
Home assignment 2 — Symmetry TIF310/FYM310

Deadline Monday Jan. 6

Hand in solutions produced by TEX by mail to martin.cederwall@chalmers.se or printed in a box

outside room Origo 6102. Good luck!

.. A non-linear realisation. Consider the quotient space SL(2,R)/U(1), defined as equivalence classes

of elements in SL(2,R) modulo the right action of a U(1). Two elements g and g′ in SL(2,R)

(2× 2 real matrices with unit determinant) are considered equivalent if they are related by a U(1)

transformation as g′ = gh, where

h = eθj , j =

(

0 1
−1 0

)

.

Show that almost all elements in SL(2,R) are in the same equivalence class as an element of the

form

g =
1√
y

(

y x
0 1

)

.

Use this parametrisation to derive the transformation of the complex number z = x+ iy for such

a representative of the equivalence class under the left action g 7→ Mg with

M =

(

a b
c d

)

∈ SL(2,R) , ad− bc = 1 .

Show that the metric

ds2 =
dzdz̄

(Im z)2

is invariant under SL(2,R). (This is the so called Poincaré upper half plane, describing a 2-

dimensional hyperbolic space with constant curvature.) Discuss what the SL(2,R) isometry means.

Is this a maximally symmetric space? Also, examine what the the word “almost” above means.

.. Consider the rank 2 simple Lie algebra C2 ≃ sp(4). This algebra has a 4-dimensional and a 5-

dimensional representation. Describe these in a tensor language. Also, construct them as highest

weight representations by acting with lowering operators on some highest weight states.

.. Consider an “inversion” of space (or space-time), defined by

xm 7→ x′m =
xm

x2
.

Show that a special conformal transformation, on the infinitesimal form given in the lecture notes,

is obtained by first performing an inversion, then a translation, and finally an inversion.



.. The Lie algebra F4. There is a simple 52-dimensional Lie algebra F4, with Dynkin diagram in the

picture in the lecture notes. It has a subalgebra so(9). The adjoint representation of F4 becomes,

seen as an so(9) representation, the direct sum of the (36-dimensional) adjoint representation and

a (16-dimensional) spinor representation. Construct the F4 Lie bracket in an so(9)-covariant way,

and check the Jacobi identities. (Information which can possibly be of help, and which may be

used: The completely antisymmetric tensor product of 3 so(9) spinors does not contain a spinor as

one of its irreducible parts.)

.. A calculation with Fierz identities. The tensor product of two spinor representations contains

antisymmetric tensors. This is due to the existence of invariant tensors γm1...mp . As an example,

take spinors in 9 dimensions. The dimension of the spinor representation S is 16. Count the number

of matrices γm1...mp for different values of p, and determine, by demanding that the numbers sum

up to the dimensions of the symmetric and antisymmetric parts of S⊗S, which of these (with one

index lowered to (γm1...mp)αβ) are symmetric and which are antisymmetric in αβ.

Tensor products of more than two spinors are more difficult. There may be identities, so called

Fierz identities, for products of more than one matrix γm1...mp . Still in 9 dimensions, show that

γmn[αβγ
mn

γδ] = 0. One way of checking this is to contract the expression with all matrices M [γδ]

(see above) and using the properties of the γ matrices. How does this Fierz identity relate to

problem .?

.. The energy-momentum (or stress-energy) tensor can be derived as the variation of an action with

respect to the metric as

Tmn = 2
∂L

∂gmn

,

where L is the Lagrangian density. This applies also for a theory defined in flat space, but then

the metric has to be reinstated so that coordinate invariance of the action is manifest.

Use this definition to derive the energy-momentum tensor for Maxwell theory, and identify the

usual forms of the energy density as T 00 and the Poynting vector as T 0i.

Show that the Maxwell energy-momentum tensor is traceless precisely in d = 4, and relate this

property to the invariance of the action under a rescaling of the metric. This is a sign of conformal

invariance.

.. Symmetries of the Kepler problem. Consider the motion of a Newtonian particle with mass m in

the central potential V (~r) = −k
r
. Show that the components of the angular momentum ~L = ~r × ~p

fulfil {Li, H} = 0, and are conserved charges. Which is the Lie algebra generated by these charges?

Consider the Runge–Lenz vector
~A = ~p× ~L− kmr̂ .

The dimensionless vector
~A

km
is the so called eccentricity vector. Show that ~A is conserved. It is

convenient to rescale the Runge–Lenz vector to

~B =
~A

√

2m|E|
,



where E is the energy, for E 6= 0. Investigate the algebra of conserved charges under the Poisson

bracket. It may be different in the cases E < 0, E = 0 and E > 0. Such “hidden symmetries” may

be used to relate solutions to the equations of motion with the same energy to each other.


