Home assignment 1 - Symmetry TIF310/FYM310

Deadline Monday Dec. 9
Hand in solutions produced by $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ by mail to martin.cederwall@chalmers.se or printed in a box outside room Origo 6102. Good luck!
1.1. Show that the real Lie algebra $\mathfrak{s o}(4)$ of rotations in 4 euclidean dimensions is $\mathfrak{s o}(4) \simeq \mathfrak{s u}(2) \oplus \mathfrak{s u}(2)$.
1.2. In $2 n$ dimensions with signature (n, n), consider the matrix $\gamma=\frac{1}{(2 n)!\sqrt{|\operatorname{det} g|}} \epsilon^{M_{1} \ldots M_{2 n}} \gamma_{M_{1}} \ldots \gamma_{M_{2 n}}$. In a basis where the metric is diagonal with entries $\pm 1, \gamma=\gamma_{1} \ldots \gamma_{2 n}$. What is γ^{2} ? How does it anti-commute with the γ matrices? Use γ to form projection operators on the two chiralities. If ψ is a spinor of definite chirality, what is the chirality of $v^{M} \gamma_{M} \psi$?
How are the properties of γ affected if the signature is changed? (Hint: one may think of multiplying some of the γ-matrices by i.)
1.3. Consider the Maxwell field strength 2-form

$$
F=\frac{1}{4 \pi r^{3}}(x d y \wedge d z+y d z \wedge d x+z d x \wedge d y)
$$

which is well defined outside the origin. What is the corresponding B-field? Show that F satisfies Maxwell's equations for $r>0$. Calculate the surface integral $\int_{S} F=\int_{S} \vec{B} \cdot \overrightarrow{d S}$, where S is a surface enclosing $r=0$, and conclude that there is a magnetic monopole at $r=0$. Find a 1 -form A such that $d A=F$. Is it well defined everywhere outside the origin?
1.4. Construct the two 3 -dimensional $\mathfrak{s l}(3)$-modules by starting from the highest weights with Dynkin labels (10) and (01) and acting with lowering operators. If we denote a representation by the Dynkin labels of its highest weight, we can write $\mathbf{3}=(10), \overline{\mathbf{3}}=(01)$. Determine, by some method, the tensor products $(10) \otimes(10)$ and $(10) \otimes(01)$ as direct sums of irreducible representations. Illustrate with sums of weights in a picture.
1.5. The Weyl group of a semi-simple Lie algebra is the discrete group generated by reflections in hyperplanes orthogonal to the simple roots. It is a symmetry of the root system. Reflection in the hyperplane orthogonal to α_{i} maps a vector β to $w_{i}(\beta)=\beta-\frac{2\left(\beta, \alpha_{i}\right)}{\left(\alpha_{i}, \alpha_{i}\right)} \alpha_{i}$. Describe the Weyl groups of $\mathfrak{s l}(2)$ and $\mathfrak{s l}(3)$ (number of elements, multiplication table).
1.6. A construction of the 14 -dimensional Lie algebra G_{2}. Inspecting the root space of G_{2}, one finds that all roots of G_{2} are weights of $\mathfrak{s l}(3)$, and that it consists of the weights for the adjoint (the roots) of $\mathfrak{s l}(3)$ together with the weight for the two 3 -dimensional representations, which we can call $\mathbf{3}$ and $\overline{\mathbf{3}}$. Therefore, the adjoint $\mathbf{1 4}$ of G_{2} transforms as $\mathbf{8} \oplus \mathbf{3} \oplus \overline{\mathbf{3}}$ under the subalgebra $\mathfrak{s l}(3) \subset G_{2}$. There must be a formulation of G_{2} with manifest $\mathfrak{s l}(3)$ and generators $J_{m}{ }^{n}, K_{m}$ and L^{m}. Construct the brackets by making some Ansatz and checking the Jacobi identities.
(Hints: One is only allowed to use invariant tensors under $\mathfrak{s l}(3)$. Only some of the Jacobi identities are "non-trivial", in the sense that they do not follow from the $\mathfrak{s l}(3)$ covariance.)

