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Abstract. – We present the exact Bethe ansatz solution of a multichannel model of one-
dimensional correlated electrons coupled antiferromagnetically to a magnetic impurity of ar-
bitrary spin S. The solution reveals that interactions in the bulk make the magnetic impurity
drive both spin and charge fluctuations, producing a mixed valence nimp 6= 0 at the impurity
site, with an associated effective spin Seff = S + |nimp|/2 in the presence of a magnetic field.
The screening of the impurity is controlled by the size of the impurity spin independently of the
number of channels, in contrast to the multichannel Kondo effect for free electrons.

Introduction. – Impurities play an essential role in correlated electron systems, in particular
in 1D where even a small amount of defects may drastically change the properties of the system.
While the effect of a single potential scatterer is by now fairly well understood [1], the case of
a dynamical scatterer in a 1D interacting electron system —like a magnetic impurity— largely
remains an open problem [2].

Of particular interest is to understand what happens when the electrons are coupled to a
local magnetic moment (of magnitude S) in several degenerate channels m. In the case of
a 3D Fermi liquid, the impurity induces strong correlations among the electrons, with the
low-temperature physics depending on the relation between the impurity spin and the number
of electron channels [3]-[7]. It is natural to ask whether the correlations inherent in a 1D
electron system (Luttinger liquid, [8]) will modify this behavior. Does novel effects appear, or
does one recover the same multichannel Kondo physics as for free electrons in 3D? Apart from
the possible experimental relevance of these questions to the study of artificial impurities in
mesoscopic devices [9], their resolution is an interesting issue in its own right. A study is also
motivated by the recent interest in the Kondo effect in the high-Tc cuprates [10]: it is well
known that at least two orbitals, 3dx2−y2 and 3dz2 , play an essential role there, so the Kondo
effect should have multichannel nature. An analysis of the simpler, analogous problem in 1D
—with correlated electrons— may provide important clues for how to model the effect in the
cuprates.

In this letter we attack the problem by considering an integrable model of a magnetic
impurity embedded into a multichannel interacting electron system. We here take a multi-
channel extension of the supersymmetric t-J model in 1D [11], with the electrons coupled to
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a localized spin (of magnitude S) by an antiferromagnetic exchange interaction that preserves
integrability. This makes a Bethe ansatz approach applicable, allowing us to obtain exact
results for the ground-state properties as well as the finite-temperature behavior. Our solution
reveals that there are two distinct processes that govern the zero-temperature response due to
the impurity: First, the singlet Cooper-like pairs of electrons present in the ground state break
up and get temporarily trapped when scattering off the impurity, thus producing an impurity
valence nimp 6= 0 with an associated effective impurity spin Seff = S+|nimp|/2 in the presence of
a magnetic field H. Secondly, this effective composite spin gets screened by unbound electrons
excited by H from the spin singlet ground state. The type of low-temperature behavior that
emerges depends only on the size of the bare impurity spin S, and is insensitive to the number
of channels. This property is different from that of the ordinary multichannel Kondo effect in
a Fermi liquid.

The model. – The Hamiltonian Hhost of the multichannel extension of the supersymmetric
t-J model can be written as Hhost ≡

∑
j Hj,j+1, with

Hj,j+1 = −P(c†j,σ,fcj+1,σ,f + h.c)P − c†j,σ,fcj,σ,f ′c
†
j+1,σ′,f ′cj+1,σ′,f +

+ c†j,σ,fcj,σ′,fc
†
j+1,σ′,f ′cj+1,σ,f ′ . (1)

Here j = 1, . . . , L is a site index, σ = ± denotes the spin projection, f = 1, . . . ,m is a
flavor quantum number indexing the available electron channels, and P is a projector on the
subspace of singly occupied states. All indices are summed over. The scattering matrix for
two electrons is given by X̂(pi − pj) = [(pi − pj)Î + iP̂ s] ⊗ [(pi − pj)Î − iP̂ f/[(pi − pj)2 + 1]

with pi,j the corresponding charge rapidities, and P̂ s and P̂ f the permutation operators in

spin and flavor subspace, respectively. The X̂-matrices satisfy the Yang-Baxter equation
X̂12(p1−p2)X̂

13(p1−p3)X̂
23(p2−p3) = X̂23(p2−p3)X̂

13(p1−p3)X̂
12(p1−p2), thus ensuring

the integrability of the model.
We now insert an additional site on the lattice, call it 0, attach a magnetic impurity to it,

and couple it to the electrons on neighboring sites (sites 1 and L, given periodic boundary
conditions). To preserve integrability this interaction must be judiciously chosen. We here
follow the strategy pioneered in [12] and define the impurity-host interaction via an electron-

impurity S-matrix Ŝ that satisfies the Yang-Baxter equation X̂12(p1−p2)Ŝ
10(p1−p0)Ŝ

20(p2−

p0) = Ŝ20(p2−p0)Ŝ
10(p1−p0)X̂

12(p1−p2), with p0 measuring the impurity energy level. This
approach assures that the model remains integrable in the presence of the impurity. The
Ŝ-matrix can still be chosen in a number of ways [13], and here we take it to be similar to that
of the multichannel Kondo problem in a free electron gas [7] and let it act nontrivially only in
the spin subspace. Writing out the components,

Ŝαα
′

MM ′(p) = a(p)
(p+ i/2)δαα′δMM ′ + iσkαα′S

k
MM ′

p+ i
, (2)

with σk the Pauli matrices (k=x, y, z), Sk the impurity spin matrices, |M | ≤ S the component
of the impurity spin S (with unprimed/primed indices referring to incoming/outgoing states),
and a(p) ≡ [(p2 +1)/(p2 +(S+1/2)2)]1/2. The corresponding impurity Hamiltonian Himp can
be written in the form

Himp = J (HL,0 +H0,1 + {HL,0,H0,1}) +

(
1− 3S(S + 1)J −

J

4

)
HL,1 +

+ 2p0J [(HL,0 +H0,1),HL,1] . (3)

Here H0,1 and HL,0 are generalized permutation operators of a particle with spin S but no
flavor (impurity) and an electron (carrying both spin and flavor), while HL,1 is defined in
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eq. (1). The function J = [p2
0 + (S + 1

2 )2]−1 plays the role of an effective exchange constant
between the impurity site and neighboring sites. We should mention that the structure of
Himp for the periodic chain in (3) simplifies considerably when the impurity is located at
the edge of an open chain, with the impurity connected to the host via only one link, with
coupling constant J . It is here worth pointing out that the low-energy behavior of impurities
in integrable open and periodic chains of correlated electrons is qualitatively the same, as was
shown recently in [14]. We should also point out that our approach is different from that
recently advocated by Wang and Voit in their study of the ferromagnetic Kondo effect in a
Luttinger liquid, where the impurity is simulated by a boundary potential [15]. In contrast,
in our formulation the full dynamics of the impurity is retained.

Bethe ansatz equations. – The model thus constructed can be diagonalized exactly by
an algebraic Bethe ansatz [16]. The procedure is rather cumbersome, and we here only give
the result. The eigenstates are characterized by m+ 2 sets of quantum numbers: the charge
rapidities {pj}Nj=1 (with N the total number of electrons), the spin rapidities {λα}Mα=1 (M

counting the number of spin-down electrons), and the m sets of flavor rapidities {µβ}m
(i)

β=1 , i =

1, 2, ...,m (with m(i) =
∑m
k=i+1 n

(k), n(k) counting the number of electrons in channel k, k =
1, 2, ...,m). Each state corresponds to a particular solution of the nested Bethe ansatz equations

∏
τ=±

m(k+τ)∏
β=1

e1(µ
(k)
α − µ

(k+τ)
β ) =

m(k)∏
γ=1

e2(µ
(k)
α − µ

(k)
γ ) ,

[e2S+1(pj − p0)e2(p0 − pj)]
1/2eL1 (pj) =

M∏
α=1

e1(pj − λα)
m(1)∏
β=1

e1(µ
(1)
β − pj) ,

e2S(λα − p0)
N∏
j=1

e1(λα − pj) =
M∏
β=1

e2(λα − λβ) ,

(4)

where en(x) ≡ (2x + in)/(2x− in), µ
(0)
j = pj , m

(0) = N , m(m+1) = 0, and L is the number
of lattice sites (not counting the impurity site). We shall assume that no external fields
couple to the electron channels, and can hence confine our attention to the flavor-singlet
subspace. The energy (up to an additive constant) and the magnetic moment are then equal

to E =
∑N
j (p2

j + (1/4))−1 and Sz = N/2 + S −M , respectively.
The thermodynamics of the model is described by the usual string hypothesis [17]. In the

thermodynamic limit, with L,N,M,m(j) → ∞, their ratios being fixed, the model has the
following possible excitations: i) unbound electrons with charge rapidities pj; ii) spin singlet
Cooper-like pairs with pj = λj ± i/2; iii) spin strings (bound states of any number of “down
spins”); and iv) flavor strings for each channel. (Since the host interactions in (1) carry opposite
signs in spin- and flavor subspaces, bound states of different channels as well as bound states
of electrons and spin strings are suppressed.) Introducing distribution functions (densities)
for particles and holes for each class of excitations we can write down the corresponding
thermodynamic Bethe ansatz equations. Then, by minimizing the free energy, we extract the
integral equations for each excitation class. These equations have the same structure as those
of the multichannel Kondo problem for free electrons [19], and differ only in the driving terms
(which are independent of energy and density). This implies that in the high-temperature
limit, where the driving terms are unimportant, the effect of our impurity is similar to that of
a Kondo impurity in a multichannel free electron gas.

Ground-state properties. – Let us focus instead on the ground-state properties of the
impurity, and study how it depends on the host band filling and an applied magnetic field.
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In the zero-temperature limit, T → 0, only excitations of classes i), ii), and iv) (for unbound
flavorons and pairs of them, i.e. flavor strings of length 1 and 2 for each channel) can have
negative energies. Thus, the filling of these states is determined by the Dirac seas of the
ground state of the model. In the singlet flavor sector we can solve the equations for densities
and energies of the flavorons as functions of the densities and energies of unbound electrons
and singlet spin-charge pairs. As a result, we obtain the ground-state equations for unbound
electrons and pairs:

ρh(p)+(1−a1?s1)?(ρ(p)+a1?σ(λ))=a1(p)+
1

2L
[a2S+1−a2](p−p0) ,

σh(λ) + (1 + a2) ? (1− a1 ? s1) ? (σ(λ)+s?ρ(p))=a2(λ) +

+
1

2L
[a2S+2−a2S−a3−a1](λ−p0) ,

(5)

where ? denotes convolution, ρ(ρh) and σ(σh) are densities for unbound electrons and pairs,
respectively. The integration intervals are given by |p| > B and |λ| > Q, with Q and B
playing the role of Fermi points for unbound electrons and pairs, respectively. The Fourier
transforms of the kernels an, s and s1 are given by exp[−n|ω|/2], cosh−1 /2ω, and sinh[(m −
1)|ω|/2]/ sinh(m|ω|/2), respectively. Equations (5) are linear in the densities, and the driving
terms of the host and the impurity are additive. Separating the densities into bulk and
impurity parts then allows us to calculate the valence and the magnetization of the impurity
in the ground state. In the absence of an external magnetic field we have B =∞ (no unbound
electrons). The limit Q→∞ corresponds to a vanishing pair density, while Q→ 0 is the limit
of 1/2m-filled bands of the host (no pair holes, corresponding to a vanishing Fermi velocity).
For the nonmagnetic ground state it follows that the effective valence of the impurity varies
as a function of electron number from nimp = 0 for vanishing pair density to nimp = −m for
1/2m-filled bands, with the valence measured with respect to the ground state of spin-paired
electrons (i.e. its negative sign indicates an excess of pair holes due to the presence of the
impurity). This unusual behavior is caused by the host interaction in (1) which supports a
ground state with a Dirac sea of bound singlet Cooper-like electron pairs, not present in the
free electron gas.

Of special interest is the behavior of the impurity magnetization Szimp. With no magnetiza-
tion in the bulk, we have Szimp = S. By turning on a magnetic field, the number of unbound
electrons increases while the number of singlet pairs decreases (as required by electron number
conservation). By eliminating the pair density σ(λ) from the second equation in (5), we obtain
the Fredholm equation

ρh(p)+ρ(p)−F ? ρ = s ? σh+s(p)+ 1
2Ls ? a2S(p− p0) , (6)

where F (ω) = 1−tanh(|ω|/2)[1−exp [−m|ω|]]−1, and the integration over the pair hole density
is over the finite interval [−Q,Q]. This yields an explicit connection between the densities of
unbound particles (electrons or holes) and spin singlet pair holes. As the Zeeman splitting
is typically much smaller than the Fermi energy, we can neglect the influence of the pairs on
the impurity magnetization as long as the magnetic field is sufficiently weak. For this case
(H � 1), choosing Q = 0 (i.e. 1/2m-filled bands) and assuming that |p0| � B, we can solve
eq. (6) exactly by reducing it to a sequence of coupled Wiener-Hopf integral equations. In this
way we obtain two distinct regimes for the behavior of Szimp with magnetic field. If S > 1/2
the impurity spin becomes asymptotically free:

Szimp = µ
[
1± m

2 (| log(H/TH)|)−1 + . . .
]
, S >

1

2
, (7)
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with TH = 2π(m2e)
m/2TK/Γ (m2 ), and TK ∝ exp[−πp0] playing the role of the Kondo tempera-

ture. When H � TH , µ = S, and the upper sign in (7) gets selected. On the other hand, with
TH � H � 1, µ = S +m/2 and the lower sign in (7) is selected. Note that for this case H
is still much smaller than the spin saturation field in the bulk (corresponding to a transition
to a ferromagnetic bulk state). Also note that the underscreened behavior in (7) for H � TH
appears only for m < 2S in a free electron gas [7], in contrast to the correlated host studied
here. For the exactly screened case S = 1/2,

Szimp ∼
mH

2πTK
, S =

1

2
, (8)

producing a finite zero-field magnetic susceptibility. Again, this is different from a free electron
host where this behavior sets in for m = 2S. Most importantly, the case of overscreening
(m > 2S for a free host, with critical scaling of the impurity magnetization) does not exist
in this interacting electron system. Thus, electron correlations in the host due to direct
electron-electron interaction here suppresses the critical overscreened behavior of a Kondo-like
impurity, similar to what happens in the presence of a channel anisotropy for free electrons [18].
It is important to realize that by increasing the magnetic field we deplete the number of singlet
pairs. Therefore, as we have already seen, by varying the field we can smoothly tune the
effective impurity valence nimp from −m to 0. In the underscreened case this means that the
uncompensated part of the effective impurity spin Seff = S+ |nimp|/2 decreases with increasing
field, and recovers its zero-field value S at the spin-saturation field.

Low-temperature thermodynamics. – We now turn to the low-temperature thermodynamics.
As we have already mentioned, the thermodynamic Bethe ansatz equations differ from those
for the free electron gas multichannel Kondo problem only in the driving terms, and we can
hence use an analysis similar to that in [4], [19]. The main idea is to rewrite the T → 0
thermodynamic Bethe ansatz equations for all excitations on universal form. This can be
realized in the “Kondo limit” (with suppressed charge fluctuations), yielding for the universal
energy potentials φj [19]

φj(λ) = s ? log(1 + eφj−1)(1 + eφj+1)− δj,me
πλ , (9)

with limj→∞(φj/j) = H/T . It follows that in this limit the impurity low-temperature free
energy can be written as a function of φm:

Fimp = −T

∫ ∞
−∞

dλa2S(λ) log(1 + eφm)

2 cosh[πλ+ log(T/TK)]
. (10)

The qualitative behavior of Fimp is independent of the relative values of m and S, in analogy
with the ground-state properties. In the underscreened case S > 1/2, the impurity magnetic
susceptibility χimp shows Curie-like temperature dependence while the specific heat Cimp

exhibits a Schottky anomaly at T ∼ H and a Kondo resonance. For the exactly screened
case S = 1/2 local Fermi liquid behavior holds: χimp ≈ m/2πTK, Cimp ≈ πmT/(m+ 2)TK.

Discussion. – To conclude, we have found an exact Bethe ansatz solution of the problem of
a Kondo-like antiferromagnetic impurity embedded into the multichannel supersymmetric t-J
model. Our solution reveals that there are two mechanisms governing the magnetic behavior
of the impurity: holes in the distribution of Cooper-like pairs increase the effective spin of
the impurity, while unbound electrons screen this effective value. Note that for the t-J model
there is no spin gap, so the unbound electrons and Cooper-like pairs coexist even for small
external magnetic fields. In contrast to the multichannel Kondo effect in a Fermi liquid,
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the screening with unbound electrons is realized in only two different ways independent of the
number of channels, and controlled only by the value of the bare impurity spin: underscreening,
with an asymptotically free effective impurity spin, and exact screening with a finite magnetic
susceptibility of the impurity. Overscreened critical behavior is absent for this correlated
electron model. As required by integrability, our model supports only forward scattering of
the electrons off the impurity, and hence does not produce localization of the electrons. In
contrast, more realistic 1D magnetic impurity models must contain also back-scattering terms
which are expected to renormalize to an effective boundary potential, in addition to producing
an impurity thermal response sensitive to the electron-electron interaction [20]. Yet, our model
dramatically shows how correlations in the bulk make the magnetic impurity drive both spin
and charge fluctuations. This property is expected to be generic and our exact solution provides
a detailed picture of its possible realization.
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