
the maximal compact subalgebra to g0 given by the Cartan involution. The
proof is lengthy, see for instance [27]. In practice, for the matrix groups we
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are dealing with, we choose a0 to consist of diagonal matrices and n0 as up-
per triangular matrices (positive step-operators with respect to the abelian
subalgebra generators).

On the Lie group level the decomposition reads

G = NAK, (A.34)

where then the subgroups N, A and K are derived from exponentiating the
subalgebras n0, a0 and k0 respectively. Note that the decomposition could
equally well be made as G = KAN; we choose the decomposition (A.34)
because it fits with our choice of right cosets G/K in this thesis.

For general linear matrix groups G = GLn(R) the nilpotent subgroup
can be represented by an upper triangular matrix, the abelian subgroup by a
diagonal matrix and the maximal compact group by an orthogonal matrix.



B
SL(2,R)

We review some of the properties of the group SL(2,R), its algebra sl(2,R)
and the coset space SL(2,R)/SO(2). The group SL(2,R) is the group of two-
by-two matrices with real elements and unit determinant

A =
(

a b
c d

)

, ad − bc = 1, a, b, c, d ∈ R (B.1)

It is a three-dimensional, non-compact Lie group. To find the generators J i

of the Lie algebra sl(2,R) we use

A = exp(αiJ
i), (B.2)

together with the unit determinant condition

1 = det A = det(expαiJ
i). (B.3)

Specifically, we can choose an element A that equals the exponentiation of just
one generator: A = exp(αJ (a)). Then, we have for that particular element
that

det(1 + αJ + 1
2α

2J2 + ...) = det U−1 det(1 + αD + 1
2α

2D2 + ...) det U =

= exp(α(λ1 + λ2)) = 1, (B.4)

where we have diagonalized J = U−1DU and gained the eigenvalues λ1 and
λ2. This implies λ1 + λ2 = 0 =⇒ Tr J = 0. Thus, the generators are
two-by-two, linearly independent, traceless matrices with real elements.
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There is a particularly nice choice of basis

e =
(

0 1
0 0

)

f =
(

0 0
1 0

)

h =
(

1 0
0 −1

)

, (B.5)

which is the Chevalley basis, see (A.3). It is the same basis as for sl(2,C); recall
from Appendix A that sl(2,R) is nothing but the split real form of sl(2,C).
The generators e and f play the role of ladder operators and the generator h
forms the abelian Cartan subalgebra, which in this case is one-dimensional.
The commutation relations are

[e, f ] = h

[h, e] = 2e

[h, f ] = −2f. (B.6)

B.1 The Maximal Compact Subgroup of SL(2,R)
In Section A.4, we saw that we can use the Cartan involution τ to decompose
a semi-simple real Lie algebra into a maximal compact subalgebra and an
anti-invariant subset

g0 = k0 ⊕ p0 with
k0 = {x ∈ g0|τ(x) = x} and
p0 = {x ∈ g0|τ(x) = −x}.

The Cartan involution of sl(2,R) acts on the algebra elements as τ(x) = −xT.
Acting on the basis generators (B.5) we get

τ(e) = −f, τ(f) = −e, τ(h) = −h. (B.7)
Now, we want to find the maximal compact part k0, which is invariant under
the involution. By inspection we see that the element e − f is fixed by τ and
we have

e − f =
(

0 1
−1 0

)

∈ so(2). (B.8)

In fact, e−f is a generator of so(2) and so this algebra is the maximal compact
subalgebra of sl(2,R). The Cartan decomposition of sl(2,R) thus reads

sl(2,R) = R(e − f) ⊕ (Rh ⊕ R(e + f)). (B.9)
We can explicitly verify that the anti-invariant part p = Rh ⊕ R(e + f) is not
a subalgebra since it does not close [h, e + f ] = 2(e − f) ∈ so(2).

Exponentiating the maximal compact subalgebra we get that the maximal
compact subgroup of SL(2,R) is SO(2) 0 U(1).
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B.2 Iwasawa Decomposition of SL(2,R)
The Iwasawa decomposition of the algebra reads

sl(2,R) = Re ⊕ Rh ⊕ so(2). (B.10)

For the Lie group we have then

SL(2,R) = NAK = eReeRheR(e−f). (B.11)

Now, to form a coset representative V for the two-dimensional coset SL(2,R)/
SO(2) we can simply put K = Id. We get

V = eχee− φ
2 h =

(
1 χ
0 1

) (
e− φ

2 0
0 eφ

2

)

=
(

e− φ
2 χeφ

2

0 eφ
2

)

. (B.12)

This particular choice of an upper triangular matrix is called the Borel gauge.
We could in fact just as well have chosen V in a lower triangular form instead.
The two parameters χ and φ are the axion field and the dilaton field respec-
tively when identifying this coset representative in the Type IIB superstring
theory.



C
SU(2, 1)

In this appendix we will review the basics of the Lie group SU(2, 1), its Lie
algebra su(2, 1) and the coset formed by dividing out the maximal compact
subgroup. It will be similar to the previous section, the difference being that
SU(2, 1) is a more complicated group and things will be less trivial. SU(2, 1)
is the group of 3 × 3-matrices with complex entries preserving the metric

G =




1 0 0
0 1 0
0 0 −1



 , (C.1)

i.e., for A ∈ SU(2, 1) we have

A†GA = G. (C.2)

This relation already implies |det A| = 1. One picks det A = +1 for the
“special” group. The dimension for the group is 32 − 1 = 8. We can make a
change of basis with a similarity transformation acting on both sides of (C.2)

SA†GAS−1 = SA†S−1SGS−1SAS−1 = SGS−1, det S ;= 0. (C.3)

When we let A −→ SAS−1, the new metric that is preserved is exactly SGS−1.
Knowing that the determinant and the trace is preserved in the similarity
transformation, we can schematically state what other different types of met-
rics we can transform to from the one above (C.1)




0 0 −1
0 1 0

−1 0 0



 ,




0 0 1
0 1 0
1 0 0



 and




0 0 −i
0 1 0
i 0 0



 . (C.4)

Elements in the Lie algebra su(2, 1) will be traceless due to the unit de-
terminant condition as was shown in the previous section. We get additional
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information from the constraint (C.2). Consider an element in the group near
the identity element to the first order

A = eαX ≈ + αX, α ∈ R, X ∈ su(2, 1). (C.5)

Plugging this into (C.2) gives

A†GA = ( + αX†)G( + αX) = G + αX†G + GαX + O(α2) = G

=⇒ X†G + GX = 0. (C.6)

At this point one could use (C.6) and the traceless condition to find eight
linearly independent generators for the group. But we will instead use our
knowledge of the Chevalley-Serre presentation in Appendix A, and the con-
nection to real forms from complex algebras. This is more enlightening from
an algebraic point of view. It turns out that su(2, 1) is actually one of the
three real forms of sl(3,C), the other two being su(3) and sl(3,R). Since the
Chevalley basis for sl(3,C) is straightforward to derive knowing the basis for
sl(2,C), as we will see below, it is natural to begin with sl(3,C) and then
find the generators to su(2, 1) through a certain involution. With help of the
Cartan involution we will also be able to derive the maximal compact algebra
to both sl(3,C) and su(2, 1), as we saw in Appendix B. It turns out that
the maximal compact subgroup of SU(2, 1) is SU(2)×U(1). Furthermore, us-
ing the Iwasawa decomposition as in (B.10), we will be able to construct the
coset space SU(2, 1)/(SU(2)×U(1)). I am grateful to D. Persson for giving me
important insights and lending me his precious notes on SU(2,1).

C.1 Chevalley Basis for sl(3,C)
As stated in Appendix A we have in general that a complex semi-simple Lie
algebra g in the Chevalley basis has generators satisfying the following com-
mutation relations1:

[ei, fj ] = δijhj ,

[hi, ej ] = Aijej ,

[hi, fj ] = −Aijfj,

[hi, hj ] = 0. (C.7)

The indices i and j run from 1 to r = Rank(g). The algebra sl(3,C) is a natural
extension of sl(2,C); it is simply two sl(2,C)-algebras intertwined together.
I.e., it consists of two base triples {ei, fi, hi} (i = 1, 2) and has rank 2, but
moreover we get two additional step-operators e3 and f3 from commuting the
step-operators included in the base triples, e.g., e3 = [e1, e2]. In total we have

1Unlike in Appendix A we will now use subscript indices.
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eight generators2. The Cartan matrix for sl(3,C) is

Aij =
(

2 −1
−1 2

)

. (C.8)

Note that the additional generators e3 and f3 are not included in the com-
mutation relations (C.7). These relations only tell us how the base-triples
commute, but they are included in the Serre relations (A.7).

The natural matrix realization of sl(3,C) in the Chevalley basis is

h1 =




1 0 0
0 −1 0
0 0 0



 , h2 =




0 0 0
0 1 0
0 0 −1



 ,

e1 =




0 1 0
0 0 0
0 0 0



 , e2 =




0 0 0
0 0 1
0 0 0



 , e3 =




0 0 1
0 0 0
0 0 0



 ,

f1 =




0 0 0
1 0 0
0 0 0



 , f2 =




0 0 0
0 0 0
0 1 0



 , f3 =




0 0 0
0 0 0
1 0 0



 . (C.9)

One can easily verify that these matrices indeed satisfy the algebra commuta-
tion conditions (C.7). We have thus decomposed the algebra as

sl(3,C) =
3∑

i=1
Cfi ⊕

2∑

i=1
Chi ⊕

3∑

i=1
Cei. (C.10)

C.2 The Real Forms of sl(3,C)
For completeness, we explain how we get all the three real forms of sl(3,C).
But remember that this appendix is first and foremost devoted to the group
SU(2, 1) and its Lie algebra su(2, 1).

C.2.1 sl(3,R)
The easiest real form to derive is the normal form sl(3,R), since, as we have
seen before, it is practically given when we know the basis of sl(3,C):

sl(3,R) =
3∑

i=1
Rfi ⊕

2∑

i=1
Rhi ⊕

3∑

i=1
Rei, (C.11)

with the same generators as above (C.9).
2We do not get any more generators because further commutation with the additional

step-operators give zero.
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C.2.2 su(3)
The algebra su(3) is a compact real form of sl(3,C). It is derived using the
Cartan involution τ (A.32) on sl(3,C) acting on the elements x ∈ sl(3,C) as

τ(x) = −x†. (C.12)

The realization on the elements in the basis (C.9) is as follows:

τ(h1) = −h1, τ(h2) = −h2,

τ(e1) = −f1, τ(e2) = −f2, τ(e3) = −f3,

τ(f1) = −e1, τ(f2) = −e2, τ(f3) = −e3, (C.13)

and importantly it acts on complex numbers as a complex conjugation, i.e.,

τ(i) = −i so e.g. τ(ie3) = if3. (C.14)

As required of an automorphism of the algebra, the involution preserves the
commutation relations (C.7), e.g., τ(e3) = −f3 is consistent because τ(e3) =
σ([e1, e2]) = (−1)2[f1, f2] = −f3. There are eight linearly independent opera-
tors that are fixed under τ , namely

ih1, ih2, e1 − f1, e2 − f2, e3 − f3, i(e1 + f1), i(e2 + f2) and i(e3 + f3).

The fact that they are fixed under τ , i.e. X = −X†, is exactly the condition on
the generators of su(3) that we can derive using the standard matrix definition
of SU(3),3 cf. (C.5) and (C.6). Thus

su(3) =
2∑

i=1
Rihi ⊕

3∑

i=1
R(ei − fi) ⊕

3∑

i=1
Ri(ei + fi). (C.15)

C.2.3 su(2, 1)
We merely state the third possible involution4 σ on sl(3,C), and show that
the elements fixed by this particular σ really is a basis for the algebra su(2, 1)
(using real parameters). Our σ acts on the Chevalley basis generators as
follows:

σ(h1) = h2, σ(h2) = h1,
σ(e1) = e2, σ(e2) = e1, σ(e3) = −e3,

σ(f1) = f2, σ(f2) = f1, σ(f3) = −f3, (C.16)
3Note that we normally work with Hermitian generators (operators), i.e., x = x†, which

is an important property in quantum mechanics. This comes from the fact that we write
elements in the group as eiαX instead of eαX .

4It can be shown that there are only three possible involutions of sl(3,C) giving its real
forms.
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and just like τ in the previous section, σ acts as a complex conjugation on
numbers σ(i) = −i. We can form eight linearly independent generators H1,
H2, X1, X2, X3, Y1, Y2 and Y3 that are fixed under σ

H1 = h1 + h2, H2 = i(h1 − h2)

X1 = e1 + e2, X2 = i(e1 − e2), X3 = ie3

Y1 = f1 + f2, Y2 = i(f1 − f2), Y3 = if3. (C.17)

Using the realization (C.9) we write the generators explicitly

H1 =




1 0 0
0 0 0
0 0 −1



 , H2 =




i 0 0
0 −2i 0
0 0 i



 ,

X1 =




0 1 0
0 0 1
0 0 0



 , X2 =




0 i 0
0 0 −i
0 0 0



 , X3 =




0 0 i
0 0 0
0 0 0



 ,

Y1 =




0 0 0
1 0 0
0 1 0



 , Y2 =




0 0 0
i 0 0
0 −i 0



 , Y3 =




0 0 0
0 0 0
i 0 0



 . (C.18)

We have eight linearly independent 3 × 3-matrices in agreement with what is
demanded of a basis for su(2, 1). However, to see that the algebra actually is
su(2, 1), we must also verify that the constraint (C.6) is satisfied when writing
an element ξ in the basis (C.18) with parameters: h1, h2, x1, x2, x3, y1, y2, y3 ∈
R, i.e.,

ξ = h1H1 + h2H2 + x1X1 + x2X2 + x3X3 + y1Y1 + y2Y2 + hY3 =

=




h1 + ih2 x1 + ix2 ix3
y1 + iy2 −2ih2 x1 − ix2

iy3 y1 − iy2 −h1 + ih2



 . (C.19)

Here an important question immediately pops up. What kind of metric G
should we use in the equation (C.6), i.e., what metric G fits together with
our newly found basis (C.18)? As was mentioned before, we could perform a
similarity transformation and get different kinds of representations of the same
group, preserving different kinds of metrics. This freedom manifests itself in
this context as different ways of defining the involution σ, and different ways
of realizing the algebra. There is nothing that says that G must be the natural
metric (C.1). In fact, with our choice of realization (C.9) and involution (C.16),
the basis (C.18) turns out to satisfy

ξ†G + Gξ = 0 for G =




0 0 −1
0 1 0

−1 0 0



 . (C.20)
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This shows that the real form of sl(3,C) formed by considering the fixed
elements under the involution σ, as stated in (C.16), is indeed the algebra
su(2, 1). A set of generators is given explicitly in (C.18). If we are interested
in another basis, we just make a similarity transformation ξ → SξS−1 and
G → SGS−1.

C.3 The Maximal Compact Subgroup of SU(2, 1)
We derive the subgroup from the algebra. The maximal compact subalgebra
k0 is defined as the subset of su(2, 1), fixed under the Cartan involution τ that
we used to derive su(3) above (remember that the Cartan involution selects
the compact part of an algebra):

k0 = {x ∈ su(2, 1) | τ(x) = x}. (C.21)

Using the knowledge of how τ acts on the original basis generators, see (C.13)
and (C.14), we can derive how it acts on the basis generators (C.17) for su(2, 1):

τ(H1) = −H1, τ(H2) = H2,
τ(X1) = −Y1, τ(X2) = Y2, τ(X3) = Y3,

τ(Y1) = −X1, τ(Y2) = X2, τ(Y3) = X3. (C.22)

It is straightforward to form all possible linearly independent invariant and
anti-invariant combinations of the generators (the two Cartan generators are
trivially already invariant and anti-invariant respectively). These are

H2,

K1 = X1 − Y1,

K2 = X2 + Y2,

K3 = X3 + Y3 (C.23)

and

H1,

P1 = X1 + Y1,

P2 = X2 − Y2,

P3 = X3 − Y3. (C.24)

The Cartan decomposition reads

su(2, 1) = k0 ⊕ p0 =
(

RH2 ⊕
3∑

i=1
RKi

)

⊕
(

RH1 ⊕
3∑

i=1
RPi

)

. (C.25)

We are interested in the maximal compact subalgebra

k0 = RH2 ⊕
3∑

i=1
RKi. (C.26)
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To reveal what this is, we calculate the commutation relations between the
basis elements. This can be done by using either the commutation relations
for the original basis elements for sl(3,C), see (C.7), or by using the matrix
realization (C.18) and calculate explicitly. It turns out that the commutation
relations are

[H2, K1] = 3K2 [K3, K1] = −K2

[H2, K2] = −3K1 [K3, K2] = K1

[H2, K3] = 0 [K1, K2] = 2(H2 − K3).

No generator is diagonal in this basis and we cannot directly tell anything
about the algebra from these relations. We have to make a suitable change of
basis, and a particularly good one is as follows:

ũ = 1
2K3 + 1

6H2

k̃1 = 1
2(H2 − K3)

k̃2 = 1√
2

K1

k̃3 = 1√
2

K2. (C.27)

The commutation relations for the new basis elements are

[ũ, k̃i] = 0,
[
k̃i, k̃j

]
= 2εijkk̃k, i, j, k = 1, 2, 3.

Firstly, we see that since ũ commutes with all other basis elements, i.e., it
is an independent algebra. The algebra is u(1) since ũ = −ũ†, which is the
constraint on generators to a unitary group. Secondly, {k̃1, k̃2, k̃3} is a basis
to su(2) since the commutation relations are fulfilled and also the constraints
Tr(k̃i) = 0 and k̃i = −k̃†

i . I.e.,

k0 = u(1) ⊕ su(2). (C.28)

Finally, to get the maximal compact subgroup K to SU(2, 1) we just exponen-
tiate the maximal compact subalgebra k0

K = eRũe
∑3

i=1 Rk̃i = U(1) × SU(2). (C.29)

C.4 Another Basis for su(2, 1)
In the second case treated in this thesis, when we study Type IIA superstring
theory compactified on a rigid Calabi-Yau threefold, it turns out that we
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should use another basis for su(2, 1) than the derived (C.18). Namely, one
preserving instead the metric

G =




0 0 −i
0 1 0
i 0 0



 . (C.30)

The similarity transformation matrix S, taking us to this basis from the one
derived above, is

S =




1 0 0
0 1 0
0 0 −i



 , S−1 =




1 0 0
0 1 0
0 0 i



 . (C.31)

Acting on the generators (C.18) (as SXS−1), we get the new generators (the
Cartan generators are obviously unchanged)

H1 =




1 0 0
0 0 0
0 0 −1



 , H2 =




i 0 0
0 −2i 0
0 0 i



 ,

X(1) =




0 1 0
0 0 i
0 0 0



 , X̃(1) =




0 i 0
0 0 1
0 0 0



 , X(−2) =




0 0 −1
0 0 0
0 0 0



 ,

Y(−1) =




0 0 0
1 0 0
0 −i 0



 , Ỹ(−1) =




0 0 0
i 0 0
0 −1 0



 , Y(2) =




0 0 0
0 0 0
1 0 0



 , (C.32)

where we have now for convenience chosen to let the subscript be the eigenvalue
of the generator in question when taking the Lie bracket with the non-compact
Cartan generator H1, e.g., [H1, X(−2)] = −2X(−2). Finally, to get to the right
basis we need only to make a linear combination of the step-operators X(1)
and X̃(1) as well as a sign change of X(2) (the same goes for the operators Y ):

X(1) =

(0 −1 + i 0
0 0 1 − i
0 0 0

)
, X̃(1) =

(0 1 + i 0
0 0 1 + i
0 0 0

)
, X(2) =

(0 0 1
0 0 0
0 0 0

)
,

Y(−1) =

( 0 0 0
1 + i 0 0

0 −1 − i 0

)
, Ỹ(−1) =

( 0 0 0
−1 + i 0 0

0 −1 + i 0

)
, Y(−2) =

( 0 0 0
0 0 0

−1 0 0

)
.

(C.33)

We do not bother renaming the generators; these are the ones which we will
use henceforth.

C.5 Iwasawa Decomposition of SU(2, 1)
We now invoke the Iwasawa decomposition (B.10) of SU(2, 1) to construct a
coset representative for SU(2, 1)/(SU(2) × U(1)). The algebra is decomposed
as

su(2, 1) = n0 ⊕ a0 ⊕ k0, (C.34)
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where n0 is the nilpotent subalgebra, which we choose to consist of the pos-
itive step-operators {X(1), X̃(1), X(2)}, a0 is the non-compact abelian Cartan
subalgebra spanned by H1 and k0 = su(2) ⊕ u(1) is the maximal compact sub-
algebra derived in Section C.3. We can directly verify that this decomposition
is legitimate by just counting the number of linearly independent generators,
which is eight as it should be.

Now, a coset representative V for SU(2, 1)/(SU(2) × U(1)) is formed, as
in Section B.2, by throwing away the compact part and exponentiating only
n0 ⊕ a0:

V = NA = eχX(1)+χ̃X̃(1)+2ψX(2) e−φH1 φ,χ, χ̃,ψ ∈ R. (C.35)

The parameters (fields), in particular the factor 2 with ψ, are chosen to fit
with the physics. The axion fields are: χ, χ̃ and ψ, while φ is the dilaton as
usual. We calculate V explicitly by using the representation (C.33) (with H1
from (C.32)):

V = exp(Ξ) exp








−φ 0 0
0 0 0
0 0 φ







 , (C.36)

where we have put

Ξ = χ




0 −1 + i 0
0 0 1 − i
0 0 0



 + χ̃




0 1 + i 0
0 0 1 + i
0 0 0



 + 2ψ




0 0 1
0 0 0
0 0 0



 =

=




0 χ(−1 + i) + χ̃(1 + i) 2ψ
0 0 χ(1 − i) + χ̃(1 + i)
0 0 0



 .

We have

Ξ2 =




0 0 2i(χ2 + χ̃2)
0 0 0
0 0 0



 , (C.37)

and Ξ3 = 0. Since eΞ = + Ξ + 1
2Ξ2 + O(Ξ3) we get

V =




1 χ(−1 + i) + χ̃(1 + i) 2ψ + i(χ2 + χ̃2)
0 1 χ(1 − i) + χ̃(1 + i)
0 0 1








e−φ 0 0
0 1 0
0 0 eφ



 =

=




e−φ −χ + χ̃ + i(χ + χ̃) eφ(i(χ2 + χ̃2) + 2ψ)
0 1 eφ(χ + χ̃ + i(−χ + χ̃))
0 0 eφ



 , (C.38)

which is our coset representative in the Borel gauge.
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C.6 The Coset Space SU(2, 1)/(SU(2) × U(1))
Although we will not delve into this topic in this thesis, see instead [9], one
can show that the coset SU(2, 1)/(SU(2) × U(1)) is isomorphic to the complex
hyperbolic upper half plane5

CH2 ∼= SU(2, 1)/(SU(2) × U(1)), (C.39)
parameterized by (z1, z2) ∈ C2, and obeying the following constraint

F(z1, z2) ≡ &(z1) − 1
2 |z2|2 > 0, (C.40)

where F is called the height function. The relation between the complex
variables and the real variables used above is

z1 = 2ψ + i
(
e−2φ + χ2 + χ̃2

)

z2 = χ + χ̃ + i(χ̃ − χ). (C.41)
An important property of the coset is that it is a quaternionic-Kähler manifold,
as was mentioned in Section 2.2, and it is Kähler with the Kähler potential

K(z1, z2) = −log(F(z1, z2)). (C.42)

C.7 Heisenberg Translations
The nilpotent subgroup N(R) in C.35, which is formed by exponentiating the
positive step operators: X(1), X̃(1) and X(2), is of great importance. This
will become apparent when studying the discrete subgroup N(Z) ⊂ N(R),
which is also a subgroup of the Picard modular group SU(2, 1;Z[i]) treated in
Appendix E. As explained in Section 4.1, the discrete group N(Z) is essential
when determining the general Fourier series for the automorphic forms.

The general nilpotent transformation is
n = eaX(1)+bX̃(1)+cX(2) =

=




1 a(−1 + i) + b(1 + i) c + i(a2 + b2)
0 1 a(1 − i) + b(1 + i)
0 0 1



 , a, b, c ∈ R. (C.43)

These transformations are also called Heisenberg translations since they form a
Heisenberg subgroup. They apparently leave the coset representative V = NA
in the Borel gauge, and acting on V we see that they transform the fields in
the following way

φ -−→ φ

χ -−→ χ + a

χ̃ -−→ χ̃ + b

ψ -−→ ψ + 1
2c − aχ̃ + bχ. (C.44)

5Cf. the isomorphism CH ∼= SL(2,R)/SO(2).
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The dilaton field φ is unaffected since it sits safe in the Abelian part A in
V , unreachable from an upper triangular operator acting from the left. The
Heisenberg translations are non-Abelian as can be seen for the transformation
of the field ψ that also includes the fields χ and χ̃.



D
The Modular Group SL(2,Z)

The modular group SL(2,Z) is naturally represented by two-by-two matrices
with integer entries and unit determinant

SL(2,Z) 3 g =
(

a b
c d

)

, det g = 1, a, b, c, d ∈ Z. (D.1)

It is a group with matrix multiplication as composition rule since the unit
determinant property is unchanged under multiplication, and the inverse to
the general element g is given by

g−1 =
(

d −b
−c a

)

∈ SL(2,Z). (D.2)

Similarly as for the Lie group SL(2,R), mentioned in Section 2.1, the discrete
group acts on the complex upper half-plane as

g · τ = aτ + b

cτ + d
. (D.3)

And as in the case of SL(2,R), τ is invariant under the action of the element
− ∈ SL(2,R), so to get a one-to-one correspondence between the group
elements and the Möbius transformation, which we are interested in to connect
to the physics, we need to consider PSL(2,Z) = SL(2,Z)/{± } instead. By
sloppiness we neglect the letter P.

The discrete group can be generated by various combinations of the two
fundamental elements

T =
(

1 1
0 1

)

and S =
(

0 −1
1 0

)

. (D.4)

This can be proven by showing that all matrices in SL(2,Z) can be transformed
to the identity matrix with help of combinations of S and T in a certain way

101



102 Appendix D: The Modular Group SL(2,Z)

– it is a good exercise! For a more careful mathematical treatment of the
generators of SL(2,Z) the reader is referred to [12].

The identity element 1 = {± } is given by

S2 = 1 and (ST )3 = 1. (D.5)

Therefore, for example the inverse to T is given by

T −1 = (ST )2S =
(

−1 1
0 −1

)

. (D.6)

The transformations act on τ as

T · τ = τ + 1 and S · τ = −1
τ

. (D.7)

I.e., T is a translation and S is an involution.
By only considering the translation T together with its inverse T −1 =

(ST )2S one can form a nilpotent subgroup N(Z) ⊂ SL(2,Z)

N(Z) 3 g =
(

1 n
0 1

)

, n ∈ Z, (D.8)

which then also is a subgroup of the continuous nilpotent group N(R) ⊂
SL(2,R), gained from the Iwasawa decomposition G=NAK of SL(2,R). The
action of N(Z) on the axion χ is simply

χ -−→ χ + n, n ∈ Z. (D.9)



E
The Picard Modular Group

SU(2, 1;Z[i])

In this appendix we explain more of the formalities of the discrete Picard
modular group. We follow [9].

The defining representation of the Picard modular group is consisting of
the matrices g with the following properties

g =




a b c
d e f
g h i



 , det g = 1, g†ηg = η and

a, b, c, d, e, f, g, h, i ∈ Z[i]. (E.1)
Here η is the metric, explicitly our choice is

η =




0 0 −i
0 1 0
i 0 0



 , (E.2)

i.e., the same metric as was argued for in the case of the Lie group SU(2, 1),
see Section C.4. The set Z[i] is the gaussian integers

Z[i] = {z ∈ C | %(z), &(z) ∈ Z}. (E.3)
To verify the group properties we first note that the unit determinant property
is preserved by matrix multiplication. This also holds for the metric condition,
since given two elements g and h in SU(2, 1;Z[i]) we have

(gh)†η(gh) = h†g†ηgh = h†ηh = η. (E.4)
An inverse to g in (E.1) is given by

g−1 =




ei − hf ch − bi bf − ec
gf − di ai − gc dc − af
dh − ge gb − ah ae − db



 . (E.5)
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E.1 T , R and S Transformations
We are interested in finding the nilpotent subgroup N(Z) for the Fourier expan-
sion on the moduli space SU(2, 1;Z[i])\SU(2, 1)/(SU(2) × U(1)). Fortunately,
we did most of the work already in Section C.7 where we found the nilpotent
subgroup of SU(2, 1). One can see directly by looking at the general transfor-
mation C.43, that the discrete nilpotent group is gained by only considering
integer parameters a, b and c. I.e.,

N(Z) 3 n =eaX(1)+bX̃(1)+cX(2) =

=




1 a(−1 + i) + b(1 + i) c + i(a2 + b2)
0 1 a(1 − i) + b(1 + i)
0 0 1



 ,

a, b, c ∈ Z. (E.6)

And the resulting action on the fields is

φ -−→φ

χ -−→χ + a

χ̃ -−→χ̃ + b

ψ -−→ψ + 1
2c − aχ̃ + bχ, a, b, c ∈ Z. (E.7)

In contrast with the relatively simple group SL(2,Z), the discrete nilpotent
group is non-abelian. This complicates the derivation of the Fourier series.
The nilpotent group N(Z) is isomorphic to the discrete Heisenberg group
H3(Z) in three dimensions. The elements are also called translations since
they translate the fields, although the transformation on ψ is not really an
ordinary translation for a and b not equal to zero. We will denote a general
Heisenberg translation by T(a,b,c). The translations corresponding to putting
(a, b, c) = (1, 0, 0), (a, b, c) = (0, 1, 0) and (a, b, c) = (0, 0, 1) are called T1, T̃1
and T2 respectively. These elements generate the whole of H3(Z).

There are two other types of transformations in SU(2, 1;Z[i]) of great in-
terest. First there is a rotation, which for SU(2, 1) is formed by exponentiating
the compact Cartan generator H2, and for SU(2, 1;Z[i]) is restricted to1

R = m




i 0 0
0 −1 0
0 0 i



 , m = 0, 1, 2, 3. (E.8)

On the scalar fields it acts as

(χ, χ̃) -−→ (−χ̃,χ), (E.9)

and it is apparent that the transformation is of order 4.
1In the case of SU(2, 1) the parameter m can take all values in the interval [0, 4).
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Secondly, there is an involution S (which is also an element in SU(2, 1))

S =




0 0 i
0 −1 0

−i 0 0



 , (E.10)

that acts on the fields in a rather non-trivial way

φ -−→ −1
2 ln

[
e−2φ

4ψ2 + (e−2φ + χ2 + χ̃2)2

]

,

χ -−→ 2ψχ̃ − (e−2φ + χ2 + χ̃2)χ
4ψ2 + (e−2φ + χ2 + χ̃2)2 ,

χ̃ -−→ 2ψχ + (e−2φ + χ2 + χ̃2)χ̃
4ψ2 + (e−2φ + χ2 + χ̃2)2 ,

ψ -−→ − ψ

4ψ2 + (e−2φ + χ2 + χ̃2)2 . (E.11)

However, when considering the complex parameters C.41 instead, the effect of
the transformation is more simple

z1 -−→ − 1
z1

, z2 -−→ −iz2
z1

. (E.12)

And one can verify that the transformation indeed is of order 2, worthy of the
name involution.

E.2 Generating Group Elements
There is an important theorem by Francsics and Lax [20] that says that the
Picard modular group is generated by the elements: T1, T2, R and S. One can
understand why the translation T̃1 is not needed by noting that T̃1 = RT1R−1.
However, from a physical point of view it is natural to construct the invariant
functions with help of all three types of translations, and we will therefore use
a non-minimal representation of SU(2, 1;Z[i]):

T1 =




1 −1 + i i
0 1 1 − i
0 0 1



 , T̃1 =




1 1 + i i
0 1 1 + i
0 0 1



 , T2 =




1 0 1
0 1 0
0 0 1



 ,

R =




i 0 0
0 −1 0
0 0 i



 , S =




0 0 i
0 −1 0

−i 0 0



 . (E.13)

A function is invariant under SU(2, 1;Z[i])-transformations, if and only if it
is invariant under these five transformations. When constructing the Fourier
series expansion of a general invariant function, we will first use the invariance
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under the discrete nilpotent subgroup (discrete Heisenberg group) generated
by the first three elemensts. We will then see how R restricts the coefficients of
the Fourier series even more. However, we will not be able to take into account
the invariance under the involution S (that would determine the unknown
function exactly); this particular transformation proves to be very difficult to
use on the Fourier series2.

2Further investigation could perhaps be fruitful.



F
Laplace-Beltrami Operators

F.1 On SL(2,R)/SO(2)
The metric on SL(2,R)/SO(2) is

gij =
(

1 0
0 e2φ

)

. (F.1)

The Laplace-Beltrami operator acting on scalar functions is by definition

∆ = 1
√

|g|
∂i(

√
|g|gij∂j). (F.2)

In our case we have

g = e2φ =⇒
√

|g| = eφ, gij =
(

1 0
0 e−2φ

)

and

∆ = e−φ∂i(eφgij∂j) = e−φ[∂φ(eφ∂φ) + ∂χ(eφe−2φ∂χ)] =
= e−φ[eφ∂φ + eφ∂2

φ + e−φ∂2
χ] = ∂φ + ∂2

φ + e−2φ∂2
χ. (F.3)

Expressing instead the Laplace-Beltrami operator using the complex coordi-
nate τ = τ1 + iτ2 = χ + ie−φ, we get

∂φ = ∂τ2
∂φ

∂

∂τ2
= −e−φ ∂

∂τ2
= −τ2∂τ2

∂2
φ = τ2∂τ2(τ2∂τ2) = τ2(∂τ2 + τ2∂

2
τ2) =⇒

∆ = τ2
2 (∂2

τ1 + ∂2
τ2). (F.4)
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F.2 On SU(2, 1)/(SU(2) × U(1))
The metric on the coset space is

ds2 = dφ2 + e2φ(dχ2 + dχ̃2) + e4φ(dψ + χdχ̃ − χ̃dχ)2. (F.5)

We make a variable change to simplify the calculation:

y = e−2φ =⇒ dφ = − 1
2y

dy =⇒ dφ2 = 1
4y2 dy2

=⇒ ds2 = 1
4y2 dy2 + y−1(dχ2 + dχ̃2) + y−2(dψ + χdχ̃ − χ̃dχ)2. (F.6)

We have the metric tensor

gij =





1
4y−2 0 0 0

0 y−1 + y−2χ̃2 −y−2χχ̃ −y−2χ̃
0 −y−2χχ̃ y−1 + y−2χ2 y−2χ
0 −y−2χ̃ y−2χ y−2



 , i, j = (y,χ, χ̃,ψ).

(F.7)

Determinant:

g = 1
4y6 (> 0). (F.8)

Inverse metric:

gij =





4y2 0 0 0
0 y 0 χ̃y
0 0 y −χy
0 χ̃y −χy y(χ2 + χ̃2 + y)



 , i, j = (y,χ, χ̃,ψ). (F.9)

Straightforward calculation using the definition of the Laplace-Beltrami oper-
ator (F.2) gives:

∆SU(2,1)/(SU(2)×U(1)) =

= 4
(

y2∂2
y − y∂y + 1

4y(∂2
χ + ∂2

χ̃) + 1
2y(χ̃∂χ − χ∂χ̃)∂ψ + 1

4y(y + χ2 + χ̃2)∂2
ψ

)
.

(F.10)



G
Poisson Resummation Formula

In this appendix we will derive the Poisson resummation identity
∑

n

e− π
x (mτ1+n)2 =

√
x

∑

ñ

e−πxñ2−2πiñmτ1 . (G.1)

used in the Type IIB case for rewriting the expression (5.34).1 We start with
the general Poisson summation formula [35]

∑

n

f(t + nT ) = 1
T

∑

k

f̂
(

k

T

)
e2πi k

T t, (G.2)

where

f̂(ξ) =
∫ ∞

−∞
f(x)e−2πixξdx, (G.3)

is the ordinary Fourier transform of f . Using the formula (G.2) for the
function f(t) = exp(−αt2) (for α > 0), whose Fourier transform is f̂(ξ) =√

π
α exp(− (πξ)2

α ), yields

∑

n

e−α(t+nT )2 =
∑

n

e−αT 2( t
T +n)2

= 1
T

∑

k

√
π

α
e− π2

α ( k
T )2+2πi k

T t. (G.4)

To connect to (G.1) we identify first
π

T 2α
= x > 0, (G.5)

giving
∑

n

e− π
x ( t

T +n)2
=

√
x

∑

k

e−πxk2+2πik t
T . (G.6)

1It is also used in the Type IIA case but we gloss over this part.
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Finally, we see that we get (G.1) if we also put

t

T
= mτ1. (G.7)



H
The Whittaker Equation and

Functions

In Chapter 4, we arrived to a Whittaker differential equation when separating
the solution to the Laplace eigenfunction equation for the non-abelian term
f (NA)(y,χ, χ̃,ψ). This appendix is devoted to deepen our understanding of
the Whittaker equation and its solving functions.

H.1 Solutions to the Differential Equation
The starting differential equation, see (6.69), was

y2∂2
yY − y∂yY − (4π2k2y2 + 2π|k|(2r + 1)y + λ)Y = 0. (H.1)

After the extraction of a factor √
y, i.e., setting Y (y) = √

y Ŷ (y), and a change
of variables, ŷ = 4π|k|y, we arrived to the Whittaker equation, see (6.74):

∂2
ŷ Ŷ (ŷ) +

(
−1

4 + 1
ŷ

(
−r − 1

2

)
− 1

ŷ2

(
λ + 3

4

))
Ŷ (ŷ) = 0. (H.2)

Using the known expression for the eigenvalue in terms of the order of the
Eisenstein series λ = s(s − 2) yields

∂2
ŷ Ŷ (ŷ) +

(
−1

4 + 1
ŷ

(
−r − 1

2

)
− 1

ŷ2

(1
4 − (s − 1)2

))
Ŷ (ŷ) = 0. (H.3)

Comparing to the general form of the Whittaker differential equation, see
(6.70):

M ′′
pµ(x) +

(

−1
4 + p

x
+

1
4 − µ2

x2

)

Mpµ(x) = 0, (H.4)
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we identify the coefficients

p = −r − 1
2

µ = ±(s − 1). (H.5)
The two linearly independent solutions to the Whittaker equation (H.4) are

Mp,µ(x) = e−x/2xµ+ 1
2 M

(
µ − p + 1

2 , 2µ + 1; x
)

and (H.6)

Wp,µ(x) = e−x/2xµ+ 1
2 U

(
µ − p + 1

2 , 2µ + 1; x
)

, (H.7)

where the confluent hypergeometric functions M and U have the following
form [4]:

M(a, c; x) =
∞∑

n=0

(a)n

(c)n

xn

n! and

U(a, c; x) = π

sin(πc)

[
M(a, c; x)

Γ(a − c + 1)Γ(c) − x1−cM(a + 1 − c, 2 − c; x)
Γ(a)Γ(2 − c)

]

.

(H.8)
Here we use the Pochhammer symbols to simplify the expressions

(a)n = a(a + 1)(a + 2)...(a + n − 1) = (a + n − 1)!
(a − 1)! = Γ(a + n)

Γ(a)
(a)0 = 1. (H.9)

The confluent hypergeometric functions are solutions to the confluent hyper-
geometric equation1:

xy′′(x) + (c − x)y′(x) − ay(x) = 0. (H.10)
As we see from the solutions (H.6), the confluent hypergeometric equation
and the Whittaker equation are intimately related. Indeed, one obtains the
Whittaker equation from the confluent hypergeometric equation when making
the latter self-adjoint2.

One immediately notices that not all values of the parameter c are allowed
in the expressions for the solutions. This, since the confluent hypergeometric
functions are undefined when c = 0, −1, −2, ..., for these values of c there is
a zero in the denominator in the expansion of M(a, c; x). Moreover, there
is a possibility of a positive or negative infinity in the denominators in the
expression for U(a, c; x), depending on the Gamma functions, as well as a zero
in the denominator due to the sinus function for all integer values of c. For
these values of c that brings the solution to an indeterminate form, one has
to consider a limit value, if it exists. As we will see below, we will get an
indeterminate expression when we choose s = 3/2, which is the interesting
case we want to study.

1Also known as Kummer’s equation.
2The condition for a self-adjoint operator L is that 〈u|Lu〉 = 〈Lu|u〉.



H.2 Asymptotic Behaviour of the Solutions 113

H.2 Asymptotic Behaviour of the Solutions

We are interested in solutions to the Whittaker equation that are well-behaved
in the limit y −→ ∞, i.e., x −→ ∞. Beginning with the functions Mpµ(x) one
can derive an asymptotic expansion valid for large x and %(c) > %(a) > 0,
see [4]:

Γ(c)
Γ(a)

ex

xc−a

(
1 + (1 − a)(c − a)

1!x + (1 − a)(2 − a)(c − a)(c − a + 1)
2!x2 + ...

)
,

(H.11)
where Γ is the usual Gamma function. The asymptotic behaviour for Mpµ(x)
is then

Mpµ(x) ∝ ex/2

xc−a−(µ+1/2) (1 + O(x−1)). (H.12)

Clearly, the function diverges for x −→ ∞ and is therefore not physically
acceptable and can directly be ruled out. On the other hand the functions
U(a, c; x) have the asymptotic expansion, for %(a) > 0:

1
xa

(
1 + a(1 + a − c)

1!(−x) + a(a + 1)(1 + a − c)(2 + a − c)
2!(−x)2 + . . .

)
. (H.13)

So, for the second solution we have for large x:

Wp,µ(x) = e−x/2xµ+ 1
2 −a(1 + O(x−1)) −→ 0 for x −→ ∞, (H.14)

which is acceptable. Let us now therefore concentrate on the second solution.

H.3 The Kummer Transformation

We will now show that

Wp,µ = Wp,−µ, (H.15)

as was mentioned in the end of Section 6.1.3. We will use the relationship
between M and U in (H.8). For the so-called logarithmic case, described in
the next section, the relation (H.15) still holds, but it must be shown using
instead an integral representation of U (H.20).

Let a+ = µ − p + 1/2 and c+ = 2µ + 1 be the parameters for U(a+, c+; x)
included in Wp,µ; and correspondingly a− = −µ − p + 1/2 and c− = −2µ + 1
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the parameters for U(a−, c−; x) included in Wp,−µ. Indeed we have:

sin(πc−) = sin(π − 2πµ) = sinπ cos(2πµ) − sin(2πµ) cosπ = sin(2πµ) = − sin(πc+)
M(a−, c−; x) = M(−µ − k + 1/2, −2µ + 1; x) = M(a+ + 1 − c+, 2 − c+; x)
(a− − c−)! = (−µ − k + 1/2 − (2µ + 1))! = (µ − k + 1/2 − 1)! = (a+ − 1)!

(c− − 1)! = (−2µ + 1 − 1) = (1 − c+)!
x1−c− = x1−(−2µ+1) = x2µ

x−2µ = x1−c+

M(a− + 1 − c−, 2 − c−; x) = M(a+, c+; x)
(a− − 1)! = (−µ − k + 1/2 − 1)! = (a+ − c+)!

(1 − c−)! = (1 − (−2µ + 1))! = (c+ − 1)!
=⇒

U(a−, c−; x) = x1−c− U(a+, c+; x).
(H.16)

This is also known as a Kummer transformation. The relationship (H.16)
implies:

Wp,−µ = e−x/2x−µ+1/2U(a−, c−; x) = e−x/2

=xµ+1/2
︷ ︸︸ ︷
x−µ+1/2x2µ U(a+, c+; x) = Wp,µ.

(H.17)
Hereby we set µ = s − 1.

H.4 The Logarithmic Case s = 3/2
Now, let us discuss what happens with the confluent hypergeometric function
U for s = 3/2, which we are particularly interested in coming from the required
properties of the Eisenstein series. We have then

s = 3/2 =⇒ µ = s − 1 = 1/2
=⇒ c = 2µ + 1 = 2

and

a = µ − p + 1/2 = 1/2 − (−r − 1/2) + 1/2 = r + 3/2, r = 0, 1, 2, 3, ...
(H.18)

The case c ∈ N is referred to as the logarithmic case in [11]. Putting this into
the definition of the second solution in (H.8) we get

U
(

r + 3
2 , 2; x

)
= π

sin(π · 2)




M

(
r + 3

2 , 2; x
)

Γ
(
r + 1

2

)
Γ(2)

−
x−1M

(
r + 1

2 , 0; x
)

Γ
(
r + 3

2

)
Γ(0)



 .

(H.19)
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Clearly this is undefined, and we have to consider the limit c −→ 2. To show
that the function actually converges in the limit, for all x > 0, one must use
an integral representation of U(a, c; x) instead (see [4] or 6.5. (2) [11]):

U(a, c; x) = 1
Γ(a)

∫ ∞

0
e−xt ta−1(1 + t)c−a−1dt. (H.20)

It is valid for %(x) > 0 and %(a) > 0. We have

0 < lim
c−→2

∫ ∞

0
e−xt ta−1(1 + t)c−a−1dt < lim

c−→2

∫ ∞

0
e−xt (1 + t)a−1(1 + t)c−a−1

︸ ︷︷ ︸
=(1+t)c−2

dt =

= {t′ = t + 1} = ex lim
c−→2

∫ ∞

1
e−xt′

t′c−2dt′ < ex lim
c→2

∫ ∞

0
e−xt′

t′c−2dt′ =

= {for c > 1 and x > 0} = ex lim
c→2

Γ(c − 1)
xc−1 < ∞.

(H.21)

Since the limit is larger than zero and bounded from above, as well as strictly
increasing with c (c can go from 1+ to 2), the limit exists. I.e., U(a, c, x) is
well-defined for a = r + 3/2 and c = 2 if the limit is implicit in the definition.

Since %(a) > 0 the asymptotic expansion (H.13) is also valid3. The ex-
pression for large x is thus

W−r− 1
2 ; 1

2
(x) = e−x/2x−r− 1

2
(
1 + O

(
x−1

))
. (H.22)

3The asymptotic expansion is actually derived with help of the integral representation
(H.20).



Bibliography

[1] S. Alexandrov, B. Pioline, F. Saueressig, and S. Vandoren, D-
instantons and twistors, JHEP, 03 (2009), p. 044.

[2] S. Alexandrov and F. Saueressig, Quantum mirror symmetry and
twistors, JHEP, 09 (2009), p. 108.

[3] I. Antoniadis, R. Minasian, S. Theisen, and P. Vanhove, String
loop corrections to the universal hypermultiplet, Class. Quant. Grav., 20
(2003), pp. 5079–5102.

[4] G. B. Arfken and H. J. Weber, Mathematical Methods for Physicists,
International Edition, 5 ed., 2001.

[5] S. Ashok and M. R. Douglas, Counting flux vacua, JHEP, 01 (2004),
p. 060.

[6] P. S. Aspinwall, Compactification, geometry and duality: N = 2,
(2000).

[7] J. Bagger and E. Witten, Matter Couplings in N = 2 Supergravity,
Nucl. Phys. B222, 1 (1983).

[8] L. Bao, Aspects of Wrapped Branes in String and M-Theory, PhD thesis,
Department of Fundamental Physics, Chalmers University of Technology,
2009.

[9] L. Bao, A. Kleinschmidt, B. E. W. Nilsson, D. Persson, and
B. Pioline, Instanton Corrections to the Universal Hypermultiplet and
Automorphic Forms on SU(2,1), (2009).
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