Home assignment 2 - Symmetry TIF310/FYM310

Deadline Monday Jan. 6
Hand in solutions produced by $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ by mail to martin.cederwall@chalmers.se or printed in a box outside room Origo 6102. Good luck!
2.1. A non-linear realisation. Consider the quotient space $S L(2, \mathbb{R}) / U(1)$, defined as equivalence classes of elements in $S L(2, \mathbb{R})$ modulo the right action of a $U(1)$. Two elements g and g^{\prime} in $S L(2, \mathbb{R})$ (2×2 real matrices with unit determinant) are considered equivalent if they are related by a $U(1)$ transformation as $g^{\prime}=g h$, where

$$
h=e^{\theta j}, \quad j=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) .
$$

Show that almost all elements in $S L(2, \mathbb{R})$ are in the same equivalence class as an element of the form

$$
g=\frac{1}{\sqrt{y}}\left(\begin{array}{ll}
y & x \\
0 & 1
\end{array}\right)
$$

Use this parametrisation to derive the transformation of the complex number $z=x+i y$ for such a representative of the equivalence class under the left action $g \mapsto M g$ with

$$
M=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L(2, \mathbb{R}), \quad a d-b c=1
$$

Show that the metric

$$
d s^{2}=\frac{d z d \bar{z}}{(\operatorname{Im} z)^{2}}
$$

is invariant under $S L(2, \mathbb{R})$. (This is the so called Poincaré upper half plane, describing a 2 dimensional hyperbolic space with constant curvature.) Discuss what the $S L(2, \mathbb{R})$ isometry means. Is this a maximally symmetric space? Also, examine what the the word "almost" above means.
2.2. Consider the rank 2 simple Lie algebra $C_{2} \simeq \mathfrak{s p}(4)$. This algebra has a 4-dimensional and a 5 dimensional representation. Describe these in a tensor language. Also, construct them as highest weight representations by acting with lowering operators on some highest weight states.
2.3. Consider an "inversion" of space (or space-time), defined by

$$
x^{m} \mapsto x^{\prime m}=\frac{x^{m}}{x^{2}}
$$

Show that a special conformal transformation, on the infinitesimal form given in the lecture notes, is obtained by first performing an inversion, then a translation, and finally an inversion.
2.4. The Lie algebra F_{4}. There is a simple 52-dimensional Lie algebra F_{4}, with Dynkin diagram in the picture in the lecture notes. It has a subalgebra $\mathfrak{s o}(9)$. The adjoint representation of F_{4} becomes, seen as an $\mathfrak{s o}(9)$ representation, the direct sum of the (36-dimensional) adjoint representation and a (16-dimensional) spinor representation. Construct the F_{4} Lie bracket in an $\mathfrak{s o}$ (9)-covariant way, and check the Jacobi identities. (Information which can possibly be of help, and which may be used: The completely antisymmetric tensor product of $3 \mathfrak{s o}(9)$ spinors does not contain a spinor as one of its irreducible parts.)
2.5. A calculation with Fierz identities. The tensor product of two spinor representations contains antisymmetric tensors. This is due to the existence of invariant tensors $\gamma^{m_{1} \ldots m_{p}}$. As an example, take spinors in 9 dimensions. The dimension of the spinor representation S is 16 . Count the number of matrices $\gamma^{m_{1} \ldots m_{p}}$ for different values of p, and determine, by demanding that the numbers sum up to the dimensions of the symmetric and antisymmetric parts of $S \otimes S$, which of these (with one index lowered to $\left.\left(\gamma^{m_{1} \ldots m_{p}}\right)_{\alpha \beta}\right)$ are symmetric and which are antisymmetric in $\alpha \beta$.
Tensor products of more than two spinors are more difficult. There may be identities, so called Fierz identities, for products of more than one matrix $\gamma^{m_{1} \ldots m_{p}}$. Still in 9 dimensions, show that $\gamma_{m n[\alpha \beta} \gamma^{m n}{ }_{\gamma \delta]}=0$. One way of checking this is to contract the expression with all matrices $M^{[\gamma \delta]}$ (see above) and using the properties of the γ matrices. How does this Fierz identity relate to problem 2.4?
2.6. The energy-momentum (or stress-energy) tensor can be derived as the variation of an action with respect to the metric as

$$
T^{m n}=2 \frac{\partial \mathscr{L}}{\partial g_{m n}}
$$

where \mathscr{L} is the Lagrangian density. This applies also for a theory defined in flat space, but then the metric has to be reinstated so that coordinate invariance of the action is manifest.
Use this definition to derive the energy-momentum tensor for Maxwell theory, and identify the usual forms of the energy density as T^{00} and the Poynting vector as $T^{0 i}$.
Show that the Maxwell energy-momentum tensor is traceless precisely in $d=4$, and relate this property to the invariance of the action under a rescaling of the metric. This is a sign of conformal invariance.
2.7. Symmetries of the Kepler problem. Consider the motion of a Newtonian particle with mass m in the central potential $V(\vec{r})=-\frac{k}{r}$. Show that the components of the angular momentum $\vec{L}=\vec{r} \times \vec{p}$ fulfil $\left\{L_{i}, H\right\}=0$, and are conserved charges. Which is the Lie algebra generated by these charges? Consider the Runge-Lenz vector

$$
\vec{A}=\vec{p} \times \vec{L}-k m \hat{r} .
$$

The dimensionless vector $\frac{\vec{A}}{k m}$ is the so called eccentricity vector. Show that \vec{A} is conserved. It is convenient to rescale the Runge-Lenz vector to

$$
\vec{B}=\frac{\vec{A}}{\sqrt{2 m|E|}},
$$

where E is the energy, for $E \neq 0$. Investigate the algebra of conserved charges under the Poisson bracket. It may be different in the cases $E<0, E=0$ and $E>0$. Such "hidden symmetries" may be used to relate solutions to the equations of motion with the same energy to each other.

