Home assignment 2 - Symmetry TIF310/FYM310

Deadline Wednesday Dec. 9, 2020
(Each problem in this set has approximately twice the weight/number of points compared to the problems in the first set.)

Hand in solutions in pdf format, produced by $\mathrm{T}_{\mathrm{E}} \mathrm{X}$, containing your name, by mail to martin.cederwall@chalmers.se (or printed in a box outside room Origo 6102 if you can get through the locked doors). Good luck!
2.1. a. Derive the explicit form of the Klein-Gordon equation in spherical coordinates (and time) in $d=4$.
b. Find the static, spherically symmetric, solution to the Klein-Gordon equation with $m \neq 0$ in $d=4$ corresponding to a point source at the origin.
2.2. Construct a vector v as the square of a $d=4$ bosonic spinor λ as $v_{\alpha \dot{\alpha}}=\lambda_{\alpha} \bar{\lambda}_{\dot{\alpha}}$. Show that $v^{2}=0$. Perform the corresponding construction in $d=3$. (It works also in $d=6$ and $d=10$.)
2.3. Chiral spinors under (some real form of) $\mathfrak{s o}$ (12) are 32-dimensional. Call the spinor modules 32 and $\mathbf{3 2}^{\prime}$. They are both self-conjugate, meaning that $\mathbf{3 2}$ is its own dual module, and accordingly for $\mathbf{3 2}^{\prime}$. Determine which antisymmetric tensors appear in $\mathbf{3 2} \otimes \mathbf{3 2}$, and which of these belong to the symmetric and antisymmetric part of the tensor product.
2.4. Consider the rank 4 simple Lie algebra $D_{4} \simeq \mathfrak{s o (8)}$. Draw its Dynkin diagram and write the corresponding Cartan matrix. The diagram has a lot of symmetry. Construct the highest weight representation corresponding for a representation with Dynkin label 1 for one of the simple roots at the outermost positions in the Dynkin diagram, and 0 for all other simple roots, by acting with lowering operators on the highest weight state. What is the dimension of such a representation? Interpret the three such representations.
2.5. The energy-momentum (or stress-energy) tensor can be derived as the variation of an action with respect to the metric as

$$
T^{m n}=\frac{2}{\sqrt{|g|}} \frac{\partial \mathscr{L}}{\partial g_{m n}}
$$

where \mathscr{L} is the Lagrangian density. This applies also for a theory defined in flat space, but then the metric has to be reinstated so that coordinate invariance of the action is manifest.
Use this definition to derive the energy-momentum tensor for Maxwell theory, and identify the usual forms of the energy density as T^{00} and the Poynting vector as $T^{0 i}$.
Show that the Maxwell energy-momentum tensor is traceless precisely in $d=4$, and relate this property to the invariance of the action under a rescaling of the metric. This is a sign of conformal invariance.

