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Martin Cederwall, “An Introduction to Analytical Mechanics” . . . . . . . . . . . . . . . 1

Preface

This compendium is intended to be a complement to the textbook ”An Introduc-
tion to Mechanics” by D. Kleppner and R.J Kolenkow (KK) for the course ”Mekanik
F del B” given in the first year of the Master of Science program for Physical Engi-
neering (Teknisk Fysik) at Chalmers University of Technology, Gothenburg.

Apart from what is contained in KK, this course also encompasses an elemen-
tary understanding of analytical mechanics, especially the lagrangian formulation.
In order not to be too narrow, this text contains not only what is specified as
compulsory for the Master of Science program, but tries to give a somewhat more
general overview of the subject of analytical mechanics. The intention is that an
interested student should be able to read additional material that may be useful in
more advanced courses or simply interesting by itself.

The compulsory part of the text is the part on the lagrangian formulation of
newtonian mechanics and its applications (Chapters 1-5), together with the part on
variational (action) principles (Chapter 6). The chapter on the hamiltonian formu-
lation is not compulsory, but it is recommended for the student who wants a deeper
theoretical understanding of the subject and is very relevant for the connection be-
tween classical mechanics (”classical” here denoting both Newton’s and Einstein’s
theories) and quantum mechanics.

The mathematical rigour is kept at a minimum, hopefully for the benefit of
physical understanding and clarity. Notation is consistent with KK, unless explicitely
stated.

The text is organized as follows: In Chapter 1 a background is given. Chapters 2,
3 and 4 contain the general setup needed for the lagrangian formalism. In Chapter
5 Lagrange’s equation are derived and Chapter 6 gives their interpretation in terms
of an action. Chapters 7 and 8 contain further developments of analytical mechan-
ics, namely the hamiltonian formulation and a lagrangian treatment of constrained
systems. Exercises are given at the end of each chapter. Finally, a translation table
from English to Swedish of some terms used is found.
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1. Introduction

In Newtonian Mechanics, we have encountered some different equations for the
motions of objects of different kinds. The simplest case possible, a pointlike particle
moving under the influence of some force, is governed by the vector equation

ṗ = F . (1.1)

This equation of motion can not be derived from some other equation. It is postulated,
i.e. it is taken as an ”axiom”, or a fundamental truth of Newtonian Mechanics (one
can also take the point of view that it defines one of the three quantities F, m (the
inertial mass) and a in terms of the other two).

Equation (1.1) is the fundamental equation in Newtonian Mechanics. If we con-
sider other situations, e.g. the motion of a rigid body, the equations of motion

L̇ = ~τ (1.2)

can be obtained from it by imagining the body to be put together of a great number
of small, approximately pointlike, particles whose relative positions are fixed (rigid-
ity condition). If you don’t agree here, you should go back and check that the only
dynamical input in eq. (1.2) is eq. (1.1). What more is needed for eq. (1.2) is the
kinematical rigidity constraint and a suitable definition for the torque ~τ . We have
also seen eq. (1.1) expressed in a variety of forms obtained by expressing its com-
ponents in non-rectilinear bases (e.g. polar coordinates). Although not immediately
recognizable as eq. (1.1), these obviously contain no additional information, but just
represent a choice of coordinates convenient to some problem. Furthermore, we have
encountered the principles of energy, momentum and angular momentum, which tell
that under certain conditions some of these quantities (defined in terms of masses
and velocities, i.e. kinematical) do not change with time, or in other cases predict the
rate at which they change. These are also consequences of eq. (1.1) or its derivates,
e.g. eq. (1.2). Go back and check how the equations of motion are integrated to get
those principles! It is very relevant for what will follow.

Taken all together, we see that although a great variety of different equations
have been derived and used, they all have a common root, the equation of motion
of a single pointlike particle. The issue for the subject of analytical mechanics is to
put all the different forms of the equations of motion applying in all the different
contexts on an equal footing. In fact, they will all be expressed as the same, identical,
(set of) equation(s), Lagrange’s equation(s), and, later, Hamilton’s equation(s). In
addition, these equations will be derived from a fundamental principle, the action
principle, which then can be seen as the fundament of newtonian mechanics.
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We will also see one of the most useful and important properties of Lagrange’s
and Hamilton’s equations, namely that they take the same form independently of
the choice of coordinates. This will make them extremely powerful when dealing with
systems whose degrees of freedom most suitably are described in terms of variables
in which Newton’s equations of motion are difficult to write down immediately, and
they often dispense with the need of introducing forces whose only task is to make
kinematical conditions fulfilled, such as for example the force in a rope of constant
length (”constrained systems”). We will give several examples of these types of
situations.
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2. Generalized Coordinates

A most fundamental property of a physical system is its number of degrees of
freedom. This is the minimal number of variables needed to completely specify the
positions of all particles and bodies that are part of the system, i.e. its configuration.
If the number of degrees of freedom is N , any set of variables q1, . . . , qN specifying
the configuration is called a set of generalized coordinates.

Example: A point particle moving on a line has one degree of freedom. A
generalized coordinate can be taken as x, the coordinate along the line. A
particle moving in three dimensions has three degrees of freedom. Examples
of generalized coordinates are the usual rectilinear ones, r = (x, y, z), and
the spherical ones, r = (r, θ, φ), where x = r sin θ cos φ, y = r sin θ sinφ,
z = r cos θ.

Example: A rigid body in two dimensions has three degrees of freedom – two
“translational” which give the position of some specified point on the body
and one “rotational” which gives the orientation of the body. An example,
the most common one, of generalized coordinates is (xc, yc, φ), where xc and
yc are rectilinear components of the position of the center of mass of the
body, and φ is the angle from the x axis to a line from the center of mass to
another point (x1, y1) on the body.

Example: A rigid body in three dimensions has six degrees of freedom. Three
of these are translational and correspond to the degrees of freedom of the
center of mass. The other three are rotational and give the orientation of the
rigid body. We will not discuss how to assign generalized coordinates to the
rotational degrees of freedom (one way is the so called Euler angles), but the
number should be clear from the fact that one needs a vector ω with three
components to specify the rate of change of the orientation.

The number of degrees of freedom is equal to the number of equations of motion
one needs to find the motion of the system. Sometimes it is suitable to use a larger
number of coordinates than the number of degrees of freedom for a system. Then
the coordinates must be related via some kind of equations, called constraints. The
number of degrees of freedom in such a case is equal to the number of generalized co-
ordinates minus the number of constraints. We will briefly treat constrained systems
in Chapter 8.

Example: The configuration of a mathematical pendulum can be specified
using the rectilinear coordinates (x, y) of the mass with the fixed end of the
string as origin. A natural generalized coordinate, however, would be the
angle from the vertical. The number of degrees of freedom is only one, and
(x, y) are subject to the constraint x2 + y2 = l2, where l is the length of the
string.
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In general, the generalized coordinates are chosen according to the actual prob-
lem one is interested in. If a body rotates around a fixed axis, the most natural choice
for generalized coordinate is the rotational angle. If something moves rectilinearly,
one choses a linear coordinate, etc. For composite systems, the natural choices for
generalized coordinates are often mixtures of different types of variables, of which
linear and angular ones are most common. The strength of the lagrangian formula-
tion of Newton’s mechanics, as we will soon see, is that the nature of the generalized
coordinates is not reflected in the corresponding equation of motion. The way one
gets to the equations of motion is identical for all generalized coordinates.

Generalized velocities are defined from the generalized coordinates exactly as
ordinary velocity from ordinary coordinates:

vi = q̇i , i = 1, . . . , N . (2.1)

Note that the dimension of a generalized velocity depends on the dimension of
the corresponding generalized coordinate, so that e.g. the dimension of a generalized
velocity for an angular coordinate is (time)−1 – it is an angular velocity. In general,
(v1, . . . , vN ) is not the velocity vector.

Example: With polar coordinates (r, φ) as generalized coordinates, the gen-

eralized velocities are (ṙ, φ̇), while the velocity vector is ṙr̂ + rφ̇φ̂.

Exercises

1. Two masses m1 and m2 connected by a spring are sliding on a frictionless
plane. How many degrees of freedom does this system have? Introduce a set
of generalized coordinates!

2. Try to invent a set of generalized coordinates for a rigid body!
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3. Generalized Forces

Suppose we have a system consisting of a number of point particles with coordi-
nates x1, . . . , xN , and that the configuration of the system also is described by the
set of generalized coordinates q1, . . . , qN . Since both sets of coordinates specify the
configuration, there must be a relation between them:

x1 = x1(q1, q2, . . . , qN ) = x1(q) ,

x2 = x2(q1, q2, . . . , qN ) = x2(q) ,

...

xN = xN (q1, q2, . . . , qN) = xN(q) ,

(3.1)

compactly written as xi = xi(q). To make the relation between the two sets of
variable specifying the configuration completely general, the functions xi could also
involve an explicit time dependence. We choose not to include it here. The equations
derived in Chapter 5 are valid also in that case. If we make a small (infinitesimal)
displacement dqi in the variables qi, the chain rule implies that the corresponding
displacement in xi is

dxi =
N∑

j=1

∂xi

∂qj
dqj . (3.2)

The infinitesimal work performed by a force during such a displacement is the sum
of terms of the type F · r, i.e.

dW =
N∑

i=1

Fidxi =
N∑

j=1

Fjdqj , (3.3)

where F is obtained from (3.2) as

Fj =
N∑

i=1

Fi
∂xi

∂qj
. (3.4)

Fj is the generalized force associated to the generalized coordinate qj. As was the
case with the generalized velocities, the dimensions of the Fj’s need not be those of
ordinary forces.

Example: Consider a mathematical pendulum with length l, the generalized
coordinate being φ, the angle from the vertical. Suppose that the mass moves
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an angle dφ under the influence of a force F. The displacement of the mass
is dr = ldφφ̂ and the infinitesimal work becomes dW = F · dr = Fφldφ.
The generalized force associated with the angular coordinate φ obviously is
Fφ = Fφl, which is exactly the torque of the force.

The conclusion drawn in the example is completely general – the generalized
force associated with an angular variable is a torque.

If the force is conservative, we may get it from a potential V as

Fi = −∂V

∂xi
. (3.5)

If we then insert this into the expression (3.4) for the generalized force, we get

Fj = −
N∑

i=1

∂V

∂xi

∂xi

∂qj
= −∂V

∂qj
. (3.6)

The relation between the potential and the generalized force looks the same whatever
generalized coordinates one uses.

Exercises

3. A particle is moving without friction at the curve y = f(x), where y is verti-
cal and x horizontal, under the influence of gravity. What is the generalized
force when x is chosen as generalized coordinate?
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4. Kinetic Energy and Generalized Momenta

We will examine how the kinetic energy depends on the generalized coordinates
and their derivatives, the generalized velocities. Consider a single particle, so that
N = 3 in the above description. The kinetic energy is

K = 1
2m

3∑
i=1

ẋ2
i . (4.1)

Eq. (3.2) in the form

ẋi =
3∑

j=1

∂xi

∂qj
q̇j (4.2)

tells us that ẋi is a function of qj , q̇j and time (time enters only if the transition
functions (3.1) involve time explicitely). We may write the kinetic energy in terms
of the generalized coordinates and velocities as

K = 1
2m

3∑
j,k=1

Ajk(q)q̇j q̇k (4.3)

(or in matrix notation K = 1
2mq̇tAq̇), where the symmetric matrix A is given by

Ajk =
3∑

i=1

∂xi

∂qj

∂xi

∂qk
. (4.4)

It is important to note that although the relations between the rectilinear coordinates
xi and the generalized coordinates qj may be non-linear, the kinetic energy is always
a bilinear form in the generalized velocities with coefficients (Ajk) that depend only
on the generalized coordinates.

Example: We look again at plane motion in polar coordinates. The relations
to rectilinear ones are

x = r cos φ ,

y = r sinφ ,
(4.5)

so the matrix A becomes (after a little calculation)

A =

[
Arr Arφ

Arφ Aφφ

]
=

[
1 0

0 r2

]
, (4.6)
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and the obtained kinetic energy is in agreement with the well known

K = 1
2m(ṙ2 + r2φ̇2) . (4.7)

If one differentiates the kinetic energy with respect to one of the (ordinary)
velocities vi = ẋi, one obtains

∂K

∂ẋi
= mẋi , (4.8)

i.e. a momentum. The generalized momenta are defined in the analogous way as

pj =
∂K

∂q̇j
. (4.9)

Example: The polar coordinates again. Differentiating K of eq. (4.7) with
respect to r and φ yields

pr = mṙ , pφ = mr2φ̇ . (4.10)

The generalized momentum to r is the radial component of the ordinary mo-
mentum, while the one associated with φ is the angular momentum, some-
thing which by now should be no surprise.

The fact that the generalized momentum associated to an angular variable is an
angular momentum is a completely general feature.

We now want to connect back to the equations of motion, and formulate them
in terms of the generalized coordinates. This will be done in the following chapter.

Exercises

4. Find the expression for the kinetic energy in terms of spherical coordinates
(r, θ, φ), (x, y, z) = (r sin θ cosφ , r sin θ sinφ , r cos θ).

5. Find the kinetic energy for a particle moving at the curve y = f(x).
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5. Lagrange’s Equations

5.1. A Single Particle

The equation of motion, as we know it so far, is given by (1.1). We would
like to recast it in a form that is possible to generalize to generalized coordinates.
Remembering how the momentum was obtained from the kinetic energy, we rewrite
(1.1) in the form

d

dt

∂K

∂ẋi
= Fi . (5.1)

A first guess would be that this, or something very similar, holds if the coordinates
are replaced by the generalized coordinates and the force by the generalized force.
We therefore calculate the left hand side of (5.1) with q instead of x and see what
we get:

d

dt

∂K

∂q̇j
=

3∑
i=1

d

dt

(
∂K

∂ẋi

∂ẋi

∂q̇j

)
=

3∑
i=1

d

dt

(
∂K

∂ẋi

∂xi

∂qj

)
=

=
3∑

i=1

(
∂xi

∂qj

d

dt

∂K

∂ẋi
+

d

dt

∂xi

∂qj

∂K

∂ẋi

)
=

3∑
i=1

(
∂xi

∂qj

d

dt

∂K

∂ẋi
+

∂ẋi

∂qj

∂K

∂ẋi

)
=

=
3∑

i=1

∂xi

∂qj

d

dt

∂K

∂ẋi
+

∂K

∂qj
.

(5.2)

Here, we have used the chain rule and the fact that K depends on ẋi and not on xi

in the first step. Then, in the second step, we use the fact that xi are functions of
the q’s and not the q̇’s to get ∂ẋi

∂q̇j
= ∂xi

∂qj
. The fourth step uses this again to derive

d
dt

∂xi

∂qj
= ∂ẋi

∂qj
, and the last step again makes use of the chain rule on K. Now we can

insert the form (5.1) for the equations of motion of the particle:

d

dt

∂K

∂q̇j
=

3∑
i=1

∂xi

∂qj
Fi +

∂K

∂qj
, (5.3)

and arrive at Lagrange’s equations of motion for the particle:

d

dt

∂K

∂q̇j
− ∂K

∂qj
= Fj . (5.4)

Example: A particle moving under the force F using rectilinear coordinates.
Here one must recover the known equation ma = F. Convince yourself that
this is true.
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Example: To complete the series of examples on polar coordinates, we finally
derive the equations of motion. From (4.7), we get

∂K
∂ṙ = mṙ , ∂K

∂r = mrφ̇2 ,
∂K
∂φ̇

= mr2φ̇ , ∂K
∂φ = 0 .

(5.5)

Lagrange’s equations now give

m(r̈ − rφ̇2) = Fr ,

m(r2φ̈ + 2rṙφ̇) = τ (= rFφ) .
(5.6)

The lagrangian formalism is most useful in cases when there is a potential en-
ergy, i.e. the forces are conservative and mechanical energy is conserved. Then the
generalized forces can be written as Fj = − ∂V

∂qj
and Lagrange’s equations read

d

dt

∂K

∂q̇j
− ∂K

∂qj
+

∂V

∂qj
= 0 . (5.7)

The potential V can not depend on the generalized velocities, so if we form

L = K − V , (5.8)

the equations are completely expressible in terms of L:

d

dt

∂L

∂q̇j
− ∂L

∂qj
= 0 (5.9)

The function L is called the Lagrange function or the lagrangian. This form of the
equations of motion is the one most often used for solving problems in mechanics.
There will be examples in a little while.

Example: Suppose that one, for some strange reason, wants to solve for the
motion of a particle with mass m moving in a harmonic potential with spring
constant k using the generalized coordinate q = x1/3 instead of the (inertial)
coordinate x. In order to derive Lagrange’s equation for q(t), one first has
to express the kinetic and potential energies in terms of q and q̇. One gets
ẋ = ∂x

∂q q̇ = 3q2q̇ and thus K = 9m
2 q4q̇2. The potential is V = 1

2kx2 = 1
2kq6,

so that L = 9m
2 q4q̇2 − 1

2kq6. Before writing down Lagrange’s equations we
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need ∂L
∂q = 18mq3q̇2 − 3kq5 and d

dt
∂L
∂q̇ = d

dt

(
9mq4q̇

)
= 9mq4q̈ + 36mq3q̇2.

Finally,

0 =
d

dt

∂L

∂q̇
− ∂L

∂q
=

= 9mq4q̈ + 36mq3q̇2 − 18mq3q̇2 + 3kq5 =

= 9mq4q̈ + 18mq3q̇2 + 3kq5 =

= 3q2
(
3mq2q̈ + 6mqq̇2 + kq3

)
. (5.10)

If one was given this differential equation as an exercise in mathematics, one
would hopefully end up by making the change of variables x = q3, which
turns it into

mẍ + kx = 0 , (5.11)

which one recognizes as the correct equation of motion for the harmonic
oscillator.

The example just illustrates the fact that Lagrange’s equations give the correct
result for any choice of generalized coordinates. This is certainly not the case for
Newton’s equations. If x fulfills eq. (5.11), it certainly doesn’t imply that any q(x)
fulfills the same equation!

Exercises

6. Write down Lagrange’s equations for a freely moving particle in spherical
coordinates!

7. A particle is constrained to move on the sphere r = a. Find the equations
of motion in the presence of gravitation.

8. A bead is sliding without friction along a massless string. The endpoint of
the string are fixed at (x, y) = (0, 0) and (a, 0) and the length of the string
is a

√
2. Gravity acts along the negative z-axis. Find the stable equilibrium

position and the frequency for small oscillations around it!

9. Write down Lagrange’s equations for a particle moving at the curve y =
f(x). The y axis is vertical. Are there functions that produce harmonic
oscillations? What is the angular frequency of small oscillations around a
local minimum x = x0?
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5.2. Lagrange’s equations with any number of degrees of freedom

In a more general case, the system under consideration can be any mechanical
system: any number of particles, any number of rigid bodies etc. The first thing to do
is to determine the number of degrees of freedom of the system. In three dimensions,
we already know that a particle has three translational degrees of freedom and that
a rigid body has three translational and three rotational ones. This is true as long as
there are no kinematical constraints that reduce these numbers. Examples of such
constraints can be that a mass is attached to the end of an unstretchable string,
that a body slides on a plane, that a particle is forced to move on the surface of a
sphere, that a rigid body only may rotate about a fixed axis,...

Once the number n of degrees of freedom has been determined, one tries to
find the same number of variables that specify the configuration of the system,
the ”position”. Then these variables are generalized coordinates for the system. Let
us call them q1, q2, . . . , qn. The next step is to find an expression for the kinetic
and potential energies in terms of the qk’s and the q̇k’s (we confine to the case
where the forces are conservative – for dissipative forces the approach is not as
powerful). Then the lagrangian is formed as the difference L = K − V . The objects

pk = ∂L
∂q̇ are called generalized momenta and vk = q̇k generalized velocities (if qk is a

rectilinear coordinate, pk and vk coincide with the ordinary momentum and velocity
components). Lagrange’s equations for the systems are

d

dt

∂L

∂q̇k
− ∂L

∂qk
= 0 , k = 1, . . . , n , (5.12)

or, equivalently,

ṗk − ∂L

∂qk
= 0 . (5.13)

We state these equations without proof. The proof is completely along the lines of
the one-particle case, only that some indices have to be carried around. Do it, if you
feel tempted!

In general, the equations (5.12) lead to a system of n coupled second order
differential equations. We shall take a closer look at some examples.
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Example: A simple example of a constrained system is the ”mathematical
pendulum”, consisting of a point mass moving under the influence of grav-
itation and attached to the end of a massless unstretchable string whose
other end is fixed at a point. If we consider this system in two dimensions,
the particle moves in a plane parameterized by two rectilinear coordinates
that we may label x and y. The number of degrees of freedom here is not
two, however. The constant length l of the rope puts a constraint on the
position of the particle, which we can write as x2 + y2 = l2 if the fixed end
of the string is taken as origin. The number of degrees of freedom is one, the
original two minus one constraint. It is possible, but not recommendable,
to write the equations of motion using these rectilinear coordinates. Then
one has to introduce a string force that has exactly the right value to keep
the string unstretched, and then eliminate it. A better way to proceed is
to identify the single degree of freedom of the system as the angle φ from
the vertical (or from some other fixed line through the origin). φ is now the
generalized coordinate of the system. In this and similar cases, Lagrange’s
equations provide a handy way of deriving the equations of motion. The
velocity of the pointmass is v = lφ̇, so its kinetic energy is K = 1

2ml2φ̇2.
The potential energy is V = −mgl cosφ. We form the lagrangian as

L = K − V = 1
2ml2φ̇2 + mgl cosφ . (5.14)

We form
∂L

∂φ
= −mgl sinφ ,

pφ =
∂L

∂φ̇
= ml2φ̇ ,

d

dt

∂L

∂φ̇
= ml2φ̈ .

(5.15)

Lagrange’s equation for φ now gives ml2φ̈ + mgl sinφ = 0, i.e.

φ̈ +
g

l
sinφ = 0 . (5.16)

This equation should be recognized as the correct equation of motion for the
mathematical pendulum. In the case of small oscillations, one approximates
sinφ ≈ φ and get harmonic oscillations with angular frequency

√
g/l.

Some comments can be made about this example that clarifies the lagrangian
approach. First a dimensional argument: the lagrangian always has the dimension of
energy. The generalized velocity here is vφ = φ̇, the angular velocity, with dimension
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(time)−1. The generalized momentum pφ, being the derivative of L with respect to φ̇,
obviously hasn’t the dimension of an ordinary momentum, but (energy)× (time) =
(mass) × (length)2 × (time)−1 = (mass) × (length) × (velocity). This is the same
dimension as an angular momentum component (recall ”L = mr× v”). If we look
back at eq. (5.15), we see that pφ is indeed the angular momentum with respect to
the origin. This fenomenon is quite general: if the generalized coordinate is an angle,
the associated generalized momentum is an angular momentum. It is not difficult to
guess that the generalized force should be the torque, and this is exactly what we
find by inspecting −∂V

∂φ = −mgl sinφ.

The example of the mathematical pendulum is still quite simple. It is easy to
solve without the formalism of Lagrange, best by writing the equation for the angular
momentum (which is what Lagrange’s equation above achieves) or, alternatively, by
writing the force equations in polar coordinates. By using Lagrange’s equations one
doesn’t have to worry about e.g. expressions for the acceleration in non-rectilinear
coordinates. That comes about automatically.

There are more complicated classes of situations, where the variables are not
simply an angle or rectilinear coordinates or a combination of these. Then Lagrange’s
equations makes the solution much more easier. We shall look at another example,
whose equations of motion are cumbersome to derive using forces or torques, a
coupled double pendulum.

Example: Consider two mathematical pendulums one at the end of another,
with masses and lengths as indicated in the figure. The number of degrees of
freedom of this system is two (as long as the strings are stretched), and we
need to find two variables that completely specify the configuration of it, i.e.
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the positions of the two masses. The two angles φ1 and φ2 provide one natural
choice, which we will use, although there are other possibilities, e.g. to use
instead of φ2 the angle φ2

′ = φ2− φ1 which is zero when the two strings are
aligned. The only intelligent thing we have to perform now is to write down
expressions for the kinetic and potential energies, then Lagrange does the
rest of the work. We start with the kinetic energy, which requires knowledge
of the velocities. The upper particle is straightforward, it has the velocity
v1 = l1φ̇1. The lower one is trickier. The velocity gets two contributions,
one from φ1 changing and one from φ2 changing. Try to convince yourselves
that those have absolute values l1φ̇1 and l2φ̇2 respectively, and that the angle
between them is φ2 − φ1 as in the figure. The first of these contributions
depend on φ2 being defined from the vertical, so that when only φ1 changes,
the lower string gets parallel transported but not turned. Now the cosine
theorem gives the square of the total velocity for the lower particle:

v2
2 = l1

2φ̇1
2
+ l2

2φ̇2
2
+ 2l1l2φ̇1φ̇2 cos(φ2 − φ1) , (5.17)

so that the kinetic energy becomes

K = 1
2m1l1

2φ̇1
2
+ 1

2m2

[
l1

2φ̇1
2

+ l2
2φ̇2

2
+ 2l1l2φ̇1φ̇2 cos(φ2 − φ1)

]
. (5.18)

The potential energy is simpler, we just need the distances from the ”roof”
to obtain

V = −m1gl1 cosφ1 −m2g(l1 cos φ1 + l2 cos φ2) . (5.19)

Now the intelligence is turned off, the lagrangian is formed as L = K − V ,
and Lagrange’s equations are written down. We leave the derivation as an
exercise (a good one!) and state the result:

φ̈1 +
m2

m1 + m2

l2
l1

[
φ̈2 cos(φ2 − φ1) − φ̇2

2
sin(φ2 − φ1)

]
+

g

l1
sinφ1 = 0 ,

φ̈2 +
l1
l2

[
φ̈1 cos(φ2 − φ1) + φ̇1

2
sin(φ2 − φ1)

]
+

g

l2
sinφ2 = 0 .

(5.20)
One word is at place about the way these equations are written. When
one gets complicated expressions with lots of parameters hanging around in
different places, it is good to try to arrange things as clearly as possible.
Here, we have combined masses and lengths to get dimensionless factors as
far as possible, which makes a dimensional analysis simple. This provides a
check for errors – most calculational errors lead to dimensional errors! The
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equations (5.20) are of course not analytically solvable. For that we need
a computer simulation. What we can obtain analytically is a solution for
small angles φ1 and φ2. We will do this calculation for two reasons. Firstly,
it learns us something about how to linearize equations, and secondly, it tells
us about interesting properties of coupled oscillatory systems. In order to
linearize the equations, we throw away terms that are not linear in the angles
or their time derivatives. To identify these, we use the Maclaurin expansions
for the trigonometric functions. The lowest order terms are enough, so that

cos x ≈ 1 and sinx ≈ x. The terms containing φ̇1
2

or φ̇2
2

go away (these
can be seen to represent centrifugal forces, that do not contribute when
the strings are approximately aligned or the angular velocities small). The
linearized equations of motion are thus

φ̈1 +
m2

m1 + m2

l2
l1

φ̈2 +
g

l1
φ1 = 0 ,

l1
l2

φ̈1 + φ̈2 +
g

l2
φ2 = 0 .

(5.21)

We now have a system of two coupled linear second order differential equa-
tions. They may be solved by standard methods. It is important to look
back and make sure that you know how that is done. The equations can be
written on matrix form

MΦ̈ + KΦ = 0 , (5.22)

where

Φ =

[
φ1

φ2

]
, M =

[
1 m2

m1+m2

l2
l1

l1
l2

1

]
, K =

[ g
l1

0

0 g
l2

]
. (5.23)

The ansatz one makes is Φ = Ae±iωt with A a column vector containing
”amplitudes”, which gives

(−Mω2 + K)A = 0 . (5.24)

Now one knows that this homogeneous equation has non-zero solutions for A
only when the determinant of the ”coefficient matrix” (−Mω2 +K) is zero,
i.e. the rows are linearly dependent giving two copies of the same equation.
The vanishing of the determinant gives a second order equation for ω2 whose
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solutions, after some work (do it!), are

ω2 =
g

2m1l1l2

{
(m1 + m2)(l1 + l2)±

±
√

(m1 + m2)
[
m1(l1 − l2)2 + m2(l1 + l2)2

]}
.

(5.25)

These are the eigenfrequencies of the system. It is generic for coupled system
with two degrees of freedom that there are two eigenfrequencies. If one wants,
one can check what A is in the two cases. It will turn out, and this is also
generic, that the lower frequency corresponds to the two masses moving
in the same direction and the higher one to opposite directions. It is not
difficult to imagine that the second case gives a higher frequency – it takes
more potential energy, and thus gives a higher “spring constant”. What is
one to do with such a complicated answer? The first thing is the dimension
control. Then one should check for cases where one knows the answer. One
such instance is the single pendulum, i.e. m2 = 0. Then the expression (5.25)

should boil down to the frequency
√

g/l1 (see exercise 14). One can also use
ones physical imagination to deduce what happens e.g. when m1 is much
smaller than m2. After a couple of checks like this one can be almost sure
that the expression obtained is correct. This is possible for virtually every
problem.

The above example is very long and about as complicated a calculation we will
encounter. It may seem confusing, but give it some time, go through it systematically,
and you will see that it contains many ingredients and methods that are useful to
master. If you really understand it, you know most of the things you need to solve
many-variable problems in Lagrange’s formalism.

The Lagrange function is the difference between kinetic and potential energy.
This makes energy conservation a bit obscure in Lagrange’s formalism. We will
explain how it comes about, but this will become clearer when we move to Hamilton’s
formulation. Normally, in one dimension, one has the equation of motion mẍ = F .
In the case where F only depends on x, there is a potential, and the equation
of motion may be integrated using the trick ẍ = a = v dv

dx which gives mvdv =

Fdx, 1
2mv2 − ∫

Fdx = C , conservation of energy. It must be possible to do this in
Lagrange’s formalism too. If the lagrangian does not depend on t, we observe that
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d

dt

[
ẋ
∂L

∂ẋ
− L(x, ẋ)

]
=

= ẍ
∂L

∂ẋ
+ ẋ

d

dt

∂L

∂ẋ
− ẋ

∂L

∂x
− ẍ

∂L

∂ẋ
=

= ẋ

[
d

dt

∂L

∂ẋ
− ∂L

∂x

] . (5.26)

Therefore, Lagrange’s equation implies that the first quantity in square brackets is
conserved. As we will see in Chapter 7, it is actually the energy. In a case with more
generalized coordinates, the energy takes the form

E =
∑

i

q̇i
∂L

∂q̇i
− L =

∑
i

q̇ipi − L . (5.27)

It is only in one dimension that energy conservation can replace the equation of
motion — for a greater number of variables it contains less information.

Exercises

10. Find and solve the equations of motion for a homogeneous sphere rolling
down a slope, assuming enough friction to prevent sliding.

11. A particle is connected to a spring whose other end is fixed, and free to move
in a horizontal plane. Write down Lagrange’s equations for the system, and
describe the motion qualitatively.

12. Find Lagrange’s equations for the system in exercise 1.

13. Two masses are connected with a spring, and each is connected with a spring
to a fixed point. Find the equations of motion, and describe the motion
qualitatively. Solve for the possible angular frequencies in the case when the
masses are equal and the spring constants are equal. There is no friction.

14. Consider the double pendulum in the limit when either of the masses is small
compared to the other one, and interpret the result.

15. Find the equations of motion for a particle moving on an elliptic curve
(x

a)2 + (y
b )2 = 1 using a suitable generalized coordinate. Check the case

when a = b.
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16. Consider Atwood’s machine. The two masses are m1 and m2 and the moment
of inertia of the pulley is I . Find the equation of motion using Lagrange’s for-
mulation. Note the simplification that one never has to consider the internal
forces.

17. Calculate the accelerations of the masses in the double Atwood machine.

18. A particle of mass m is sliding on a wedge, which in turn is sliding on
a horizontal plane. No friction. Determine the relative acceleration of the
particle with respect to the wedge.

19. A pendulum is suspended in a point that moves horizontally according to
x = a sin ωt. Find the equation of motion for the pendulum, and specialize
to small angles.
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20. A particle slides down a stationary sphere without friction beginning at rest
at the top of the sphere. What is the reaction from the sphere on the particle
as a function of the angle θ from the vertical? At what value of θ does the
particle leave the surface?

21. A small bead of mass m is sliding on a smooth circle of radius a and mass
m which in turn is freely moving in a vertical plane around a fixed point
O on its periphery. Give the equations of motion for the system, and solve
them for small oscillations around the stable equilibrium. How should the
initial conditions be chosen for the system to move as a rigid system? For
the center of mass not to leave the vertical through O?
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6. The Action Principle

In this chapter we will formulate a fundamental principle leading to the equa-
tions of motion for any mechanical system. It is the action principle. In order to
understand it, we need some mathematics that goes beyond ordinary analysis, so
called functional analysis. This is nothing to be afraid of, and the mathematical
strictness of what we are doing will be minimal.

Suppose we have a mechanical system – for simplicity we can think of a particle
moving in a potential – and we do not yet know what the path r(t) of it will be,
once the initial conditions are given (it is released at a certain time t0 with given
position r(t0) = r0 and velocity v(t0) = v0). For any path r(t) fulfilling the initial
conditions we define a number S by

S =

∞∫
t0

dtL , (6.1)

where L is the lagrangian K − V . This is the action. In the case of a single particle
in a potential, the action is

S =

∞∫
t0

dt
[

1
2mẋ(t)2 − V

(
x(t)

)]
. (6.2)

The action is a function whose argument is a function and whose value is a number
(carrying dimension (energy)×(time)). Such a function is called a functional. When
the argument is written out, we we enclose it in square brackets, e.g. ”S [x(t)]”, to
mark the difference from ordinary functions.

The action principle now states that the path actually taken by the particle must
be a stationary point of the action. What does this mean? Recall how one determines
when an ordinary function f(x) has a local extremum. If we make an infinitesimal
change δx in the argument of the function, the function itself does not change,
so that f(x + δx) = f(x). This is the same as saying that the derivative is zero,

since f ′(x) = limε→0
f(x+ε)−f(x)

ε . When now the function we want to “extremize”
is a functional instead of an ordinary function, we must in the same way demand
that a small change in the argument r(t) of the functional does not change the
functional. Therefore we chose a new path for the particle r(t) + ~ε(t) (we have to

take ~ε(t0) = ~̇ε(t0) = 0 not to change the given initial conditions) which differs
infinitesimally from r(t) at every time, and see how the action S is changed. For
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simplicity we consider rectilinear motion, so that there is only one coordinate x(t).
We get

S[x(t) + ε(t)]− S[x(t)] =

∞∫
t0

dt
[
L
(
x(t) + ε(t), ẋ(t) + ε̇(t)

)− L
(
x(t), ẋ(t)

)]
. (6.3)

Taking ε to be infinitesimally small, one can save parts linear in ε only, to obtain
L
(
x(t)+ ε(t), ẋ(t)+ ε̇(t)

)
= L

(
x(t), ẋ(t)

)
+ ε(t)∂L

∂x (t)+ ε̇(t)∂L
∂ẋ (t). Inserting this into

eq. (6.3) gives

S[x(t) + ε(t)]− S[x(t)] =

∞∫
t0

dt

[
ε(t)

∂L

∂x
(t) + ε̇(t)

∂L

∂ẋ
(t)

]
= [partial integration] =

=

∞∫
t0

dtε(t)

[
∂L

∂x
(t)− d

dt

∂L

∂ẋ
(t)

]

(6.4)
(some boundary term at infinity has been thrown away, but never mind). If the
path x(t) is to be a stationary point, this has to vanish for all possible infinitesimal
changes ε(t), which means that the entity inside the square brackets in the last
expression in eq. (6.4) has to vanish for all times. We have rederived Lagranges
equations as a consequence of the action principle. The derivation goes the same
way if there are more degrees of freedom (do it!).

The above derivation actually shows that Lagrange’s equations are true also for
non-rectilinear coordinates. We will not present a rigorous proof of that, but think of
the simpler analog where a function of a number of variables has a local extremum
in some point. If we chose different coordinates, the function itself is of course not
affected – the solution to the minimization problem is still that all derivatives of the
function vanish at the local minimum. The only difference for our action functional
is that the space in which we look for stationary points is infinite-dimensional.

One may say a word about the nature of the stationary points. Are they local
minima or maxima? In general, they need not be either. The normal situation is
that they are “terrace points”, comparable to the behaviour of the function x3 at
x = 0. Paths that are “close” to the actual solution may have either higher or lower
value of the action. The only general statement one can make about the solution is
that it is a stationary point of the action, i.e. that an infinitesimal change in the
path gives no change in the action, analogously to the statement that a function has
zero derivative in some point.
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Analogously to the way one defines derivatives of functions, one can define func-
tional derivatives of functionals. A functional derivative δ

δx(t) is defined so that a

change in the argument x(t) by an infinitesimal function ε(t) gives a change in the
functional F [x(t)]:

F [x + ε]− F [x] =

∫
dtε(t)

δF

δx(t)
. (6.5)

The functional derivative of F is a functional with an explicit t-dependence. Compare
this definition with what we did in eqs. (6.3) and (6.4). We then see that the action
principle can be formulated as

δS

δx(t)
= 0 (6.6)

in much the same way as an ordinary local extremum is given by df
dx = 0. Eqn. (6.6)

is Lagrange’s equation.

Variational principles are useful in many areas, not only in Newtonian Mechan-
ics. The action formulation of the dynamics of a system is the dominating one when
one formulates field theories. Elementary particles are described by relativistic quan-
tum fields, and their motion and interaction are almost always described in terms
of an action.

Exercises

22. Using a variational method, find the shortest path between two given points.

23. Find the shortest path between two points on a sphere.
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7. Hamilton’s Equations

When we derived Lagrange’s equations, the variables we used were the general-
ized coordinates q1, . . . , qN and the generalized velocities q̇1, . . . , q̇N . The lagrangian
L was seen as a function of these, L(qi, q̇i). This set of variables is not unique, and
there is one other important choice, that is connected to the hamiltonian formula-
tion of mechanics. Hamilton’s equations, as compared to Lagrange’s equations, do
not present much, if any, advantage when it comes to problem solving in Newtonian
Mechanics. Some things become clearer, though, e.g. the nature of conserved quan-
tities. Hamilton’s formulation is often used in quantum mechanics, where it leads to
a complementary and equivalent picture to one that uses Lagrange’s variables.

We depart from the lagrangian, as defined in chapter 5, and define the generalized
momenta corresponding to the coordinates qi according to

pi =
∂L

∂q̇i
. (7.1)

In a rectilinear coordinate system, pi are the usual momenta, pi = mq̇i, but, as we
have seen, this is not true for other types of generalized coordinates.

Our situation now is that we want to change the fundamental variables from
(generalized) coordinates qi and velocities vi to coordinates and momenta pi. We
will soon see that it is natural to consider an other function than the Lagrangian
when this change of variables is performed. To illustrate this, consider a situation
with only one coordinate q. The differential of the lagrangian L(q, v) is

dL =
∂L

∂q
dq +

∂L

∂v
dv =

∂L

∂q
dq + pdv . (7.2)

In a framework where the fundamental variables are q and p we want the differential
of a function to come out naturally as (something)dq+(something)dp. Consider the
new function H defined by

H = vp− L = q̇p− L . (7.3)

H is the hamiltonian. Its differential is

dH = dvp + vdp− dL = dvp + vdp− ∂L

∂q
dq − pdv = −∂L

∂q
dq + vdp , (7.4)

so we have
∂H

∂q
= −∂L

∂q
,

∂H

∂p
= v = q̇ . (7.5)

The change of function of the type (7.3) associated with this kind of change of
variables as is called a Legendre transform. It is important here to remember that
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when we change variables to q and p, we have to express the function H in terms of
the new variables in eq. (7.3) so that every occurrence of v is eliminated. By using

Lagrange’s equation ∂L
∂q = ṗ we find Hamilton’s equations from eq. (7.5):

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
. (7.6)

The many-variable case is completely analogous, one just hangs an index i on (al-
most) everything; the proof is almost identical. The general form is

H =
∑

i

q̇ipi − L , (7.7)

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
. (7.8)

Example: In order to understand these equations, we examine what they say
for a rectilinear coordinate, where we have K = 1

2mẋ2 and L = 1
2mẋ2−V (x).

Then p = ∂L
∂ẋ = mẋ and

H = ẋp− L =
p2

m
− 1

2m(
p

m
)2 + V (x) =

p2

2m
+ V (x) , (7.9)

which is the sum of kinetic and potential energy. This statement is actually
general (as long as there is no explicit time-dependence in L). Hamilton’s
equations take the form

ẋ =
∂H

∂p
=

p

m
, ṗ = −dV

dx
. (7.10)

We notice that instead of one second order differential equation we get two
first order ones. The first one can be seen as defining p, and when it is
inserted in the second one one obtains

mẍ = −dV

dx
, (7.11)

which of course is the “usual” equation of motion.

Some things become very clear in the hamiltonian framework. In particular,
conserved quantities (quantities that do not change with time) emerge naturally.
Consider, for example, the case where the hamiltonian does not depend on a certain
coordinate qk. Then Hamilton’s equations immediately tells us that the correspond-
ing momentum is conserved, since ṗk = − ∂H

∂qk
= 0.
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Example: For a rectilinear coordinate q, when the potential does not depend
on it, we obtain the conserved quantity p associated with q. This is not
surprising — we know that momentum is conserved in the absence of force.

Example: In polar coordinates, with a central potential, we have

H =
1

2m

(
p2
r +

p2
φ

r2

)
+ V (r) , (7.12)

which is independent of φ, so that the associated momentum pφ, the angular
momentum, is conserved. This is exactly what we are used to in the absence

of torque. Note that
p2

φ

2mr2 +V (r) is the “effective potential energy” used for
motion under a central force.

It should be mentioned that this also can be seen in Lagrange’s framework —
if the lagrangian does not depend on qk, Lagrange’s equation associated with that
variable becomes d

dt
∂L
∂q̇k

= 0, telling that pk = ∂L
∂q̇k

is conserved.

We can also draw the conclusion that the hamiltonian H itself is conserved:

Ḣ =
∑

i

∂H

∂qi
q̇i +

∂H

∂pi
ṗi =

∑
i

∂H

∂qi

∂H

∂pi
+

∂H

∂pi
(−∂H

∂qi
) = 0 . (7.13)

This states the conservation of energy, which is less direct in Lagrange’s formulation.

Finally, we will do some formal development in the hamiltonian formalism. Ex-
actly as we calculated the time derivative of the hamiltonian in equation (7.13), the
time derivative of any function on phase space A(qi, pi) is calculated as

Ȧ =
∑

i

∂A

∂qi
q̇i +

∂A

∂pi
ṗi =

∑
i

∂A

∂qi

∂H

∂pi
− ∂A

∂pi

∂H

∂qi
. (7.14)

If one defines the Poisson bracket between two functions A and B on phase space as

{A, B} =
∑

i

∂A

∂qi

∂B

∂pi
− ∂A

∂pi

∂B

∂qi
, (7.15)

the equation of motion for any function A is stated as

Ȧ = {A, H} . (7.16)

The equations of motion for qi and pi, Hamilton’s equations (7.8), are special cases



Martin Cederwall, “An Introduction to Analytical Mechanics” . . . . . . . . . . . . . . 29

of this (show it!). The Poisson brackets for the phase space variables qi and pi are

{qi, qj} = 0 ,

{qi, pj} = δij ,

{pi, pj} = 0 .

(7.17)

This type of formal manipulations do not have much relevance to actual problem-
solving in classical mechanics. It is very valuable, though, when analyzing the be-
havior of some given system in field or particle theory. It is also a powerful tool
for handling systems with constraints. Here, it is mainly mentioned because it
opens the door towards quantum mechanics. One way of going from a classical to
a quantum system is to replace the Poisson bracket by (−i) times the commutator
[A, B] = AB − BA. This means that one has xp− px = −i, position and momen-
tum no longer commute. The momentum can actually be represented as a space
derivative, p = i ∂

∂x . The two variables become “operators”, and their values can not
be simultaneously given specific values, because ordinary numbers commute. This
leads to Heisenberg’s “uncertainty principle”, stating the impossibility of performing
measurements on both x and p simultaneously beyond a maximal precision.

Exercises

24. Any exercise from Chapter 5, with special emphasis on finding the conserved
quantities.
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8. Systems with Constraints

In quite many applications it happens that one does not simply want to minimize
a certain functional, but to do it under certain conditions. We will investigate how
this is done.

Example: A mathematical pendulum is confined to move on constant ra-
dius from the attachment point of the string. It is then easy to choose just
the angle from the vertical as a generalized coordinate and write down the
lagrangian. Another formulation of the problem would be to extremize the
integral of the lagrangian L = 1

2m(ṙ2 + r2φ̇2) + mgr cosφ under the extra
constraint that r = a.

In the above example, the formulation with a constraint was unnecessary, since it
was easy to find a generalized coordinate for the only degree of freedom. Sometimes
it is not so. Consider an other example.

Example: A particle (a small bead) moves in two dimensions (x, y), where x
is horizontal and y vertical, and it slides on a track whose form is described
by a function y = f(x). A natural generalized coordinate would be the
distance from one specific point on the curve measured along the track, the
x-coordinate, or something else. This can all be done, but it is easier to
formulate the problem the other way: extremize the action S =

∫
dtL with

L = 1
2m(ẋ2 + ẏ2)−mgy under the constraint that y = f(x).

Let us turn to how these constraints are treated. We would like to have a new
action that automatically takes care of the constraint, so that it comes out as one of
the equations of motion. This can be done as follows: we introduce a new coordinate
λ that enters in tha lagrangian multiplying the constraint. The time derivative of λ
does not enter the lagrangian at all. If we call the unconstrained lagrangian L0 and
the constraint Φ = 0, this means that

L = L0 + λΦ . (8.1)

The equation of motion for λ then just gives the constraint:

0 =
δS

δλ
= − d

dt

∂L

∂λ̇
+

∂L

∂λ
=

∂L

∂λ
= Φ . (8.2)

The extra variable λ is called a Lagrange multiplier. We can examine how this works
in the two examples.
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Example: For the pendulum, we get according to this scheme,

L = 1
2m(ṙ2 + r2φ̇2) + mgr cos φ + λ(r − a) , (8.3)

from which the equations of motion follow:

r : m(r̈ − rφ̇2)−mg cos φ− λ = 0 ,

φ :
d

dt
(mrφ̇) + mgr sinφ = 0 ,

λ : r − a = 0 .

(8.4)

This is not yet exactly the equations we want. By inserting the last equation
(the constraint) in the other two we arrive at

λ = m(aφ̇2 + gcosφ) ,

φ̈ +
g

a
sinφ = 0 .

(8.5)

The second of these equations is the equation of motion for φ, the only
degree of freedom of the pendulum, and the first one gives no information
about the motion, it only states what λ is expressed in φ.

The pattern in the example is completely general, the equation of motion for
the Lagrange multiplier gives the constraint, and the equation of motion for the
constrained variable gives an expression for the Lagrange multiplier in terms of the
real degrees of freedom (in this case φ). Let us also examine the other example.

Example: In the same way as above, the new lagrangian becomes

L = 1
2m(ẋ2 + ẏ2)−mgy + λ

(
y − f(x)

)
, (8.6)

with the resulting equations of motion

x : mẍ + λf ′(x) = 0 ,

y : mÿ + mg − λ = 0 ,

λ : y − f(x) = 0 .

(8.7)

As before, we insert the constraint in the other equations, and get, using
d2

dt2 f(x) = d
dt(ẋf ′(x)) = ẍf ′(x) + ẋ2f ′′(x) :

ẍ +
λ

m
f ′(x) = 0 ,

ẍf ′(x) + ẋ2f ′′(x) + g − λ

m
= 0 .

(8.8)

The second of these equations can be seen as solving λ. Inserting back in
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the first one yields

ẍ +
(
ẍf ′(x) + ẋ2f ′′(x) + g

)
f ′(x) = 0 , (8.9)

or, equivalently,

ẍ +
f ′(x)

1 + f ′(x)2
(
g + ẋ2f ′′(x)

)
, (8.10)

which is the simplest form of the equation of motion for this system, and as
far as we can get without specifying the function f(x).

There are often tricks for identifying degrees of freedom and writing the la-
grangian in terms of them. The Lagrange multiplier method makes that unneces-
sary — one just has to use the same variational principle as usual on a modified
lagrangian, and everything comes out automatically.

It turns out to be theoretically very fruitful to treat constrained systems in a
hamiltonian formalism. We will not touch upon that formulation here.

As a last example, we will solve a (classical) mechanical problem that is not a
dynamical one.

Example: Consider a string whose ends are fixed in two given points. What
shape will the string form? We suppose that the string is unstretchable and
infinitely flexible (i.e. it takes an infinite amount of energy to stretch it and
no energy to bend it). It is clearly a matter of minimizing the potential energy
of the string, under the condition that the length is some fixed number. The
input for calculating the potential energy is the shape y(x) of the string, so
it is a functional. The principle for finding the solution must then be

δV

δy(x)
= 0 , (8.11)

where V [y(x)] is the potential energy. We need an explicit expression for V,
and also for the length, that will be constrained to a certain value L using
the Lagrange multiplier method. The length of an infinitesimal part of the
string is

ds =
√

(dx)2 + (dy)2 = dx
√

1 + y′(x)2 , (8.12)



Martin Cederwall, “An Introduction to Analytical Mechanics” . . . . . . . . . . . . . . 33

so that the total length and potential energy are

L =

b∫
a

dx
√

1 + y′(x)2 ,

V = −ρg

b∫
a

dxy(x)
√

1 + y′(x)2 .

(8.13)

The technique is again to add a Lagrange multiplier term to V:

U =

b∫
a

dxu(y, y′) =

− ρg

b∫
a

dxy(x)
√

1 + y′(x)2 + λ


L−

b∫
a

dx
√

1 + y′(x)2


 .

(8.14)

Exactly as we recovered Lagrange’s equations from δS
δx(t)

= 0, the variation

of U gives the equation for y

d

dx

∂u

∂y′
− ∂u

∂y
= 0 . (8.15)

Since there is no explicit x-dependence one may use the integrated form of
the equations as described in Chapter 5.2,

0 =
d

dx

[
u− y′

∂u

∂y′

]
=

d

dx


−(λ + ρgy)

√
1 + y′2 +

(λ + ρgy)y′√
1 + y′2


 . (8.16)

We shift y by a constant value to get the new vertical variable z = y +ρg/λ,
and equation (8.16) gives

d

dx

z√
1 + z′2

= 0 =⇒
√

1 + z′2 = kz , (8.17)

so that z′ = ±√k2z2 − 1, and

dx

dz
= ± 1√

k2z2 − 1
, (8.18)
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with the solutions

x(z) + c = ±arcosh kz , z =
1

k
cosh k(x + c) . (8.19)

One may of course go back to the variable y and solve for the Lagrange
multiplier λ, but here we are only interested in the types of curves formed
by the hanging string — they are hyperbolic cosine curves.

Exercises

25. Show that the action S =
∫

dτλẋµẋµ describes a massless relativistic parti-
cle.
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Answers to Exercises

1. Four. For example the center of mass coordinates, the distance between the
masses and an angle.

3. F = −mgf ′(x)

4. Ek = 1
2m

(
ṙ2 + (rθ̇)2 + (rφ̇ sin θ)2

)
5. Ek = 1

2mẋ2
(
1 + f ′(x)2

)
6. r̈ − r(θ̇2 + φ̇2 sin2 θ) = 0

d
dt(r

2θ̇)− r2φ̇2 sin θ cos θ = 0
d
dt(r

2φ̇ sin2 θ) = 0

7. θ̈ − φ̇2 sin θ cos θ + g
a sin θ = 0

d
dt(φ̇ sin2 θ) = 0

8. ω =
√

g
a

9. ẍ(1 + f ′2) + ẋ2f ′f ′′ + gf ′ = 0
No.
ω =

√
gf ′′(x0)

10. a = 5
7g sinα

11. mr̈ −mrφ̇2 + k(r − l) = 0
d
dtmr2φ̇ = 0

12. Translation + motion as in exercise 11. Note the appearance of the “reduced
mass” µ = m1m2

m1+m2
.

13. ω = ω0 or ω0

√
3 where ω0 =

√
k
m

15. φ̈ +
(a2−b2) sin φ cos φ

a2 sin2 φ+b2 cos2 φ
φ̇2 = 0

16. a = m1−m2

m1+m2+
I

R2

g

17. a1 = 1−γ
1+γ g (downwards), where γ = 4m2m3

m1(m2+m3)

a2 = −a1 + 2
1+γ

m2−m3

m2+m3

18. arel =
(M+m) sinα
M+m sin2 α

g

19. φ ≈ 0 : φ̈ + g
l φ = aω2

l sinωt (forced oscillations)
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20. arccos 2
3 ≈ 49◦

21. φ = A sin(ω1t + α1) + B sin(ω2t + α2)
θ = −2A sin(ω1t + α1) + B sin(ω2t + α2)
A = 0
B = 0

25. Consider the meaning of the obtained constraint!
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Translation Table

English term Swedish term Symbol

acceleration acceleration a

angular frequency vinkelfrekvens ω
angular momentum rörelsemängdsmoment L

angular velocity vinkelhastighet ω , ~ω
center of mass masscentrum R

coefficient of friction friktionskoefficient µ , f
collision stöt

elastic elastisk
inelastic oelastisk

conservation bevarande
constant of motion rörelsekonstant
constraint tv̊ang
cross section tvärsnitt
curl rotation ∇× , curl
damping dämpning
density densitet ρ
derivative derivata

partial partiell
displacement förskjutning
energy energi E

kinetic kinetisk, rörelse- K
potential potentiell, läges- U , V

equilibrium jämvikt
event händelse
force kraft F

central central-
conservative konservativ
fictitious fiktiv
inertial tröghets-
nonconservative ickekonservativ

four-vector fyrvektor
gradient gradient ∇ , grad
gravity tyngdkraft, gravitation
harmonic harmonisk
impulse impuls I ,

∫ t2
t1
Fdt

inertia tröghet
inertial system inertialsystem



Martin Cederwall, “An Introduction to Analytical Mechanics” . . . . . . . . . . . . . . 38

initial conditions begynnelsevillkor
interaction växelverkan
mass massa m

gravitational tung
inertial trög
rest vilo-

magnitude belopp | |
moment of inertia tröghetsmoment I
(linear) momentum rörelsemängd p

orbit omlopp, bana
oscillation svängning
path väg, bana
perturbation störning
power effekt P
pulley talja
resonance resonans
rigid body stel kropp
scattering angle spridningsvinkel
simultaneity samtidighet
speed fart v
spring fjäder
tension spänning
tensor of inertia tröghetstensor/-matris Ĩ
torque vridande moment ~τ
trajectory bana
velocity hastighet v

wedge kil
weight tyngd
work arbete W


