Home assignment 3 - Symmetry TIF310/FYM310, period II, 2022

Deadline Sunday Jan. 8. 2023
Hand in solutions produced by $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ by mail to martin.cederwall@chalmers.se or printed in a box outside room Origo 6102. Good luck!
3.1. In 2-dimensional Minkowski space, let $u=\frac{1}{\sqrt{2}}\left(x^{0}+x^{1}\right), v=\frac{1}{\sqrt{2}}\left(x^{0}-x^{1}\right)$. What is the metric in this coordinate system? Show that any transformation to new coordinates $u^{\prime}=f(u), v^{\prime}=g(v)$, where f and g are strictly monotonous real functions, is a conformal transformation, i.e., a transformation under which $g_{m n} \mapsto e^{2 \phi} g_{m n}$ for some function ϕ.
Consider the infinitesimal form of such transformations. In $d>2$ Minkowski space, the conformal algebra is $\mathfrak{s o}(2, d)$, but in $d=2$ it is infinite-dimensional. Which transformations form an $\mathfrak{s o}(2,2) \simeq$ $\mathfrak{s l}(2, \mathbb{R}) \oplus \mathfrak{s l}(2, \mathbb{R})$ subalgebra?
3.2. Let a Dynkin diagram be defined as a circle of $n+1$ nodes, where each node is connected to its two neighbours with single lines. Show that it can not be the Dynkin diagram of a finite-dimensional Lie algebra, i.e., that a set of roots with the corresponding scalar products do not form a basis of Euclidean $(n+1)$-dimensional space. (The algebra A_{n}^{+}defined by this Dynkin diagram is indeed infinite-dimensional, a so called affine Lie algebra.)
$3 \cdot 3$. Inspect the root space of G_{2}, and verify that all roots of G_{2} are weights of $\mathfrak{s l}(3)$, and that it consists of the weights for the adjoint (the roots) of $\mathfrak{s l}(3)$ together with the weight for the two 3 -dimensional representations, which we can call $\mathbf{3}$ and $\overline{\mathbf{3}}$. There should be a formulation of G_{2} with manifest $\mathfrak{s l}(3)$ and generators $J_{m}{ }^{n}, K_{m}$ and L^{m}. Construct the brackets between these by making some Ansatz (on tensor form, only using invariant tensors of $\mathfrak{s l}(3)$) and checking the Jacobi identities. Hints: Addition of weights can give clues to what can appear on the right hand sides. Only some of the Jacobi identities are "non-trivial", in the sense that they do not follow from the $\mathfrak{s l}(3)$ covariance.
3.4. The energy-momentum (or stress-energy) tensor can be derived as the variation of an action with respect to the metric as

$$
T^{m n}=\frac{2}{\sqrt{|g|}} \frac{\partial \mathscr{L}}{\partial g_{m n}}
$$

where \mathscr{L} is the Lagrangian density. This applies also for a theory defined in flat space, but then the metric has to be reinstated so that coordinate invariance of the action is manifest. Use this definition to derive the energy-momentum tensor for Maxwell theory, and identify the usual forms of the energy density as T^{00} and the Poynting vector as $T^{0 i}$. Show that the Maxwell energymomentum tensor is traceless precisely in $d=4$, and relate this property to the invariance of the action under a rescaling of the metric. This is a sign of conformal invariance.
Hint: be careful with precisely how the metric enters \mathscr{L}.
3.5. Consider a (Newtonian) particle moving in an isotropic harmonic potential in n space dimensions, so that $V(x)=\frac{1}{2} k x^{i} x^{i}$. Show that the symmetry is $U(n)$ rather than the (expected) $O(n)$.
Hint: It is useful to write down the Hamiltonian in terms of "creation and annihilation operators". Such "hidden symmetries" can be used to relate solutions with equal energy to each other.

