
INTEGRATION: THE FEYNMAN WAY 

ANONYMOUS 

Abstract. In this paper we will learn a common technique not often de
scribed in collegiate calculus courses. After reviewing the necessary theory, 
we will proceed to work through some typical examples. Throughout this pro
cess, we will see trivial integrals that can be evaluated using basic techniques of 
integration (such as integration by parts), however we will also encounter inte
grals that would otherwise require more advanced techniques such as contour 
integration. 

1. Introduction 

Many up-and-coming mathematicians, before every reaching the university level, 
heard about a certain method for evaluating definite integrals from the following 
passage in [1]: 

One thing I never did learn was contour integration. I had learned 
to do integrals by various methods show in a book that my high 
school physics teacher Mr. Bader had given me. 

The book also showed how to differentiate parameters under 
the integral sign - It’s a certain operation. It turns out that’s not 
taught very much in the universities; they don’t emphasize it. But 
I caught on how to use that method, and I used that one damn 
tool again and again. So because I was self-taught using that book, 
I had peculiar methods of doing integrals. 

The result was that, when guys at MIT or Princeton had trouble 
doing a certain integral, it was because they couldn’t do it with 
the standard methods they had learned in school. If it was contour 
integration, they would have found it; if it was a simple series 
expansion, they would have found it. Then I come along and try 
differentiating under the integral sign, and often it worked. So I 
got a great reputation for doing integrals, only because my box of 
tools was different from everybody else’s, and they had tried all 
their tools on it before giving the problem to me. 

The method Mr. Feynman is referring to often goes by the name of differentiating 
under the integral sign, differentiation with respect to a parameter, or sometimes 
even Feynman Integration. However one wishes to name it, the elegance and appeal 
lies in how this method can be employed to evaluate seemingly complex integrals 
with nothing more than1 elementary calculus. 

1Once one gets past the measure theory required to prove the Theorem 2.1 
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2. Some Key Theorems 

The technique of “Feynman Integration” is a simple application of a theorem 
attributed to Leibniz. In this section we state the theorem in its most basic form, 
and end by stating a more general version that allows for even weaker hypotheses. 
In both cases, we address situations where the following equation (which we would 
love to be true) holds: 

d ∂ 
f(x, y)dy = f(x, y)dy. 

dx Y Y ∂x 

Before stating these theorems, recall that differentiation is simply a particular ex
ample of a limit insofar as we define 

d
f(x) :=: f �(x) := lim 

f(x + h) − f(x) 
,

dx h 0 h→

with a true definition on the far right. Thus, we see that (2) will hold whenever we 
may make the following statement, 

lim f(x, y)dy = lim f(x, y)dy. 
x a x a→ Y Y →

Theorem 2.1 (Elementary Calculus Version). Let f : [a, b]×Y → R be a function, 
with [a, b] being a closed interval, and Y being a compact subset of Rn . Suppose 
that both f(x, y) and ∂f(x, y)/∂x are continuous in the variables x and y jointly. 
Then f(x, y)dy exists as a continuously differentiable function of x on [a, b], with 

Y 
derivative � � 

d 
dx Y 

f(x, y)dy = 
Y 

∂ 
∂x 

f(x, y)dy. 

As mentioned above, the veracity of (2) is completely dependent upon if we can 
exchange the operations of limiting and integration. If we were to prove the above 
theorem, our argument would make full use of the compactness of Y , which of 
course implies uniform continuity. From this fact, we could show that it is justified 
to switch change the order of limits and integration, thus proving (2). 

However, in many cases the restriction of compactness can be too severe. Often 
times we would like Y to be (−∞, a), (a, ∞), (−∞, ∞),etc... In these situations, 
the following measure theoretic version of the above comes to our rescue: 

Theorem 2.2 (Measure Theory Version). Let X be an open subset of R, and Ω be 
a measure space. Suppose f : X × Ω → R satisfies the following conditions: 

(1) f(x, ω) is a Lebesgue-integrable function of ω for each x ∈ X. 
(2) For almost all ω ∈ Ω, the derivative ∂f(x, ω)/∂x exists for all x ∈ X. 
(3) There is an integrable function Θ : Ω R such that ∂f(x, ω)/∂x ≤ Θ(ω) 

for all x ∈ X. 
→ | | 

Then for all x ∈ X, 
d ∂ 

f(x, ω)dω = f(x, ω)dω. 
dx Ω Ω ∂x 

A sketch of the proof of Theorem 2.2 would most likely make some form of a 
famous result from measure theory, the Dominated Convergence Theorem. This 
will of course provide us with the justification to switch the order of limit and 
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integration. For the interested reader, we state the theorem whose proof may be 
found in [5]: 

Theorem 2.3 (Dominated Convergence Theorem).� Let X be a measure space, and 
let Φ, f1, f2, . . . be measurable functions such that Φ < ∞ and fn ≤ Φ for all 

X 
n ∈ N. If fn f a.e., then f is integrable and 

| | 
→ � � 

lim fn = f. 
n→∞ X X 

Before moving on to some examples, note that among the three criteria in The
orem 2.2, the first two are usually satisfied. Indeed in all of the following examples 
we need only check criterion 3, i.e. that f is dominated by some integral function. 
Once we have found the appropriate dominating function, we may safely apply 
Theorem 2.2 and thus “differentiate under the integral”. 

3. Examples 

In this section we present several examples on the application of the above the
orem(s). We begin with the following basic problem: 

Example 3.1. Compute the definite integral, � 1 2x − 1 
dx.

log x0 

In order to apply our theorems, we obviously need to be dealing with an integrand 
in two variables. In this example, we “generalize” by introducing a parameter b in 
the exponent of our x term. In particular, we could choose to define the following 
function: � 1 b 

I(b) = 
x − 1 

dx.
log x 

As long as b > −1, all conditions of Theorem 2.1 are satisfied and we may differen
tiate under the integral sign: 

0 

d x ∂ x
I �(b) = 

� 1 b − 1 
dx = 

� 1 � 
b − 1 

� 

dx 
db 0 log x 0 ∂b log x � 1 b+1 ��1 

b x � = x = � 
b + 1 �0 

0 

1 
= 

b + 1 
whereupon integration yields 

I(b) = log(b + 1) + C. 

In order to find out our constant of integration, we let b = 0 so that our integrand 
is 0, implying that C = 0. Letting b = 2 will of course solve our original problem: � 1 2x

log
− 
x 
1 
dx = I(2) = log(3). 

0 

Example 3.2. Compute the improper definite integral,
∞ sin(x) 

dx. 
x−∞ 
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As before, we must strategically introduce a parameter so that we can actually 
use our theorems. In this example, we “generalize” by solving the following integral 

∞ sin(x) 
I(b) = e−bxdx,

x 

�

���� ���� ���� ����
�

� � � � 

����� 

� �

0 

whereupon setting b = 0 and doubling will give us the desired value. But before 
we proceed, how do we know that we can indeed differentiate under the integral 
as we would hope? As mentioned in the previous section, it is clear (why?) that 
our integrand is Lebesgue integrable and differentiable a.e.; all that remains is to 
verify that it is dominated. The key here is to realize that since | sin(x)| ≤ |x|, this 
implies that

= e−bx ≤ e−bxsin(x) sin(x) 
e−bx . 

x x 

Lastly since
∞ 1 

e−bxdx = < ∞,
b0 

we have found a suitable dominating function. We are now justified in differentiat
ing under the integral sign as follows: 

∞ sin(x) 
e−bxdx = 

∞ ∂ sin(x)d 
e−bxI �(b) dx= 

db 0 x 0 ∂b x � ∞ ∞ 

sin(x)e−bxdx = 
e−bx(cos(x) + b sin(x))

= 
1 + b2 

0 
0 

1 
= − 

1 + b2 

Integration of I �(b) yields 

I(b) = − tan−1(b) + C. 

As before, we choose a strategic value b = b0 in order to make our integrand vanish 
so that I(b0) = 0. In this case, take b = ∞ so that I(∞) = 0 C = tan−1(∞) = 
π/2. We thus conclude that 

⇔ 

∞ sin(x) 
dx = 2 

∞ sin(x) 
dx = 2I(0) 

−∞ x 
= π 

0 x 

Example 3.3. Compute the improper definite integral, � π/2 

x cot(x)dx. 
0 

This particular example is tricky because it is not immediately obvious where 
to introduce the extra parameter. However, it turns out that the following is an 
appropriate choice: � π/2 tan−1(b tan(x))

I(b) = dx,
tan(x)0 

so that we will have the answer to our original integral upon setting b = 1. After 
briefly verifying that the conditions of Theorem 2.1 are satisfied, we proceed as 
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follows: 

d 
� π/2 tan−1(b tan(x)) 

� π/2 ∂ 
� 
tan−1(b tan(x)) 

� 

I �(b) = dx = dx 
dx 0 tan(x) 0 ∂b tan(x) � π/2 dx 

= 
(b tan(x))2 + 1


π

0 

= 
2(b + 1) 

Integrating w.r.t. b (and noting that our constant of integration will vanish) gives 
us 

π 
I(b) = log(b + 1),

2 
So that our original integral is obtained via � π/2 π 

x cot(x)dx = I(1) = log(2).
20 

We conclude this example by performing integration by parts on our original inte
gral. This yields the integral of another relatively famous integral often dealt with 
in introductory complex analysis courses: � π/2 � π/2 π

log(sin(x))dx = − x cot(x)dx = − 
2 

log(2). 
0 0 

Example 3.4. As our final example, we compute the following definite integral, � π 

ecos(x) cos(sin(x))dx. 
0 

We introduce the parameter b as follows: � π 

I(b) = e b cos(x) cos(b sin(x))dx, 
0 

and note that all of our conditions in Theorem 2.1 are satisfied. However, before we 
compute as we did in the previous problems, we transform our integrand slightly 
so that we are working with complex exponentials: � π � π1 

I(b) = e b cos(x) cos(b sin(x))dx = e b cos(x) cos(b sin(x))dx 
0 2 −π � 2π1 

= e b cos(x) cos(b sin(x))dx
2 0 

1 
� 2π 

beix


= e dx� 
2 0 

With the problem posed in this fashion, now we proceed as before: � 2π � 2π � �1 d 1 ∂ 
I �(b) = 

2 dx 0 
e beix 

dx =
2 0 ∂b 

e beix 

dx 

=
1 

� 2π 

ibebeix 

e ixdx =
1 
e beix ���2π 

2 0 2 � 
0 

= 0 
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Since our derivative is 0, we know that I(b) is a constant w.r.t. b. We thus conclude 
that  2π 

I(a) = I(0) = 
�

dx = π. 
0 

4. Conclusion 

In Section 2, we stated the key theorems related to Feynman integration with 
brief outlines of what would be involved in their proofs. In Section 3, we applied 
these theorems to evaluate some rather tough integrals that often don’t lend them
selves nicely to real techniques. In fact there are many, many more examples of 
famous integrals that most frequently solved by contour integration or perhaps even 
a basic series expansion coupled with the not-so-often-applied Beppo Levi Theorem. 
For the motivated reader, I’ve included a brief list of some other integrals that can 
be solved with creative parameterizations and a dose of differentiation under the 
integral: � � � � � 

x 2 2 
y

∞ 

e 
− 2 −y 

dx, 
∞ 1 − cos(xy) 

dx, 
∞ dx 

, 
0 0 x 0 (x2 + p)n+1 

∞ 
2 

∞ ∞ 

e−x dx, cos2(x)dx, sin2(x)dx, 
0 0 0 

∞ sin2(x) 
dx. 

x2(x2 + 1) 0 

Notice that the middle row contains the two Fresnel Integrals, a class of integrals 
almost never solved using real methods. And of course, for the sadist with a 
background in differential equations, I invite you to try your luck with the last 
integral of the group. 
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