Home assignment 1, 2021 - Symmetry TIF310/FYM310

Deadline Friday Nov. 19
Hand in solutions, preferrably produced by $\mathrm{T}_{\mathrm{E}} \mathrm{X}$, by mail to martin.cederwall@chalmers.se (or printed in a box outside room Origo 6102, which requires transversing locked doors). Good luck!
1.1. Consider the Lie algebra $\mathfrak{s o}(4, \mathbb{R})$ of rotations in 4 euclidean dimensions.
a) Show that an antisymmetric tensor can be divided into a selfdual and an anti-selfdual part as $J_{a b}=J_{a b}^{(+)}+J_{a b}^{(-)}$, where

$$
J_{a b}^{(\pm)}=\frac{1}{2}\left(J_{a b} \pm \frac{1}{2} \epsilon_{a b c d} J_{c d}\right),
$$

such that $J^{(+)}$and $J^{(-)}$do not mix under $\mathfrak{s o}(4)$ transformations.
(Hint: Given an antisymmetric tensor J, the dual tensor J^{\star} can be defined as $J_{a b}^{\star}=\frac{1}{2} \epsilon_{a b c d} J_{c d}$. Show that $\left(J^{\star}\right)^{\star}=J$, and that $\left(J^{(\pm)}\right)^{\star}= \pm J^{(\pm)}$.)
b) The algebra $\mathfrak{s o}(4)$ is generated by antisymmetric matrices. Show that the two duality components each generate an $\mathfrak{s u}(2)$, so that $\mathfrak{s o}(4) \simeq \mathfrak{s u}(2) \oplus \mathfrak{s u}(2) \simeq \mathfrak{s o}(3) \oplus \mathfrak{s o}(3)$.
c) Describe a 4 -dimensional vector as a representation module of $\mathfrak{s u}(2) \oplus \mathfrak{s u}(2)$.
1.2. Consider the discrete group acting on vectors in $\mathbb{R}^{2}=\mathbb{C}$ which is generated by reflections in the real line and in the line through the origin and the point $e^{2 \pi i / 3}$. Call these two group elements a and b. The statement that they "generate" a group means that one considers all elements obtained by applying them repeatedly, in some order. Each of the generators (being a reflection) squares to the identity element, $a^{2}=I=b^{2}$. They generate cycles of length 2 . What is the length of the cycle generated by $a b$? How many elements does the group contain? Make a complete table of the group composition, and show that it in fact is the "symmetric group" S_{3} of permutations of three elements.

1.3. a) The Lie algebra $\mathfrak{s o}$ (11) of rotations in 11 dimensions has an irreducible 55-dimensional representation. Describe the representation module in terms of tensors.
b) Same question, but for an irreducible 65-dimensional representation (this may require the use of some invariant tensor).
c) What is the tensor product of the 11-dimensional vector representation with itself?
1.4. Consider the Maxwell field strength 2-form on $\mathbb{R}^{3} \backslash\{0\}$:

$$
F=\frac{1}{4 \pi r^{3}}(x d y \wedge d z+y d z \wedge d x+z d x \wedge d y)
$$

which is well defined outside the origin. What is the corresponding B-field? Show that F satisfies Maxwell's equations for $r>0$. Calculate the surface integral $\int_{S} F=\int_{S} \vec{B} \cdot \overrightarrow{d S}$, where S is a surface enclosing $r=0$, and conclude that there is a magnetic monopole at $r=0$. Find a 1 -form A such that $d A=F$. Is it well defined everywhere outside the origin?
(The "wedge" notation for forms is read so that a 2-form ω, i.e., a tensor with 2 antisymmetric lower indices can is expressed as $\omega=\frac{1}{2} \omega_{i j} d x^{i} \wedge d x^{j}$. For example, $\omega=f(x, y, z) d y \wedge d z$ means $\omega_{23}=-\omega_{32}=f$, and all other components 0 . See also Section 4.3 in the lecture notes.)

