Home assignment 2 - Symmetry TIF310/FYM310 2022

Deadline Friday Dec. 9
Hand in solutions produced by $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ by mail to martin.cederwall@chalmers.se or printed in a box outside room Origo 6102. Good luck!

Maximum 2 points per problem.
2.1. Find the static, spherically symmetric, solution to the Klein-Gordon equation with $m \neq 0$ in $d=4$ Minkowski space corresponding to a point source at the origin.
2.2. Show that the action for electromagnetic fields

$$
S=-\frac{1}{4} \int d^{4} x \sqrt{|g|} F^{m n} F_{m n}
$$

is unchanged when the metric $g_{m n}$ is replaced by the same metric multiplied by some (non-zero) function, i.e., $g_{m n}(x) \mapsto e^{2 \phi(x)} g_{m n}(x)$.
2.3. The tensor product of two spinor representations contains antisymmetric tensors. This is due to the existence of invariant tensors $\gamma^{m_{1} \ldots m_{p}}$.
a) As an example, take spinors in 9 dimensions. The dimension of the spinor representation S is 16 . Count the number of matrices $\gamma^{m_{1} \ldots m_{p}}$ for different values of p, and determine, by demanding that the numbers sum up to the dimensions of the symmetric and antisymmetric parts of $S \otimes S$, which of these (with one index lowered to $\left(\gamma^{m_{1} \ldots m_{p}}\right)_{\alpha \beta}$) are symmetric and which are antisymmetric in $\alpha \beta$.
b) Tensor products of more than two spinors are more difficult. There may be identities, so called Fierz identities, for products of more than one matrix $\gamma^{m_{1} \ldots m_{p}}$. In 3-dimensional Minkowski space, i.e., for γ-matrices of $\mathfrak{s o}(1,2)$, show that $\gamma_{m(\alpha \beta} \gamma^{m}{ }_{\gamma \delta)}=0$. One way of checking this is to contract the expression with all matrices $M^{(\gamma \delta)}$ and using the properties of the γ matrices. There may be simpler ways. Is there some invariant tensor with the same index structure?
2.4. Consider the rank 2 simple Lie algebra G_{2}. This algebra has a 7-dimensional representation. Construct it by acting with lowering operators on some highest weight state. (A good starting point can be to draw a picture of the root lattice, and then construct the coroots and fundamental weights.)
2.5. A non-linear realisation. Consider the quotient space $S L(2, \mathbb{R}) / U(1)$, defined as equivalence classes of elements in $S L(2, \mathbb{R})$ modulo the right action of a $U(1)$. Two elements g and g^{\prime} in $S L(2, \mathbb{R})$ (2×2 real matrices with unit determinant) are considered equivalent if they are related by a $U(1)$ transformation as $g^{\prime}=g h$, where

$$
h=e^{\theta j}, \quad j=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

Show that elements in $S L(2, \mathbb{R})$ are in the same equivalence class as an element of the form

$$
g=\frac{1}{\sqrt{y}}\left(\begin{array}{ll}
y & x \tag{2.1}\\
0 & 1
\end{array}\right)
$$

Use this parametrisation to derive the transformation of the complex number $z=x+i y$ for such a representative of the equivalence class under the left action $g \mapsto M g$ with

$$
M=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L(2, \mathbb{R}), \quad a d-b c=1
$$

(Hint: In order to get Mg back to an element of the form (2.1), you will need to use the equivalence.) Show that the metric

$$
d s^{2}=\frac{d z d \bar{z}}{(\operatorname{Im} z)^{2}}
$$

is invariant under $S L(2, \mathbb{R})$. (This is the so called Poincaré upper half plane, describing a 2dimensional hyperbolic space with constant curvature.) Discuss what the $S L(2, \mathbb{R})$ isometry means. Is this a maximally symmetric space?

