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Preface

The present edition of this compendium is intended to be a complement to the textbook

“Engineering Mechanics” by J.L. Meriam and L.G. Kraige (MK) for the course ”Mekanik

F del 2” given in the first year of the Engineering physics (Teknisk fysik) programme at

Chalmers University of Technology, Gothenburg.

Apart from what is contained in MK, this course also encompasses an elementary un-

derstanding of analytical mechanics, especially the Lagrangian formulation. In order not to

be too narrow, this text contains not only what is taught in the course, but tries to give

a somewhat more general overview of the subject of analytical mechanics. The intention is

that an interested student should be able to read additional material that may be useful in

more advanced courses or simply interesting by itself.

The chapter on the Hamiltonian formulation is strongly recommended for the student

who wants a deeper theoretical understanding of the subject and is very relevant for the con-

nection between classical mechanics (”classical” here denoting both Newton’s and Einstein’s

theories) and quantum mechanics.

The mathematical rigour is kept at a minimum, hopefully for the benefit of physical

understanding and clarity. Notation is not always consistent with MK; in the cases it differs

our notation mostly conforms with generally accepted conventions.

The text is organised as follows: In Chapter  a background is given. Chapters ,  and

 contain the general setup needed for the Lagrangian formalism. In Chapter  Lagrange’s

equation are derived and Chapter  gives their interpretation in terms of an action. Chapters

 and  contain further developments of analytical mechanics, namely the Hamiltonian

formulation and a Lagrangian treatment of constrained systems. Exercises are given at the

end of each chapter. Finally, a translation table from English to Swedish of some terms used

is found.

Many of the exercise problems are borrowed from material by Ture Eriksson, Arne

Kihlberg and Göran Niklasson. The selection of exercises has been focused on Chapter ,

which is of greatest use for practical applications.
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1. Introduction

In Newtonian mechanics, we have encountered some different equations for the motions of

objects of different kinds. The simplest case possible, a point-like particle moving under the

influence of some force, is governed by the vector equation

d~p

dt
= ~F , (.)

where ~p = m~v. This equation of motion can not be derived from some other equation. It is

postulated, i.e., it is taken as an ”axiom”, or a fundamental truth of Newtonian mechanics

(one can also take the point of view that it defines one of the three quantities ~F , m (the

inertial mass) and ~a in terms of the other two).

Equation (.) is the fundamental equation in Newtonian mechanics. If we consider

other situations, e.g. the motion of a rigid body, the equations of motion

d~L

dt
= ~τ (.)

can be obtained from it by imagining the body to be put together of a great number of small,

approximately point-like, particles whose relative positions are fixed (rigidity condition). If

you don’t agree here, you should go back and check that the only dynamical input in eq.

(.) is eq. (.). What more is needed for eq. (.) is the kinematical rigidity constraint

and suitable definitions for the angular momentum ~L and the torque ~τ . We have also seen

eq. (.) expressed in a variety of forms obtained by expressing its components in non-

rectilinear bases (e.g. polar coordinates). Although not immediately recognisable as eq. (.),

these obviously contain no additional information, but just represent a choice of coordinates

convenient to some problem. Furthermore, we have encountered the principles of energy,

momentum and angular momentum, which tell that under certain conditions some of these

quantities (defined in terms of masses and velocities, i.e., kinematical) do not change with

time, or in other cases predict the rate at which they change. These are also consequences

of eq. (.) or its derivates, e.g. eq. (.). Go back and check how the equations of motion

are integrated to get those principles! It is very relevant for what will follow.

Taken all together, we see that although a great variety of different equations have been

derived and used, they all have a common root, the equation of motion of a single point-

like particle. The issue for the subject of analytical mechanics is to put all the different

forms of the equations of motion applying in all the different contexts on an equal footing.

In fact, they will all be expressed as the same, identical, (set of) equation(s), Lagrange’s

equation(s), and, later, Hamilton’s equations. In addition, these equations will be derived
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from a fundamental principle, the action principle, which then can be seen as the fundament

of Newtonian mechanics (and indeed, although this is beyond the scope of this presentation,

of a much bigger class of models, including e.g. relativistic mechanics and field theories).

We will also see one of the most useful and important properties of Lagrange’s and

Hamilton’s equations, namely that they take the same form independently of the choice

of coordinates. This will make them extremely powerful when dealing with systems whose

degrees of freedom most suitably are described in terms of variables in which Newton’s

equations of motion are difficult to write down immediately, and they often dispense with

the need of introducing forces whose only task is to make kinematical conditions fulfilled,

such as for example the force in a rope of constant length (”constrained systems”). We will

give several examples of these types of situations.
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2. Generalised coordinates

A most fundamental property of a physical system is its number of degrees of freedom. This

is the minimal number of variables needed to completely specify the positions of all particles

and bodies that are part of the system, i.e., its configuration, at a given time. If the number

of degrees of freedom is N , any set of variables q1, . . . , qN specifying the configuration is

called a set of generalised coordinates. Note that the manner in which the system moves is

not included in the generalised coordinates, but in their time derivatives q̇1, . . . , q̇N .

Example : A point particle moving on a line has one degree of freedom. A gener-

alised coordinate can be taken as x, the coordinate along the line. A particle moving

in three dimensions has three degrees of freedom. Examples of generalised coordinates

are the usual rectilinear ones, ~r = (x, y, z), and the spherical ones, (r, θ, φ), where

x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ.

Example : A rigid body in two dimensions has three degrees of freedom — two “transla-

tional” which give the position of some specified point on the body and one “rotational”

which gives the orientation of the body. An example, the most common one, of gen-

eralised coordinates is (xc, yc, φ), where xc and yc are rectilinear components of the

position of the center of mass of the body, and φ is the angle from the x axis to a line

from the center of mass to another point (x1, y1) on the body.

Example : A rigid body in three dimensions has six degrees of freedom. Three of these

are translational and correspond to the degrees of freedom of the center of mass. The

other three are rotational and give the orientation of the rigid body. We will not discuss

how to assign generalised coordinates to the rotational degrees of freedom (one way is

the so called Euler angles), but the number should be clear from the fact that one needs

a vector ~ω with three components to specify the rate of change of the orientation.

The number of degrees of freedom is equal to the number of equations of motion one

needs to find the motion of the system. Sometimes it is suitable to use a larger number

of coordinates than the number of degrees of freedom for a system. Then the coordinates

must be related via some kind of equations, called constraints. The number of degrees of

freedom in such a case is equal to the number of generalised coordinates minus the number

of constraints. We will briefly treat constrained systems in Chapter .



“An introduction to analytical mechanics” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Example : The configuration of a mathematical pendulum can be specified using the

rectilinear coordinates (x, y) of the mass with the fixed end of the string as origin.

A natural generalised coordinate, however, would be the angle from the vertical. The

number of degrees of freedom is only one, and (x, y) are subject to the constraint

x2 + y2 = l2, where l is the length of the string.

In general, the generalised coordinates are chosen according to the actual problem one

is interested in. If a body rotates around a fixed axis, the most natural choice for generalised

coordinate is the rotational angle. If something moves rectilinearly, one chooses a linear

coordinate, &c. For composite systems, the natural choices for generalised coordinates are

often mixtures of different types of variables, of which linear and angular ones are most

common. The strength of the Lagrangian formulation of Newton’s mechanics, as we will soon

see, is that the nature of the generalised coordinates is not reflected in the corresponding

equation of motion. The way one gets to the equations of motion is identical for all generalised

coordinates.

Generalised velocities are defined from the generalised coordinates exactly as ordinary

velocity from ordinary coordinates:

vi = q̇i , i = 1, . . . , N . (.)

Note that the dimension of a generalised velocity depends on the dimension of the

corresponding generalised coordinate, so that e.g. the dimension of a generalised velocity for

an angular coordinate is (time)−1 — it is an angular velocity. In general, (v1, . . . , vN ) is not

the velocity vector (in an orthonormal system).

Example : With polar coordinates (r, φ) as generalised coordinates, the generalised

velocities are (ṙ, φ̇), while the velocity vector is ṙr̂ + rφ̇φ̂.

Exercises

. Two masses m1 and m2 connected by a spring are sliding on a frictionless plane. How

many degrees of freedom does this system have? Introduce a set of generalised coordi-

nates!

. Try to invent a set of generalised coordinates for a rigid body in three dimensions.

(One possible way would be to argue that the rotational degrees of freedom reside in an

orthogonal matrix, relating a fixed coordinate system to a coordinate system attached



 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . “An introduction to analytical mechanics”

to the body, and then try to parametrise the space of orthogonal matrices. Check that

this is true in two dimensions.)

. A thin straight rod (approximated as one-dimensional) moves in three dimensions. How

many are the degrees of freedom for this system? Define suitable generalised coordi-

nates.

. A system consists of two rods which can move in a plane, freely except that one end

of the first rod is connected by a rotatory joint to one end of the second rod. Deter-

mine the number of degrees of freedom for the system, and suggest suitable generalised

coordinates. More generally, do the same for a chain of n rods moving in a plane.

. A thin rod hangs in a string, see figure. It can move in three dimensional space. How

many are the degrees of freedom for this pendulum system? Define suitable generalised

coordinates.

a

b
c
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3. Generalised forces

Suppose we have a system consisting of a number of point particles with (rectilinear) co-

ordinates x1, . . . , xN , and that the configuration of the system also is described by the set

of generalised coordinates q1, . . . , qN . (We do not need or want to specify the number of

dimensions the particles can move in, i.e., the number of degrees of freedom per particle.

This may be coordinates for N particles moving on a line, for n particles on a plane, with

N = 2n, or form particles in three dimensions, with N = 3m.) Since both sets of coordinates

specify the configuration, there must be a relation between them:

x1 = x1(q1, q2, . . . , qN ) = x1(q) ,

x2 = x2(q1, q2, . . . , qN ) = x2(q) ,

...

xN = xN (q1, q2, . . . , qN ) = xN (q) ,

(.)

compactly written as xi = xi(q). To make the relation between the two sets of variable

specifying the configuration completely general, the functions xi could also involve an explicit

time dependence. We choose not to include it here. The equations derived in Chapter  are

valid also in that case. If we make a small (infinitesimal) displacement dqi in the variables

qi, the chain rule implies that the corresponding displacement in xi is

dxi =
N
∑

j=1

∂xi

∂qj
dqj . (.)

The infinitesimal work performed by a force during such a displacement is the sum of terms

of the type ~F · d~r, i.e.,

dW =

N
∑

i=1

Fidx
i =

N
∑

i=1

Fidq
i , (.)

where F is obtained from eq. (.) as

Fi =
N
∑

j=1

Fj
∂xj

∂qi
. (.)

Fi is the generalised force associated to the generalised coordinate qi. As was the case with

the generalised velocities, the dimensions of the Fi’s need not be those of ordinary forces.
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Example : Consider a mathematical pendulum with length l, the generalised coordinate

being φ, the angle from the vertical. Suppose that the mass moves an angle dφ under the

influence of a force ~F . The displacement of the mass is d~r = ldφφ̂ and the infinitesimal

work becomes dW = ~F · d~r = Fφldφ. The generalised force associated with the angular

coordinate φ obviously is Fφ = Fφl, which is exactly the torque of the force.

The conclusion drawn in the example is completely general — the generalised force

associated with an angular variable is a torque.

If the force is conservative, we may get it from a potential V as

Fi = − ∂V

∂xi
. (.)

If we then insert this into the expression (.) for the generalised force, we get

Fi = −
N
∑

j=1

∂V

∂xj
∂xj

∂qi
= −∂V

∂qi
. (.)

The relation between the potential and the generalised force looks the same whatever gen-

eralised coordinates one uses.

Exercises

. A particle is moving without friction at the curve y = f(x), where y is vertical and

x horizontal, under the influence of gravity. What is the generalised force when x is

chosen as generalised coordinate?

. A double pendulum consisting of two identical rods of length ℓ can swing in a plane.

The pendulum is hanging in equilibrium when, in a collision, the lower rod is hit by a

horizontal force F at a point P a distance a from its lower end point, see figure. (This is

a ”plane” problem; everything is suppose to happen in the y = 0 plane.) Use the angles

as generalised coordinates, and determine the generalised force components.
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l
F

a

l

. Five identical homogeneous rods, each of length ℓ, are connected by joints into a chain.

The chain lies in a symmetric way in the x− y plane (it is invariant under reflection in

the x-axis). As long as this symmetry is preserved, only three generalised coordinates

are needed, xP , α, β, with P a fixed point in the chain, see figure. A force Q acts on the

middle point of the chain, in the direction of the symmetry axis. Find the generalised

force components of Q if,

a) P = A,

b) P = B,

c) P = C.

Q

α

α

β

β

B

B

x

y

C

A

C

A

. A thin rod of length 2ℓ moves in three dimensions. As generalised coordinates, use

Cartesian coordinates (x, y, z) for its center of mass, and standard spherical angles

(θ, ϕ) for its direction. I.e., the position vector for one end of the rod relative to the

center of mass has spherical coordinates (ℓ, θ, ϕ). On this end of the rod acts a force
~F = Fxx̂+Fy ŷ+Fz ẑ. Determine its generalised force components and interpret them.
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. A force ~F = Fxx̂+Fy ŷ acts on a point P of a rigid body in two dimensions. The position

vector of P relative to the center of mass of the rigid body is ~rP = xP x̂+yP ŷ. Introduce

suitable generalised coordinates and determine the generalised force components.

. A rod AD is steered by a machine. The machine has two shafts connected by rotatory

joints to the rod at A and B. The machine can move the rod by moving its shafts

vertically. The joint at A is attached to a fixed point of the rod, at distances a and

b from its endpoints, see figure. The joint at C can slide along the rod so that the

horizontal distance between the joints, c, is kept constant. Use as generalised coordinates

for the rod the y-coordinates y1 and y2 of the joints. Determine the generalised force

components of the force ~F = Fxx̂+ Fy ŷ.

1

D
C

2

θ

F

y

c

b

a

y

x

y

O
A

B
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4. Kinetic energy and generalised momenta

We will examine how the kinetic energy depends on the generalised coordinates and their

derivatives, the generalised velocities. Consider a single particle with massmmoving in three

dimensions, so that N = 3 in the description of the previous chapters. The kinetic energy is

T = 1
2m

3
∑

i=1

(ẋi)2 . (.)

Eq. (.) in the form

ẋi =

3
∑

j=1

∂xi

∂qj
q̇j (.)

tells us that ẋi is a function of the qj ’s, the q̇j ’s and time (time enters only if the transition

functions (.) involve time explicitly). We may write the kinetic energy in terms of the

generalised coordinates and velocities as

T = 1
2m

3
∑

i,j=1

Aij(q)q̇
iq̇j (.)

(or in matrix notation T = 1
2mq̇

tAq̇), where the symmetric matrix A is given by

Aij =
3
∑

k=1

∂xk

∂qi
∂xk

∂qj
. (.)

It is important to note that although the relations between the rectilinear coordinates xi

and the generalised coordinates qi may be non-linear, the kinetic energy is always a bilinear

form in the generalised velocities with coefficients (Aij) that depend only on the generalised

coordinates.

Example : We look again at plane motion in polar coordinates. The relations to recti-

linear ones are
x = r cosφ ,

y = r sinφ ,
(.)

so the matrix A becomes (after a little calculation)

A =

[

Arr Arφ
Arφ Aφφ

]

=

[

1 0
0 r2

]

, (.)
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and the obtained kinetic energy is in agreement with the well known

T = 1
2m(ṙ2 + r2φ̇2) . (.)

If one differentiates the kinetic energy with respect to one of the (ordinary) velocities

vi = ẋi, one obtains
∂T

∂ẋi
= mẋi , (.)

i.e., a momentum. The generalised momenta are defined in the analogous way as

pi =
∂T

∂q̇i
. (.)

Expressions with derivatives with respect to a velocity, like ∂
∂ẋ , tend to cause some initial

confusion, since there “seems to be some relation” between x and ẋ. A good advice is to

think of a function of x and ẋ (or of any generalised coordinates and velocities) as a function

of x and v (or to think of ẋ as a different letter from x). The derivative then is with respect

to v, which is considered as a variable completely unrelated to x.

Example : The polar coordinates again. Differentiating T of eq. (.) with respect to

ṙ and φ̇ yields

pr = mṙ , pφ = mr2φ̇ . (.)

The generalised momentum to r is the radial component of the ordinary momentum,

while the one associated with φ is the angular momentum, something which by now

should be no surprise.

The fact that the generalised momentum associated to an angular variable is an angular

momentum is a completely general feature.

We now want to connect back to the equations of motion, and formulate them in terms

of the generalised coordinates. This will be done in the following chapter.
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Exercises

The generalised coordinates introduced in Chapters  and  were fixed relative to an inertial

system, i.e. the coordinate transformation (.) did not depend explicitly on time. But time

dependent coordinate transformations, i.e., moving generalised coordinates, can also be used.

What is needed is that the kinetic energy is the kinetic energy relative to an inertial system.

In this case expressions (.) for displacements, and (.) for generalised work, will contain

additional terms with the time differential dt. But these terms do not affect the definition of

generalised force. Equation (.), defining generalised force, is unchanged, except it should

be specified that the partial derivatives must be evaluated at fixed time. Use this fact in

some of the exercises below.

. Find the expression for the kinetic energy of a particle with mass m in terms of its

spherical coordinates (r, θ, φ), (x, y, z) = (r sin θ cosφ , r sin θ sinφ , r cos θ).

. Find the kinetic energy for a particle moving at the curve y = f(x).

. Find the kinetic energy for a crank shaft–light rod–piston system, see figure. Use θ as

generalised coordinate. Neglect the mass of the connecting rod.

I
−

r

m

M
θ

b 

y

. Find the kinetic energy, expressed in terms of suitable generalised coordinates, for a

plane double pendulum consisting of two points of mass m joint by massless rods of

lengths ℓ. Interpret the generalised momenta.
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B

ψ

ϕ

O

A

. Find the kinetic energy, expressed in terms of suitable generalised coordinates, for a

plane double pendulum consisting of two homogeneous rods, each of length ℓ and mass

m, the upper one hanging from a fixed point, and the lower one hanging from the

lower endpoint of the upper one. Interpret the generalised momenta as suitable angular

momenta.

B

ψ

ϕ

O

A

. A system consists of two rods, each of mass m and length ℓ , which can move in a plane,

freely except that one end of the first rod is connected by a rotatory joint to one end of

the second rod. Introduce suitable generalised coordinates, express the kinetic energy

of the system in them, and interpret the generalised momenta.

. A person is moving on a merry-go-round which is rotating with constant angular velocity

Ω. Approximate the person by a particle and express its kinetic energy in suitable merry-

go-round fixed coordinates.

. A particle is moving on a little flat horizontal piece of the earth’s surface at latitude

θ. Use Cartesian earth fixed generalised coordinates. Find the particle’s kinetic energy,

including the effect of the earth’s rotation.
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Ω

θ

x

y
zR x
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5. Lagrange’s equations

5.1. A single particle

The equation of motion of a single particle, as we know it so far, is given by eq. (.).

We would like to recast it in a form that is possible to generalise to generalised coordinates.

Remembering how the momentum was obtained from the kinetic energy, eq. (.), we rewrite

(.) in the form
d

dt

∂T

∂ẋi
= Fi . (.)

A first guess would be that this, or something very similar, holds if the coordinates are

replaced by the generalised coordinates and the force by the generalised force. We therefore

calculate the left hand side of (.) with q instead of x and see what we get:

d

dt

∂T

∂q̇i
=

3
∑

j=1

d

dt

(

∂T

∂ẋj
∂ẋj

∂q̇i

)

=

3
∑

j=1

d

dt

(

∂T

∂ẋj
∂xj

∂qi

)

=

=
3
∑

j=1

(

∂xj

∂qi
d

dt

∂T

∂ẋj
+
d

dt

∂xj

∂qi
∂T

∂ẋj

)

=
3
∑

j=1

(

∂xj

∂qi
d

dt

∂T

∂ẋj
+
∂ẋj

∂qi
∂T

∂ẋj

)

=

=

3
∑

j=1

∂xj

∂qi
d

dt

∂T

∂ẋj
+
∂T

∂qi
.

(.)

Here, we have used the chain rule and the fact that T depends on ẋi and not on xi in the

first step. Then, in the second step, we use the fact that xi are functions of the q’s and not

the q̇’s to get ∂ẋj

∂q̇i = ∂xj

∂qi . The fourth step uses this again to derive d
dt
∂xj

∂qi = ∂ẋj

∂qi , and the

last step again makes use of the chain rule on T . Now we can insert the form (.) for the

equations of motion of the particle:

d

dt

∂T

∂q̇i
=

3
∑

j=1

∂xj

∂qi
Fj +

∂T

∂qi
, (.)

and arrive at Lagrange’s equations of motion for the particle:

d

dt

∂T

∂q̇i
− ∂T

∂qi
= Fi . (.)
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Example : A particle moving under the force ~F using rectilinear coordinates. Here one

must recover the known equation m~a = ~F . Convince yourself that this is true.

Example : To complete the series of examples on polar coordinates, we finally derive

the equations of motion. From ., we get

∂T
∂ṙ = mṙ , ∂T

∂r = mrφ̇2 ,
∂T
∂φ̇

= mr2φ̇ , ∂T
∂φ = 0 .

(.)

Lagrange’s equations now give

m(r̈ − rφ̇2) = Fr ,

m(r2φ̈+ 2rṙφ̇) = τ (= rFφ) .
(.)

The Lagrangian formalism is most useful in cases when there is a potential energy, i.e.,

when the forces are conservative and mechanical energy is conserved. Then the generalised

forces can be written as Fi = − ∂V
∂qi and Lagrange’s equations read

d

dt

∂T

∂q̇i
− ∂T

∂qi
+
∂V

∂qi
= 0 . (.)

The potential V can not depend on the generalised velocities, so if we form

L = T − V , (.)

the equations are completely expressible in terms of L:

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0 (.)

The function L is called the Lagrange function or the Lagrangian. This form of the equations

of motion is the one most often used for solving problems in analytical mechanics. There

will be examples in a little while.
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Example : Suppose that one, for some strange reason, wants to solve for the motion of

a particle with mass m moving in a harmonic potential with spring constant k using the

generalised coordinate q = x1/3 instead of the (inertial) coordinate x. In order to derive

Lagrange’s equation for q(t), one first has to express the kinetic and potential energies

in terms of q and q̇. One gets ẋ = ∂x
∂q q̇ = 3q2q̇ and thus T = 9m

2 q
4q̇2. The potential

is V = 1
2kx

2 = 1
2kq

6, so that L = 9m
2 q

4q̇2 − 1
2kq

6. Before writing down Lagrange’s

equations we need ∂L
∂q = 18mq3q̇2 − 3kq5 and d

dt
∂L
∂q̇ = d

dt

(

9mq4q̇
)

= 9mq4q̈ + 36mq3q̇2.

Finally,

0 =
d

dt

∂L

∂q̇
− ∂L

∂q
=

= 9mq4q̈ + 36mq3q̇2 − 18mq3q̇2 + 3kq5 =

= 9mq4q̈ + 18mq3q̇2 + 3kq5 =

= 3q2
(

3mq2q̈ + 6mqq̇2 + kq3
)

. (.)

If one was given this differential equation as an exercise in mathematics, one would

hopefully end up by making the change of variables x = q3, which turns it into

mẍ+ kx = 0 , (.)

which one recognises as the correct equation of motion for the harmonic oscillator.

The example just illustrates the fact that Lagrange’s equations give the correct result for

any choice of generalised coordinates. This is certainly not the case for Newton’s equations.

If x fulfills eq. (.), it certainly doesn’t imply that any q(x) fulfills the same equation!

The derivation of Lagrange’s equations above was based on a situation where the gener-

alised coordinates qi are “static”, i.e., when the transformation (.) between qi and inertial

coordinates xi does not involve time. This assumption excludes many useful situations, such

as linearly accelerated or rotating coordinate systems. However, it turns out that Lagrange’s

equations still hold in cases where the transformation between inertial and generalised coor-

dinates has an explicit time dependence, xi = xi(q; t). The proof of this statement is left as

an exercise for the theoretically minded student. It involves generalising the steps taken in

eq. (.) to the situation where the transformation also involves time. We will instead give

two examples to show that Lagrange’s equations, when applied in time-dependent situations,

reproduce well known inertial forces, and hope that this will be as convincing as a formal

derivation.

The only thing one has to keep in mind when forming the Lagrangian, is that the kinetic

energy shall be the kinetic energy relative an inertial system.
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The first example is about rectilinear motion in an accelerated frame, and the second

concerns rotating coordinate systems.

Example : Consider a particle with mass m moving on a line. Instead of using the

inertial coordinate x, we want to using q = x − x0(t), where x0(t) is some (given)

function. (This could be e.g. for the purpose of describing physics inside a car, moving

on a straight road, where x0(t) is the inertial position of the car.) We also define

v0(t) = ẋ0(t) and a0(t) = ẍ0(t). The kinetic energy is

T = 1
2m (q̇ + v0(t))

2
. (.)

In the absence of forces, one gets Lagrange’s equation

0 =
d

dt

∂T

∂q̇
= m(q̈ + a0(t)) . (.)

We see that the well known inertial force −ma0(t) is automatically generated. If there

is some force acting on the particle, we note that the definition of generalised force tells

us that Fq = Fx. The generalised force Fq does not include the inertial force; the latter

is generated from the kinetic energy as in eq. (.).

Example : Let us take a look at particle motion in a plane using a rotating coordinate

system. For simplicity, let the the rotation vector be constant and pointing in the z

direction, ~ω = ωẑ. The relation between inertial and rotating coordinates is

{

x = ξ cosωt− η sinωt
y = ξ sinωt+ η cosωt

(.)

and the inertial velocities are

{

ẋ = ξ̇ cosωt− η̇ sinωt− ω(ξ sinωt+ η cosωt)
ẏ = ξ̇ sinωt+ η̇ cosωt+ ω(ξ cosωt− η sinωt)

(.)

We now form the kinetic energy (again, relative to an inertial frame), which after a

short calculation becomes

T = 1
2m
[

ξ̇2 + η̇2 + 2ω(ξη̇ − ηξ̇) + ω2(ξ2 + η2)
]

. (.)
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Its derivatives with respect to (generalised) coordinates and velocities are

pξ =
∂T

∂ξ̇
= m(ξ̇ − ωη) ,

pη =
∂T

∂η̇
= m(η̇ + ωξ) ,

∂T

∂ξ
= m(ωη̇ + ω2ξ) ,

∂T

∂η
= m(−ωξ̇ + ω2η) .

(.)

Finally, Lagrange’s equations are formed:

0 =
d

dt

∂T

∂ξ̇
− ∂T

∂ξ
= m(ξ̈ − ωη̇) −m(ωη̇ + ω2ξ) = m(ξ̈ − 2ωη̇ − ω2ξ) ,

0 =
d

dt

∂T

∂η̇
− ∂T

∂η
= m(η̈ + ωξ̇) −m(−ωξ̇ + ω2η) = m(η̈ + 2ωξ̇ − ω2η) .

(.)

Using vectors for the relative position, velocity and acceleration: ~̺ = ξξ̂ + ηη̂, ~vrel =

ξ̇ξ̂ + η̇η̂ and ~arel = ξ̈ξ̂ + η̈η̂, we rewrite Lagrange’s equations as

0 = m [~arel + 2~ω × ~vrel + ~ω × (~ω × ~̺)] .

The second term is the Coriolis acceleration, and the third one the centripetal accelera-

tion. Note that the centrifugal term comes from the term 1
2mω

2(ξ2 + η2) in the kinetic

energy, which can be seen as (minus) a “centrifugal potential”, while the Coriolis term

comes entirely from the velocity-dependent term mω(ξη̇ − ηξ̇) in T .

Exercises

. Write down Lagrange’s equations for a freely moving particle in spherical coordinates!

. A particle is constrained to move on the sphere r = a. Find the equations of motion in

the presence of gravitation.

. A bead is sliding without friction along a massless string. The endpoint of the string

are fixed at (x, y) = (0, 0) and (a, 0) and the length of the string is a
√

2. Gravity acts

along the negative z-axis. Find the stable equilibrium position and the frequency for

small oscillations around it!
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. Write down Lagrange’s equations for a particle moving at the curve y = f(x). The y

axis is vertical. Are there functions that produce harmonic oscillations? What is the

angular frequency of small oscillations around a local minimum x = x0?

. Show, without using any rectilinear coordinates x, that if Lagrange’s equations are valid

using coordinates {qi}Ni=1, they are also valid using any other coordinates {q′i}Ni=1.

. A particle is constrained to move on a circular cone with vertical axis under influence

of gravity. Find equations of motion.

π−θ

. A particle is constrained to move on a circular cone. There are no other forces. Find

the general solution to the equations of motion.

. A bead slides without friction on a circular hoop of radius r with horizontal symmetry

axis. The hoop rotates with constant angular velocity Ω around a vertical axis through

its center. Determine equation of motion for the bead. Find the equilibrium positions,

and decide whether they are stable or unstable.

θ

Ω

. A particle is sliding without friction on a merry-go-round which is rotating with constant

angular velocity Ω. Find and solve the equations of motion for merry-go-round fixed

generalised coordinates.
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. A particle is sliding without friction on a little flat horizontal piece of earth’s surface at

latitude θ, see illustration to exercise . Approximate (a bit unrealistically) earth as a

rotating sphere, with gravitational acceleration −gR̂ at its surface, and find equations of

motion for earth fixed coordinates, including effects of earth’s rotation. To what extent

can they describe the behavior of a particle on the surface of the real earth?

. A free particle is moving in three dimensions. Find kinetic energy, equations of mo-

tion, and their general solution, using a system of Cartesian coordinates rotating with

constant angular velocity ~ω (cf. Meriam & Kraige’s equation (5/14)).

5.2. Lagrange’s equations with any number of degrees of freedom

In a more general case, the system under consideration can be any mechanical system: any

number of particles, any number of rigid bodies etc. The first thing to do is to determine

the number of degrees of freedom of the system. In three dimensions, we already know

that a particle has three translational degrees of freedom and that a rigid body has three

translational and three rotational ones. This is true as long as there are no kinematical

constraints that reduce these numbers. Examples of such constraints can be that a mass is

attached to the end of an unstretchable string, that a body slides on a plane, that a particle

is forced to move on the surface of a sphere, that a rigid body only may rotate about a fixed

axis,...

Once the number N of degrees of freedom has been determined, one tries to find the

same number of variables that specify the configuration of the system, the ”position”. Then

these variables are generalised coordinates for the system. Let us call them q1, q2, . . . , qN .

The next step is to find an expression for the kinetic and potential energies in terms of the

qi’s and the q̇i’s (we confine to the case where the forces are conservative — for dissipative

forces the approach is not as powerful). Then the Lagrangian is formed as the difference

L = T − V . The objects pi = ∂L
∂q̇i are called generalised momenta and vi = q̇i generalised

velocities (if qi is a rectilinear coordinate, pi and vi coincide with the ordinary momentum

and velocity components). Lagrange’s equations for the systems are

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0 , i = 1, . . . , N , (.)

or, equivalently,

ṗi −
∂L

∂qi
= 0 . (.)

We state these equations without proof. The proof is completely along the lines of the one-

particle case, only that some indices have to be carried around. Do it, if you feel tempted!
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In general, the equations (.) lead to a system of N coupled second order differential

equations. We shall take a closer look at some examples.

Example : A simple example of a constrained system is the ”mathematical pendu-

lum”, consisting of a point mass moving under the influence of gravitation and attached

to the end of a massless unstretchable string whose other end is fixed at a point. If we

consider this system in two dimensions, the particle moves in a plane parametrised

by two rectilinear coordinates that we may label x and y. The number of degrees of

freedom here is not two, however. The constant length l of the rope puts a constraint

on the position of the particle, which we can write as x2 + y2 = l2 if the fixed end

of the string is taken as origin. The number of degrees of freedom is one, the original

two minus one constraint. It is possible, but not recommendable, to write the equations

of motion using these rectilinear coordinates. Then one has to introduce a string force

that has exactly the right value to keep the string unstretched, and then eliminate it.

A better way to proceed is to identify the single degree of freedom of the system as the

angle φ from the vertical (or from some other fixed line through the origin). φ is now

the generalised coordinate of the system. In this and similar cases, Lagrange’s equations

provide a handy way of deriving the equations of motion. The velocity of the point mass

is v = lφ̇, so its kinetic energy is T = 1
2ml

2φ̇2. The potential energy is V = −mgl cosφ.

We form the Lagrangian as

L = T − V = 1
2ml

2φ̇2 +mgl cosφ . (.)

We form
∂L

∂φ
= −mgl sinφ ,

pφ =
∂L

∂φ̇
= ml2φ̇ ,

d

dt

∂L

∂φ̇
= ml2φ̈ .

(.)

Lagrange’s equation for φ now gives ml2φ̈+mgl sinφ = 0, i.e.,

φ̈+
g

l
sinφ = 0 . (.)

This equation should be recognised as the correct equation of motion for the mathe-

matical pendulum. In the case of small oscillations, one approximates sinφ ≈ φ and get

harmonic oscillations with angular frequency
√

g/l.
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Some comments can be made about this example that clarifies the Lagrangian ap-

proach. First a dimensional argument: the Lagrangian always has the dimension of energy.

The generalised velocity here is vφ = φ̇, the angular velocity, with dimension (time)−1. The

generalised momentum pφ, being the derivative of L with respect to φ̇, obviously hasn’t the

dimension of an ordinary momentum, but (energy)×(time) = (mass)×(length)2×(time)−1 =

(mass)× (length)× (velocity). This is the same dimension as an angular momentum compo-

nent (recall “~L = m~r×~v ”). If we look back at eq. (.), we see that pφ is indeed the angular

momentum with respect to the origin. This phenomenon is quite general: if the generalised

coordinate is an angle, the associated generalised momentum is an angular momentum. It

is not difficult to guess that the generalised force should be the torque, and this is exactly

what we find by inspecting −∂V
∂φ = −mgl sinφ.

The double pendulum of example 

The example of the math-

ematical pendulum is still quite

simple. It is easy to solve without

the formalism of Lagrange, best by

writing the equation for the angu-

lar momentum (which is what La-

grange’s equation above achieves)

or, alternatively, by writing the

force equations in polar coordi-

nates. By using Lagrange’s equa-

tions one doesn’t have to worry

about e.g. expressions for the ac-

celeration in non-rectilinear coor-

dinates. That comes about auto-

matically.

There are more complicated

classes of situations, where the

variables are not simply an angle or rectilinear coordinates or a combination of these. Then

Lagrange’s equations makes the solution much easier. We shall look at another example,

whose equations of motion are cumbersome to derive using forces or torques, a coupled

double pendulum.

Example : Consider two mathematical pendulums one at the end of the other, with

masses and lengths as indicated in the figure. The number of degrees of freedom of this

system is two (as long as the strings are stretched), and we need to find two variables
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that completely specify the configuration of it, i.e., the positions of the two masses.

The two angles φ1 and φ2 provide one natural choice, which we will use, although there

are other possibilities, e.g. to use instead of φ2 the angle φ2
′ = φ2 − φ1 which is zero

when the two strings are aligned. The only intelligent thing we have to perform now

is to write down expressions for the kinetic and potential energies, then Lagrange does

the rest of the work. We start with the kinetic energy, which requires knowledge of the

velocities. The upper particle is straightforward, it has the speed v1 = l1φ̇1. The lower

one is trickier. The velocity gets two contributions, one from φ1 changing and one from

φ2 changing. Try to convince yourselves that those have absolute values l1φ̇1 and l2φ̇2

respectively, and that the angle between them is φ2 − φ1 as in the figure. The first of

these contributions depend on φ2 being defined from the vertical, so that when only

φ1 changes, the lower string gets parallel transported but not turned. Now the cosine

theorem gives the square of the total speed for the lower particle:

v2
2 = l1

2φ̇1
2

+ l2
2φ̇2

2
+ 2l1l2φ̇1φ̇2 cos(φ2 − φ1) , (.)

so that the kinetic energy becomes

T = 1
2m1l1

2φ̇1
2

+ 1
2m2

[

l1
2φ̇1

2
+ l2

2φ̇2
2
+ 2l1l2φ̇1φ̇2 cos(φ2 − φ1)

]

. (.)

The potential energy is simpler, we just need the distances from the ”roof” to obtain

V = −m1gl1 cosφ1 −m2g(l1 cosφ1 + l2 cosφ2) . (.)

Now the intelligence is turned off, the Lagrangian is formed as L = T−V , and Lagrange’s

equations are written down. We leave the derivation as an exercise (a good one!) and

state the result:

φ̈1 +
m2

m1 +m2

l2
l1

[

φ̈2 cos(φ2 − φ1) − φ̇2
2
sin(φ2 − φ1)

]

+
g

l1
sinφ1 = 0 ,

φ̈2 +
l1
l2

[

φ̈1 cos(φ2 − φ1) + φ̇1
2
sin(φ2 − φ1)

]

+
g

l2
sinφ2 = 0 .

(.)

One word is at place about the way these equations are written. When one gets com-

plicated expressions with lots of parameters hanging around in different places, it is

good to try to arrange things as clearly as possible. Here, we have combined masses

and lengths to get dimensionless factors as far as possible, which makes a dimensional
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analysis simple. This provides a check for errors — most calculational errors lead to

dimensional errors! The equations (.) are of course not analytically solvable. For

that we need a computer simulation. What we can obtain analytically is a solution for

small angles φ1 and φ2. We will do this calculation for two reasons. Firstly, it learns

us something about how to linearise equations, and secondly, it tells us about inter-

esting properties of coupled oscillatory systems. In order to linearise the equations, we

throw away terms that are not linear in the angles or their time derivatives. To identify

these, we use the Maclaurin expansions for the trigonometric functions. The lowest or-

der terms are enough, so that cosx ≈ 1 and sinx ≈ x. The terms containing φ̇1
2

or φ̇2
2

go away (these can be seen to represent centrifugal forces, that do not contribute when

the strings are approximately aligned or the angular velocities small). The linearised

equations of motion are thus

φ̈1 +
m2

m1 +m2

l2
l1
φ̈2 +

g

l1
φ1 = 0 ,

l1
l2
φ̈1 + φ̈2 +

g

l2
φ2 = 0 .

(.)

We now have a system of two coupled linear second order differential equations. They

may be solved by standard methods. It is important to look back and make sure that

you know how that is done. The equations can be written on matrix form

M Φ̈ +KΦ = 0 , (.)

where

Φ =

[

φ1

φ2

]

, M =

[

1 m2

m1+m2

l2
l1

l1
l2

1

]

, K =

[

g
l1

0
0 g

l2

]

. (.)

The ansatz one makes is Φ = Ae±iωt with A a column vector containing ”amplitudes”,

which gives

(−Mω2 +K)A = 0 . (.)

Now one knows that this homogeneous equation has non-zero solutions for A only

when the determinant of the ”coefficient matrix” (−Mω2 + K) is zero, i.e., the rows

are linearly dependent giving two copies of the same equation. The vanishing of the
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determinant gives a second order equation for ω2 whose solutions, after some work (do

it!), are

ω2 =
g

2m1l1l2

{

(m1 +m2)(l1 + l2)±

±
√

(m1 +m2)
[

m1(l1 − l2)2 +m2(l1 + l2)2
]

}

.

(.)

These are the eigenfrequencies of the system. It is generic for coupled system with two

degrees of freedom that there are two eigenfrequencies. If one wants, one can check

what A is in the two cases. It will turn out, and this is also generic, that the lower

frequency corresponds to the two masses moving in the same direction and the higher

one to opposite directions. It is not difficult to imagine that the second case gives a

higher frequency — it takes more potential energy, and thus gives a higher “spring

constant”. What is one to do with such a complicated answer? The first thing is the

dimension control. Then one should check for cases where one knows the answer. One

such instance is the single pendulum, i.e., m2 = 0. Then the expression (.) should

boil down to the frequency
√

g/l1 (see exercise below). One can also use one’s physical

intuition to deduce what happens e.g. when m1 is much smaller than m2. After a couple

of checks like this one can be almost sure that the expression obtained is correct. This

is possible for virtually every problem.

The above example is very long and about as complicated a calculation we will en-

counter. It may seem confusing, but give it some time, go through it systematically, and

you will see that it contains many ingredients and methods that are useful to master. If you

really understand it, you know most of the things you need to solve many-variable problems

in Lagrange’s formalism.

The Lagrange function is the difference between kinetic and potential energy. This makes

energy conservation a bit obscure in Lagrange’s formalism. We will explain how it comes

about, but this will become clearer when we move to Hamilton’s formulation. Normally, in

one dimension, one has the equation of motion mẍ = F . In the case where F only depends

on x, there is a potential, and the equation of motion may be integrated using the trick

ẍ = a = v dvdx which gives mvdv = Fdx, 1
2mv

2 −
∫

Fdx = C, conservation of energy. It must

be possible to do this in Lagrange’s formalism too. If the Lagrangian does not depend on t,
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we observe that
d

dt

[

ẋ
∂L

∂ẋ
− L(x, ẋ)

]

=

= ẍ
∂L

∂ẋ
+ ẋ

d

dt

∂L

∂ẋ
− ẋ

∂L

∂x
− ẍ

∂L

∂ẋ
=

= ẋ

[

d

dt

∂L

∂ẋ
− ∂L

∂x

]

. (.)

Therefore, Lagrange’s equation implies that the first quantity in square brackets is conserved.

As we will see in Chapter , it is actually the energy. In a case with more generalised

coordinates, the energy takes the form

E =
∑

i

q̇i
∂L

∂q̇i
− L =

∑

i

q̇ipi − L . (.)

It is only in one dimension that energy conservation can replace the equation of motion —

for a greater number of variables it contains less information.

Exercises

. Find and solve the equations of motion for a homogeneous sphere rolling down a slope,

assuming enough friction to prevent sliding.

. A particle is connected to a spring whose other end is fixed, and free to move in a

horizontal plane. Write down Lagrange’s equations for the system, and describe the

motion qualitatively.

. Find Lagrange’s equations for the system in exercise .

. Two masses are connected with a spring, and each is connected with a spring to a fixed

point. Find the equations of motion, and describe the motion qualitatively. Solve for

the possible angular frequencies in the case when the masses are equal and the spring

constants are equal. There is no friction.

. Consider the double pendulum in the limit when either of the masses is small compared

to the other one, and interpret the result.

. In the television show “Fr̊aga Lund” in the 70’s, an elderly lady had a question answered

by the physicist Sten von Friesen. As a small child, she had on several occasions walked
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into the family’s dining room, where a little porcelain bird was hanging from a heavy

lamp in the ceiling. Suddenly the bird had seemed to come alive, and start to swing

for no apparent reason. Can this phenomenon be explained from what you know about

double pendulums?

. Find the equations of motion for a particle moving on an elliptic curve (xa )2 + (yb )
2 = 1

using a suitable generalised coordinate. Check the case when a = b.

. Consider Atwood’s machine. The two masses are m1 and m2 and the moment of inertia

of the pulley is I. Find the equation of motion using Lagrange’s formulation. Note the

simplification that one never has to consider the internal forces.

. Calculate the accelerations of the masses in the double Atwood machine.

. A particle of mass m is sliding on a wedge, which in turn is sliding on a horizontal

plane. No friction. Determine the relative acceleration of the particle with respect to

the wedge.
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. A pendulum is suspended from a point that moves horizontally according to x = a sinωt.

Find the equation of motion for the pendulum, and specialise to small angles.

. A particle slides down a stationary sphere without friction beginning at rest at the top

of the sphere. What is the reaction from the sphere on the particle as a function of the

angle θ from the vertical? At what value of θ does the particle leave the surface?

. A small bead of mass m is sliding on a smooth circle of radius a and mass m which in

turn is freely moving in a vertical plane around a fixed point O on its periphery. Give

the equations of motion for the system, and solve them for small oscillations around the

stable equilibrium. How should the initial conditions be chosen for the system to move

as a rigid system? For the center of mass not to leave the vertical through O?

. A plate slides without friction on a horizontal plane. Choose as generalised coordinates

Cartesian center of mass coordinates and a twisting angle, (x̄, ȳ, θ). What are the gen-

eralised velocities? Write an expression for the kinetic energy. What are the generalised

momenta? Find the equations of motion.

. Calculate the accelerations of the masses in the double Atwood’s machine of exercise

 if there is an additional constant downwards directed force F acting on m3.

. A homogeneous cylinder of radius r rolls, without slipping, back and forth inside a fixed

cylindrical shell of radius R. Find the equivalent pendulum length of this oscillatory

motion, i.e., the length a mathematical pendulum must have in order to have the same

frequency.
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R r

α

β α

. A homogeneous circular cylinder of mass m and radius R is coaxially mounted inside a

cylindrical shell, of massm and radius 2R. The inner cylinder can rotate without friction

around the common symmetry axis, but there is a spring arrangement connecting the

two cylinders, which gives a restoring moment M = −kα when the inner cylinder is

rotated an angle α relative to the shell. The cylindrical shell is placed on a horizontal

surface, on which it can roll without slipping. Determine the position of the symmetry

axis as a function of time, if the system starts a rest, but with the inner cylinder rotated

an angle α0 from equilibrium position.

α

. A flat homogeneous circular disc of mass m and radius R can rotate without friction in

a horizontal plane around a vertical axis through its center. At a point P on this disc,

at distance R/2 from its center, another flat circular homogeneous disc, of mass λm

and radius R/4, is mounted so that it can rotate without friction around a vertical axis

through P . Rotation of the small disc an angle α relative to the large disc is counteracted

by a moment of force M = −kα by a spring mounted between the discs. The system
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is released at rest with the small disc rotated an angle α0 from it equilibrium position.

Find the maximum rotation angle of the large disc in the ensuing motion.

x

x

O

P

. A circular cylindrical shell of mass M and radius R can roll without slipping on a

horizontal plane. Inside the shell is a particle of massm which can slide without friction.

The system starts from rest with angle θ = π/2. Find the position of the cylinder axis,

O, as a function of the angle θ.

θ

O

P

. A mass m3 hangs in a massless thread which runs over a wheel of radius r2 and moment

of inertia m2k
2
2 , and whose other end is wound around a homogeneous cylinder of radius

r1 and mass m1. Both wheel and cylinder are mounted so that they can rotate about

their horizontal symmetry axes without friction. But there is friction between thread

and wheel and cylinder enough to prevent slipping. The system is started from rest.

Use Lagrange’s equation to find the acceleration ẍ of the mass.
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x

m
r

r

m

m

1
1

2

3

2

. A homogeneous cylinder of mass M and radius R rolls without slipping on a horizontal

surface. At each endpoints of the cylinder axis is attached a light spring, whose other

end is attached to a vertical wall. The springs are horizontal and perpendicular to the

cylinder axis. Both have the same natural length and spring constant k. Determine the

period time for the cylinder oscillations

a) from the rigid body equations of motion,

b) from the energy law,

c) from Lagrange’s equations.

. A homogeneous cylinder of mass M and radius R can roll without slipping on a hori-

zontal table. One end of the cylinder reaches a tiny bit out over the edge of the table.

At a point on the periphery of the end surface of the cylinder, a homogeneous rod is

attached by a frictionless joint. The rod has massm and length ℓ. Find Lagrange’s equa-

tions for the generalised coordinates ϕ and ψ according to the figure, and determine

the frequencies of the eigenmodes of small oscillations.
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ϕ
R

l
ψ

. Two identical springs,AB andBC, with spring constants k has end points A and C fixed

while their common point B can move without friction along the straight horizontal line

AC. At B a light nonelastic thread of length a is fastened. In its other end hangs a

pendulum bullet of mass m. Find the complete equations of motion for the motion of

the system in a vertical plane through AC, and solve them for small oscillations.

C

k

m

θ

a

B

k
x

A

. A wagon consists of a flat sheet of mass m and four wheels (homogeneous cylinders)

of mass m/2 each. The wagon rolls down a slope of 30◦ inclination. Simultaneously, a

homogeneous sphere of mass 2m is rolling on the sheet. Find the acceleration ξ̈ of the

sphere relative to the wagon, and the acceleration ẍ of the wagon relative to the ground.

x

30o

ξ
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. Two homogeneous cylinders, A and B, of mass m each, roll without slipping on a

horizontal plane. The cylinder axes are parallel and connected by two springs, according

to the figure. The springs are identical, each one has spring constant k. At time t = 0

each spring has its natural length, cylinder B is at rest, and cylinder A is rolling towards

B with speed v0. Find Lagrange’s equations of motion for the system, in terms of suitable

coordinates, and determine the translational velocities of both cylinders as functions of

time. Assume that the cylinders don’t collide.

A B

. Three homogeneous identical rods, AB, BC, and CD, of length a and mass m each,

are attached, by friction free joints, to each other and to a horizontal motionless beam.

From the midpoint of rodBC hangs a mathematical pendulum of length a and mass 2m.

Find the exact equations of motion of the system, and, in the case of small oscillations,

their general solution.

ψ

A D

B C

ϕ

. A weight of mass m can slide on a horizontal beam AB and is attached to one end of

a spiral spring, thread on the beam, and whose other end is attached to the fixed point

A. The spring force is proportional to the prolongation of the spring, with constant of

proportionality k = 3mg/a. From the mass hangs a homogeneous rod of length 2a and

mass m which can swing in a vertical plane through the beam. Neglect friction. Find



 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . “An introduction to analytical mechanics”

Lagrange’s equations of motion for the the system. Specialise to small oscillations. Find

the eigenmodes, and x and ϕ as functions of time if the system starts from rest.

k

C

x

ϕ

2a

A B

. A double pendulum consists of two identical homogeneous circular discs connected

to each other by a friction free joint at points of their edges. The double pendulum

hangs from the center of one of the discs, and is confined to a vertical plane. Find

the lagrangian. Find the equations of motion for small oscillations, and their general

solution.

ψ

ϕ

. A double pendulum consists of two small homogeneous rods, suspended at their upper

ends on a horizontal shaft A. The rods are connected to each other by a spiral spring,

wound on the cylinder, but are otherwise freely twistable around the shaft. The spring

strives at keeping the rods parallel, by acting on them with a torque MA = k(ϕ1 −ϕ2),

where k is a constant and (ϕ1 − ϕ2) is the angle between the rods (see figure). On rod

has mass m and length ℓ, the other one has mass 16m and length ℓ/4.

a) Find Lagrange’s equations for the generalised coordinates ϕ1 and ϕ2.

b) Determine the eigenmodes for small oscillations around equilibrium in the special

case k = mgℓ.
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AA
ϕ

ϕ
1

2

. A two-atomic molecule is modeled as two particles, of mass m each, connected by a

massless spring, with natural length a and spring constant k. If the molecule is vibrating

without rotating it has vibration frequency
√

2k/m. If the molecule is also rotating with

angular momentum L perpendicular to the molecule’s axis, the vibration frequencies

are modified. Find Lagrange’s equations of motion for the coordinates ξ and θ. Show

that one equation expresses the constancy of the angular momentum. Also determine

the vibration frequency in the limit of small vibration amplitude, and assuming that

ξ ≪ a, so that the equations of motion can be linearised in ξ.

ω=θ
.

ξa+

. Six identical homogeneous rods, each of massmand length 2ℓ, are joint into an (initially)

regular hexagon, lying on a friction free horizontal surface. At the middle of one of the

joints a spring, with spring constant k, is attached. It is directed perpendicularly to the

rod during the motion of the system, and has negligible mass. Find the frequency of

small (symmetric) oscillations of the system.

. Three thin homogeneous rods, each of mass m and length 2ℓ, connected by friction free

joints at B and C. Initially the rods lie at rest on a horizontal table such that the two

outer rods forms the same angle θ with the central rod. Then a thrust is applied to the

middle point of the central rod, directed perpendicularly to the rod. The thrust gives
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the central rod a velocity V . Express the magnitude of the momentum of the thrust in

terms of the other parameters mentioned.

C

P

B

θ

θ

. Three identical homogeneous rods AB, BC, and CD, each of mass m and length ℓ, are

connected by friction free joints at B and C. The rods rest on a horizontal plane so

that they form three sides of a square. Endpoint A is hit by a collision momentum S

perpendicular to AB. Find the velocities of the rods immediately after the collision if

they are at rest before it. Neglect friction between rods and table.

SB

C D

Α

. A homogeneous sphere of radius R hangs in a massless thread of length L = 6R/5.

One end of the thread is attached to a fixed point, the other end to the surface of

the sphere. Find Lagrange’s equations for small oscillations, and linearise to the case

of small oscillations. Show that by suitable choice of initial conditions it is possible

to make the system move in simple periodic oscillation, and determine the period of

oscillation.

R
ϕ

ψ

L
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. A homogeneous rod AB, of mass m and length 2a, hangs in a thread from a fixed

point O. The thread is unstretchable and massless and of length λa. See figure. The

distance AC is 2a/3. The rod performs small oscillations in a vertical plane containing

O. Determine lambda such that AB perpetually forms an angle with the vertical twice

as big as OC does, if the system is started suitably.Treat the rod as one-dimensional,

and assume that it never collides with the thread.

2a

O

B

C

aλ

A

ϕ

ψ

. A double pendulum consists of a homogeneous rod AB, of mass m and length 2a, which

hangs in a thread from a fixed point O. The thread is unstretchable and massless and

of length λa. See figure. The distance AC is 2a/3. The pendulum can rotate like a rigid

body with angular velocity ω about a vertical axis. Try to find equations determining

ϕ and ψ. How big must ω be for ϕ and ψ to be nonzero?

B

A 2a

λ

ω

C

a

O

ϕ

ψ

. Three identical flat circular homogeneous plates, each of mass m and radius R, hang

horizontally in three identical threads, each with torsion constant τ , (i.e., a thread

resists twisting an angle ϕ by a torque M = −τϕ.) The system forms a chain, see

figure. It is set into rotational motion about its vertical axis. Derive an equation for the

normal modes.
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. You may try the following experiment: A key-ring hangs in a light thread. If the thread

is suitably twisted, and then the key ring released from rest, the torque in the thread will

make the key ring rotate with slowly increasing angular velocity. At first the symmetry

axis of the key-ring will rotate in a horizontal plane. But when the angular velocity is

high enough the symmetry axis will tilt. Investigate the system mechanically, explain

the phenomenon, and find a formula for the angle between the symmetry axis and the

vertical.

. Imagine an arrangement of masses and springs like the one in exercise , but with

N masses and N + 1 springs. Try to let N → ∞ while letting the masses and spring

constants scale in an appropriate way, in order to derive the wave equation. This is a

model for longitudinal sound waves in a solid.
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6. The action principle

In this chapter we will formulate a fundamental principle leading to the equations of motion

for any mechanical system. It is the action principle. In order to understand it, we need

some mathematics that goes beyond ordinary analysis, so called functional analysis. This

is nothing to be afraid of, and the mathematical stringency of what we are doing will be

minimal.

Suppose we have a mechanical system — for simplicity we can think of a particle moving

in a potential — and we do not yet know what the path ~r(t) of it will be, once the initial

conditions are given (it is released at a certain time t0 with given position ~r(t0) = ~r0 and

velocity ~v(t0) = ~v0). For any path ~r(t) fulfilling the initial conditions we define a number S

by

S =

∫ ∞

t0

dt L , (.)

where L is the Lagrangian T − V . This is the action. In the case of a single particle in a

potential, the action is

S =

∫ ∞

t0

dt
[

1
2mẋ(t)

2 − V
(

x(t)
)

]

. (.)

The action is a function whose

argument is a function and whose

value is a number (carrying dimen-

sion (energy)×(time)). Such a func-

tion is called a functional. When

the argument is written out, we we

enclose it in square brackets, e.g.

”S [x(t)]”, to mark the difference

from ordinary functions.

The action principle now states

that the path actually taken by the

particle must be a stationary point

of the action. What does this mean?

Recall how one determines when an ordinary function f(x) has a local extremum. If we

make an infinitesimal change δx in the argument of the function, the function itself does not

change, so that f(x+δx) = f(x). This is the same as saying that the derivative is zero, since

f ′(x) = limε→0
f(x+ε)−f(x)

ε . When now the function we want to “extremise” is a functional

instead of an ordinary function, we must in the same way demand that a small change in

the argument ~r(t) of the functional does not change the functional. Therefore we chose a

new path for the particle ~r(t) + ~ε(t) (we have to take ~ε(t0) = ~̇ε(t0) = 0 not to change the
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given initial conditions) which differs infinitesimally from ~r(t) at every time, and see how

the action S is changed. For simplicity we consider rectilinear motion, so that there is only

one coordinate x(t). We get

S[x(t) + ε(t)] − S[x(t)] =

∫ ∞

t0

dt
[

L
(

x(t) + ε(t), ẋ(t) + ε̇(t)
)

− L
(

x(t), ẋ(t)
)]

. (.)

Taking ε to be infinitesimally small, one can save parts linear in ε

only, to obtain L
(

x(t) + ε(t), ẋ(t) + ε̇(t)
)

= L
(

x(t), ẋ(t)
)

+ ε(t)∂L∂x (t) +

ε̇(t)∂L∂ẋ (t). Inserting this into eq. (.) gives

S[x(t) + ε(t)] − S[x(t)] =

∫ ∞

t0

dt

[

ε(t)
∂L

∂x
(t) + ε̇(t)

∂L

∂ẋ
(t)

]

=

∫ ∞

t0

dt ε(t)

[

∂L

∂x
(t) − d

dt

∂L

∂ẋ
(t)

]

,

(.)

where the last step is achieved by partial integration (some boundary

term at infinity has been thrown away, but never mind). If the path

x(t) is to be a stationary point, this has to vanish for all possible in-

finitesimal changes ε(t), which means that the entity inside the square brackets in the last

expression in eq. (.) has to vanish for all times. We have re-derived Lagrange’s equations

as a consequence of the action principle. The derivation goes the same way if there are more

degrees of freedom (do it!).

The above derivation actually shows that Lagrange’s equations are true also for non-

rectilinear coordinates. We will not present a rigorous proof of that, but think of the simpler

analog where a function of a number of variables has a local extremum in some point. If

we chose different coordinates, the function itself is of course not affected — the solution

to the minimisation problem is still that all derivatives of the function vanish at the local

minimum. The only difference for our action functional is that the space in which we look

for stationary points is infinite-dimensional. (The fact that Lagrange’s equations also hold

when the relation between inertial and generalised coordinates involves time, which we chose

not to prove in Chapter , becomes almost obvious by this way of thinking.)

One may say a word about the nature of the stationary points. Are they local minima or

maxima? In general, they need not be either. The normal situation is that they are “terrace

points”, comparable to the behaviour of the function x3 at x = 0. Paths that are “close”

to the actual solution may have either higher or lower value of the action. The only general

statement one can make about the solution is that it is a stationary point of the action, i.e.,
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that an infinitesimal change in the path gives no change in the action, analogously to the

statement that a function has zero derivative in some point.

Analogously to the way one defines derivatives of functions, one can define functional

derivatives of functionals. A functional derivative δ
δx(t) is defined so that a change in the

argument x(t) by an infinitesimal function ε(t) gives a change in the functional F [x(t)]:

F [x+ ε] − F [x] =

∫

dt ε(t)
δF

δx(t)
. (.)

The functional derivative of F is a functional with an explicit t-dependence. Compare this

definition with what we did in eqs. (.) and (.). We then see that the action principle

can be formulated as
δS

δx(t)
= 0 (.)

in much the same way as an ordinary local extremum is given by df
dx = 0. Using arbitrary

generalised coordinates,
δS

δqi(t)
= 0 . (.)

Eq. (.) is Lagrange’s equation.

Variational principles are useful in many areas, not only in Newtonian mechanics. They

(almost obviously) are important in optimisation theory. The action formulation of the

dynamics of a system is the dominating one when one formulates field theories. Elementary

particles are described by relativistic quantum fields, and their motion and interaction are

almost always described in terms of an action.

Exercises

. Using a variational method, find the shortest path between two given points.

. Find the shortest path between two points on a sphere. (Remark: Like in many varia-

tional calculus problems, the best approach, choice of coordinates etc, is not obvious,

and can have a big effect on the solution. This actually makes them more interesting.)

. Show that Snell’s law is a consequence of Fermat’s principle.

Hints: Snell’s law, n1 sin θ1 = n2 sin θ2, relate angle of incidence, θ1, and angle of reflec-

tion, θ2, for a light ray going from a medium of index of refraction n1 into a medium

of index of refraction n2. Fermat’s principle states that the path of a light ray between

two points, A and B, minimises the optical path length
∫ B

A
n(~r)|d~r|.
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θ

θ
n

n1 1

2

2

A

B

. Fermat’s principle in optics states that a light ray between two points (x1, y1) and x2, y2

follows a path y(x), y(x1) = y1, y(x2) = y2 for which the optical path length

∫ x2

x1

n(x, y)

√

1 +

(

dy

dx

)2

dx

is a minimum when n is the index of refraction. For y2 = y1 = 1 and x2 = −x1 = 1 find

the path if

a) n = ey,

b) n = y − y0, y > y0.

. Motion sickness. A person who, at time t = 0, is at rest at the origin of an inertial

frame is then accelerated so that he/she at time T is a distance L from the origin, and

moving with velocity V away from the origin. Determine how the person shall move

in order to minimise his/her motion sickness. Also determine this minimal amount of

motion sickness.

Hint: In order to not make the problem too complicated, make the following simplified,

and admittedly somewhat unrealistic model for motion sickness: A person who, at time

t, is subject to an acceleration ~̈r, experiences, under an infinitesimal time interval dt, a

motion sickness increase dM = k|~̈r|2 dt. Regard k, a parameter representing the person’s

susceptibility to motion sickness, as a constant.
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7. Hamilton’s equations

When we derived Lagrange’s equations, the variables we used were the generalised coordi-

nates q1, . . . , qN and the generalised velocities q̇1, . . . , q̇N . The Lagrangian L was seen as a

function of these, L(qi, q̇i). This set of variables is not unique, and there is one other im-

portant choice, that is connected to the Hamiltonian formulation of mechanics. Hamilton’s

equations, as compared to Lagrange’s equations, do not present much, if any, advantage

when it comes to problem solving in Newtonian mechanics. Some things become clearer,

though, e.g. the nature of conserved quantities. Hamilton’s formulation is often used in

quantum mechanics, where it leads to a complementary and equivalent picture to one that

uses Lagrange’s variables.

We depart from the Lagrangian, as defined in Chapter , and define the generalised

momenta corresponding to the coordinates qi according to

pi =
∂L

∂q̇i
. (.)

In a rectilinear coordinate system, pi are the usual momenta, pi = mq̇i, but, as we have

seen, this is not true for other types of generalised coordinates.

Our situation now is that we want to change the fundamental variables from (gener-

alised) coordinates qi and velocities vi to coordinates and momenta pi. We will soon see

that it is natural to consider an other function than the Lagrangian when this change of

variables is performed. To illustrate this, consider a situation with only one coordinate q.

The differential of the Lagrangian L(q, v) is

dL =
∂L

∂q
dq +

∂L

∂v
dv =

∂L

∂q
dq + pdv . (.)

In a framework where the fundamental variables are q and p we want the differential of a

function to come out naturally as (something)dq+(something)dp. Consider the new function

H defined by

H = vp− L = q̇p− L . (.)

H is the Hamiltonian. Its differential is

dH = dvp+ vdp− dL = dvp+ vdp− ∂L

∂q
dq − pdv = −∂L

∂q
dq + vdp , (.)
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so we have
∂H

∂q
= −∂L

∂q
,

∂H

∂p
= v = q̇ . (.)

The change of function of the type (.) associated with this kind of change of variables

as is called a Legendre transform. It is important here to remember that when we change

variables to q and p, we have to express the function H in terms of the new variables in eq.

(.) so that every occurrence of v is eliminated. By using Lagrange’s equation ∂L
∂q = ṗ we

find Hamilton’s equations from eq. (.):

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
. (.)

The many-variable case is completely analogous, one just hangs an index i on (almost)

everything; the proof is almost identical. The general form is

H =
∑

i

q̇ipi − L , (.)

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
. (.)

Example : In order to understand these equations, we examine what they say for

a rectilinear coordinate, where we have T = 1
2mẋ

2 and L = 1
2mẋ

2 − V (x). Then

p = ∂L
∂ẋ = mẋ and

H = ẋp− L =
p2

m
− 1

2m(
p

m
)2 + V (x) =

p2

2m
+ V (x) , (.)

which is the sum of kinetic and potential energy. This statement is actually general (as

long as there is no explicit time-dependence in L). Hamilton’s equations take the form

ẋ =
∂H

∂p
=

p

m
, ṗ = −dV

dx
. (.)

We notice that instead of one second order differential equation we get two first order

ones. The first one can be seen as defining p, and when it is inserted in the second one

one obtains

mẍ = −dV
dx

, (.)
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which of course is the “usual” equation of motion.

Some things become very clear in the Hamiltonian framework. In particular, conserved

quantities (quantities that do not change with time) emerge naturally. Consider, for example,

the case where the Hamiltonian does not depend on a certain coordinate qk. Then Hamilton’s

equations immediately tells us that the corresponding momentum is conserved, since ṗk =

− ∂H
∂qk = 0.

Example : For a rectilinear coordinate q, when the potential does not depend on it,

we obtain the conserved quantity p associated with q. This is not surprising — we know

that momentum is conserved in the absence of force.

Example : In polar coordinates, with a central potential, we have

H =
1

2m

(

p2
r +

p2
φ

r2
)

+ V (r) , (.)

which is independent of φ, so that the associated momentum pφ, the angular momentum,

is conserved. This is exactly what we are used to in the absence of torque. Note that
p2φ

2mr2 + V (r) is the “effective potential energy” used for motion under a central force.

It should be mentioned that this also can be seen in Lagrange’s framework — if the La-

grangian does not depend on qk, Lagrange’s equation associated with that variable becomes
d
dt

∂L
∂q̇k = 0, telling that pk = ∂L

∂q̇k is conserved.

We can also draw the conclusion that the Hamiltonian H itself is conserved:

Ḣ =
∑

i

(

∂H

∂qi
q̇i +

∂H

∂pi
ṗi

)

=
∑

i

(

∂H

∂qi
∂H

∂pi
+
∂H

∂pi

(

−∂H
∂qi

))

= 0 . (.)

This states the conservation of energy, which is less direct in Lagrange’s formulation.

Finally, we will do some formal development in the Hamiltonian formalism. Exactly as

we calculated the time derivative of the Hamiltonian in equation ., the time derivative

of any function on phase space A(qi, pi) is calculated as

Ȧ =
∑

i

(

∂A

∂qi
q̇i +

∂A

∂pi
ṗi

)

=
∑

i

(

∂A

∂qi
∂H

∂pi
− ∂A

∂pi

∂H

∂qi

)

. (.)
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If one defines the Poisson bracket between two functions A and B on phase space as

{A,B} =
∑

i

(

∂A

∂qi
∂B

∂pi
− ∂A

∂pi

∂B

∂qi

)

, (.)

the equation of motion for any function A is stated as

Ȧ = {A,H} . (.)

The equations of motion for qi and pi, Hamilton’s equations ., are special cases of this

(show it!). The Poisson brackets for the phase space variables qi and pi are

{qi, qj} = 0 ,

{qi, pj} = δij ,

{pi, pj} = 0 .

(.)

This type of formal manipulations do not have much relevance to actual problem-

solving in classical mechanics. It is very valuable, though, when analyzing the behavior

of some given system in field or particle theory. It is also a powerful tool for handling

systems with constraints. Here, it is mainly mentioned because it opens the door towards

quantum mechanics. One way of going from a classical to a quantum system is to replace the

Poisson bracket by (−i) times the commutator [A,B] = AB−BA. This means that one has

xp−px = −i, position and momentum no longer commute. The momentum can actually be

represented as a space derivative, p = i ∂∂x . The two variables become “operators”, and their

values can not be simultaneously given specific values, because ordinary numbers commute.

This leads to Heisenberg’s “uncertainty principle”, stating the impossibility of performing

measurements on both x and p simultaneously beyond a maximal precision.

Exercises

. Any exercise from Chapter , with special emphasis on finding the conserved quantities.
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8. Systems with constraints

In quite many applications it happens that one does not simply want to minimise a certain

functional, but to do it under certain conditions. We will investigate how this is done.

Example : A mathematical pendulum is confined to move on constant radius from the

attachment point of the string. It is then easy to choose just the angle from the vertical

as a generalised coordinate and write down the Lagrangian. Another formulation of the

problem would be to extremise the integral of the Lagrangian L = 1
2m(ṙ2 + r2φ̇2) +

mgr cosφ under the extra constraint that r = a.

In the above example, the formulation with a constraint was unnecessary, since it was

easy to find a generalised coordinate for the only degree of freedom. Sometimes it is not so.

Consider an other example.

Example : A particle (a small bead) moves in two dimensions (x, y), where x is

horizontal and y vertical, and it slides on a track whose form is described by a function

y = f(x). A natural generalised coordinate would be the distance from one specific

point on the curve measured along the track, the x-coordinate, or something else. This

can all be done, but it is easier to formulate the problem the other way: extremise the

action S =
∫

dt L with L = 1
2m(ẋ2 + ẏ2) −mgy under the constraint that y = f(x).

Let us turn to how these constraints are treated. We would like to have a new action

that automatically takes care of the constraint, so that it comes out as one of the equations

of motion. This can be done as follows: we introduce a new coordinate λ that enters in

the Lagrangian multiplying the constraint. The time derivative of λ does not enter the

Lagrangian at all. If we call the unconstrained Lagrangian L0 and the constraint Φ = 0, this

means that

L = L0 + λΦ . (.)

The equation of motion for λ then just gives the constraint:

0 =
δS

δλ
= − d

dt

∂L

∂λ̇
+
∂L

∂λ
=
∂L

∂λ
= Φ . (.)

The extra variable λ is called a Lagrange multiplier. We can examine how this works in the

two examples.
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Example : For the pendulum, we get according to this scheme,

L = 1
2m(ṙ2 + r2φ̇2) +mgr cosφ+ λ(r − a) , (.)

from which the equations of motion follow:

r : m(r̈ − rφ̇2) −mg cosφ− λ = 0 ,

φ :
d

dt
(mrφ̇) +mgr sinφ = 0 ,

λ : r − a = 0 .

(.)

This is not yet exactly the equations we want. By inserting the last equation (the

constraint) in the other two we arrive at

λ = m(aφ̇2 + g cosφ) ,

φ̈+
g

a
sinφ = 0 .

(.)

The second of these equations is the equation of motion for φ, the only degree of freedom

of the pendulum, and the first one gives no information about the motion, it only states

what λ is expressed in φ.

The pattern in the example is completely general, the equation of motion for the La-

grange multiplier gives the constraint, and the equation of motion for the constrained variable

gives an expression for the Lagrange multiplier in terms of the real degrees of freedom (in

this case φ). Let us also examine the other example.

Example : In the same way as above, the new Lagrangian becomes

L = 1
2m(ẋ2 + ẏ2) −mgy + λ

(

y − f(x)
)

, (.)

with the resulting equations of motion

x : mẍ+ λf ′(x) = 0 ,

y : mÿ +mg − λ = 0 ,

λ : y − f(x) = 0 .

(.)
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As before, we insert the constraint in the other equations, and get, using d2

dt2 f(x) =
d
dt (ẋf

′(x)) = ẍf ′(x) + ẋ2f ′′(x) :

ẍ+
λ

m
f ′(x) = 0 ,

ẍf ′(x) + ẋ2f ′′(x) + g − λ

m
= 0 .

(.)

The second of these equations can be seen as solving λ. Inserting back in the first one

yields

ẍ+
(

ẍf ′(x) + ẋ2f ′′(x) + g
)

f ′(x) = 0 , (.)

or, equivalently,

ẍ+
f ′(x)

1 + f ′(x)2
(

g + ẋ2f ′′(x)
)

, (.)

which is the simplest form of the equation of motion for this system, and as far as we

can get without specifying the function f(x).

There are often tricks for identifying degrees of freedom and writing the Lagrangian in

terms of them. The Lagrange multiplier method makes that unnecessary — one just has to

use the same variational principle as usual on a modified Lagrangian, and everything comes

out automatically.

It turns out to be theoretically very fruitful to treat constrained systems in a Hamilto-

nian formalism. We will not touch upon that formulation here.

As a last example, we will solve a (classical) mechanical problem that is not a dynamical

one.

Example : Consider a string whose ends are fixed in two given points. What shape

will the string form? We suppose that the string is unstretchable and infinitely flexible

(i.e., it takes an infinite amount of energy to stretch it and no energy to bend it). It is

clearly a matter of minimising the potential energy of the string, under the condition

that the length is some fixed number. The input for calculating the potential energy is

the shape y(x) of the string, so it is a functional. The principle for finding the solution

must then be
δV

δy(x)
= 0 , (.)



 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . “An introduction to analytical mechanics”

where V [y(x)] is the potential energy. We need an explicit expression for V, and also for

the length, that will be constrained to a certain value L using the Lagrange multiplier

method. The length of an infinitesimal part of the string is

ds =
√

(dx)2 + (dy)2 = dx
√

1 + y′(x)2 , (.)

so that the total length and potential energy are

L =

∫ b

a

dx
√

1 + y′(x)2 ,

V = −ρg
∫ b

a

dx y(x)
√

1 + y′(x)2 .

(.)

The technique is again to add a Lagrange multiplier term to V:

U =

∫ b

a

dxu(y, y′) =

− ρg

∫ b

a

dx y(x)
√

1 + y′(x)2 + λ

(

L−
∫ b

a

dx
√

1 + y′(x)2

)

.

(.)

Exactly as we recovered Lagrange’s equations from δS
δx(t) = 0, the variation of U gives

the equation for y
d

dx

∂u

∂y′
− ∂u

∂y
= 0 . (.)

Since there is no explicit x-dependence one may use the integrated form of the equations

as described in Chapter .,

0 =
d

dx

[

u− y′
∂u

∂y′

]

=
d

dx

[

−(λ+ ρgy)

√

1 + y′2 +
(λ+ ρgy)y′2
√

1 + y′2

]

. (.)

We shift y by a constant value to get the new vertical variable z = y + ρg/λ, and

equation (.) gives

d

dx

z
√

1 + z′2
= 0 =⇒

√

1 + z′2 = kz , (.)



“An introduction to analytical mechanics” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

so that z′ = ±
√
k2z2 − 1, and

dx

dz
= ± 1√

k2z2 − 1
, (.)

with the solutions

x(z) + c = ±arcoshkz , z =
1

k
coshk(x+ c) . (.)

One may of course go back to the variable y and solve for the Lagrange multiplier λ,

but here we are only interested in the types of curves formed by the hanging string —

they are hyperbolic cosine curves.

Exercises

. Show that the action S =
∫

dτ λ ẋµẋ
µ describes a massless relativistic particle.

. Find the shortest path between two points on a sphere by using as generalised coordi-

nates all three Cartesian coordinates and imposing the constraint x2
1 +x2

2 +x3
3 − r2 = 0

by a Lagrange multiplier.

. A cylindrical bucket of water rotates about its vertical symmetry axis with constant

angular velocity ω. After a while the water comes to rest relative to the rotating refer-

ence frame. The water surface minimises the potential energy in the combined gravity-

centrifugal potential field. Find the shape of this curved water surface, using variational

calculus, and a Lagrange multiplier term enforcing constant water volume.

. Show that the closed plane curve of a given length which encloses the largest area is a

circle.

Hint: There are many ways do this. In order to employ the methods of variational

calculus and constraints, use Cartesian coordinates, put the curve in the z = 0 plane,

and parametrise it as ~r(s), 0 ≤ s ≤ 1. The length can then be expressed as
∫

|~̇r| ds, and

the enclosed area as
∫

ẑ · (~r× ~̇r) ds, where overdot denotes s-derivative (show this!). Use

the Lagrange multiplier method to enforce the constraint.
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Answers to exercises

. Four. For example the center of mass coordinates, the distance between the masses and

an angle.

. Five, for example three Cartesian coordinates for one endpoint, and two spherical an-

gular coordinates specifying the rod’s direction.

. 2 + n, for example 2 Cartesian coordinates for one endpoint of the chain, and n angles

specifying the directions of its links.

. 4, for example 2 spherical angular coordinates for the direction of the string, and 2 for

the direction of the rod.

. F = −mgf ′(x)

. Fϕ = ℓF , Fψ = (ℓ− a)F

. a) (Fx,Fα,Fβ) = (F, 0, 0),

b) (Fx,Fα,Fβ) = (F, ℓ cosα, 0),

c) (Fx,Fα,Fβ) = (F, ℓ cosα, ℓ cosβ).

. Fx = Fx, Fy = Fy, Fz = Fz ,

Fθ = ℓ(Fx cos θ cosϕ+ Fy cos θ sinϕ− Fz sin θ),

Fϕ = ℓ sin θ(−Fx sinϕ+ Fy cosϕ).

Interpretation: The x, y, and z components of the generalised force equal the Cartesian

components of the force ~F . Fϕ is the vertical (z) component of the torque of the force
~F with respect to the center of mass, Fθ is the component of the torque in a direction

ϕ̂ perpendicular to the vertical and to the direction of the rod.

. If the generalised coordinates are Cartesian coordinates x and y for the center of mass,

and an angle θ describing counterclockwise rotation, the generalised force components

are: Fx = Fx, Fy = Fy, Fθ = x̄PFy − ȳPFx.

. F1 = Fy − ac(cFy−(y1−y2)Fx)

(c2+(y1−y2)2)3/2 , F2 =
ac(cFy−(y1−y2)Fx)

(c2+(y1−y2)2)3/2 .

. T = 1
2m
(

ṙ2 + (rθ̇)2 + (rφ̇ sin θ)2
)

. T = 1
2mẋ

2
(

1 + f ′(x)2
)

. T = 1
2 (Ī +mr2 sin2 θ(1 + r cos θ√

b2−(r sin θ)2
)2)θ̇2.

. pψ = mℓ2(ϕ̇ cos(ϕ− ψ) + ψ̇), pϕ = mℓ2(2ϕ̇+ ψ̇ cos(ϕ− ψ)).

Interpretation: pψ = angular momentum (of mass B) with respect to point A, pϕ + pψ

= angular momentum (of A and B) with respect to O.

. pψ = mℓ2(1
2 ϕ̇ cos(ϕ− ψ) + 1

3 ψ̇), pϕ = mℓ2(4
3 ϕ̇+ 1

2 ψ̇ cos(ϕ− ψ)).

Interpretation: pψ = angular momentum of rod AB with respect to point A, pϕ + pψ

= angular momentum of the rods with respect to O.
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. If as generalised coordinates are used Cartesian coordinates (x, y) of the joint, and

polar angles (θ1, θ2) describing the directions of the rods from the joints, measured

counterclockwise from the x-axis as usual, then

T = m(ẋ2 + ẏ2)+ 1
2mℓ(−ẋθ̇1 sin θ1− ẋθ̇2 sin θ2 + ẏθ̇1 cos θ1 + ẏθ̇2 cos θ2)+ 1

6mℓ
2(θ̇21 + θ̇22),

px = 2mẋ− 1
2mℓ(θ̇1 sin θ1 + θ̇2 sin θ2),

py = 2mẏ + 1
2mℓ(θ̇1 cos θ2 + θ̇2 cos θ2),

pθ1 = 1
3mℓ

2θ̇1 + 1
2mℓ(−ẋ sin θ1 + ẏ cos θ1),

pθ2 = 1
3mℓ

2θ̇2 + 1
2mℓ(−ẋ sin θ2 + ẏ cos θ2).

They are x and y components of the linear momentum of the system, and the angular

momenta of the rods with respect to the joint, respectively.

. T = 1
2m((ẋ − Ωy)2 + (ẏ + Ωx)2),

px = m(ẋ− Ωy), py = m(ẏ + Ωx).

. T = 1
2m(ẋ2 + ẏ2) +mΩ sin θ(xẏ − yẋ) + 1

2mΩ2(x2 + (R cos θ − y sin θ)2).

. r̈ − r(θ̇2 + φ̇2 sin2 θ) = 0
d
dt (r

2θ̇) − r2φ̇2 sin θ cos θ = 0
d
dt (r

2φ̇ sin2 θ) = 0

. If standard spherical angles, corresponding to z- axis pointing vertically down, are used

as generalised ocordinates:

θ̈ − φ̇2 sin θ cos θ + g
a sin θ = 0

d
dt (φ̇ sin2 θ) = 0

. ω =
√

g
a

. ẍ(1 + f ′2) + ẋ2f ′f ′′ + gf ′ = 0

No.

ω =
√

gf ′′(x0)

. r̈ − r sin2 θϕ̇2 + g cos θ = 0, d
dt (r

2 sin2 θϕ̇) = 0.

. r = 1√
2ε sin θ

√

ℓ2 + (2ε sin θ(t− t0))2, ϕ = ϕ0 + 1
sin θ arctan(2ε sin θ(t− t0)/ℓ),

where ε = E/m, ℓ = L/m, t0 and ϕ0 are the integration constants.

. cos θ = −1 is always an unstable equilibrium position. The position cos θ = 1 is stable

for Ω2 < g/r, unstable for Ω2 > g/r. If Ω2 > g/r there are in addition two stable

positions cos θ = g
rΩ2 .

. x(t) = a cos(Ωt) + b sin(Ωt) + c cos(Ωt)t+ d sin(Ωt)t,

y(t) = −a sin(Ωt) + b cos(Ωt) − c sin(Ωt)t+ d cos(Ωt)t.

. ẍ = 2Ω sin θ ẏ + Ω2 x− gx/R ,

ÿ = −2Ω sin θ ẋ + Ω2 sin θ(sin θ y − R cos θ) − gy/R . The next to last term describes

a constant centrifugal acceleration −RΩ2 sin θ cos θŷ ≈ −ŷ sin 2θ · 0.017 m/s2. The real

earth compensates (cancels) this term by tilting its surface, so that the vertical does
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not point to the center of earth. The equations also describe coriolis and centrifugal

acceleration due to the vertical component of earths rotation, Ω sin θ (compare with the

previous problem). In addition the horizontal component of earth’s rotation produces

a centrifugal acceleration Ω2 cos2 θ xx̂. The gravitation acceleration terms are present

only because the surface is assumed flat instead of spherical. The real earth curves its

surface in such a way that all these accelerations, except the coriolis acceleration, are

cancelled.

. a = 5
7g sinα

. mr̈ −mrφ̇2 + k(r − l) = 0
d
dtmr

2φ̇ = 0

. Translation + motion as in exercise . Note the appearance of the “reduced mass”

µ = m1m2

m1+m2
.

. ω = ω0 or ω0

√
3 where ω0 =

√

k
m

. φ̈+ (a2−b2) sin φ cosφ
a2 sin2 φ+b2 cos2 φ φ̇

2 = 0

. a = m1−m2

m1+m2+ I
R2

g

. a1 = 1−γ
1+γ g (downwards), where γ = 4m2m3

m1(m2+m3)

a2 = −a1 + 2
1+γ

m2−m3

m2+m3

. arel = (M+m) sinα
M+m sin2 α

g

. φ ≈ 0 : φ̈+ g
l φ = aω2

l sinωt (forced oscillations)

. arccos 2
3 ≈ 49◦

. φ = A sin(ω1t+ α1) +B sin(ω2t+ α2)

θ = −2A sin(ω1t+ α1) +B sin(ω2t+ α2)

A = 0

B = 0

. a1 = (m1m2+m1m3−4m2m3)g−2m2F
m1m2+m1m3+4m2m3

,

a2 = (m1m2−3m1m3+4m2m3)g−m1F
m1m2+m1m3+4m2m3

,

a3 = (−3m1m2+m1m3+4m2m3)g+(m1+4m2)F
m1m2+m1m3+4m2m3

.

. 3
2 (R − r)

. x(t) = 2R
25 α0(1 − cos(

√

25k
12mR2 t))

. Maximal rotation angle: 2λα
9λ+16

. x(θ) = 2mR
2m+3M (1 − sin θ)

. ẍ = m3g
m1/2+m2k2/r2

2
+m3
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. T = π
√

3M
k

. ω1 =
√

2mg
3mR , ω2 =

√

3g
2ℓ

. m d
dt (ẋ+ aθ̇ cos θ) = −2kx,

m d
dt (aẋ cos θ + a2θ̇) = −mga sin θ,

Small oscillations: x = mg
2k θ, θ = A cos(ωt+ α), ω =

√

g
a+ mg

2k
.

. ẍ = 25g
64 , ξ̈ = 5g

64 .

. ẋA = v0
2 (1 + cos(

√

8k
3m t)), ẋB = v0

2 (1 − cos(
√

8k
3m t)).

. Exact equations of motion:
11
6 ϕ̈+ ψ̈ cos(ϕ− ψ) + ψ̇2 sin(ϕ− ψ) + 2g

a sinϕ = 0,

ϕ̈ cos(ϕ− ψ) + ψ̈ − ϕ̇2 sin(ϕ− ψ) + g
a sinψ = 0.

Small oscillations:
11
6 ϕ̈+ ψ̈ + 2g

a ϕ = 0,

ϕ̈+ ψ̈ + g
aψ = 0.

ϕ = 2A sin(ω1t+ α1) + 3B sin(ω2t+ α2),

ψ = 3A sin(ω1t+ α1) − 4B sin(ω2t+ α2),

with ω1 =
√

3g
5a , ω2 =

√

4g
a .

. 4aϕ̈+ 3ẍ cosϕ+ 3g sinϕ = 0, aϕ̈+ 2ẍ− aϕ̇2 sinϕ+ 3g
a x = 0,

ϕ = A cos(
√

3g
a t) +B cos(

√

3g
5a t), x = −aA cos(

√

3g
a t) + aB

3 cos(
√

3g
5a t).

. 3
2 ϕ̈+ ψ̈ + g

aϕ = 0, ϕ̈+ 3
2 ψ̈ + g

aψ = 0, ω1/ω2 =
√

5.

. b) ω1 =
√

3g
ℓ , ω2 =

√

21g
2ℓ .

. ω2 ≈ 2k
m + 12L2

m2a4 .

. ω2 = 10k
33m .

. Momentum S = 3m(1 − 1
2 cos2 θ)v.

. The central rods gets a velocity ~v = − 1
3m

~S. In addition the two other rods get coun-

terclockwise angular velocities 7S
2mℓand S

2mℓ , respectively.

. T1 = 2π
√

L
6g , T2 = 2π

√

2L
g .

. λ = 4/3.

. g
aω2 <

λ
2 + 2

3 +
√

(λ2 − 2
3 )2 + λ

3 .

. x3 − 5x2 + 6x− 1 = 0, with x = mR2

2k ω2.

. ωcritical = 2g/r.

. a) ey = e cos 1
cosx .

b) y = 1 − cosh 1 + coshx.
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. r(t) = (3L− V T )( tT )2 + (V T − 2L)( tT )3, M = k
T

(

(2V − 3LT )2 + 3(LT )2
)

.

. Consider the meaning of the obtained constraint!

. In cylinder coordinates, z(r) = ω2

2g r
2 +C, where C is a constant depending on the total

amount of water etc.
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Translation table

English term Swedish term Symbol

acceleration acceleration ~a

action verkan S

angular frequency vinkelfrekvens ω

angular momentum rörelsemängdsmoment ~L

angular velocity vinkelhastighet ω , ~ω

center of mass masscentrum ~R

coefficient of friction friktionskoefficient µ , f

collision stöt

elastic elastisk

inelastic oelastisk

conservation bevarande

constant of motion rörelsekonstant

constraint tv̊ang

cross section tvärsnitt

curl rotation ∇× , curl

damping dämpning

density densitet ρ

derivative derivata

partial partiell

displacement förskjutning

energy energi E

kinetic kinetisk, rörelse- T

potential potentiell, läges- U , V

equilibrium jämvikt

event händelse

force kraft ~F

central central-

conservative konservativ

fictitious fiktiv

inertial tröghets-

non-conservative ickekonservativ

generalised generaliserad

gradient gradient ∇ , grad
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gravity tyngdkraft, gravitation

interaction växelverkan

Hamiltonian Hamiltonfunktion H

impulse impuls I ,
∫ t2
t1
~Fdt

inertia tröghet

inertial system inertialsystem

initial conditions begynnelsevillkor

interaction växelverkan

Lagrangian Lagrangefunktion L

mass massa m

gravitational tung

inertial trög

rest vilo-

magnitude belopp | |
moment of inertia tröghetsmoment I

(linear) momentum rörelsemängd ~p

orbit omlopp, bana

oscillation svängning

path väg, bana

perturbation störning

power effekt P

pulley talja

resonance resonans

rigid body stel kropp

scattering angle spridningsvinkel

simultaneity samtidighet

speed fart v

spring fjäder

tension spänning

tensor of inertia tröghetstensor/-matris Ĩ

torque vridande moment ~τ

trajectory bana

velocity hastighet ~v

wedge kil

weight tyngd

work arbete W


