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3. Space-time symmetries—The Lorentz, Poincaré and conformal algebras . . . . . . . . . . . . . . . . . . 26

3.1. The Lorentz algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
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1. Preliminaries—Vector spaces and tensors

1.1. Vector spaces

A vector space V is a set of objects which can be added and multiplied by numbers. Many of the

objects in this course will belong to vector spaces. This applies to the Lie algebras as well as their

representation modules.

A vector space V over a field K (in this course, K will always be R or C) is a set of objects

that can be added and multiplied by elements in K. The addition is commutative and associative:

a⃗+ b⃗ = b⃗+ a⃗, (⃗a+ b⃗)+ c⃗ = a⃗+ (⃗b+ c⃗), for all a⃗, b⃗, c⃗ ∈ V . It has an identity element, the null vector

0⃗, such that a⃗ + 0⃗ = a⃗ and an inverse −a⃗ such that a⃗ + (−a⃗) = 0⃗. The multiplication satisfies

x(ya⃗) = (xy)⃗a, x(⃗a + b⃗) = xa⃗ + x⃗b and 1a⃗ = a⃗. In what follows, the arrows over vectors will be

dropped.

All these properties are natural, and satisfied by vectors in Rn or Cn. Examples of vector spaces

are, in addition to Rn or Cn, spaces of functions, e.g. polynomials of some given degree, or solutions

to some homogeneous equations. For our purposes, we can think of any (finite-dimensional) vector

space as Kn.

A basis can be chosen as {ei}dimV
i=1 , where there is no linear dependence between the basis elements,

and every vector in V can be written as v =
∑dimV

i=1 viei, which we write as v = viei, with an

invisible summation sign every time an index is repeated.

A vector space has a priori no notion of a scalar product. But one can always define the dual

vector space V ∗ to a vector space V . We use the notation ⟨u, v⟩ for the natural scalar product,

given by ⟨e∗i, ej⟩ = δij , so that ⟨u, v⟩ = uiv
i. The dual vector space can be defined as the set of

linear functions V → K, which is itself a vector space.

The choice of basis is of course completely arbitrary. A change of basis from {ei} to {e′i} amounts to

a linear transformation e′i =Mi
jej , where M is a matrix with detM ̸= 0. This is a transformation

in the group GL(dimV,K) (or simply GL(V ), the set of linear maps, endomorphisms, from V to

itself), see Section 2.1. The same vector v = viei = v′ie′i then has components

v′i = (M−1)j
ivj (1.1)

in the new basis. A dual vector then has components u′i =Mi
juj . The scalar product ⟨u, v⟩ remains

unchanged.

It is thus important that summation always is performed with one index up and one down, i.e.,

between a vector index and a dual vector (covector) index. A confusion which may arise from the

acquaintance with vectors in R3 is that they have come equipped with a metric, a length function

V × V → R: v×w 7→ (v, w) =
∑3

i=1 v
iwi. This is not built into the concept of a vector space, but

is an additional structure. A scalar product relies on introducing a matrix ηij with det η ̸= 0, and
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defining (v, w) = ηijv
iwj . Equivalently, a metric is a (non-degenerate) map V → V ∗. The metric η

will depend on the choice of basis, and is only invariant under an orthogonal subgroup of GL(V ),

see Section 2.1. In the example with R3 and the Euclidean metric, it is normally taken to be the

unit matrix, ηij = δij , which makes it “invisible”, which may add to the confusion.

Vector space (over the same field K) can be “added” and multiplied.

The direct sum V ⊕W of the vector spaces V and W have elements v ⊕ w with v ∈ V , w ∈ W .

This can be thought of as a pair (v, w). If one think of elements in V and W as column vectors

of length m and n (the respective dimensions), an element in V ⊕W is a column vector of length

m+ n. Example: Rm ⊕ Rn = Rm+n.

The tensor product V ⊗W is defined as the vector space with basis {ei ⊗ e′i′}, where {ei} and

{e′i′} are bases for V and W , respectively. The number of basis elements is thus mn, where m and

n are the respective dimensions of V and W . If one thinks of elements in V and W as vectors

of length m and n, an element in V ⊗ W can be thought of as an m × n matrix. Example:

Rm ⊗ Rn = Rmn. (Another way of saying this is that any element in V ⊗W can be written as a

sum of terms v ⊗ w, with the equivalence relations kv ⊗ w ≈ v ⊗ kw = k(v ⊗ w)), where k ∈ K,

and (v + v′)⊗ w = v ⊗ w + v′ ⊗ w, v ⊗ (w + w′) = v ⊗ w + v ⊗ w′.)

1.2. Tensors

Tensor formalism is a notational device, as well as a way of keeping track of transformation prop-

erties. Say that we have a vector v in some vector space V . As above, it can be written in terms of

the elements in some basis as v = viei. In tensor notation, v is written as “vi”, with an explicit free

index i. It can be considered as a list of the components in the basis {ei}. The vector vi is assumed

to behave as in eq. (1.1) under a change of basis, which is an element of GL(V ). Analogously, a

covector is written wi. Note, again, that there is a priori no way to translate between upper and

lower indices. A general tensor belongs to the (iterated) tensor product of a number of copies of

V and V ∗, and is written in terms of its components as t
i1...ip
j1...jq

. Its transformation rule is

t
′i1...ip
j1...jq

= (M−1)k1

i1 . . . (M−1)kp

ipMj1
l1 . . .Mjq

lq t
k1...kp

l1...lq
. (1.2)

The allowed operations with (general) tensors are symmetrisations and antisymmetrisations in

groups of indices and contractions between upper and lower indices. Any result of such operations

is guaranteed to give a result which again is a tensor.

Often, a vector space comes equipped with some extra structure, for example a metric, as mentioned

above. This structure is typically such that GL(V ) is restricted to some subgroup (see Section 2.1),

and tensors are considered as transforming under representations (see Section 2.4) of the subgroup

in question. Say, for example, that there is a metric gij . It will be invariant under an orthogonal

subgroup of GL(V ). The rules for manipulating tensors, stated above, do not change, but one is also

allowed to include gij in the expressions. The tensors are then considered as tensors with respect to
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orthogonal transformations. If some other structure is introduced, it will always involve additional

invariant (under some subgroup of GL(V )) tensors, that can be used in the same fashion.

Later in Section 4, we will also consider tensors under the infinite-dimensional group of general

coordinate transformations.

2. Groups and algebras

2.1. Groups

A group is a set G with a binary operation (a “product”) xy defined on any pair of elements

x, y ∈ G, that fulfils the requirements

• The product is associative: (xy)z = x(yz), ∀x, y, z ∈ G;

• G contains a unit element I: Ix = x = xI, ∀x ∈ G

• Any element x ∈ G has a unique inverse x−1, such that x−1x = I = xx−1.

Examples:

(if needed, check the product, its properties, and the existence of unit element and inverse!)

• The group Z of integers under addition. The unit element is 0.

• The cyclic groups Zn = Z/nZ, where the elements are {0, 1, . . . , n− 1} and the product is defined

by addition modulo n.

• The non-zero real numbers R∗ under multiplication.

All the examples above are abelian groups, which means that xy = yx for all pairs of elements.

Example of non-abelian groups are

• The symmetric group Sn of permutations of n elements.

• The group of rotations in 3 euclidean dimensions.

Some other definitions:

A subgroup H ⊂ G is a subset of elements such that H itself is a group. A proper subgroup of G

is a subgroup which is neither G itself nor the trivial subgroup {I}.

A normal subgroup H ⊂ G is a subgroup which is invariant under conjugation, i.e., h ∈ H, g ∈
G⇒ ghg−1 ∈ H.
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The direct product of two groups G and H is the set of ordered pairs x = (g, h) with product

xx′ = (gg′, hh′). (Check identity and inverse!)

The left (right) coset G/H (H\G) is the set of elements x ∈ G modulo the equivalence relation

x ≈ xh (x ≈ hx) for all h ∈ H.

2.2. Lie Groups

A Lie group is a group which is also a manifold.

Examples:

• The group GL(n,R), the group of (general) linear transformations on Rn. Elements can be repre-

sented as real (n× n)-matrices. Note that matrix multiplication is associative. The same holds for

GL(n,C).

• The group of special linear transformations, SL(n,R), is defined as the subgroup of GL(n,R)
consisting of elements x with detx = 1.

• The orthogonal group O(n,R) (or O(n,C)) of matrices M with M−1 =M t.

• The special orthogonal group SO(n,R) (or SO(n,C)) of orthogonal matrices with unit determinant.

• The unitary group U(n) of unitary (n× n)-matrices. Unitary means that M−1 =M†.

• The special unitary group SU(n) of unitary matrices with unit determinant.

• The symplectic group Sp(2n,R) (or Sp(2n,R)) of (2n×2n)-matricesM preserving a non-degenerate

skew-symmetric form ω. Let

ϵ =

(
0 In

−In 0

)
(2.1)

and ω(x, y) = xtϵy for x, y ∈ R2n. Then one demands that ω(Mx,My) = ω(x, y). This amounts

to M tϵM = ϵ.

This list contains what is often called the “classical” matrix groups.

Exercises

2.1. Is Z a group under multiplication?

2.2. Is N, the natural numbers (including 0), a group under addition?

2.3. Do the rational numbers Q form a group under multiplication?

2.4. How many elements are there in the symmetric group Sn of permutations of n elements? Do the

even permutations form a subgroup? A normal subgroup?

2.5. What is the dimension of the group of orthogonal rotations in d dimensions?

2.6. If m,n ∈ Z, is Zmn = Zm × Zn?
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2.7. Show that the left and right cosets coincide if H is a normal subgroup of G. Show that G/H then

is a group.

2.8. What is the dimension of Sp(2n,R)?

2.9. Show that Sp(2,R) ≃ SL(2,R).

2.3. From Lie groups to Lie algebras

Even the classical groups are complicated objects. Recall e.g. the parametrisation of SO(3,R) in

terms of Euler angles. It is much easier to consider the tangent space at the identity element. By

dealing with elements that are (infinitesimally) close to the identity, most of the structure of a Lie

group is encoded in the Lie algebra, which is a vector space. This is precisely what one does when

one describes rotation in terms of a rotation vector −→ω , instead of finite rotations in finite amount

of time.

The idea is to write a group element g as g = ea, where a is an element in the tangent space to G,

which will become the Lie algebra g. As an analogy, think of the group of translations in R (this

group is really R under addition). Consider a function f(x). Assuming differentiability etc., it can

be given as a Maclaurin series

f(x) =

∞∑
k=0

xk

k!

dkf

dxk
(0) = ex

d
dy f(y)|y=0 . (2.2)

The finite translation is written as the exponentiation of an infinitesimal one, and we can say that

translations are generated by the derivative. This hold equally in Rn.

For a matrix x, the exponential function is defined as

ex =

∞∑
k=0

xk

k!
, (2.3)

and the series converges. The inverse function, the logarithm, is given by the series

log(1 + x) =

∞∑
k=1

(−1)k+1xk

k
, (2.4)

and it is defined at least in some neighbourhood of the unit matrix.

An arbitrary element infinitesimally close to the unit element can be written as x = eϵa ≈ 1 + ϵa,

where ϵ is infinitesimally small. Given an element a in the tangent space, the group elements

y(t) = eta form an abelian 1-dimensional subgroup Ga ⊂ G. In the neighbourhood of the unit

element, Ga looks like R (if t ∈ R; if t ∈ C the group is C).
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Before we turn to the important question of what happens to the group multiplication, let us take

an example. Take an orthogonal matrix M and let M = eA. Then, M t = (eA)t = eA
t

, and the

condition M tM = 1 turns into 1 = eA
t

eA. If At = −A, this is fulfilled. The tangent space (at the

identity) of the space of orthogonal matrices is the vector space of antisymmetric matrices.

Exercise:

2.10. What are the corresponding statements for special linear matrices, for unitary and special unitary

matrices, for symplectic matrices? Show that the properties are preserved by the commutator.

Answer:
J ∈ sl(n) : trJ = 0
J ∈ u(n) : J + J† = 0
J ∈ su(n) : J + J† = 0, trJ = 0
J ∈ sp(n) : J tϵ+ ϵJ = 0

(2.5)

Now, we need some kind of product on the tangent space, that encodes the same amount of

information as the group product, at least in the vicinity of the unit element. If two element

x = eϵa, x′ = eϵ
′a′ ∈ G close to the unit element commute, xy = yx, the corresponding 2-parameter

subgroup Ga,a′ is abelian and Ga,a′ is (locally) the group of translations in 2 dimensions. Then

also aa′ = a′a Let us look for an expression that encodes the deviation from commutativity. Take

the expression H(x, y) = xyx−1y−1, and let x = ea, y = eb. Expanding to bilinear order in a, b, we

get
H(x, y) = (1 + a+ 1

2a
2)(1 + b+ 1

2b
2)(1− a+ 1

2a
2)(1− b+ 1

2b
2) + . . .

= 1 + [a, b] + . . . ≈ e[a,b] .
(2.6)

The group product “induces” an antisymmetric product, the commutator, or Lie bracket. The

important and defining property of the Lie bracket, which follows from associativity of the group

elements (see exercise 2.12), is the Jacobi identity

J(a, b, c) ≡ [a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0 . (2.7)

The Jacobi identity is automatically satisfied for matrix commutators.

One may wonder if the structure of the Lie algebra encoded by the Lie bracket captures the full

structure of the group, since it deals only with group multiplication in the vicinity of the identity.

The answer is that it “almost” does, and what it misses is only “global” information. What this

means will become clear in examples. The “local” structure of the group is fully encoded in the

Lie algebra. Given a Lie group G, the corresponding Lie algebra Lie(G) = g is uniquely defined.

However, different Lie groups can correspond to the same Lie algebra. More about that later.

Definition: A Lie algebra g is a vector space equipped with a skew-symmetric bilinear product

g× g → g (the Lie bracket) that fulfils the Jacobi identity.

A Lie subalgebra h ⊂ g is a subspace of g which is itself a Lie algebra. If H is a Lie subgroup of

G, Lie(H) is a Lie subalgebra of Lie(G). A proper subalgebra of g is one that is neither g itself or

the trivial subalgebra.
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An ideal h of a Lie algebra g is a Lie subalgebra which is preserved by the Lie bracket, i.e.,

g ∈ g, h ∈ h ⇒ [g, h] ∈ h. If h is an ideal in g, g mod h is a Lie algebra (show this!). Note the

correspondence between Lie subgroups and Lie subalgebras, and between normal subgroups and

ideals.

The direct sum of two Lie algebras g⊕ g′ is the direct sum of the vector spaces g and g′ with the

Lie bracket [(x, x′), (y, y′)] = ([x, y], [x′, y′]). It is a Lie algebra (show this!).

A Lie algebra is called simple if it has no proper ideals, and has dimension ≥ 2. (The 1-dimensional

Lie algebra is not defined to be simple.) If a Lie algebra is the direct sum of simple Lie algebras,

it is called semi-simple. Likewise for Lie groups, a Lie group is called simple if it has no normal

subgroups (besides {I} and the group itself.

Let Tα, α = 1, . . . , dim g be a basis for g. Then one has [Tα, Tβ ] = fαβ
γTγ . The numbers fαβ

γ are

called the structure constants of g.

Example: In gl(n), take a basis T i
j of matrices which have the matrix element 1 at row i and

column j and 0 otherwise, i.e., (T i
j)k

l = δikδ
l
j . Then,

[T i
j , T

k
l]m

n = δimδ
p
j δ

k
pδ

n
l − δkmδ

p
l δ

i
pδ

n
j

= δkj δ
i
mδ

n
l − δilδ

k
mδ

n
j

= δkj (T
i
l)m

n − δil (T
k
j)m

n ,

(2.8)

so that
[T i

j , T
k
l] = δkj T

i
l − δilT

k
j

= (δkj δ
i
mδ

n
l − δilδ

n
j δ

k
m)Tm

n ,
(2.9)

and the structure constants are f ij,
k
l,m

n = δkj δ
i
mδ

n
l − δilδ

n
j δ

k
m.

Exercises:

2.11. Show that SL(2,C) is simple.

2.12. Let x, y, z ∈ A , where A is an associative algebra, i.e., (x⋆y)⋆z = x⋆(y⋆z). Form a skew-symmetric

product by [x, y] = x ⋆ y − y ⋆ x. Show that it satisfies the Jacobi identity.

2.13. Form a basis and determine the structure constants for so(n).

2.14. Form bases for sl(n,R), su(n) and sp(2n,R).

2.15. Show that gl(n) and u(n) are not semi-simple, e.g. by finding proper ideals.

2.16. Show that if h is an ideal in g, g mod h is a Lie algebra.

2.4. Representations

A representation is a way to realise a Lie algebra as matrices acting on a vector space. Suppose we

have an “abstract” Lie algebra g with a basis {Tα} in which the structure constants are fαβ
γ . Let
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V be a vector space with basis {ui}, i = 1, . . . , dimV , and ϱ a linear map from g to GL(V ). If the

matrices (ϱ(Tα))i
j fulfil the same algebra (under commutation) as the Tα’s, i.e.,

[ϱ(Tα), ϱ(Tβ)] = fαβ
γϱ(Tγ) , (2.10)

we call ϱ a representation of g. (Note that [·, ·] on the left hand side means commutator, on the

right hand side Lie bracket.) The condition can be written without reference to a basis as

[ϱ(g), ϱ(h)] = ϱ([g, h]) ,∀g, h ∈ g . (2.11)

In mathematical terms, this means that ϱ is a “Lie algebra homomorphism”.

The vector space V is called a (representation) module, and dimV the dimension of the represen-

tation. (In the physics community, the term representation is often used for the module.) We will

only deal with finite-dimensional representations.

The direct sum of two representations is a representation: Take two modules V, V ′ and let v ∈ V ,

v′ ∈ V ′. Then w = (v, v′) ∈ V ⊕ V ′ =W . The representation on W is given by

ϱW (g) · (v, v′) = (ϱV (g) · v, ϱV ′(g) · v′) . (2.12)

The tensor product of two representations is also a representation: Take two modules V, V ′ with

bases {ei} and {e′i′}. The tensor product of the vector space (over R or C) is the vector space

W = V ⊗ V ′ with basis {e′′ii′}, where e′′ii′ = ei ⊗ e′i′ . The representation on W is then given as

ϱW (g) = ϱV (g)⊗ 1 + 1⊗ ϱV ′(g) . (2.13)

A representation is called irreducible if it is not the direct sum of lower-dimensional representations.

We have already encountered some representations. From the construction of the classical matrix

groups and algebras, it follows for example that sl(n), su(n) and so(n) have n-dimensional represen-

tations. Every Lie algebra has a trivial, 1-dimensional representation, for which ϱ(g) = 0 ∈ GL(1).

Every Lie algebra g also has a dim g-dimensional representation, the adjoint representation, de-

fined by the algebra itself. In the adjoint representation, ϱ(g) = ad g, where ad g · h = [g, h], i.e.,

(ϱ(Tα))β
γ = −fαβγ ,

Exercises

2.17. Verify by explicit calculation the the adjoint representation is a representation.
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2.18. Verify that the expressions for the representation matrices in the direct sum and tensor product

are correct. What are the dimensions of the representations obtained?

2.19. Show that sl(n) has a representation of dimension 1
2n(n+ 1). Is it irreducible?

2.20. Show that so(n) has an irreducible representation of dimension 1
2n(n+ 1)− 1.

2.5. The Cartan–Killing form

Take a (semi-simple) Lie algebra g and a representation ϱ. Then one can construct a map K :

g× g → R (or C), the Cartan–Killing form, as

K(g, g′) = tr(ϱ(g)ϱ(g′)) . (2.14)

It can be shown that K is non-degenerate for (and only for) semi-simple Lie algebras, and that

its dependence on ϱ only amount to a scaling. We can, if we like, choose to evaluate it in the

adjoint representation, where it becomes K(g, g′) = tr(ad g ad g′). It is invariant in the sense that

K([h, g], g′) +K(g, [h, g′]) = 0 for all g, g′, h ∈ g.

The Cartan–Killing form provides a natural metric on the Lie algebra. Namely, consider γαβ =

K(Tα, Tβ). This metric and its inverse γαβ can be used to raise, lower and contract adjoint indices.

One may then form the invariant quadratic operator (in any representation)

C2 = γαβTα ◦ Tβ . (2.15)

It should be understood as the matrix C2,ϱ = γαβϱ(Tα)ϱ(Tβ) when acting in a representation ϱ. It

is called the quadratic Casimir operator, and the invariance implies that it takes the same value

when acting on any state in a given irreducible representation module. Its eigenvalues in different

representations typically differ.

Exercises

2.21. Show that the Cartan–Killing form is invariant.

2.6. SL(2)

Consider the group SL(2,C). It consists of complex matrices

g =

(
a b
c d

)
, ad− bc = 1 . (2.16)
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Its Lie algebra sl(2,C) consists of traceless matrices

A =

(
α β
γ −α

)
(2.17)

A convenient basis is {h, e, f}, where

h =

(
1 0
0 −1

)
, e =

(
0 1
0 0

)
, f =

(
0 0
1 0

)
. (2.18)

The non-vanishing commutators are (verify!)

[h, e] = 2e , [h, f ] = −2f , [e, f ] = h . (2.19)

This basis is called the Chevalley-Serre basis. The element h spans the (abelian) Cartan subalgebra,

e is a raising operator and f a lowering operator. These concepts are useful for analysing (semi-

simple) Lie algebras in general.

The real Lie algebra sl(2,R) is of course described by the same basis and the same commutators.

Now, take a look at su(2), containing anti-hermitean matrices of the form

B =

(
ix iz
iz̄ −ix

)
, x ∈ R , z ∈ C . (2.20)

We can write B = i(xh + ze + z̄f). The basis elements of su(2) are linear combinations of the

basis elements of sl(2). However, the coefficients involve complex numbers. The Lie algebras are

equivalent as complex Lie algebras, but inequivalent as real Lie algebras. su(2) and sl(2,R) are

different real forms of the same complex Lie algebra. We will see that su(2) ≃ so(3), the algebra

of orthogonal rotations in 3 euclidean dimensions, while sl(2,R) ≃ so(1, 2), the algebra of Lorentz

transformations in 3-dimensional Minkowski space. The su(2) element in eq. (2.20) can also be

written as B = ixiσi, where x
1 = Re z, x2 = Im z, x3 = x, and σi are the Pauli σ matrices

with commutation relations [σi, σj ] = 2iϵijkσk. So, τi = − i
2σi fulfil [τi, τj ] = ϵijkτk. This is the

same structure constants as the Lie algebra so(3) spanned by the antisymmetric (3× 3)-matrices

(Ji)jk = −ϵijk, i.e.,

J1 =

 0 0 0
0 0 −1
0 1 0

 , J2 =

 0 0 1
0 0 0
−1 0 0

 , J3 =

 0 −1 0
1 0 0
0 0 0

 . (2.21)
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The Lie algebra isomorphism su(2) ≃ so(3) does not imply that the groups SU(2) and SO(3) are

isomorphic (the same). To see this, let us find group elements corresponding to a rotation by an

angle θ around the third axis. In SO(3) this is

gSO(3)(θ) = eθJ3 =

 cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 . (2.22)

The corresponding element in SU(2) is

gSU(2)(θ) = eθτ3 =

(
e−

i
2 θ 0
0 e

i
2 θ

)
. (2.23)

While a rotation by 2π gives gSO(3)(2π) = I, it gives gSU(2)(2π) = −I. The subgroup {I,−I} is

called the center of SU(2), consisting of elements that commute with all elements in the group. It

is thus a normal subgroup, and can be divided out. We arrive at the precise statement SU(2)/Z2 ≃
SO(3). Another way of saying this is that SU(2) is the double cover of SO(3). SO(3) does not

have a 2-dimensional (spinor) representation, but its double cover does.

Exercises:

2.22. Exponentiate the element A above to obtain an element in the group SL(2). Verify that eA =

cos(
√
detA)I + sin(

√
detA)√

detA
A. What if detA = 0?

2.23. Verify the commutation relations of the so(3) generators using the properties of the Levi-Civita

tensor.

2.24. Show that SU(2) = S3. Show that SU(2)/U(1) = S2.

2.25. Calculate the Cartan–Killing form for sl(2,R) and so(3), and interpret the result in terms of

sl(2,R) ≃ so(1, 2).

2.7. Representations of sl(2). Tensors

The Chevalley–Serre basis is useful for dealing with representations of Lie algebras. The Cartan

subalgebra, for sl(2) spanned by h, is an abelian subalgebra. This means that all elements in the

Cartan subalgebra (and their representation matrices) can be diagonalised simultaneously, and

vectors in a representation module may conveniently be classified according to their eigenvalue.

For sl(2), we look for eigenvectors of ϱ(h) in a module V . We can decompose V as

V =
⊕
λ∈Λ

Vλ , (2.24)
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where ϱ(h)Vλ = λVλ and Λ is the set of eigenvalues of ϱ(h) in the module. Since [h, e] = 2e,

[h, f ] = −2f , ϱ(e) raises the eigenvalue by 2 and ϱ(f) lowers it by 2. From now, we skip the

notation ϱ(e) etc., and use e etc. instead as a shorthand.

eVλ ⊂ Vλ+2 ,

fVλ ⊂ Vλ−2 .
(2.25)

If the representation is finite-dimensional, there must be some highest value of λ (and also a lowest

one). Call this value µ and consider a single such vector vµ. This is called a highest weight state. We

have evµ = 0. All other vectors in V are obtained by repeatedly acting with the lowering operator

f . For some value of p, we must have fp+1vµ = 0, but fpvµ ̸= 0. The latter is the lowest weight

state. For this to be consistent, one must also have efp+1vµ = 0. Then we can use the commutation

relations and the fact that e annihilates vµ to obtain

efp+1vµ =

p∑
k=0

fp−khfkvµ =

p∑
k=0

(µ− 2k)fpvµ = −(p+ 1)(p− µ)fpvµ . (2.26)

This can only vanish if µ is a non-negative integer, and p = µ.

All finite-dimensional representations of sl(2) are labelled by the highest weight µ which can take

the values 0, 1, 2, . . .. The lowest weight is then −µ. The dimension of the representation with

highest weight µ is dimV = µ+1. The value µ = 0 gives the trivial representation. µ = 1 gives the

2-dimensional representation already encountered, with V1 spanned by (1, 0)t and V−1 by (0, 1)t.

µ = 2 gives the adjoint representation, which we already know is spanned by traceless matrices.

Let us also examine the value of the quadratic Casimir operator, when acting in different irreducible

representations. We can calculate the Cartan–Killing metric using any irreducible representation.

Using the (defining) 2-dimensional one, we get the non-vanishing components (h, h) = 2, (e, f) = 1.

The metric γαβ has two positive eigenvalues and one negative one. This shows that sl(2,R) ≃
so(1, 2), the Lorentz algebra in 3 dimensions. The quadratic Casimir operator (with a suitably

chosen normalisation) becomes

C2 = 1
2γ

αβTαTβ = 1
2 (

1
2h

2 + ef + fe) . (2.27)

We know that it takes the same value on different states in an irreducible module, so it suffices to

evaluate it on the highest weight state vµ. We then obtain

C2vµ = 1
2 (

1
2h

2 + ef)vµ = 1
2 (

1
2h

2 + [e, f ])vµ

= 1
2 (

1
2h

2 + h)vµ =
µ(µ+ 2)

4
vµ .

(2.28)
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By converting to angular momentum or spin, as conventionally normalised in physics, ℓ = µ/2, we

get the eigenvalue of the quadratic Casimir operator

C2 =
µ(µ+ 2)

4
= ℓ(ℓ+ 1) . (2.29)

We will now express elements in modules of sl(2) as tensors. Let i = 1, 2 be an index labelling

vectors in the 2-dimensional, fundamental, module. Such a vector is written vi. Now, we can

take tensor products of the 2-dimensional representation with itself. For example a tensor with

two indices, symmetrised or anti-symmetrised (see exercise 2.28), v(ij) or v[ij]. However, since

v[ij] is proportional to ϵij (see exercise 2.31), it is invariant, and gives the trivial representation.

A symmetric tensor has 3 independent components. This is the adjoint representation. We have

earlier defined the adjoint as traceless tensors. They have the index structure vi
j . If we form vi

kϵkj ,

it becomes

vϵ =

(
α β
γ −α

)(
0 1
−1 0

)
=

(
−β α
α γ

)
, (2.30)

which is symmetric. This can be continued to higher tensors. A completely symmetric tensor with

p indices, vi1...ip transforms under the representation with highest weight p. Its dimension is p+1.

Consider the element −I of the group SL(2) (in the defining 2-dimensional representation). It has

eigenvalue 1 on all elements in the modules with even highest weight (i.e., on tensors with even

number of spinor indices), and −I for odd highest weight (odd number of spinor indices). The

subgroup {I,−I} = Z2 ⊂ SL(2) is called the center of SL(2), consisting of all group elements

that commute with all elements in the group. Forming SL(2)/{I,−I}, we get a group which does

not have the representations with odd highest weight. This is SO(1, 2). Its double cover is in turn

SL(2), which we also can call Spin(1, 2).

Exercises

2.26. Show that ϵij is an invariant tensor under sl(2) (but not under gl(2)).

2.27. Show that ϵi1...in is an invariant tensor under sl(n) (but not under gl(n)).

2.28. Show that the symmetric and antisymmetric parts of the tensor product of any representation of

a Lie algebra with itself form separate representations (which need not be irreducible).

2.29. Show that the number of independent components in a completely symmetric sl(2) tensor with p

indices is p+ 1.

2.30. Show that the number of independent components in a completely symmetric sl(n) tensor with p

indices is
(
n+p−1

p

)
.
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2.8. SL(3)

Start by finding a Cartan subalgebra among the traceless (3× 3)-matrices. This is a maximal set

of mutually commuting elements. We can take

h1 =

 1 0 0
0 −1 0
0 0 0

 , h2 =

 0 0 0
0 1 0
0 0 −1

 . (2.31)

To each hi we want to associate a raising operator ei and a lowering operator fi, such that {hi, ei, fi}
is a basis for an sl(2) subalgebra. They are easily found:

e1 =

 0 1 0
0 0 0
0 0 0

 , e2 =

 0 0 0
0 0 1
0 0 0

 ,

f1 =

 0 0 0
1 0 0
0 0 0

 , f2 =

 0 0 0
0 0 0
0 1 0

 ,

(2.32)

The remaining generators are

e3 = [e1, e2] =

 0 0 1
0 0 0
0 0 0

 , f3 = [f2, f1] =

 0 0 0
0 0 0
1 0 0

 . (2.33)

Note that [e1, f2] = 0 = [e2, f1]. The two sl(2) subalgebras do not commute with each other, instead

one has

[h1, e2] = −e2 , [h2, e1] = −e1 , (2.34)

and opposite signs for the f ’s.

Let us evaluate the Cartan–Killing form (in the 3-dimensional representation). The non-vanishing

entries are
K(h1, h1) = 2 , K(h2, h2) = 2 , K(h1, h2) = −1 ,

K(e1, f1) = 1 , K(e2, f2) = 1 , K(e3, f3) = 1 .
(2.35)

Of special interest is the restriction to the Cartan subalgebra, which gives the matrix

A =

(
2 −1
−1 2

)
. (2.36)

A is called the Cartan matrix.



Symmetry — lecture notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.9. Sp(4)

sl(3) is not unique as a simple Lie algebra of rank 2. Another example is sp(4). This Lie algebra

has already been defined as the matrices leaving an antisymmetric matrix (a symplectic form)

invariant. We have J tΩ+ΩJ = 0 for some antisymmetric matrix Ω, which we conveniently choose

as

Ω =

(
0 ϵ
ϵ 0

)
, (2.37)

where ϵ is the 2× 2 antisymmetric matrix with ϵ12 = 1. If we let J have the block structure

J =

(
A B
C D

)
, (2.38)

we get the conditions ϵA+Dtϵ = 0, ϵB + Btϵ = 0, ϵC + Ctϵ = 0. We have already seen that this

implies that B and C are traceless. If A =

(
a b
c d

)
, D =

(
−d b
c −a

)
. A Chevalley–Serre basis

can be taken as

h1 =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 , h2 =


0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

 ,

e1 =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 , e2 =


0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 ,

f1 =


0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

 , f2 =


0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0

 ,

(2.39)

The non-vanishing commutators are

[h1, e1] = 2e1 , [h1, f1] = −2f1 , [e1, f1] = h1 ,

[h2, e2] = 2e2 , [h2, f2] = −2f2 , [e2, f2] = h2 ,

[h1, e2] = −2e2 , [h1, f2] = 2f2 ,

[h2, e1] = −e2 , [h1, f2] = f2 ,

(2.40)

and in addition [e1, e2], [e1, [e1, e2]] are non-vanishing (and the same expressions with f ’s). (Note

that [e1, f2] = 0 = [e2, f1].) The relations (2.40) can be given a unified form

[hi, ej ] = Aijej , [hi, fj ] = −Aijfj , [ei, fj ] = δijhj , (2.41)

where A is the Cartan matrix

A =

(
2 −2
−1 2

)
. (2.42)
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The Cartan–Killing metric, which we now normalise as K(g, h) = 1
2 tr(gh) in the 4-dimensional

representation, becomes
K(h1, h1) = 2 , K(e1, f1) = 1 ,

K(h2, h2) = 1 , K(e2, f2) =
1
2 ,

K(h1, h2) = −1 .

(2.43)

Restricted to the h’s, we get the matrix

Ā =

(
2 −1
−1 1

)
. (2.44)

Something about sp(4) ≃ so(5)...

Exercises

2.31. Show that the Serre relations (ad ei)
1−Aijej = 0 are consistent given the relations [hi, ej ] = Aijej .

2.10. Cartan subalgebra and root system

We encode the structure of the algebra in the brackets between elements in the sl(2) subalgebras

corresponding to simple roots as

[hi, ej ] = Aijej , [hi, fj ] = −Aijfj , [ei, fj ] = δijhj . (2.45)

Here, i, j = 1, . . . , rank g. The matrix A is called the Cartan matrix.

The meaning of the Cartan matrix is to encode the eigenvalues of the Cartan generators. These

eigenvalues need to be consistent with some relations that make the algebra finite-dimensional.

Namely, consider starting from the generator ej and acting repeatedly with ei (i ̸= j) to obtain

generators (ad ei)
kej , k = 0, 1, . . .. The sequence has to stop at some point, and give a finite-

dimensional module of the sl(2) algebra spanned by {hi, ei, fi}, in which ej is the lowest weight

state. From what we have learned about sl(2) representations, this implies that all off-diagonal

entries in the Cartan matrix must be non-negative integers. It is then consistent with the relations

(2.45) to set

(ad ei)
1−Aijej = 0 . (2.46)

The corresponding identity for the lowering generators of course also holds, (ad fi)
1−Aijfj = 0.

The relations (2.46) are called Serre relations. Together with the defining relations (2.45), they

provide all information needed to fully define a semi-simple Lie algebra g.

In fact, the possible values of the off-diagonal entries in A are much more restricted than that.

We will soon relate the Cartan matrix and the Cartan–Killing metric, but first we need some

preparation.
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We have already defined the Cartan subalgebra h ⊂ g, and decomposed the Lie algebra g in sub-

spaces with different eigenvalues under the adjoint action of the elements in the Cartan subalgebra.

We thus have

g = h⊕
⊕
α ̸=0

gα . (2.47)

The vectors of eigenvalues are called roots. We can define the subspaces as

gα = {g ∈ g : [h, g] = ⟨h, α⟩g, ∀h ∈ h} . (2.48)

Here, ⟨·, ·⟩ is the natural product between an element in h and an element in the dual space h∗. If

this expression seems abstract, one can think of any basis {aµ} of h, so that h = hµaµ, and write

the eigenvalue equation for gα ∈ gα as [aµ, gα] = αµgα, i.e., [h, gα] = hµαµgα. We see that the

roots lie in h∗.

The restriction of the Cartan–Killing form to the Cartan subalgebra gives a metric on h, which

also means that it can be used to convert between h and h∗ (what a physicist may call raising

and lowering indices). The inverse of the Killing form is a natural metric on h∗. Let hα be the

element in h obtained by using the (inverse of) the Cartan–Killing metric to map a root α ∈ h∗

to h. From now on, we use the same notation (·, ·) for the scalar products on h and h∗, so that

(hα, hβ) = (α, β). (And occasionally for the Cartan–Killing metric itself, before it is restricted to

h.)

The set of roots αi such that ei ∈ gαi are called simple roots. Consider again the sl(2) subalgebra

spanned by {hi, ei, fi} for some simple root αi. Taking the scalar product of some element h with

[ei, fi] = hi, we get

(h, [ei, fi]) =

{
(h, hi)
([h, ei], fi) = ⟨h, αi⟩(ei, fi) = (h, hαi)(ei, fi)

(2.49)

where the invariance of the metric is used in the second line. This holds for any h ∈ h. Since the

metric is non-degenerate, it implies that

hi = (ei, fi)hαi . (2.50)

The invariance of the metric implies that (ei, fi) =
1
2 (hi, hi). (Namely, acting with ei on (hi, fi) = 0

gives 0 = −2(ei, fi)+(hi, hi). In each separate sl(2) subalgebra, the metric can be redefined by some

constant preserving this relation. But in g one may get different values for (hi, hi) for different i, as

in the example with sp(4).) Thus, hi =
1
2 (hi, hi)hαi . Squaring this relation gives (hi, hi) =

4
(αi,αi)

,

and thus

hi =
2

(αi, αi)
hαi . (2.51)
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Going back to the calculation of eq. (2.49), and inserting the Cartan generator corresponding to

another simple root for h, one gets

(hi, [ej , fj ]) =

{
(hi, hj) = ( 2

(αi,αi)
hαi ,

2
(αj ,αj)

hαj ) =
4(αi,αj)

(αi,αi)(αj ,αj)

([hi, ej ], fj) = Aij(ej , fj) = Aij
2

(αj ,αj)

(2.52)

We now have the important relation between the Cartan matrix and the scalar products of the

simple roots:

Aij =
2(αi, αj)

(αi, αi)
. (2.53)

The overall scaling of the roots is a matter of convention, but the relative lengths are important.

A standard convention is to set the length squared of the longest roots to 2. We have seen two

examples of rank 2.

In sl(3), the two simple roots (and also the third positive root) have the same length. In such cases,

eq. (2.53) simplifies to Aij = (αi, αj), and the Cartan matrix is the metric in the basis of simple

roots. With

A =

(
2 −1
−1 2

)
(2.54)

we see that both simple roots have length
√
2 and that the angle between them is 2π

3 .

In sp(4), we had

A =

(
2 −2
−1 2

)
. (2.55)

With the convention that the longest root has length
√
2, this gives

(α1, α1) = 1 , (α1, α2) = −1 ,

(α2, α1) = −1 , (α2, α2) = 2 ,
(2.56)

which gives the metric in the basis of the simple roots. The first root is short, and the angle between

the roots is 3π
4 .

We can now go back to the statement that the off-diagonal entries of the Cartan matrix must be

non-positive integers. In view of exercise 2.31, the generator ej is the lowest state in an sl(2)-module

corresponding to root i with dimension 1−Aij . We have

Aij =
2(αi, αj)

(αi, αi)
= 2

√
(αj , αj)

(αi, αi)
cos θij , (2.57)

where θij is the angle between the roots αi and αj . Therefore,

AijAji = 4 cos2 θij . (2.58)
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This number must be an integer, which only leaves the possibilities 0, 1, 2, 3 (the value 4 is excluded,

since it would correspond to a linear dependence among the simple roots). Assume that root i is

long, (αi, αi) = 2. The different values correspond to the angles and lengths of root j:

cos2 θij = 0 : θ = π
2 , (αj , αj) = undetermined , Aij = 0 , Aji = 0 ,

1
4 : 2π

3 , 2 , −1 , −1 ,

1
2 : 3π

4 , 1 , −1 , −2 ,

3
4 : 5π

6 , 2
3 , −1 , −3 ,

(2.59)

(The solutions with θ in the second quadrant are chosen, since otherwise eq. (2.57) would yield

positive Aij .) These are the only possible relations between lengths and angles between any two

simple roots in finite-dimensional semisimple Lie algebras. The corresponding rank 2 subalgebras

are sl(2) ⊕ sl(2), sl(3), sp(4) and G2, respectively. Their root spaces are depicted in the figures

below.
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It is convenient to introduce the coroot α∨ corresponding to the root α by

α∨ =
2

(α, α)
α . (2.60)

Then, hi = hα∨
i
, and Aij = (α∨

i , αj). The relation [hi, ej ] = Aijej can be written as [hα∨
i
, ej ] =

(α∨
i , αj)ej , and by linearity,

[hα∨ , gβ ] = (α∨, β)gβ , gβ ∈ gβ . (2.61)

2.11. Classification

We saw that there are four possible relations between two given simple roots in any finite-

dimensional semisimple Lie algebra. There is a convenient way of encoding the relations diagram-

matically, in a so called Dynkin diagram. Let the root αi have (length)
2 2. Then the list of possible

lengths of αj and angles between αi and αj are the ones listed above. Introduce a node for each

simple root, so that the number of nodes is rank g. Then draw −Aji lines between the nodes (i.e.,

0, 1, 2 or 3). To distinguish which of two so connected nodes represents the shorter root, an arrow

is drawn towards it. This leads to the possible “couplings” between any two nodes, corresponding

to the four cases:

There is some more work before one can determine all allowed Dynkin diagrams describing finite-

dimensional simple Lie algebras. The criterion is that a system of vectors, the simple roots, should

form a basis for rank g-dimensional Euclidean space. See for example exercise 2.46 for a configu-

ration (a closed loop) that is not allowed (in the sense that it needs to be embedded in a space

with non-positive definite metric, and leads to an infinite-dimensional Lie algebra). The final list,

including the classical matrix algebras in the A-, B-, C- and D-series, is given below. In addition

to the classical matrix algebras, there are a few exceptional algebras: G2, F4 and En, n = 6, 7, 8.

An ≃ sl(n+ 1)
Bn ≃ so(2n+ 1)
Cn ≃ sp(2n)
Dn ≃ so(2n)
E6, E7, E8

F4

G2
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(Figure courtesy of Wikimedia Commons.)

2.12. Weights and representations

A finite-dimensional representation of g must have some highest weight state |λ⟩. We label it by

its eigenvalues under (the representation matrices of) elements in the Cartan subalgebra:

hi|λ⟩ = hα∨
i
|λ⟩ = (α∨

i , λ)|λ⟩ . (2.62)

In order for the representation to be finite-dimensional, there must exist some smallest non-negative

integers pi, i = 1, . . . , rank g, such that fpi+1
i |λ⟩ = 0. This is completely analogous to the discussion

for sl(2) representations. It leads in the same way to pi = (α∨
i , λ).

Thus, a highest weight λ is a linear combination with non-negative integer coefficients of the

fundamental weights Λi,

λ =

rank g∑
i=1

piΛi , (2.63)

such that (α∨
i ,Λj) = δij . Such a weight λ is called a dominant integral weight, and {pi} are called

the Dynkin labels of the representation. The Dynkin labels must be positive, since otherwise the

corresponding sl(2) representations would not be finite-dimensional, following from the analysis in

Section 2.7. The fundamental weights form a basis for the weight lattice, which is the dual lattice

to the coroot lattice. Given a lattice L the dual lattice L∗ is defined as consisting of all vectors

whose scalar product with all elements in L are integer. Note that the root lattice is a sublattice

of the weight lattice.

If g has a representation R with highest weight λ, there is also a dual, or conjugate, representation

R̄ with lowest weight −λ, where the representation module of R̄ is the dual space to the module of

R. This may or may not be the same representation as R. Representations with R̄ = R are called

self-conjugate. Examples of self-conjugate representations are the adjoint for any semi-simple Lie

algebra (thanks to the existence of the Killing metric) and the vector representation of SO(n)

and its tensor products (thanks to the existence of a metric). Examples of conjugate pairs of
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representations which are not self-conjugate are the fundamental n-dimensional representations of

sl(n) and its dual, which in tensor notations are represented with superscripts and subscripts.

The weight lattices of sp(4) is depicted in the figure below, with the root lattice superimposed.

The fundamental weights are indicated by red lines. The sl(3) weight lattice coincides with the G2

root lattice. The G2 weight lattice coincides with the root lattice.

Note that in the sp(4) weight lattice, there is a weight which is half the long root, but not one

which is half the short root. A good exercise is to examine how this happens due to the definition

of the weight lattice as the dual to the coroot lattice.

In our normalisation, the root lattice of sl(2) consists of the numbers
√
2Z and the weight lattice

of the numbers 1√
2
Z. Consider the SU(2) group element eiπh. It has eigenvalue 1 on states whose

weights are roots, and −1 on the weights between the roots. This is the previously mentioned

element in the center of SU(2), generating the group Z2. Dividing it out means that one loses the

representations labelled by weights between the roots. It is striking that even if the Lie algebra

itself does not know about the global structure of the group, its representations seem to do. One

may classify the representations in conjugacy classes, labelled by L/R = Z2, where R is the root

lattice and L the weight lattice. (In physics, we would talk about odd or even spin, bosons and

fermions.)

For any semi-simple Lie algebra, the weight lattice L is an abelian group under addition of vectors,

and the root lattice R is a subgroup, which is automatically a normal subgroup, since addition is

commutative. Therefore L/R is a discrete abelian group, whose elements correspond to conjugacy

classes of representations. Since eigenvalues (weights) add under the tensor product of represen-

tations, the conjugacy classes of representations respect the group product in L/R under tensor

product.

Exercises

2.32. Show that the root lattice is a sublattice of the weight lattice.
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2.33. Show that the weight lattice of G2 coincides with the root lattice.

2.34. Identify the fundamental weights for sl(3).

2.35. Construct the two 3-dimensional sl(3)-modules by starting from the highest weights with Dynkin

labels (10) and (01) and acting with lowering operators. (Hint: new null states will be encountered

in the construction, e.g. f22 f1|Λ1⟩.) If we denote a representation by the Dynkin labels of its

highest weight, we can write 3 = (10), 3 = (01). Determine, by some method, the tensor products

(10) ⊗ (10) and (10) ⊗ (01) as direct sums of irreducible representations. Illustrate with sums of

weights in a picture.

2.36. Which is the highest weight in the adjoint representation of sl(3)?

2.37. How many conjugacy classes of representations are there for SU(3)? Make a conjecture for the

center of SU(3), and try to verify it. What is the center of SU(n)?

2.38. Construct the 4- and 5- dimensional modules of sp(4) as highest weight modules.

2.39. Which is the highest weight in the adjoint representation of sp(4)?

2.40. How many conjugacy classes of representations are there for Spin(5)?

2.41. A construction of the 14-dimensional Lie algebra G2. Inspecting the root space of G2, one finds

that all roots of G2 are weights of sl(3), and that it consists of the weights for the adjoint (the

roots) of sl(3) together with the weight for the two 3-dimensional representations, which we can

call 3 and 3̄. There should be a formulation of G2 with manifest sl(3) and generators Jm
n, Km

and Lm. Construct the brackets by making some Ansatz and checking the Jacobi identities. (Hint:

Only some of the Jacobi identities are “non-trivial”, in the sense that they do not follow from the

sl(3) covariance.)

2.42. The Weyl group of a semi-simple Lie algebra is the discrete group generated by reflections in

hyperplanes orthogonal to the simple roots. It is a symmetry of the root system. Reflection in the

hyperplane orthogonal to αi maps a vector β to wi(β) = β − 2(β,αi)
(αi,αi)

αi. Describe the Weyl groups

of sl(2) and sl(3) (number of elements, multiplication table).

2.43. Describe the Weyl groups of sp(4) and G2.

2.44. Find a set of simple roots for so(2n). Show that the Dynkin diagram has the form above.

2.45. Show that the real Lie algebra so(4) of rotations in 4 euclidean dimensions is so(4) ≃ su(2)⊕su(2).

2.46. Consider a Lie algebra of rank 3, defined by a triangular Dynkin diagram, so that each node is

connected with the other two with single lines. Show that such root vectors can not form a basis

of 3-dimensional Euclidean space. (The algebra still exists, but it is not finite-dimensional, but a

so called affine Kac–Moody algebra.)

2.13. (Real forms)

The split real form. The compact real form. su(n) as the compact real form of sl(n,C). ...
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2.14. Tensor products of representations and tensor formalism

In Section 1.2, the general framework for tensors was outlined, and the important issue was to

keep manifest covariance with respect to the general linear group (or algebra) associated with the

freedom of choice of basis for any vector space. Now, suppose that we want a tensor formalism

based on another Lie algebra. Each of the classical matrix algebras is defined in terms of a “fun-

damental” representation, that of the matrices themselves, where the module is a “vector” that

the matrices act on. The Lie algebras in question are subalgebras of gl(dimV ), where V is this

fundamental module. All rules from Section 1.2 still apply. The only difference is the introduction

of some invariant tensors, which can then be used, following the same rules. These invariant tensors

are the following: For so(n), there is an invariant metric ηmn, For sp(2n), there is an invariant an-

tisymmetric tensor ϵmn. For sl(n), and for its subalgebra so(n), there is an antisymmetric n-index

tensor ϵm1...mn (and with lower indices). For so(n) the tensorial framework can be extended to

include spinors by the introduction of γ-matrices.

Examples: symmetric and antisymmetric tensor product of fundamentals in sl, so and sp. Un-

der sl(n), the tensor product of a fundamental representation with itself simply splits into the

direct sum of the symmetric and the antisymmetric part (and the same statement for the anti-

fundamental). In tensor language, this is written tmn = t(mn) + t[mn]. Under so(n), the metric can

be used to contract the indices, and the symmetric part of the tensor product consists of the direct

sum of a singlet and a traceless symmetric tensor, tmn = 1
ngmng

pqtpq+(t(mn)− 1
ngmng

pqtpq)+t[mn].

Under sp(2n), it is instead the symmetric part of the tensor product that is irreducible, while the

antisymmetric one splits into a singlet and an ϵ-traceless antisymmetric representation.

(Also the exceptional Lie algebras can be given a tensorial framework by the introduction of

certain invariant tensors. G2 has a “fundamental” 7-dimensional representation, and an invariant

completely antisymmetric tensor σijk. If we consider e.g. the antisymmetric tensor product of two

7-dimensional modules, it follows that it will consist of the 14-dimensional adjoint module and a

7-dimensional one.)

2.15. (The Weyl group)

3. Space-time symmetries—The Lorentz, Poincaré and conformal al-
gebras
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3.1. The Lorentz algebra

The Lorentz group in d dimensions is SO(1, d−1), with Lie algebra so(1, d−1). It preserves a metric

with signature (1, d− 1), which can e.g. be taken to be v2 = ηmnv
mvn with η = diag(−1, 1, . . . 1).

If δJv = Jv one has the condition 0 = δ(vtηv) = vt(ηJ+J tη)v, and thus that ηJ is antisymmetric.

One is most often interested not in the full group SO(1, d− 1) but in the subgroup SO+(1, d− 1)

of orthocronous Lorentz transformations preserving the time direction, equivalently mapping the

forward light-cone to itself.

3.2. The Poincaré algebra

The Poincaré group/algebra also contains translations in Minkowski space-time. Call the generators

Pm. Translations on flat space commute among themselves, and behave as vectors with respect to

the Lorentz transformations.

The commutators between generators of the Poincaré algebra are (in a suitable normalisation)1

[Jmn, Jpq] = 2η[p[nJm]q] ,

[Jmn, Pp] = ηp[nPm] ,

[Pm, Pn] = 0 .

(3.1)

The Poincaré algebra is not semi-simple, since the translations form an abelian ideal. The structure

is an example of a semi-direct product. The general structure of a semidirect product is g⋉R where

R is a g-module, with the bracket

|Tα, Tβ ] = fαβ
γTγ ,

[Tα, vi] = ϱ(Tα)i
jvj ,

[vi, vj ] = 0 ,

(3.2)

where v ∈ R and ϱ are representation matrices.

The Poincaré algebra is so(1, d− 1)⋉ Rd. It consists of all coordinate transformations preserving

the Minkowski metric. Given a manifold equipped with a metric, one can always ask the question if

there are coordinate transformations that do not change the metric. Such transformations are called

isometries. Flat Euclidean space and Minkowski d-dimensional spaces are examples of maximally

symmetric spaces, for which the number of isometries takes the maximal value 1
2d(d+1), but they

are not unique in this sense.

1The antisymmetrisations in the first of these equations is to be read as antisymmetrisations in the pairs [nm] and

[pq], i.e., “[p[nm]q] = 1
4
(pnmq − pmnq − qnmp + qmnp)”. A stricter notation uses vertical bars to “pause” and

“resume” antisymmetrisation when needed, and one then writes “[p|[nm]|q]”.
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3.3. The d = 4 Lorentz algebra

d = 4 is in some aspects the trickiest of dimensions. This has to do with the fact that, as a complex

Lie algebra, so(4) ≃ su(2) ⊕ su(2), but in Minkowski signature one has the Lie algebra so(1, 3),

which is simple as a real Lie algebra (i.e., it is not the sum of real forms of su(2)). For other

signatures, the factorisation persists: so(4) ≃ su(2)⊕ su(2) and so(2, 2) ≃ so(1, 2)⊕ so(1, 2).

A very useful way of presenting the 4-dimensional Lorentz algebra is to observe that it in fact is

sl(2,C), seen as a real Lie algebra. Note that the number of complex parameters in sl(2,C) is 3,

which gives 6 real parameters, the same as in so(1, 3). We will now demonstrate that the algebras

are the same. Let the generators be {Tmn}, m = 0, . . . , 3. The algebra takes the form

[Tmn, Tpq] = 2η[p[nTm]q] . (3.3)

Split the 4-dimensional vector index as m = (µ, 3), and let jµ = 1
2ϵµ

νλTνλ, kµ = Tµ3. A short

calculation then leads to
[jµ, jν ] = −1

2ϵµν
λjλ ,

[jµ, kν ] = −1
2ϵµν

λkλ ,

[kµ, kν ] =
1
2ϵµν

λjλ

(3.4)

(the first two brackets state that the j’s generate sl(2,R) ≃ so(1, 2) and that the k’s transform in

the 3-dimensional (adjoint) module). If we now form the complex generators Jµ = jµ + ikµ, they

satisfy

[Jµ, Jν ] = −ϵµνλJλ , (3.5)

which is the algebra sl(2,C).

(In the calculation above, one uses the 3-dimensional ϵ tensor, defined to be completely antisym-

metric with ϵ012 = 1. Note that this leads e.g. to ϵ0
12 = −1 and ϵµ1µ2µ3ϵ

ν1ν2ν3 = −6δν1ν2ν3
µ1µ2µ3

etc.)

The language of SL(2,C) is useful, especially for dealing with spinors in d = 4. Note that it follows

directly that so(1, 3) has a 2-dimensional complex representation, which turns out to be a spinor

representation. More about this in Section 7.4.

3.4. The conformal algebra

Sometimes, field theories turn out to have a (space-time) symmetry which contains the Poincaré

group but is larger. This typically happens when one encounters some kind of scale invariance, as

we will see for d = 4 gauge theory.

Instead of asking which transformations leave the Minkowski metric invariant, we can ask for

those that change it up to a scaling. Such a transformation is called a conformal transformation.

So, we are looking for changes of coordinates δξx
m = ξm(x) which lead to δξ(ηmndx

mdxn) =

2φ(x)ηmndx
mdxn. Using δξ(dx

m) = dξm = ∂nξ
mdxn, we get the condition ∂(mξn) = φ(x)ηmn.
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The transformations by the generators of the Poincaré algebra are still of course solutions (with

φ = 0), but there is more.

One solution is given by ξm(x) = φxm, leading to φ(x) = φ (constant). This is called a dilatation,

or a scaling. Another set of solutions is parametrised by a vector, as ξm(x) = (v · x)xm − 1
2x

2vm.

Then δξ(dx
m) = (v ·dx)xm+(v ·x)dxm−(x ·dx)vm, and δ(dx ·dx) = (v ·dx)(x ·dx)+(v ·x)(dx ·dx)−

(x ·dx)(v ·dx) = (v ·x)(dx ·dx). Such a transformation is called a special conformal transformation.

In d ≥ 3 there are no further conformal transformations.

So, in addition to the rotations and translations, we have dilatations and special conformal trans-

formations. Call the corresponding generators ∆ and Km. It is straightforward to check that

[Km,Kn] = 0. Let us do one commutator in the conformal algebra, namely [Pm,Kn]. Translations

and special conformal transformations with parameters am and vm, respectively, are given by

δax
m = am ,

δvx
m = (v · x)xm − 1

2x
2vm .

(3.6)

Thus, δv(δax
m) = 0 and

δa(δvx
m) = (v · a)xm + (v · x)am − (a · x)vm = (a · v)xm + (amvn − vman)x

n . (3.7)

This is recognised as a dilatation (the first term) and a Lorentz transformation (the second term).

The conformal algebra is so(2, d), with the generators Jmn, Pm, Km, ∆. They can be arranged in

a (d+ 2)× (d+ 2) antisymmetric matrix as

MMN =

 0 ∆ Pn

−∆ 0 Kn

−Pm −Km Jmn

 . (3.8)

The invariant matrix is

HMN =

 0 1 0
1 0 0
0 0 ηmn

 , (3.9)

with signature (2, d), which gives

MM
N =MMPH

PN =

 ∆ 0 Pn

0 −∆ Kn

−Km −Pm Jm
n

 . (3.10)

(In d = 2 Minkowski space, the conformal algebra contains so(2, 2) ≃ sl(2,R)⊕ sl(2,R), but turns
out to be infinite-dimensional.)
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3.5. The Galilei algebra

...

4. Space-time symmetries and transformations of fields

Physical fields depend on the space-time coordinates. In addition they can come in some module of

e.g. the Lorentz group, such as vector, spinor etc. In the present Section, we consider symmetries

that are defined as transformations of the coordinates. There are then two sources of how fields

transform. One is the change of the coordinates which are the argument of the field, the other is

the the effect on the module. We will now make this precise, for future use.

4.1. The Lie derivative

Let us begin with a scalar field ϕ. Consider a coordinate transformation of any kind, xm 7→ x′m(x).

The condition that ϕ is a scalar amounts to ϕ 7→ ϕ′, where

ϕ′(x′) = ϕ(x) . (4.1)

For an infinitesimal transformation x′m = xm − ξm(x), one has ϕ′(x′) = ϕ′(x) − ξm∂mϕ, and the

infinitesimal version of the transformation is

δξϕ(x) = ξm∂mϕ . (4.2)

How does a vector field V m(x) transform? In addition to the dependence on the space-time point,

it carries a vector index, which will be “rotated” by a change of basis. The vector index behaves

as the index on dxm: dx′m = ∂x′m

∂xn dx
n. The transformation is

V ′m(x′) = (M−1)n
mV n(x) , (4.3)

where (M−1)n
m = ∂x′m

∂xn . The infinitesimal version is

δξV
m = ξn∂nV

m − ∂nξ
mV n ≡ LξV

m . (4.4)

This is called the Lie derivative.
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Note that Mm
n is a GL(d) group element, and that the corresponding gl(d) element for an in-

finitesimal transformation is ∂mξ
n. The transformation of any tensor follows. It reads

T ′m1...mp
n1...nq

(x′) = (M−1)r1
m1 . . . (M−1)rp

mpMn1

s1 . . .Mnq

sqT r1...rp
s1...sq (x) . (4.5)

The product of M ’s and M−1’s is simply the representation matrix for the group element acting

in the tensor product representation. The corresponding holds for the infinitesimal transformation,

which for a field in any gl(d) module reads

δξT = LξT = (ξ · ∂)T + ϱ(∂·ξ
·)T . (4.6)

(This is very compact notation. It should be “expanded”, so that one convinces oneself how it

works, see exercise 4.10).

Consider the commutator of two Lie derivatives. When acting on a scalar, only the first term in

eq. (4.6) contributes, and we will have

[Lξ, Lη]ϕ = [ξm∂m, η
n∂n]ϕ = L[ξ,η]ϕ , (4.7)

where

[ξ, η]m = ξn∂nη
m − ηn∂nξ

m = (Lξη)
m = −(Lηξ)

m . (4.8)

This is simply the commutator between the vector fields ξ = ξm∂m and η = ηm∂m. We can verify

that the same commutator is obtained when acting on an arbitrary tensor:

Not surprisingly, general coordinate transformations form a Lie algebra, which is infinite-dimensional.

The transformations derived here hold for general coordinate transformations. We are often inter-

ested in the transformations of field under a small subgroup containing global symmetries, such as

Poincaré transformations.

4.2. Discrete space-time symmetries: Parity and time reversal

Exercises

4.1. Exponentiate the infinitesimal Lorentz boosts of the Lie algebra so(1, d−1) and derive the standard

finite Lorentz boosts (SO(1, d− 1) group elements) on the form “x′ = γ(v)(x− vt)” etc.

4.2. Show that the algebra of rotations in 4-dimensional Euclidean space is su(2)⊕ su(2).
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4.3. Show that the full Lorentz group contains two disjoint components consisting of the transforma-

tion preserving time direction and those reversing it, and that the orthocronous subgroup is the

component connected to the identity.

4.4. Show that Poincaré transformations generate the most general transformations preserving the

metric on Minkowski space, i.e., that it is the algebra of isometries of Minkowski space.

4.5. Count the isometries of a sphere Sn. Is it a maximally symmetric space?

4.6. Show that there are no more conformal transformations than the ones given above for d ≥ 3.

4.7. Check that two special conformal transformations commute.

4.8. Consider the d-dimensional surface ηMNx
MxN = −R2 embedded in flat space with metric η =

diag(−1,−1, 1, . . . , 1). What is the signature of the metric on the surface? Show that the isometry

algebra is so(2, d− 1). (Such a maximally symmetric space is called anti-de Sitter space.)

4.9. Calculate the commutator between two Lie derivatives Lξ and Lη, i.e., between two coordinate

transformations.

4.10. Derive the infinitesimal form of the transformation (4.5), and verify that it produces eq. (4.6).

4.11. In 2-dimensional Minkowski space, let u = 1√
2
(x0 + x1), v = 1√

2
(x0 − x1). What is the metric in

this coordinate system? Show that any transformation to new coordinates u′ = f(u), v′ = g(v) is

a conformal transformation.

4.12. A non-linear realisation. Consider the quotient space SL(2,R)/U(1), defined as equivalence classes

of elements in SL(2,R) modulo the right action of a U(1). Two elements g and g′ in SL(2,R)
(2× 2 real matrices with unit determinant) are considered equivalent if they are related by a U(1)

transformation as g′ = gh, where

h = eθj , j =

(
0 −1
1 0

)
.

Show that all elements in SL(2,R) are in the same equivalence class as an element of the form

g =
1
√
y

(
y x
0 1

)
.

Use this parametrisation to derive the transformation of the complex number z = x+ iy for such

a representative of the equivalence class under the left action g 7→Mg with

M =

(
a b
c d

)
∈ SL(2,R) , ad− bc = 1 .
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Show that the metric

ds2 =
dzdz̄

(Im z)2

is invariant under SL(2,R). (This is the so called Poincaré upper half plane, describing a 2-

dimensional hyperbolic space with constant curvature.) Discuss what the SL(2,R) isometry means.

Is this a maximally symmetric space?

4.3. Differential forms, wedge product, dualisation, integration

Coordinates xm. x′m = x′m(x).

dx′m = dxn
∂x′m

∂xn
= dxn(M−1)n

m ,

∂′m =
∂xn

∂x′m
∂n =Mm

n∂n .

(4.9)

M is an element in GL(d). Scalar (0-form): ω′(x′) = ω(x). 1-form: ω = dsmωm, dx′mω′
m(x′) =

dxmωm(x), which gives ω′
m(x′) =Mm

nωn(x). p-form: ω = 1
p!dx

m1 ∧ dxm2 ∧ . . . ∧ dxmpωm1m2...mp .

ω′
m1...mp

(x′) = Mm1
n1 . . .Mmp

npωn1...np(x). Forms are (locally) elements in completely antisym-

metric modules of GL(d).

d = dxm∂m, “dω = d ∧ ω”. d2 = 0.

(dω)m1...mp+1 = (p+ 1)∂[m1
ωm2...mp+1] . (4.10)

Transformation:

(dω)′m1...mp+1
(x′) = (p+ 1)M[m1

n1∂|n1|(Mm2

n2 . . .Mmp+1]
np+1ωn2...np+1(x))

= (p+ 1)M[m1

n1 . . .Mmp+1]
np+1∂n1ωn2...np+1(x)

+ p(p+ 1)M[m1

n1∂|n1|Mm2

n2 . . .Mmp+1]
np+1ωn2...np+1

(x)

(4.11)

The second term vanishes thanks to antisymmetrisation, since

M[m1

n1∂|n1|Mm2]
n2 =

∂xn1

∂x′[m1

∂

∂x|n1|
∂xn2

∂x′m2]
=

∂2xn2

∂x′[m1∂x′m2]
= 0 . (4.12)

Therefore, the exterior derivative of a p-form is (meaning, transforms as) a (p+ 1)-form.

A form ω such that dω = 0 is called closed. A form ω = dα is called exact.
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Wedge product: α ∧ β gives

(α ∧ β)m1...mp+q =
(p+ q)!

p!q!
α[m1...mp

βmp+1...mp+q ] . (4.13)

Dualisation: GL(d) is “broken” to SO(d) (or, some real form of SO(d)) by the introduction of a

metric gmn. Then, a p-form ω can be converted into a (d− p)-form ⋆ω:

⋆ωm1...md−p
=

1

p!
√
|g|
gm1n1 . . . gmd−pnd−p

ϵn1...ndωnd−p+1...nd
. (4.14)

Integration: A d-form is unique, up to multiplication by a scalar.

Ω =
1

d!
dxm1 ∧ . . . ∧ dxmdΩm1...md

= dx1 ∧ . . . ∧ dxdΩ1...d .
(4.15)

∫
M

Ω =

∫
M

dx1 . . . dxdΩ1...d =

∫
M

ddx
√

|g| ⋆ Ω . (4.16)

The integral of an exact form vanishes over a manifold without boundary:
∫

M dω = 0 if ∂M = 0.

If M has a boundary ∂M , then ∫
M

dω =

∫
∂M

ω . (4.17)

A 2-form Maxwell field strength F is defined from the connection 1-form A by F = dA. The gauge

symmetry is δΛA = dΛ, which implies δΛF = 0. The Bianchi identity dF = 0 is automatically

satisfied. The rest of Maxwell’s equations read d⋆F = j, where j: dj = 0 is a (d− 1)-form.

Exercises

4.13. Interpret Gauss’ law in terms of eq. (4.17).

4.14. In which dimensions can a form be both real and self-dual (⋆ω = ±ω) in Minkowski signature? In

Euclidean signature? What does this have to do with exercise 4.2?

4.15. Define the contraction of a p-form Ω with a vector, resulting in a (p− 1)-form, as ıvΩm1...mp−1 =

vmΩmm1...mp−1 . Let ω be a 1-form. Show that (ıvω ∧+ω ∧ ıv)Ω = (ıvω)Ω = (vmωm)Ω.
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5. The action principle for classical fields

5.1. The action principle

In mechanics, the action principle is a convenient way to encode the dynamics as an optimisation

problem: Solutions to the equations of motion correspond precisely to stationary points of an action

functional. The corresponding holds for field theory. In addition, it provides a natural basis for

quantum field theory.

Recall the equations of motion for a particle in Newtonian dynamics, in any dimension, with a

conservative force. One forms the Lagrangian L = T − V , where T is kinetic energy and V is

potential energy.

L = 1
2mẋ

2 − V (x) . (5.1)

The action S is formally the integral of L over time,

S =

∫
dt(T − V ) =

∫
dt

(
1
2mẋ

2 − V (x)
)
. (5.2)

The action is a functional, i.e., a function from a function space to the real numbers. Finding a

stationary point of S means that a small change x(t) 7→ x(t) + δx(t) leaves the S unchanged to

linear order in δx. In the Newtonian particle example,

δS =

∫
dt (mδẋ · ẋ− δx · ∇V ) . (5.3)

Partial integration gives (we are intentionally sloppy about boundary terms)

δS = −
∫
dt δx · (mẍ+∇V ) =

∫
dt δx(t) · δS

δx(t)
. (5.4)

δS
δx(t) is the functional derivative of S with respect to x(t). The equations of motion are obtained

as δS
δx(t) = 0, just as the stationary points of a function f(y) are the solutions to df

dy = 0.

Particle mechanics can be thought of as a 1-dimensional field theory. We want to extend the

principle to fields, for example scalar fields, spinor fields and gauge fields. The guiding principle is

that the action should be invariant under any symmetry at hand. For field theories on Minkowski

space, this means Poincaré symmetry, and possibly other “internal” symmetries, such as the gauge

symmetry of Yang–Mills theory. We would also like the action to be “local”, i.e., possible to express

as the integral over space-time of a Lagrangian density, in order to avoid non-local interactions.

We would normally like the field equations (equations of motion) to contain two derivatives for

bosonic fields and one for fermionic fields. Consider a collection of fields {ΦI}, where I is some

index. The action should be some functional of ΦI(x). It will contain derivatives ∂mΦ, but there
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should be no explicit dependence on ∂m∂nΦ (this is no absolute rule, but we have no reason to be

more general).

S =

∫
dtL =

∫
ddxL (Φ(x), ∂Φ(x)) . (5.5)

The field equations become

0 = − δS

δΦI(x)
= ∂m

∂L

∂mΦI
− ∂L

∂ΦI
. (5.6)

5.2. Integration and invariance

Let us investigate how we can conclude that the action is invariant. The first issue is integration.

It should be independent of how we choose to parametrise the space-time, i.e., invariant under

general coordinate transformations (also if we are working on flat Minkowski space).

The integration
∫
ddx is not invariant under general coordinate transformations. When xm 7→

x′m(x), it picks up a Jacobian of the change of coordinates:

∫
ddx′ =

∫
ddx

∣∣∣∣∂x′∂x

∣∣∣∣ = ∫
ddx|M |−1 , (5.7)

where |·| denotes the determinant. Therefore, the transformation of the integrand must compensate

for this scaling. It is not a scalar, but a scalar density. The Lagrangian density L must transform

as

L ′(x′) = |M |L (x) .

Normally, we have a metric gmn at hand. Its determinant transforms as |g′(x′)| = |M |2|g(x)|, so√
|g| has the desired property. (Here, we let |g| = | det g| to avoid a minus sign under the square

root.)

Invariance under coordinate transformations (reparametrisations) is thus ensured by letting L =√
|g|L̄ , where L̄ is a scalar, and

S =

∫
ddx

√
|g|L̄ . (5.8)

If we now specialise to Minkowski space, and use coordinates where det η = −1, the explicit square

root in the integration measure disappears. If one wants to use coordinates where the metric takes

another form (such as e.g. spherical coordinates for the spatial directions), it needs to be reinserted.

In Minkowski space, we will have

S =

∫
ddxL , (5.9)

where L is a Lorentz scalar.
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5.3. Hamiltonian formalism

In any relativistic field theory, the Lagrangian density L is a Lorentz scalar. One advantage of

the formalism is that it manifests the symmetries. If we go to a Hamiltonian framework, a choice

of time coordinate must be made, and Lorentz symmetry is not manifest. The derivation of the

Hamiltonian formalism below is formally identical to the one in mechanics.

Define the momentum conjugate to a field ΦI as

ΠI(x) =
∂L

∂Φ̇I
. (5.10)

This is completely analogous to the definition of (generalised) momentum in mechanics. The field

equations can then be written

0 = Π̇I + ∂i
∂L

∂iΦI
− ∂L

∂ΦI
= Π̇I −

δL

δΦI
, (5.11)

where i = 1, . . . , d− 1 is a spatial vector index. Define the Hamiltonian as

H =

∫
dd−1xH =

∫
dd−1x

(
Φ̇IΠI − L

)
. (5.12)

Eq. (5.12) is called a Legendre transformation. Its form implies that it is natural to see the Hamil-

tonian density as a function of Φ (and ∂iΦ, but not Φ̇) and Π. Namely, consider a variation dΦ

and the ensuing variation in the momentum. Then

dH =

∫
dd−1x

(
dΦ̇IΠI + Φ̇IdΠI −

δL

δΦ̇I
dΦ̇I − δL

δΦI
dΦI

)
=

∫
dd−1x

(
Φ̇IdΠI −

δL

δΦI
dΦI

)
.

(5.13)

This implies that
δH

δΦI
= − δL

δΦI

δH

δΠI
= Φ̇I .

(5.14)

Using the field equations (5.11) in the first of these equations, we have Hamilton’s equations

δH

δΦI
= −Π̇I

δH

δΠI
= Φ̇I .

(5.15)
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The field equations, containing terms which are second order in time derivatives, are replaced by

twice as many first order equations.

Poisson bracket:

{ΦI(x),ΠJ(y)} = δIJδ
d−1(x− y) , (5.16)

and, more generally, for any functions F and G of the phase space variables,

{F,G} =

∫
dd−1x

(
δF

δΦI(x)

δG

δΠI(x)
− δF

δΠI(x)

δG

δΦI(x)

)
. (5.17)

Then, Hamilton’s equation can be written as special cases of

Ḟ = {F,H} (5.18)

for any function F on phase space. If F in addition has some explicit time dependence, we have

Ḟ =
∂F

∂t
+ {F,H} (5.19)

The Hamiltonian is the generator of time translations. Any conserved quantity must have vanishing

Poisson bracket with H.

Exercises

5.1. Perform a coordinate transformation from orthonormal to spherical coordinates on flat R3. Derive

the metric and integration measure in spherical coordinates.

6. Scalar fields

We are looking for some “natural” dynamics for scalar fields. The equations of motion are likely

to be at most second order in time derivatives, which in the light of Lorentz invariance should

apply to all derivatives. There is one Lorentz scalar combination of the derivatives, namely the

d’Alembertian

□ = ∂m∂m = −(∂0)
2 + ∂i∂i . (6.1)

A simple equation for a scalar field ϕ(x) is

□ϕ = 0 . (6.2)
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This is the wave equation. It has solutions which are waves propagating with speed 1 (the speed

of light), which is readily seen in the Fourier transformed picture. Define

ϕ(x) =
1

(2π)d/2

∫
ddk eikmxm

ϕ̃(k) . (6.3)

Then the wave equation translates to k2ϕ̃(k) = 0, so ϕ̃ has support only on the light cone k2 = 0.

The d-dimensional wave vector km consists of k0 = ω and ki = 2π
λ ni, where ω is the angular

frequency of the wave, λ the wave length and n⃗ a unit vector in the direction of propagation. This

leads to the relativistic dispersion relation ω2+ k⃗2 = 0, ω = (±)|⃗k|. If we would pass to a quantum

theory, ω is energy and k⃗ momentum, km becomes d-dimensional momentum, and the dispersion

relation becomes the condition p2 = 0 which applies to massless particles.

How is this generalised to propagation inside the light cone, to wave vectors km with k2 < 0?

If we introduce a real dimensionful parameter m with dimension (length)−1, we can write the

Klein–Gordon equation

(□−m2)ϕ = 0 . (6.4)

In classical field theory, m defines a length scale In terms of the Fourier-transformed field the

equation becomes (k2 +m2)ϕ̃(k) = 0, so ϕ̃ has support on the hyperboloid k2 = −m2. The wave

vector now lies inside the light cone, and the dispersion relation is ω = (±)
√
k⃗2 +m2. In quantum

theory this translates to p2 = −m2, which applies to relativistic particles with mass m.

An action, which upon variation leads to the Klein–Gordon equation (for a real scalar ϕ), is

S = − 1
2

∫
ddx

(
ηmn∂mϕ∂nϕ+m2ϕ2

)
. (6.5)

The overall factor in the action is of course not determined from the field equations. The choice

made here corresponds to “canonical normalisation”, which means that the time derivative enters

in the Lagrangian density as 1
2 ϕ̇

2. The sign corresponds to positive kinetic energy.

Defining the conjugate momentum π = ∂L
∂ϕ̇

= ϕ̇, and H =
∫
dd−1x ϕ̇π − L, the Hamiltonian

becomes

H = 1
2

∫
dd−1x

(
π2 + (∇ϕ)2 +m2ϕ2

)
. (6.6)

The Hamiltonian is positive definite, which is yet another argument for the choice of sign for the

mass term in the Klein–Gordon equation. The other sign would correspond to a quadratic potential

which has a maximum instead of a minimum. At the same time it would lead to “tachyonic”

propagation, which violates causality. Propagation with speed above the speed of light signals

instability.

Notice how the sign in “L = T − V ” goes hand in hand with the sign in the Minkowski metric.
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The action (6.5) contains the Minkowski metric explicitly. It has global Poincaré symmetry; the

coordinate transformations preserving the Minkowski metric. Accordingly, the Klein–Gordon equa-

tion (6.4) does not behave as a scalar under general coordinate transformations, only under the

Poincaré subgroup. What if we want to use other coordinates, say spherical coordinates for spa-

tial directions, to describe a physical situation? Or if we want to describe the dynamics of scalar

fields on some other space-time than (flat) Minkowski space? Then we do not have access to the

Minkowski metric, but need a metric gmn which transforms as a tensor under general coordinate

transformations. An invariant action is

S = −1
2

∫
ddx

√
|g|

(
gmn∂mϕ∂nϕ+m2ϕ2

)
, (6.7)

where gmn are the components of the inverse metric. The field equation arising on variation from

this action is
1√
|g|
∂m

(√
|g|gmn∂nϕ

)
−m2ϕ = 0 . (6.8)

The first term is the proper definition of the d’Alembertian □ in any coordinate system. It is

probably not obvious that this term behaves as a scalar, but this should be the case since it has

been derived from an invariant action (see exercise 6.1).

Exercises

6.1. Show that the divergence of a vector, defined as 1√
|g|
∂m(

√
|g|Am), is a scalar.

6.2. In spherical coordinates on R3, derive the Laplacian.

6.3. In d = 4, determine how the static, spherically symmetric solution to the Klein–Gordon equation,

corresponding to a point source at the origin, is affected by m ̸= 0.

7. Spinors

7.1. Spinors in d = 3

Recall the Pauli matrices,

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (7.1)
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They provide a basis for the Hermitean (2 × 2)-matrices, and (multiplied by i) generate su(2) ≃
so(3,R). Their existence shows that so(3,R) has a 2-dimensional (complex) representation, the

spinor representation. It is straightforward to verify that

σiσj = δijI + iϵijkσk . (7.2)

The second term is antisymmetric [ij], so we have

σiσj + σjσi = 2δijI . (7.3)

This equation, rather than eq. (7.2) is the one we will generalise to arbitrary dimension. Note that

eq. (7.2) is very specific to 3 dimensions, since it uses εijk, while eq. (7.3) can be written in any

dimension, i.e., for any Lie algebra so(d), as will be demonstrated in Section 7.3.

The Pauli σ-matrices provide a special case, for so(3,R), of γ-matrices, which fulfil

γmγn + γnγm = 2ηmnI , (7.4)

Where η is the metric left invariant by some orthogonal algebra so(p, q).

Another, also 3-dimensional, example is provided by so(1, 2) ≃ sl(2,R). Take the basis for the

traceless matrices

(γ0)α
β =

(
0 −1
1 0

)
, (γ1)α

β =

(
0 −1
−1 0

)
, (γ2)α

β =

(
1 0
0 −1

)
. (7.5)

The second index can be lowered with ϵ to get a basis for the symmetric matrices,

(γ0ϵ)αβ =

(
1 0
0 1

)
, (γ1ϵ)αβ =

(
1 0
0 −1

)
, (γ2ϵ)αβ =

(
0 1
1 0

)
. (7.6)

These γ-matrices behave very similarly to the σ-matrices, only with some (important) sign changes.

Check that

γmγn + γnγm = 2ηmnI , (7.7)

where η is the Minkowski metric diag(−1, 1, 1), invariant under so(1, 2).

7.2. Rotation generators in spinor representations

The significance of the identity (7.3) is not yet clear. We will now see that if we can find γ-matrices,

satisfying this equation, this is all that is needed in order to have a spinor representation. Consider a
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Lie algebra element Tmn, labelled by an antisymmetric pair of indices. Consider the representation

matrices (this is what will be shown)

(ϱ(Tmn))α
β = 1

4 (γmn)α
β , (7.8)

where the expression in the right hand side is defined by

γmn = γ[mγn] =
1
2 (γmγn − γnγm) . (7.9)

The factor 1
4 is just a standard normalisation, and depends on the normalisation of the basis

elements Tmn.

Direct calculation gives (pulling γpγq to the left, using the γ-matrix identity)

γmγnγpγq = γm(2ηnp − γpγn)γq

= 2ηnpγmγq − (2ηmp − γpγm)γnγq

= 2ηnpγmγq − 2ηmpγnγq + γpγm(2ηnq − γqγn)

= 4ηp[nγm]γq + 4ηq[nγ|p|γm] + γpγqγmγn .

(7.10)

Antisymmetrising in [mn] and [pq] then gives

[γmn, γpq] = 2ηp[n(γm]γq − γ|q|γm])− (p↔ q) = 8η[p[nγm]q] .

This is the appropriate orthogonal algebra. Scaling to ϱ(Tmn) =
1
4γmn yields

[ϱ(Tmn), ϱ(Tpq)] = 2η[p[nϱ(Tm]q]) .

Compare with eq. (3.3).

This shows that, if one finds γ-matrices, one has found a spinor representation.

7.3. Spinors in arbitrary number of dimensions. Gamma matrices

The spinor representations are particular to the orthogonal algebras so(d). They are, strictly speak-

ing, not representations of SO(d), but of its double cover, Spin(d).

Let us start in even dimensions, from the definition of the algebra so(2n,C). We do not yet specialise

to Minkowski or Euclidean or any other signature. We do not need to worry that spinors only exist

for certain signatures and not for others. The existence of a representation is never a matter of

the choice of real form. What the real form does affect is the possibility to choose a representation
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module as a real vector space. We have already seen (inspect the Pauli matrices and so(1, 2) γ-

matrices!) that so(3,R) has complex spinors, while they may be taken real for so(1, 2). Indeed, we

may move between different signatures by multiplying some γ-matrices with i, thus converting a

space direction to a time direction and vice versa.

We take the invariant metric as

η =

(
0 In
In 0

)
. (7.11)

(If we take the real Lie algebra defined by this metric, it has signature (n, n).) The generators TM
N

are matrices such that Tη is antisymmetric, which gives

TM
N =

(
A B
C −At

)
, (7.12)

where B and C are antisymmetric. The matrices A generate a gl(n) subalgebra. We see that a

vector of dimension 2n splits into a vector and a covector under gl(n), VM = (vm, wm).

Consider forms in n dimensions, Ω =
∑n

p=0 Ω
(p), where p is the form degree. (The term form here

just refers to elements in modules of gl(n) with p antisymmetric lower indices.) The dimension of

this vector space is
∑n

p=0

(
n
p

)
= 2n. Consider the actions of wedge product and contraction (if you

are not yet familiar with this language, from Section 4.3, the calculation is soon spelled out in

components):

γmΩ =
√
2dxm ∧ Ω ,

γmΩ =
√
2ımΩ .

(7.13)

Then we have (see exercise 4.15) (γmγn + γnγ
m)Ω = 2δmn Ω. In addition, γmγn + γnγm = 0 =

γmγn + γnγm. Let γM = (γm, γm) be a 2n-vector of matrices. Then,

γMγN + γNγM = 2ηMN . (7.14)

Here comes the corresponding statements in a less streamlined, but maybe more explicit, compo-

nent language. A spinor Ω in d = 2n is a collection of all totally antisymmetric tensors (“forms”)

under gl(n) with different number of indices (“form degree”), from 0 to n:

Ω =


ω
ωm

ωm1m2

...
ωm1...mn

 . (7.15)
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What γm and γm do is to step up or down one step, i.e., decrease or increase the number of indices

by 1:
(γmΩ)m1...mp =

√
2ωmm1...mp ,

(γmΩ)m1...mp =
√
2pδm[m1

ωm2...mp] .
(7.16)

Obviously, because of antisymmetry, γ(mγn) = 0, γ(mγn) = 0, corresponding to the 0 blocks in the

metric. One also has

(γmγnΩ)m1...mp =
√
2pδm[m1

(γ|n|Ω)m2...mp] = 2pδm[m1
ω|n|m2...mp

,

(γnγ
mΩ)m1...mp =

√
2(γmΩ)nm1...mp = 2(p+ 1)δm[nωm1...mp]

= 2δmn ωm1...mp
− 2pδm[m1

ω|n|m2...mp] .

(7.17)

Thus γmγn + γnγ
m = 2δmn , corresponding to the unit matrix entries in the metric.

Matrices satisfying eq. (7.14) are called γ matrices, and the objects they act on are called spinors.

Here we have represented a spinor in 2n dimensions as a collection of forms. We should show that

the spinor forms a module of the orthogonal algebra. Define the matrices γMN = γ[MγN ]. Then

JMN = 1
4γ

MN fulfil the same algebra (under commutation) as the so(2n) generators. Thus so(2n)

has a 2n-dimensional spinor representation. This spinor is called a Dirac spinor.

Consider how JMN act on the spinor. The different components contain 2 wedge products (Jmn),

1 wedge product and 1 contraction (Jm
n) or 2 contractions (Jmn). The form degree is shifted by

−2, 0 or 2. Forms of even degree and odd degree do not mix under rotations, and form separate

modules, each of dimension 2n−1. These modules are called chiral spinors, or Weyl spinors. They

are irreducible.

These considerations were performed in the complex Lie algebra, alternatively for the real form

so(n, n). The existence of Dirac spinors and chiral spinors is not affected by the choice of real form

(Euclidean, Minkowski, etc.). The reality properties of the spinor modules depend on it, however.

We will not go into details.

In odd dimensions d = 2n−1, a similar construction can be performed. There are no chiral spinors,

and the irreducible spinor module has dimension 2n−1. (See exercise 7.2.)

A very concrete way to construct γ-matrices in increasing number of dimensions is the following.

Suppose that we are in d = 2n dimensions, with γ-matrices

γm =

(
0 σ̃m

σm 0

)
. (7.18)

In order to increase by 1 time (0) and 1 spatial dimension (d+1), one can let the gamma matrices

in d+ 2 dimensions be (M = 0,m, d+ 1)

ΓM =

(
0 Σ̃m

Σm 0

)
, (7.19)
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where

Σ0 =

(
I 0
0 I

)
, Σd+1

(
I 0
0 −I

)
, Σm = γm ;

Σ̃0 =

(
−I 0
0 −I

)
, Σ̃d+1

(
I 0
0 −I

)
, Σ̃m = γm .

If one only increases by one (spatial) direction, Σ0 is left out. Then ΣM ′
= Σ̃M ′

= ΓM ′
. Verify

that these matrices indeed are γ-matrices.

This construction tells us directly that the dimension of a Dirac spinor is multiplied by 2 when the

number of dimensions is increased from 2n to 2n + 2, and remains unchanged when dimension is

increased from 2n to 2n+ 1. A chiral (Weyl) spinor in 2n+ 2 dimensions becomes a Dirac spinor

in 2n+ 1 dimensions, and the distinction between chiralities disappears. A Dirac spinor in 2n+ 1

dimensions becomes a Dirac spinor (two Weyl spinors with opposite chiralities) in 2n dimensions.

7.4. Spinors in 4 dimensions

It is convenient to use the version of the d = 4 Lorentz algebra given in Section 3.3, so(1, 3) ≃
sl(2,C), where the latter is seen as a Lie algebra over R. We know that there is at least one 2-

dimensional complex spinor representation. Note that the dimension 2 of this spinor representation

matches the dimension of a Weyl spinor (2
4
2−1 = 2).

Let us denote a chiral spinor ψα, α = 1, 2, and let it transform under sl(2,C) as δℓψα = ℓα
βψβ .

Let us raise indices with ϵ as ψα = ϵαβψβ . Then (since ϵαγϵ
γβ = −δβα), ψα = −ϵαβψβ .

The complex conjugate of a chiral spinor transforms as a spinor of the opposite chirality. With

upper index, ψ̄α̇ = ϵα̇β̇ψ̄β̇ . Then ψ̄ transforms as

δℓψ̄
α̇ = ϵα̇β̇(ℓψ)β̇ = −ϵα̇β̇ ℓ̄β̇

γ̇ϵγ̇δ̇ψ̄
δ̇ = −ψ̄β̇ ℓ̄β̇

α̇ , (7.20)

where we have used ϵℓϵ = ℓt for a traceless matrix ℓ (see eq. (2.30)).

The dotted indices are introduced in order to maintain a working tensor formalism. Otherwise one

would have been allowed for example to contract one spinor index with another one on a complex

conjugated spinor. This is not allowed, since it would demand that “ψ̄αχα” be a scalar, which is

is not, since ℓ̄− ℓ ̸= 0.

We will construct the γ matrices. If we let them act on a Dirac spinor

ΨA =

(
ψα

χα̇

)
, (7.21)
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and use our knowledge that a γ matrix changes the chirality of a chiral spinor, we find that the γ

matrices must take the form

(γm)A
B =

(
0 σ̃m

αβ̇

σmα̇β 0

)
, (7.22)

where
(σ̃mσn + σ̃nσm)α

β = 2ηmnδβα ,

(σmσ̃n + σnσ̃m)α̇
β̇
= 2ηmnδβ̇α̇ .

(7.23)

In addition, we would like to demand that ((σmψ)†)α = (σ̃mψ†)α, implying that σ̃m
αβ̇

= ϵαγ σ̄
γδ̇ϵδ̇β̇ .

A suitable choice is

σ0 = −σ̃0 =

(
1 0
0 1

)
, σ1 = σ̃1 =

(
1 0
0 −1

)
,

σ2 = σ̃2 =

(
0 1
1 0

)
, σ3 = σ̃3 =

(
0 i
−i 0

)
,

(7.24)

Note that all the matrices are hermitean, so σ̃m
αβ̇

= ϵβ̇γ̇σ
γ̇δϵδα.

The vector space of hermitean matrices is spanned by the 4 matrices σ̃m
αβ̇

. Hermitean matrices are

identified with vectors, and we can instead of vm write vαβ̇ , where

vαβ̇ = vmσ̃
m
αβ̇

=

(
v0 + v1 v2 + iv3

v2 − iv3 v0 − v1

)
αβ̇

. (7.25)

The transformation of a hermitean matrix v is δℓv = ℓv + vℓ†, which is hermitean, showing that

hermitean matrices form an sl(2,C)-module.

Starting from a Dirac spinor, it is possible to impose a “reality constraint”, a Majorana condition.

This condition, on a Dirac spinor Ψ of eq. (7.21), reads χ = ψ̄. The Majorana condition is not

compatible with a chirality condition, which would set e.g. χ = 0.

7.5. The Dirac equation

With the γ matrices at hand, it is possible to form an operator ∂/ = γm∂m acting on a Dirac spinor,

so that the result also is a Dirac spinor. The square of this operator is ∂/2 = γmγn∂m∂n = □.

We can introduce a mass parameter (again, in classical field theory, really inverse length) and write

the Dirac equation

∂/ψ −mψ = 0 . (7.26)

We will soon make a Fourier expansion and solve the Dirac equation for plane wave solutions in flat

space. However, we can immediately conclude that any solution will satisfy 0 = (∂/+m)(∂/−m)ψ =
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(□−m2)ψ. Any Fourier mode, carrying a functional dependence eikmxm

, must have k2 = −m2, so

we will have propagation inside the light-cone2 .

Remember that if we are in even dimensions (e.g. 4), the gamma matrices exchange the two

chiralities. They must have the form

γm =

(
0 σ̃m

σm 0

)
, (7.27)

where σmσ̃n + σnσ̃m = 2ηmnI, σ̃mσn + σ̃nσm = 2ηmnI. Writing out the two Weyl components of

the Dirac equation gives

0 =

(
−m σ̃m∂m
σm∂m −m

)(
λ
χ

)
=

(
σ̃m∂mχ−mλ
σm∂mλ−mχ

)
. (7.28)

The two chiralities mix. In order to have a spinor satisfying the Dirac equation with m ̸= 0, it

must be a Dirac spinor. A Weyl spinor cannot have m ̸= 0.

We will now consider the Dirac equation specifically in d = 4. Using the formalism of Section 7.4,

the Dirac equation takes the form

{
∂αα̇χ

α̇ −mλα = 0 ,
∂α̇αλα −mχα̇ = 0 .

(7.29)

As long as m ̸= 0, we can solve for χ in the second equation, χα̇ = m−1∂α̇αλα. Inserting this

in the first equation gives m−1∂αα̇∂
α̇βλβ − mλα = 0, i.e., (□ − m2)λα. In a Fourier expansion,

this translates to (k2 + m2)λ̃α(k) = 0, so the Fourier coefficients can have support only on the

“mass hyperboloid” k2 = −m2. The Fourier modes of the other component are given as χ̃α̇(k) =

im−1kα̇αλ̃α(k). Note that the on-shell degrees of freedom of a Dirac spinor in d = 4 are 2 complex,

or 4 real “polarisations”. They correspond to the 2 spin states (up/down) of an electron together

with 2 spin states for its anti-particle, the positron. By finding a relativistic equation for the

electron field, Dirac inadvertently made the theoretic discovery of the positron.

We learn, from solving the Dirac equation in terms of plane waves, that the number of local degrees

of freedom on shell, i.e., parametrising the solutions, amounts to half a spinor. This is a general

statement, and holds also in odd dimensions.

Ifm = 0, the two Weyl component do not mix in the Dirac equation, and it is consistent to consider

only one of them, say χα̇. The field equation is simply ∂αα̇χ
α̇ = 0. It clearly implies k2χ̃α̇(k) = 0,

2However, there is still an issue, not dealt with here, that waves may propagate inside the past as well as the future

light-cone. In quantum field theory this has to do with the fact that the Dirac equation describes anti-particles as

well as particles. The sign of the mass term is not important, and can in fact be reversed if one lets γm 7→ −γm.
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so the Fourier components χ̃ have support only on the light-cone. For some light-like wave vector,

choose a Lorentz frame where km = ω(1, 1, 0, 0). Then,

kαα̇ =

(
2ω 0
0 0

)
αα̇

, (7.30)

and the field equation implies χ1̇ = 0. Also in the massless case, the number of on-shell degrees of

freedom is half the number of off-shell degrees of freedom.

We would like to write down an action for a spinor field. It must have the form

S =

∫
d4x

(
Ψγm∂mΨ−mΨΨ

)
. (7.31)

Here it is not yet clear what Ψ is. If Ψ carries a spinor index as ΨA, Ψ must behave as Ψ
A
. In

d = 4,

ΨA =

(
ψα

χα̇

)
,

Ψ
A
=

(
−χ̄α

ψ̄α̇

)
,

(7.32)

The reason for the relative minus sign in Ψ is not obvious. Even without it, we would have had a

Dirac spinor with the correct index structure3 . One may argue for it based on unitarity, but we

will not do that. Instead we will note that the sign is necessary for the action to make sense.

Now, consider the action (7.31) with the spinor decomposition (7.32). It becomes

S =

∫
d4x

(
ψ̄α̇∂

α̇αψα − χ̄α∂αα̇χ
α̇ +m(−χ̄αψα + ψ̄α̇χ

α̇)
)
. (7.33)

The kinetic terms (the ones with derivatives) are real, given that the fields are fermionic (anticom-

muting Grassmann numbers), modulo boundary terms. This observation also uses the hermiticity

of ∂. In fact, we cannot even write an action for a bosonic spinor field, since it would become a

total derivative. We see that the kinetic terms work and are well defined for each chiral component.

The mass term is also real (and non-vanishing) given the fermionic property of the fields, and we

see (again) that a mass term relies on both chiralities being present.

A comment concerning spinors on other spaces that flat space, or in non-orthonormal coordinate

systems. Spinors are fields in modules of (some real form of) orthogonal algebras. Unlike scalars,

and also forms, they can not be interpreted as transforming under some non-trivial representation

of gl(d), which simply does not have spinor representations. If one wants to formulate the Dirac

3 Sometimes you will meet this “conjugation” written as “Ψ = Ψ†γ0”. This notation is unfortunate due to its apparent

non-covariance.
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equation with curvilinear coordinates, or on some curved space, one needs to devise a way to

contract the vector index on the γ matrices γa, which is an so(d) vector index, with the index

on a derivative ∂m, which is a index in coordinate basis, i.e. one that behaves as in eq. (4.9)

with M ∈ GL(d). The necessary solution is to use a vielbein instead of a metric to describe the

geometry. The vielbein is a matrix em
a, such that the metric is gmn = em

aen
bηab. Note that this

relation is invariant under local Lorentz transformations, acting on the indices a, b. The spinors

also transforms under local Lorentz transformations. We will not write down the action, or even

the Dirac equation. The formalism involves a “spin connection”, analogous to the ones introduced

in Section 8, needed for the local Lorentz invariance.

Exercises

7.1. Consider the matrix γ = 1
(2n)!ϵ

M1...M2nγM1 . . . γM2n = γ1 . . . γ2n. What is γ2? How does it anti-

commute with the γ matrices? Use γ to form projection operators on the two chiralities. If ψ is a

spinor of definite chirality, what is the chirality of vMγMψ?

7.2. Construct the spinor module in odd dimensions. Hint: exercise 7.1.

7.3. Show that (ϱ(TMN ))A
B = 1

4 (γMN )A
B are representation matrices for the (Dirac) spinor represen-

tation.

7.4. Investigate the signs in the Killing forms of the real Lie algebras su(2) and sl(1, 2), as well as

so(1, 3), and show that the latter can not be a sum of any of the former. (This can be done directly

using the matrix realisations, there is no need to go to the Chevalley–Serre basis.)

7.5. Show that the γ matrices of eqs. (7.22,7.24) satisfy the relations (7.23).

7.6. In d = 4, form γ = 1
4!ϵ

mnpqγmγnγpγq, and check its action on chiral spinors. (γ is often called γ5.)

7.7. In d = 4, show that the Majorana condition is consistent with the action of the γ matrices, i.e.,

that vmγ
mψ is Majorana if ψ is Majorana.

7.8. The tensor product of two spinor representations. Consider a bi-spinor MA
B, where A is a Dirac

spinor index. Compare the number of independent matrices with the number of matrices of the

type γM1...Mp = γ[M1 . . . γMp] (possibly also γM1...Mpγ?) and try to make a conjecture about the

tensor product of two spinors.

7.9. Chiral spinors under (some real form of) so(8) are 8-dimensional. Call the spinor modules 8s

and 8c. They are both self-conjugate. Determine which antisymmetric tensors appear in 8s ⊗ 8s,

8c ⊗ 8c and 8s ⊗ 8c, and in the first two tensor products which of them belong to the symmetric

and anti-symmetric part of the tensor product.

7.10. Chiral spinors under (some real form of) so(10) are 16-dimensional. Call the spinor modules 16 and

16. They are conjugate to each other. Determine which antisymmetric tensors appear in 16⊗ 16,

16⊗ 16 and 16⊗ 16, and in the first two tensor products which of them belong to the symmetric

and anti-symmetric part of the tensor product.
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7.11. Construct a vector v as the square of a d = 4 bosonic spinor λ as vαα̇ = λαλ̄α̇. Show that v2 = 0.

Perform the corresponding construction in d = 3. (It works also in d = 6 and d = 10.)

7.12. Consider the tensor product of an irreducible spinor representation and the vector representation.

Which irreducible representations should be contained in the tensor product? It may be helpful to

start in d = 3.

8. Spin 1 fields and gauge symmetry

Electromagnetism is formulated in terms of a connection (in physics often called a gauge potential)

Am, which is suitably seen as a 1-form A = dxmAm(x). The field strength is F = dA and the field

equations d⋆F = 0 (in the absence of sources). The field strength is invariant under the gauge

transformations δλA = −dλ, which is a local symmetry of the theory, a gauge symmetry. The

term “local” refers to the fact that λ(x) is an arbitrary function of the coordinates, so the gauge

symmetry removes local degrees of freedom from A.

Suppose there is some complex field ϕ(x) which transforms under gauge transformations as

ϕ 7→ eiqλϕ , (8.1)

which for infinitesimal λ reads δλϕ = iqλϕ. The field ϕ could in principle transform in any Lorentz

module. One says that ϕ carries electromagnetic charge q. An immediate problem with charged

fields is that the derivative of the field does not transform well under gauge transformations:

∂mϕ 7→ eiqλ(∂mϕ+ iq∂mλϕ) . (8.2)

This is remedied by replacing the derivative with a covariant derivative:

Dmϕ = (∂m + iqAm)ϕ . (8.3)

Then,

Dmϕ 7→ eiqλDmϕ , (8.4)

so the covariant derivative also carries the same charge.

The Maxwell theory is an example of a much wider class of models, described by non-abelian

gauge theory or Yang–Mills theory. Maxwell theory is a gauge theory with the group U(1), which

is abelian. The complex number eiλ is a U(1) group element, with group multiplication being

complex multiplication.
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Consider, in the same spirit, some field ϕ transforming in some module of a Lie group G. G should

be taken as the compact form of some Lie group (for reasons that will become clear later). Let

ϕ 7→ gϕ, g ∈ G. (Here, we use a notation where we don’t distinguish between the group element

and the representation matrix.) Then,

Dmϕ = (∂m +Am)ϕ (8.5)

transforms the same way as ϕ, Dmϕ 7→ gDMϕ, if

Am 7→ g∂mg
−1 + gAg−1 . (8.6)

The components of the connection A take values in g, the Lie algebra of G. In the covariant

derivative (8.5), it acts on the field with the appropriate representation matrices.

The second term in the transformation (8.6) of A is the homogeneous one, which one expects of any

field in the adjoint module. The first, inhomogeneous term is what characterises the transformation

of a connection.

If we consider an infinitesimal gauge transformations, we take g = 1 + Λ, with Λ ∈ g. Then,

g−1 ≈ 1− Λ. The transformations become

δΛϕ = Λϕ ,

δΛAm = −∂mΛ− [Am,Λ] = −DmΛ .
(8.7)

For an abelian group, like U(1), DmΛ = ∂mλ. The gauge field itself carries no charge and does

not self-interact. This is no longer true for non-abelian gauge groups. The gluons of the strong

interaction, for example, carry charge (i.e., transform in a non-trivial representation) under the

gauge group SU(3).

How is a field strength formed? It should have the form F = dA + . . ., so it is also an element

in the adjoint module of g. We should not demand that it is invariant, but that it transforms

homogeneously, i.e., F 7→ gFg−1. Consider the commutator of two covariant derivatives, [Dm, Dn],

acting on a field ϕ. In form language,

D2ϕ = (d+A∧)(d+A)ϕ = d2ϕ+ d(Aϕ) +A ∧ dϕ+A ∧Aϕ = (dA+A ∧A)ϕ . (8.8)

Since we know that this transforms homogeneously, we can conclude that the combination

F = dA+A ∧A (8.9)
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transforms as F 7→ gFg−1. In components,

Fmn = ∂mAn − ∂nAm + [Am, An] . (8.10)

Again, note the last term, which is absent in the U(1) theory.

What happens to the Bianchi identity? Take a covariant exterior derivative of F . This gives

DF = d(dA+A ∧A) +A ∧ (dA+A ∧A)− (dA+A ∧A) ∧A = 0

This calculation really depends on the Jacobi identity, since the components containing A3 are

[A[m, [An, Ap]]].

Natural equations of motion are

D ⋆ F = J . (8.11)

This is the equation of motion for Yang–Mills theory with gauge group G. The presence of a local

symmetry, governed by a Lie group, dictates the form of the interactions in the theory.

The mathematically precise formulation of Yang–Mills theory is somewhat beyond our scope. It

relies on the concept of fibre bundles, especially principal bundles, and sections of these. The gauge

connection is a connection on a principal bundle. What can be said, without mathematical rigour,

is that the connection is not a “field” in the ordinary sense. It needs not be globally defined. This

is due to the gauge symmetry (8.6). Instead, it is patched together by gauge transformations on

overlaps in a chart of the manifold where the theory is defined. This means that also the global

properties of the gauge group may be relevant, not only the Lie algebra.

An action for Yang–Mills theory (including the U(1) Maxwell theory) is

S = − 1

4g2

∫
ddx

√
|g|gmpgnqtrFmnFpq .

Here, “tr” is the Killing metric, suitably normalised. Note that one needs to choose a compact real

form of the gauge group; otherwise different components would have kinetic terms with different

signs.

Suppose there is some charged matter which couples “minimally” to the gauge field through the

covariant derivative. A typical example would be a gauge group SU(n) and fermions in the funda-

mental module. An action would then be of the form (we specialise to Minkowski space)

S = S = − 1

4g2

∫
d4xtrFmnFmn +

∫
d4x

(
ΨγmDmΨ−mΨΨ

)
. (8.12)
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If we now consider the field equations for the connection, they become

DnF
nm = Jm , (8.13)

where, schematically, Jm = Ψ̄γmΨ, and the product of Ψ̄ and Ψ is taken to be in the adjoint of

the gauge group.

Hamiltonian; generator of gauge symmetry.

A little about gauge fixing. Fourier expansion of free theory; polarisations.

Conformal in d = 4...

8.1. Chern–Simons theory

In d = 3, consider the action

S =
k

4π

∫
tr(A ∧ dA+

2

3
A ∧A ∧A) . (8.14)

Note that this action is written, on any manifold, without reference to a metric. This is one criterion

for a theory to be topological. The constant k is dimensionless (using ℏ = 1). The equations of

motion following from this action is
δS

δA
=

k

2π
F = 0 . (8.15)

The solutions are flat connections.

Chern–Simons theory, in spite of its apparent simplicity, has many applications in mathematics

(topology, knot theory,...) and physics (solid state theory, topological phases,...).

Exercises

8.1. Show that the conservation law DJ = 0 is consistent with the equation of motion (8.11) for the

Yang–Mills field.

8.2. Construct the Hamiltonian for electromagnetism coupled to a spinor field. Construct the conserved

electric charge.

8.3. An exercise with gauge fields minimally coupled to matter in the form of some spinor field...

8.4. Consider the Maxwell field strength 2-form

F =
1

4πr3
(x dy ∧ dz + y dz ∧ dx+ z dx ∧ dy) ,
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which is well defined outside the origin. What is the corresponding B-field? Show that F satisfies

Maxwell’s equations for r > 0. Calculate the surface integral
∫
S
F =

∫
S
B⃗ · d⃗S, where S is a surface

enclosing r = 0, and conclude that there is a magnetic monopole at r = 0. Find a 1-form A such

that dA = F . Is it well defined everywhere outside the origin?

9. Noether’s theorem—Symmetries and conservation laws

9.1. From symmetry to current

What do we mean by a symmetry of a field theory? Given an action S[Φ], it is invariant (up to

boundary terms) under an infinitesimal transformation ΦI 7→ ΦI + δΦI , if S[Φ + δΦ] = S[Φ] for

all Φ.

δS[Φ, δΦ] = S[Φ + δΦ]− S[Φ] =

∫
ddx ∂mK

m . (9.1)

Note that it is important that this holds even for Φ not satisfying the field equations. We assume

that S is given as the integral of a Lagrangian density as in eq. (5.5). Then

δS[Φ, δΦ] =

∫
ddx

(
∂mδΦ

I ∂L

∂(∂mΦI)
+ δΦI ∂L

∂ΦI

)
=

∫
ddx δΦI

(
−∂m

∂L

∂(∂mΦI)
+
∂L

∂ΦI

)
+

∫
ddx ∂m

(
δΦI ∂L

∂(∂mΦI)

)
.

(9.2)

Now let us evaluate this variation around a solution Φ̄ to the field equations. Then we get

δS[Φ̄, δΦ] =

∫
ddx ∂m

(
δΦI ∂L

∂(∂mΦI)

)
. (9.3)

If we now subtract (9.1), evaluated on shell, from (9.3), we find that there is a conserved current

Jm:

∂mJ
m = 0 , (9.4)

where

Jm = δΦI ∂L

∂(∂mΦI)
−Km . (9.5)

This is Noether’s (first) theorem.
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Let us take translation symmetry as an example. (We suppress the index on the fields.) When

δxm = vm, δΦ = vm∂mΦ, and δL = vm∂mL , which gives Km = vmL . The conserved current is

Jm = vn∂nΦ
∂L

∂(∂mΦ)
− vmL . (9.6)

Let us check that J is conserved:

∂mJ
m = vn∂m∂nΦ

∂L

∂(∂mΦ)
+ vn∂nΦ∂m

∂L

∂(∂mΦ)
− vm∂mL

= vn∂m∂nΦ
∂L

∂(∂mΦ)
+ vn∂nΦ∂m

∂L

∂(∂mΦ)
− vm

(
∂mΦ

∂L

∂Φ
+ ∂m∂nΦ

∂L

∂(∂nΦ)

)
= vm∂mΦ

(
∂n

∂L

∂(∂nΦ)
− ∂L

∂Φ

)
,

(9.7)

which vanishes on-shell (and consists exactly of the terms in eq. (9.2) left out to reach eq. (9.3) in

the derivation of Noether’s theorem).

Take a simple example, a massless scalar field with L = − 1
2∂mϕ∂

mϕ. Then,

Jm = −vn∂nϕ∂mϕ+ 1
2v

m∂nϕ∂
nϕ = −vnTmn ,

where Tmn = ∂mϕ∂nϕ− 1
2η

mn∂pϕ∂
pϕ .

(9.8)

Then,

∂mJ
m = −vn∂m∂nϕ∂mϕ− vn∂nϕ□ϕ+ vm∂m∂nϕ∂

nϕ = −vn∂nϕ□ϕ . (9.9)

9.2. Conserved charges

Given a divergence-free current Jm: ∂mJ
m = 0, we can interpret this equation as a continuity

equation by decomposing it into time and space components. With J0 = ρ, J i = ji it reads

ρ̇ + ∇ · j = 0, which is the continuity equation for a density and the corresponding current.

Integrating over a spatial volume V and applying Gauss’ law we have

d

dt

∫
V

dd−1x ρ = −
∫
∂V

dS · j . (9.10)

The left hand side is the time derivative of the charge in V , the right hand side is minus the

outflow of charge. This is conservation. If we extend the volume V to all of space, the right hand

side should vanish and we get the result

Q̇ = 0 , Q =

∫
dd−1xJ0 . (9.11)



56 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Symmetry — lecture notes

9.3. Charge conservation in electromagnetism

The situation for charge conservation in Maxwell theory may seem somewhat confusing. The con-

servation of charge follows from the field equations ∂nF
mn = jm, immediately leading to the

continuity equation for electric charge, ∂mj
m = 0. However, the U(1) gauge symmetry in electro-

magnetism is a local symmetry, not a global one, for which Noether’s theorem applies. The global

symmetry responsible for charge conservation is the global subgroup of gauge transformations, i.e.,

a transformation as in eq. (8.1) with constant λ.

9.4. The stress-energy tensor

In the example with translation symmetry, there is a vector of transformations, so we have Jm(v) =

−vnTmn. T is the stress-energy tensor. T 00 is the energy density, and T 0i the (spatial) momentum

density.

Comment on gravity etc.

9.5. Noether’s theorem in the Hamiltonian formalism—Charges as generators

In the Hamiltonian formalism, consider transformations generated by a function Q on phase space

(possibly with explicit time dependence). We will think of Q as formed as the integral of some

local expression,

Q =

∫
dd−1xQ(Φ(x),∇Φ(x),Π(x); t) . (9.12)

The transformations generated by Q are defined by the Poisson brackets

δΦI = {ΦI , Q} =
δQ

δΠI
=

∂Q

∂ΠI
,

δΠI = {ΠI , Q} = − δQ

δΦI
= − ∂Q

∂ΦI
+ ∂i

∂Q

∂(∂iΦI)
.

(9.13)

Then the transformation of the action becomes

δS = δ

∫
ddx

(
Φ̇IΠI − H

)
=

∫
ddx

(
d

dt
(δΦIΠI)− δΦIΠ̇I + Φ̇IδΠI

)
−
∫
dt {H,Q}

=

∫
ddx

(
d

dt
(δΦIΠI)−

δQ

δΠI
Π̇I −

δQ

δΦI
Φ̇I

)
+

∫
dt {Q,H}

=

∫
dt

(∫
dd−1x

d

dt
(δΦIΠI)− Q̇+

∂Q

∂t
+ {Q,H}

)
.

(9.14)
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If Q is conserved on-shell, i.e., if the equations of motion will imply Q̇ = 0, we have, using eq.

(5.19) (but not the equations of motion!), ∂Q
∂t + {Q,H} = 0. Thus,

δS =

∫
dt

d

dt

(∫
dd−1x δΦIΠI −Q

)
.

So, the action is invariant (up to a total derivative) under transformations generated by a conserved

charge. In addition, the right hand side can be identified with
∫
ddx K̇0, and thus

J0 = δΦI ∂L

∂Φ̇I
−K0 = δΦIΠI − (δΦIΠI − Q) = Q .

This shows that a conserved charge is the generator of the corresponding transformations.

The conserved charges will form a Lie algebra (see exercise 9.7).

Exercises

9.1. Consider the action for a particle particle with mass m in Minkowski space,

S = −m
∫
dτ

√
−ηmn

dxm

dτ

dxn

dτ
.

Derive the currents and conserved charges corresponding to the Poincaré invariance.

9.2. In the example above with the current corresponding to translational symmetry for a scalar field,

construct the charges, and show that they generate translations under the Poisson bracket.

9.3. Suppose the particle in exercise 9.1 is electrically charged. How can the action be modified to

incorporate the Maxwell field? (Hint: the “pullback of A to the world-line, a = dτ dxm

dτ Am can be

integrated.) Check that the Lorentz force arises in the equation of motion for the particle.

9.4. The stress-energy tensor is symmetric. Why?

9.5. Verify that eq. (5.16) is a special case of eq. (5.17).

9.6. Show that the Poisson bracket is a Lie bracket, i.e., that it satisfies the Jacobi identity.

9.7. Show that if Q and Q′ are conserved charges, also {Q,Q′} is a conserved charge.

9.8. Consider a (Newtonian) particle moving in an isotropic harmonic potential in n space dimensions,

so that V (x) = 1
2kx

ixi. Show that the global symmetry is U(n) rather than the expected O(n).

Find the conserved charges. Determine their Poisson brackets with the Hamiltonian. (Hint: it may

be useful to change phase space variables to ones that in the corresponding quantum mechanical

problem would be creation and annihilation operators.) Investigate how the U(n) symmetry acts

on the phase space variables xi and pi.
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9.9. In Maxwell theory in the Hamiltonian formalism, which is the generator of gauge symmetry?

9.10. Symmetries of the Kepler problem. Consider the motion of a Newtonian particle with mass m in

the central potential V (r⃗) = −k
r . Show that the components of the angular momentum L⃗ = r⃗ × p⃗

fulfil {Li,H} = 0, and are conserved charges. Which is the Lie algebra generated by these charges?

Consider the Runge–Lenz vector

A⃗ = p⃗× L⃗− kmr̂ .

The dimensionless vector A⃗
km is the so called eccentricity vector. Show that A⃗ is conserved. It is

convenient to rescale the Runge–Lenz vector to

B⃗ =
A⃗√
2m|E|

,

where E is the energy, for E ̸= 0. Investigate the algebra of conserved charges under the Poisson

bracket. It may be different in the cases E < 0, E = 0 and E > 0. Such “hidden symmetries” may

be used to relate solutions to the equations of motion with the same energy to each other.

10. Supersymmetry?


