Home assignment 3 - Symmetry TIF310/FYM310, period II, 2020

Deadline Monday Jan. 8
Hand in solutions produced by $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ by mail to martin.cederwall@chalmers.se or printed in a box outside room Origo 6102. Good luck!
3.1. In 2-dimensional Minkowski space, let $u=\frac{1}{\sqrt{2}}\left(x^{0}+x^{1}\right)$, $v=\frac{1}{\sqrt{2}}\left(x^{0}-x^{1}\right)$. What is the metric in this coordinate system? Show that any transformation to new coordinates $u^{\prime}=f(u), v^{\prime}=g(v)$, where f and g are strictly monotonous functions, is a conformal transformation.
Consider the infinitesimal form of such transformations. Which of them form the $\mathfrak{s o}(2,2)$ subalgebra?
3.2. Let a Dynkin diagram be defined as a circle of $n+1$ nodes, where each node is connected to its two neighbours with single lines. Show that it can not be the Dynkin diagram of a finite-dimensional Lie algebra, i.e., that a set of roots with the corresponding scalar products do not form a basis of Euclidean $(n+1)$-dimensional space. (The algebra A_{n}^{+}defined by this Dynkin diagram is indeed infinite-dimensional, a so called affine Lie algebra.)
3.3. Consider the Maxwell field strength 2-form

$$
\begin{aligned}
F & =\frac{1}{4 \pi r^{3}}(x d y \wedge d z+y d z \wedge d x+z d x \wedge d y) \\
& =\frac{1}{8 \pi r^{3}} \epsilon_{i j k} x^{i} d x^{j} \wedge d x^{k} \\
& =\frac{\sin \theta}{4 \pi} d \theta \wedge d \varphi
\end{aligned}
$$

which is well defined outside the origin. Demonstrate the equality of the different expressions. What is the corresponding B-field? Show that F satisfies Maxwell's equations (without sources) for $r>0$. Calculate the surface integral $\int_{S} F=\int_{S} \vec{B} \cdot \overrightarrow{d S}$, where S is a surface enclosing $r=0$, and conclude that there is a magnetic monopole at $r=0$. Find a 1 -form A such that $d A=F$. Is it well defined everywhere outside the origin?
3.4. A construction of the 14 -dimensional Lie algebra G_{2}. Inspect the root space of G_{2}, and verify that all roots of G_{2} are weights of $\mathfrak{s l}(3)$, and that it consists of the weights for the adjoint (the roots) of $\mathfrak{s l}(3)$ together with the weight for the two 3 -dimensional representations, which we can call $\mathbf{3}$ and $\overline{\mathbf{3}}$. There should be a formulation of G_{2} with manifest $\mathfrak{s l}(3)$ and generators $J_{m}{ }^{n}, K_{m}$ and L^{m}. Construct the brackets by making some Ansatz and checking the Jacobi identities. (Hint: Only some of the Jacobi identities are "non-trivial", in the sense that they do not follow from the $\mathfrak{s l}(3)$ covariance.)
3.5. Symmetries of the Kepler problem. Consider the motion of a Newtonian particle with mass m in the central potential $V(\vec{r})=-\frac{k}{r}$. Show that the components of the angular momentum $\vec{L}=\vec{r} \times \vec{p}$ fulfil $\left\{L_{i}, H\right\}=0$, and are conserved charges. Which is the Lie algebra generated by these charges? Consider the Runge-Lenz vector

$$
\vec{A}=\vec{p} \times \vec{L}-k m \hat{r} .
$$

The dimensionless vector $\frac{\vec{A}}{k m}$ is the so called eccentricity vector. Show that \vec{A} is conserved. It is convenient to rescale the Runge-Lenz vector to

$$
\vec{B}=\frac{\vec{A}}{\sqrt{2 m|E|}},
$$

where E is the energy, for $E \neq 0$. Investigate the algebra of conserved charges under the Poisson bracket. It may be different in the cases $E<0, E=0$ and $E>0$. Such "hidden symmetries" may be used to relate solutions to the equations of motion with the same energy to each other. Discuss (without explicit calculation) whether e.g. a circular orbit can be transformed into an elliptic (but non-circular) one using the corresponding hidden symmetry group.

