Home assignment 1, 2022 - Symmetry TIF310/FYM310

Deadline Friday Nov. 18
Hand in solutions, produced by $\mathrm{T}_{\mathrm{E}} \mathrm{X}$, by mail to martin.cederwall@chalmers.se (or printed in a box outside room Origo 6102, which requires transversing locked doors). Good luck!
1.1. Show that the group $S U(2)$ is the 3 -dimensional sphere S^{3}.
(Hint: show that any element $M \in S U(2)$ can be represented as a 2×2 complex matrix

$$
\left.M=\left(\begin{array}{cc}
a & b \\
-\bar{b} & \bar{a}
\end{array}\right), \quad a \bar{a}+b \bar{b}=1 .\right)
$$

1.2. Consider the Lie algebra $\mathfrak{s o}(4, \mathbb{R})$ of rotations in 4 euclidean dimensions.
a) Show that $\mathfrak{s o}(4) \simeq \mathfrak{s u}(2) \oplus \mathfrak{s u}(2) \simeq \mathfrak{s o}(3) \oplus \mathfrak{s o}(3)$.
b) Describe a 4-dimensional vector as an element of a representation module of $\mathfrak{s u}(2) \oplus \mathfrak{s u}(2)$.
1.3. Consider the discrete group acting on vectors in $\mathbb{R}^{2}=\mathbb{C}$ which is generated by reflections in the real line and in the line through the origin and the point $e^{2 \pi i / 3}$. Call these two group elements a and b. The statement that they "generate" a group means that one considers all elements obtained by applying them repeatedly, in some order. Each of the generators (being a reflection) squares to the identity element, $a^{2}=I=b^{2}$. They generate cycles of length 2 . What is the length of the cycle generated by $a b$? How many elements does the group contain? Make a complete table of the group composition, and show that it in fact is the "symmetric group" S_{3} of permutations of three elements.

1.4. a) The Lie algebra $\mathfrak{s o (1 0)}$ of rotations in 10 dimensions has an irreducible 45 -dimensional representation. Describe the representation module in terms of tensors.
b) Same question, but for an irreducible 54-dimensional representation (this may require the use of some invariant tensor).
c) What is the tensor product of the 10-dimensional vector representation with itself?
1.5. The Poincaré algebra in d dimensions consists of rotations (elements in $\mathfrak{s o}(d)$) together with translations. Find a maximal proper ideal of the Poincaré algebra. If it is "divided out" (i.e., if one forms the Lie algebra on the equivalence classes modulo the ideal), which algebra is obtained?

