
Problems in Mathematical Physics (autumn 2006)

1. Solve the differential equation cot(y) + x2 − x
sin2(y)

y′ = 0

2. Solve the differential equation 2x3y′ = 1 +
√

1 + 4x2y

3. Classify all singular points (finite and infinite) of the following differential

equations:

(a) y′′ = xy (Airy equation)

(b) x2y′′ + xy′ + (x2 − ν2)y = 0 (Bessel equation)

(c) xy′′ + (b− x)y′ − ay = 0 (Kummer’s confluent hypergeometric equation)

(d) y′′ + (h − 2θ cos(2x))y = 0 (Mathieu equation)

4. The Atomic Energy Commission in the US put nuclear waste in sealed contain-

ers and dumped them in the ocean. The containers do not break (on impact)

if they hit the sea floor with a speed that is less than 12 ms−1. Newton’s

second law and Archimedes’ principle yield the equation of motion

m
dv

dt
= W − B − kv, v(0) = 0

where W is the weight of the container, B its buoyancy, and −kv is water

resistance. Determine the maximum safe ocean depth for W = 2.3kN, B =

2.1kN, k = 0.6kgs−1.

5. Evaluate
∫ ∞
0 dy e−ay−e−by

y .

6. Evaluate
∫ ∞
0 dx cos αx

1+x2 .

7. Evaluate
∫

d3xx eia·xe−bx2

8. Evaluate
∫

dΩ r̂
1+k·r̂ for k < 1. The integral runs over the unit sphere in the r

space.

9. Evaluate

P(E) =

∫
d3xx e−β( 1

2kx2−qx·E)
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10. When a realistic electrostatic problem is approximated by one that involves

point charges on a (one dimensional) lattice, one often runs into trouble with

divergent integrals, e.g. the interaction energy of charges at positions xi and

xj , Vij = C/|xi − xj |, diverges for xj = xi. To overcome such problems the

integrals must be regularized in some way. One way to regularize them is to

smear out the point charges to smooth charge distributions around the lattice

points.

(a) Show that smearing in one dimension is not sufficient, that is, define

Vij =

∫
dx

∫
dx′ρi(x)ρj(x

′)
1

|x − x′|

with ρi(x) = qi

√
α
πe−α(x−xi)2 , and show that Vii still diverges.

(b) Now consider smearing in two dimension: set ρi(x) = qi
α
πe−α[(x−xi)2+y2]

and evaluate Vii.

Hint: write 1√
(x−xi)2+y2

as an auxiliary Gaussian integral over a dummy

variable s, and perform the x- and y-directional integrals using relative

and center-of-mass coordinates.

11. Evaluate
∫ ∞
−∞ dx δ′(x)f(x) where f(x) is a sufficiently well-behaved function.

What does ’sufficiently well-behaved’ mean in this case?

12. Try to evaluate
∫ ∞
−∞ dx δ(x2)f(x).

Hint: Consider a sequence of functions δn(x) such that δn(x) → δ(x) as n →

∞, and evaluate the integral as the limit limn→∞
∫ ∞
−∞ dx δn(x2)f(x). Check

your result for consistency using δ(1)
n (x) = n

π
1

n2x2+1 and δ(2)
n (x) =

√
n
πe−nx2

.

13. Show that δ(f(x)) = 1
|f ′(x0)|δ(x− x0) where x0 is a root of f and x is confined

to values close to x0. Hint: Make change of variables to y = f(x).

14. (Augustin-Louis Cauchy’s pathological function)

Consider the function f(x) =





e−

1
x2 , x %= 0

0, x = 0
where x ∈ R.

(a) Show that f(x) is continuous and differentiable at x = 0.
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(b) Expand f(x) as a Taylor series around x = 0,
∑∞

n=0 anxn.

(c) For which values of x is the sum of the series equal to f(x)? Explain!

15. MW 3-12

16. MW 3-16

17. Evaluate
∑∞

n=−∞
1

n3+a3 for a ∈ R.

18. Evaluate
∑∞

n=−∞
(−1)n

n4+a4 for a ∈ R.

19. In the analysis of 2-dimensional classical systems or 1-dimensional quantum

mechanical systems one often encounters so-called elliptic functions, which

are in some sense generalizations of trigonometric functions (they are analytic

except for finite number of poles in a period parallelogram) and possess two

periods τ1 and τ2 such that f(z + nτ1 + mτ2) = f(z) for n, m ∈ Z, and

τ1/τ2 /∈ R). One elliptic function (which is not really elliptic according to

the above definition but can be used to generate doubly periodic functions) is

called the Jacobi theta function of the third kind, and is defined through

ϑ3(u, q) =
∞∑

n=−∞
qn2

ei2nu

where 0 < q < 1 and u ∈ C.

(a) Find an approximate expression for ϑ3(u, q) valid for small q.

(b) Find an approximate expression for ϑ3(u, q) valid for large q (i.e., q <∼ 1).

20. Sum the series 1− 2 + 4− 8 + . . . using Euler and Borel summation and show

that the results agree.

21. Compute the (generalized) Borel sum S(x) =
∑∞

n=0(−1)n(2n)! xn.

22. MW 1-35

23. Consider the modified Bessel equation

x2y′′ + xy′ − (x2 + n2)y = 0
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and

a) determine all finite and infinite singular points (both regular and irregular)

b) determine the leading behaviors of the solutions y(x) for small x

c) determine the asymptotic behavior of the solutions for large x

d) comment on the analytic properties of the solutions near ordinary points,

regular singular points, and irregular singular points

24. Find the asymptotic behavior as x → 0+ of the solutions of x4y′′−3x2y′+2y =

0.

25. Find the asymptotic behavior as x → ∞ of the solution of y′′ = (ln x)2y, i.e.

find the terms in S(x) (y(x) = eS(x)) that do not vanish as x → ∞.

26. Using the method of dominant balance, find the leading behavior as x → ∞

of a solution of y′′ + x2y = sin x.

27. Consider the differential equation

x3f ′′(x) − xf ′(x) + (3 − 2x)f(x) − 3 = 0

with boundary condition f ′′′(0) = 36.

(a) Find a power series solution f(x) =
∑∞

n=0 anxn.

(b) What is the radius of convergence of your solution?

(c) Transform your sum to an integral using Borel summation technique —

when does the integral converge?

(d) Verify that the integral satisfies the differential equation in its domain of

convergence (OK to use Mathematica or some other symbolic manipula-

tion software).

28. Find a function for which the series
∑∞

n=0(−1)nxnΓ
(

n+1
p

)
is asymptotic as

x → 0+.

29. Evaluate
∫ ∞
0 dt ext−et

for x ( 1.
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30. Energy in a star is produced by nuclear reactions. The number of nuclear

collision with center of mass kinetic energy in the range from E to E + dE

is Ne−E/kBT E dE per unit time. The probability of a collision resulting in a

nuclear reaction is Me−α/
√

E where M and α are constants. Find an approxi-

mate expression for the total number of nuclear reactions per unit time in the

low-temperature regime kBT/α2 ) 1.

31. Use the method of stationary phase to find the leading behavior of
∫ 1
0 dt cos(xt4) tan(t) as x → +∞.

32. Evaluate the leading order behavior of the integral

∫ 1

−1

dt sinh(t) sin[x(t − sin(t)]

for large x.

33. Consider the integral I(g) = 1√
2π

∫ ∞
−∞ dx e−

1
2x2− g

4x4
.

(a) What is the saddle point approximation for I(g)?

(b) Expand the integrand as a power series of g and integrate the se-

ries termwise to get an expression for I(g) as a power series, I(g) =
∑∞

n=0 angn.

(c) What is the radius of convergence of the series? How do you see this

immediately from the definition of I(g)?

(d) For a fixed g, which term in the power series is smallest? Call the cor-

responding exponent N(g). Define I1(g) =
∑N(g)

n=0 angn. Using a com-

puter, plot the relative error (I1(g) − I(g))/I(g) (using some numerical

integration routine in Matlab or Mathematica for I(g)). Plot first for

g = 0.01 . . . 1, and then g = 0.001 . . . 0.01.

The series you obtained is an example of an asymptotic series which diverges

but is still useful. The most familiar asymptotic series is the Stirling for-

mula n! ≈
√

2πn
(

n
e

)n (
1 + 1

12n + 1
288n2 + . . .

)
which diverges for all n but is

nevertheless frequently used (you just need to know where to stop).
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34. Find the asymptotic expression for
∫ ∞

0

dt
sin t

t + z

valid for large z, i.e., express the integral as a power series in 1/z.

35. The total energy flux Φ emitted by a black body is given by

Φ = 2πc2!
(

kT

!c

)4 ∫ ∞

0

du
u3

eu − 1

In this problem we analyze the definite integral that appears in this expression.

(a) Show that ∫ ∞

0

du
u3

eu − 1
= 6

∞∑

n=1

1

n4

Hint: write the integrand as a series.

(b) Evaluate the above sum using residue calculus.

36. MW 6-1

37. MW 6-11

38. The Pauli spin matrices are given by

σ1 =



 0 1

1 0



 , σ2 =



 0 −i

i 0



 , σ3 =



 1 0

0 −1





(a) Show that all 2×2 matrices can be written as linear combinations of the

Pauli matrices and the unit matrix.

(b) Evaluate exp(ασj), j = 1, 2, 3.

(c) Evaluate exp(σ1 + σ2), and compare the result with exp(σ1) exp(σ2).

39. Try to solve X2 + AX + B = 0 where X is an unknown 2×2 matrix, and

(a) A =



 3 −
√

3
√

3 5



 and B =



 3
√

3

−
√

3 1



.

(b) A =



 3 −
√

3
√

3 5



 and B =



 3
√

3

−
√

3 0



.
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40. The definition of a determinant involves a sum over permutations with each

permutation weighted by the factor (−1)P where P is the parity of the permu-

tation (i.e., P tells if the permutation can be constrcucted by an even or odd

number of successive pairwise interchanges [transpositions]). A consequence

of this is that the sign of the determinant changes if two rows (or columns) of

the matrix are interchanged.

(a) Using this result, and power counting, evaluate (up to an overall sign)

the so-called Vandermonde determinant det(A) where Aij = xj
i .

(b) In quantum mechanics, the many particle wave function of a system of

N fermions is given by a Slater determinant, which is the determinant of

a matrix whose entries are ψj(ri). Here {ri}N
i=1 are the coordinates of the

fermions, and ψj(r) are the wavefunctions of the occupied one-particle

states (j = 1, . . . , N). In the quantum Hall effect (Nobel prizes in 1985

and 1998), electrons are confined to move in two dimensions, and the

single particle states are given by ψj(x, y) = Aj(x − iy)j−1 exp[−(x2 +

y2)/(4+2
B)] where (j − 1)! is the z-directional angular momentum (j =

1, . . .), Aj is a normalization constant, and +B is the magnetic length

(+B =
√

!
eB ). Evaluate the many-particle wave function Ψ(z1, . . . , zN)

that corresponds to the lowest z-directional angular momentum (here

zi = xi − iyi is a complex position coordinate).

41. The solution of y′′ +ω2y = g(x) for 0 ≤ x ≤ 2π, subject to periodic boundary

conditions, can be written as y(x) =
∫ 2π

0 dx′ G(x, x′)g(x′). Find the Green’s

function G in a closed form.

42. The static deflection u(x) of a thin x-directional beam follows the equation

EI
∂4u

∂x4
= −q(x)

where E is the Young’s modulus of the beam material and I is the areal

momentum of inertia for the beam cross section. Here q(x) is the load, i.e.

force per unit length. Assume that the beam cross section remains constant

for the length of the beam and is unaffected by the load. Write the beam
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deflection u(x) as an integral of the load function q(x) for a doubly clamped

beam with boundary conditions u(0) = u(L) = 0 and u′(0) = u′(L) = 0.

43. Find a solution to the inhomogeneous Euler equation

t2y′′(t) + ty′(t) + a2y(t) = F (t),

valid for t ≥ 1 and satisfying the boundary conditions y(1) = y0 and y′(1) = v0,

where a is a real parameter and F (t) vanishes for t < 1 but is otherwise

arbitrary. Hint: it may be useful to write t = es.

44. MW 9-8

45. MW 9-9

46. The Schrödinger equation for a particle in potential V (r) can be written as

[H0 + V (r) − Eα]ψα(r) = 0

where H0 is the Hamiltonian for the free particle (or a Hamiltonian with a

simpler potential than V ). Show that this differential equation can be alter-

natively written as an integral equation

ψα(r) = ψ(0)
α (r) +

∫
ddr′ G0(Eα; r, r′)V (r′)ψα(r′)

where G0(Eα; r, r′) is the Green’s function of the simpler equation [H0 −

Eα]ψ(0)
α (r) = 0 and ψ(0)

α (r) is a solution of the simpler equation. This integral

equation, known as the Lippmann-Schwinger equation, is often useful in de-

scribing various scattering problems. N.B.: the sign of the term on the right

hand side depends on whether how you exactly define the Green’s function.

47. Consider the integral equation

f(x) = x2 + λ

∫ 1

−1

dy (1 + xy)f(y)

and solve it using

a) Neumann series — for which λ do you obtain a solution?

b) the theory for degenerate kernels — for which λ do you now obtain a

solution?

c) the Schmidt-Hilbert theory
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48. Find the eigenvalues λn and eigenfunctions yn(x) of y′′(x)+ ε sin(πx/L)y(x) =

λy(x), 0 ≤ x ≤ L, y(0) = y(L) = 0, to lowest order in ε.

49. Solve the integral equation

f(x) = x3 + λ

∫ π

−π

dy cos2

(
x − y

4

)
f(y).

For which values of λ does a solution exist?

50. MW 10-6

51. MW 10-7

52. MW 10-8

53. MW 10-9

54. Consider the Schrödinger equation for a particle in a box, −ψ′′(x) +

V0(x)ψ(x) = Eψ(x) where V0(x) = 0 for |x| < L/2 and V (x) = +∞ oth-

erwise.

(a) Determine the energy eigenvalues En and the corresponding eigenstates

ψn(x).

(b) Consider now a perturbation V1(x) = V1 cosh(αx), and determine the

energy eigenvalues and eigenstates for the potential V (x) = V0(x)+V1(x)

to linear order in V1.

(c) When do you expect the linear approximation to be accurate?

55. High frequency electromagnetic signals are often transmitted in so-called wave

guides, hollow metallic tubes. The signals that can be transmitted through

a wave guide can be divided into transverse magnetic (TM) and transverse

electric (TE) waves, the former satisfying Bz = 0 everywhere and Ez = 0

on the surface of the conductor, and the latter satisfying Ez = 0 everywhere

and ∇Bz · n̂ = 0 on the surface of the conductor (the wave guide runs in the

z-direction). In this problem we only consider transverse magnetic waves of

the form E = Ezẑ + Et where the transverse component can be written as
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Et = ± ik
γ2∇tψ(x, y) (∇t = x̂ ∂

∂x + ŷ ∂
∂y ). The longitudinal component is given

by Ez = e±ikzψ, and the function ψ satisfies the eigenvalue equation

∇2
tψ + γ2ψ = 0, ψ(x, y) = 0 for x, y on the surface.

The frequency ω of the mode is related to the wave vector k and the eigenvalue

γ by γ2 = µεω2

c2 − k2 where µ and ε are material parameters and c is the speed

of light.

(a) Find the frequencies ω(k) for TM waves in a wave guide with rectangular

cross section −a/2 < x < a/2, −b/2 < y < b/2. What is the lowest

frequency that can be transmitted through the wave guide (so-called

cutoff frequency)? Assume that a/b is not a rational number so that

there are no degeneracies to worry about.

(b) If the walls of the wave guide are not perfect conductors, the boundary

condition for TM becomes Ez = f∇Ez · n̂ where f is proportional to the

surface impedance of the walls. Find the perturbed frequencies ω to first

order in f .

56. Damped harmonic oscillator

(a) Find the Green’s function for the damped harmonic oscillator (m∂2
t +

2mQ−1Ω∂t + mΩ2)G(t, t′) = δ(t − t′) in the overdamped (Q < 1) and

underdamped (Q > 1) cases.

(b) Using the Green’s function, obtain the solution of the driven oscillator

with driving force F (t), and show that the solution at time t only depends

on the driving force at earlier times.

(c) Consider now a modified oscillator with an additional term mτ∂3
t x(t),

and show that such a term is not compatible with causality for Q → ∞.

A model of this type was, e.g., put forth by Abraham and Lorenz in 1903

to describe the energy loss of an accelerating charge due to radiation; the

model predicts that the accelaration of a charge at time t depends on the

electric field not only at times before t but also up to time τ ≈ 10−23s
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after t, i.e. the particle anticipates that soon a field will be turned on!

The resolution of the problem was provided by quantum mechanics.

57. Find leading order uniform asymptotic approximation to the solution of

εy′′ + (cosh x)y′ − y = 0, y(0) = y(1) = 1, 0 ≤ x ≤ 1

58. Particles in a gravitational potential.

(a) Show that the WKB approximation for the eigenvalues of −ε2y′′+[V (x)−

E]y = 0, y(0) = y(+∞) = 0, where V (x) increases monotonically and

V (0) = 0, is given by (1/ε)
∫ x0

0

√
E − V (x) dx = (n− 1

4)π+O(ε), ε → 0+,

where V (x0) = E.

(b) Find an approximation of eigenvalues of a Schrödinger equation for a

particle in a vertical container subject to the (gravitational) potential

V (x) = mgx for x > 0 and V (x) = +∞ for x < 0 that is valid for large

energies.

59. Consider the eigenvalue problem y′′ + E cos(x)y = 0, y(±π) = 0. Find an

approximation to E valid for large E using the WKB method.

60. Consider the nonlinear van der Pol oscillator y′′(t)+ω2
0y(t)−ε(1−y2(t))y′(t) =

0. For arbitrary initial conditions the solution of this equation approaches a

limit cycle. Find the approach to this limit cycle using multiple scale pertur-

bation theory.

61. Solve the integral equation

f(x) = x + λ

∫ 1

−1

dy (y − x)f(y)

(a) Using the method of separable kernels

(b) Using the Neumann series. When does the Neumann series converge?

62. Min(x, y) is the smaller of x and y.
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(a) Find the eigenvalues and eigenfunctions that satisfy

∫ 1

0

dy Min(x, y)f(y) = kf(x)

Hint: use the equation and its derivative to obtain boundary conditions

for f(x), and use the second derivative to obtain a differential equation

for f(x).

(b) Add a term g(x) to the left hand side of the above equation, and examine

if a simple iteration will converge (note that |〈u|K|u〉| ≤ |κ|〈u|u〉 where

κ is the largest eigenvalue of K).

(c) What is the Hilbert series for the solution of the inhomogeneous equation?

Note that the series could be summed using the methods we discussed

earlier in the course, however, the procedure is rather laborious and you

need not do it.

63. (a) For which values of λ does the equation

f(x) = φ(x) + λ

∫ 1

0

dy (1 − 3xy)f(y)

have a solution for a general φ(x)? Find the solution!

(b) For the remaining values of λ (i.e., those that do not have a solution for

a general φ(x)), what conditions must φ(x) satisfy in order for a solution

f(x) to exist? Find the solutions!

64. Solve the integral equation

f(x) = x + λ

∫ π

0

dy (x cos(y) + x2 cos(2y))f(y)

65. Euler-Lagrange equations:

(a) Find the function u(x) that minimizes the functional

Iπ[u] =

∫ π

0

dx
[
(u′(x))2 − (u(x))2

]

and satisfies the boundary conditions u(0) = u(π) = 0.
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(b) Derive and solve the Euler-Lagrange equation for the minimization prob-

lem

I2π[u] =

∫ 2π

0

dx
[
(u′(x))2 − (u(x))2

]

where u(0) = u(2π) = 0.

(c) Evaluate I2π[sin(x/2)]. Comments?

66. Consider a uniform beam with Young’s modulus E and moment of inertia I.

The beam is attached at points x = 0 and x = L so that y(0) = y(L) = 0.

Use Hamilton’s principle to derive the equation of motion for small transverse

oscillations in the x− y plane. Hint: the potential energy of the beam due to

bending is V = 1
2

∫ L
0 dxEI[y′′(x)]2.

67. Buckling of a rod. The potential energy of a rod of length L is given by

U =
∫ L

0 dx [(u′′)2 − P (u′)2] where u(x) is the transverse displacement, u(0) =

u(L) = 0 and P is the force applied to the ends of the rod. For small P the

potential energy is minimized for a straight rod u(x) = 0 but for a large force

the rod buckles, that is, bends. Regard this as a variational problem, derive

the appropriate Euler-Lagrange equation, and determine the critical force P .

Hint: Note that for a straight rod U = 0 whereas for a buckled rod U < 0,

and therefore the largest value of P such that the minimum of U is zero can

be related to minimizing
∫ L
0 dx (u′′)2 while keeping

∫ L
0 dx (u′)2 fixed.

68. Consider a cylinder with radius R with straight vertical walls and a horizontal

flat bottom. The cylinder is filled with a fluid with volume V and density ρ.

Determine the shape of the fluid surface when the fluid rotates with angular

velocity ω. Hint: minimize the potential energy in the rotating coordinate

system where the particles experience a centrifugal force F = mω2r2r̂.

69. Consider the following problem:

(a) Derive the condition that the function φ(x, y, z) must satisfy in order for

the integral

I[φ] =

∫ ∫ ∫

V

L(φ,∇φ, x, y, z)dxdydz
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to have an extremum. Here V is a simply connected three-dimensional

region and L(φ,∇φ, x, y, z) and arbitrary continuous function of its ar-

guments.

(b) In electrostatics the energy of the electric field E(x, y, z) is given by

W =

∫ ∫ ∫

V

E2(x, y, z)dxdydz.

Write E = −∇φ and show that φ must satisfy the Laplace equation

∇2φ = 0.

70. Consider the following problem:

Use a rope of length 100m to enclose a piece of land in such a way that the

value of the enclosed land is maximized. Both ends of the rope must attach to

an (immovable, point-like) apple tree. The land that is no more than twenty

meters north of the tree costs one thousand krona per square meter and land

that is more than twenty meters north of the tree costs two thousand krona

per square meter. What is the optimal shape of the perimeter of the enclosed

land, and what is the maximal value of the land enclosed by the rope?

In other words, if the apple tree is in the origin, and the x-coordinate points

to the north, the land value is 1000 SEK/m2 for x < 20m and 2000 SEK/m2

for x ≥ 20m. You can neglect the curvature of the Earth.

Some of the equations determining the shape of the optimal perimeter may

need to be solved numerically. The same applies to evaluating the integral

that yields the total value of the land.

71. Global metro. Consider an underground transportation system consisting of

motorless trains running in thin tunnels connecting pairs of cities to each other.

The train cars move under the influence of gravity through the frictionless

tunnels. Determine the shape of the tunnel that allows fastest transportation

between cities A and B located such that the angle AOB, where O is the

center of the Earth, is Θ. Regard the Earth as a solid sphere with a constant

density. What would be the transport time between Göteborg and Stockholm?

Göteborg and Los Angeles?
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Hints: (i) find speed as a function of depth, write dt = ds/v and write ds in

terms of dθ; (ii) derive Euler-Lagrange equation for r(θ) and note that it can

be integrated once with relative ease; (iii) note that at the deepest point of the

trajectory r′(θ) = 0, which allows you to determine the optimal path r(θ) or

θ(r) in terms of the deepest trajectory depth r0; (iv) substitute the trajectory

to the integral that yields the travelling time T and obtain T as a function of

r0; (v) by solving r(±Θ/2) = R, or θ(R) = ±Θ/2, obtain r0 in terms of Θ;

(vi) look up Θ for the two trips and obtain the travelling times. Hint: If you

solve this proble as most people, you will encounter an integral that contains a

square root of an expression involving r2, R2 and r2
0, which cannot be found in

Beta. If you make a variable substitution and introduce a new variable ζ that

equals the expression inside the square root, you can simplify the integrand

to
√
ζP (ζ) where P (ζ) is a rational function. Dividing P (ζ) into two partial

fractions yields integrals that can be evaluated by elementary means.

72. Superconductor below Tc. In the lecture we discussed a superconductor above

the transition temperature when a > 0. Below the transition temperature

a < 0 and the Landau-Ginzburg free energy must contain an additional term

for stability, βFLG[ψ] =
∫
dx

[
1
2K|∇ψ|2 + 1

2a|ψ|
2 + 1

4b|ψ|
4
]

where b > 0.

• Determine the mean field value of the order parameter ψ0(x) that mini-

mizes βFLG. Note that having ∇ψ %= 0 always increases free energy, and

thererefore ψ0 is a constant independent of x. The phase of ψ0 is not

determined by this procedure, so for concreteness choose ψ0 to be real

and positive.

• Write ψ(x) = ψ0 + δψ(x) and expand βFLG[ψ] to second order in δψ.

• Express ψ in terms of its Fourier transform ψk and obtain βFLG in terms

of ψk

• Calculate now 〈Re(δψ(x))Re(δψ(x′))〉 and 〈Im(δψ(x))Im(δψ(x′))〉 using

path integrals. Which fluctuates more, the real or imaginary part of ψ?

In this case when ψ0 is real, fluctuations of the imaginary part corre-

spond transverse fluctuations while the fluctuations of the real part are
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longitudinal fluctuations.

• Show that the long wavelength transverse fluctuations diverge if d ≤ 2,

which implies that two-dimensional and one-dimensional systems with

continuous order parameters cannot have ordered phases, a result known

as the (Coleman-) Mermin-Wagner theorem.
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Problem selection:

Problem set 1 5, 8

Problem set 2 18, 24, 27

Problem set 3 25, 30, 32

Problem set 4 42, 56

Problem set 5 47, 57, 58

Problem set 6 68, 71

Maximum points for home problems:

2 points: 5, 8

3 points: 27, 47

4 points: 18, 24, 25, 30, 42, 57, 68

5 points: 32, 56

6 points: 58, 71

Total 60 points.
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