PHYSICAL REVIEW B VOLUME 53, NUMBER 6 1 FEBRUARY 1996-II

Magnetic impurity in a Luttinger liquid: A conformal field theory approach
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We study the low-temperature properties of a sbimagnetic impurity coupled to a one-dimensional
interacting electron system. Using a formalism by Affleck and Ludwig, with a scale invariant boundary
condition replacing the impurity, we exploit boundary conformal field theory to deduce the impurity thermal
and magnetic response. In the case of only forward electron scattering off the impurity, we predict the same
critical scaling as for the two-channel Kondo effect for noninteracting electrons, but with a different Wilson
ratio. Backward electron scattering off the impurity destabilizes this behavior and drives the system to a new
fixed point. In the case of equal amplitudes for forward and backward scat{&amglo interaction)we show
that there are only two types of scaling behaviors consistent with the symmetries of the preitiema local
Fermi liquid or a critical theory with an anomalous specific heat. The latter case agrees with a recent poor-
man’s scaling result proposed by Furusaki and Nagaosa.

I. INTRODUCTION new perspective on these intriguing connections.
Quantum many-particle systems sometimes exhibit a More importantly, one is faced here with an archetype
growth of an effective coupling at low energies, resulting inproblem of describing the interplay between direct fermion

2 nonperturbative around state. The mavbe simolest exam orrelations(from interaction and statistit@nd correlations
P grot ' yoe simp Pifduced via a coupling to a local quantum mechanical degree
of this phenomenon is the Kondo effécgrising from the

. . . o . of freedom. As is well known, the notion of free quasiparti-
exchange interaction between a spin-1/2 magnetic 'mpu”t\/:les(Iow-temperature Fermi liquidpreaks down in one di-

and a gas of free quasiparticl€slressed electrons'in an  mension: any arbitrarily small electron-electron interaction
s-wave band. As the temperature is decreased, the systefnes out the single-particle poles of the electron propagator,
crosses over from weak electron-impurity coupling to strongeaving behind only collective charge- and spin-density ex-
coupling, with a complete screening of the impurity spin atcitations. In the limit of weak electron-electron interaction,
T=0. The resulting ground state is of Fermi liquid type, with these excitations are well described by a system of noninter-
the single quasiparticle wave functions acquiring a phasecting spin-charge separated bosonic modksttinger
shift (“one-channel Kondo effect/.? The picture changes liquid).’*!* By adding a localized magnetic impurity, one
when electrons in degenerate orbital bands are allowed toonfronts the problem of how to incorporate its coupling to
interact with the impurity, and the ground state is now de-single electronsn the description of the bosonic collective
scribed by a non-Fermi liquid fixed poirtmultichannel  degrees of freedom.
Kondo effect”).? A first attack on the problem was launched by Lee and
What is the corresponding scenario foriateracting one- ~ Toner'? employing Abelian bosonization followed by a per-
dimensional electron systeroupled to a magnetic impurity? turbative scaling analysis of a resulting “kink-gas” action.
The question may soon become of experimental relevancéor the case of a spin-1/2 impurity, and with the electron gas
considering the rapid progress in the fabrication and study oway from half-filling, it was found that the Kondo tempera-
very narrow conduction channeléquantum wires”), ob-  ture Ty (setting the scale for the weak-to-strong coupling
tained, for example, by gating two-dimensiof2D) electron  crossover depends on the bare Kondo coupling in a
gases in GaAs inversion layet#\ possible laboratory real- power-law fashion T~ (A« 70)?”. Here 7, is a short-time
ization would be a single conduction channel with a trappedutoff, and » is the exponent characterizing the equal-time
atom containing two(or several spin levels.(The related spin-spin correlation in a Luttinger liquid. For temperatures
problem of tunneling through potential barriers in 1D T<Ty, the physics is controlled by some strong-coupling
correlated systems is already being addressed bfixed point — as in the ordinary Kondo problem — not
experimentalists, following the pioneering work of Kane directly accessible via this kind of analysis. In a recent work,
and Fishef) The question is also interesting considering re-Furusaki and Nagaokaderived a set of improved scaling
cent work on exotic superconductivity, where the analogue t@quations in the weak-coupling regime, preserving the spin
the multichannel Kondo effect has been exploite@ther ~ SU(2) symmetry of the problem. By tentatively extending
realizations of Kondo physics that have been proposed inthese equations to the strong-coupling regime, Furusaki and
clude two-level tunneling in metallic glassésind certain  Nagaosa conjectured that the fixed-point Hamiltonian con-
heavy-fermion materials Treating the effect of a magnetic sists of two semi-infinite Luttinger liquids and a completely
impurity in the presence of interacting electrons may offer ascreened impurity (decoupled spin singlet The low-
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temperature impurity contributions to the specific heat angproblems by Affleck and Ludwidf=2°The basic idea of this
magnetic susceptibility were calculated @,,~ T "1 method is to replace the impurity byseundary conditionin
andXimp~T°, respectively, withK , the usual Luttinger lig-  the spirit of Noziees’ local Fermi liquid theory of the ordi-
uid charge parameté?** Support for this scenario can be nary Kondo effect At the low-temperature fixed point, the
found in earlier work® on impurity spins in antiferromag- |ong-wavelength properties are described by a conformally
netic spin-1/2 chainga “stripped-down” version of the invariant boundary condition anboundary conformal field
Kondo effect in a Luttinger liquid In the case of an external theon?'~2® essentially determines all universal properties.
S=1/2 impurity coupled to a single site on the chain, thegpecifically, the theory predicts all boundary scaling opera-
impurity was found to be completely screened, severing thgors that govern the asymptotic autocorrelation functions in
chain at the impurity site. , the neighborhood of the impurity. As was realized by No-
In this paper we explore the problem usiexpct methods  ,jaes many years agothe impurity response to an external
expanding upon results announced in Ref. 15. We shall beg'Bqu field is governed by the leading irrelevant boundary

by. st;;jzyi_ng a iimplifield (;noqtﬁl. Spelcifitcally,tr\]/v? CfnSidertaoperators. Thus, knowing these, one can directly deduce the
spin- impunty coupled with equal strength 1o two nhex “impurity critical behavior. The difficulty, though, is to iden-

nearest-neighbor sites on a Hubbard chain. In the continuum ; .
limit, and with quarter-filling of the band, this becomes atIfy the right boundary condition, although frequently the

Tomonaga-LuttingetTL) model! with forward electron- symmetries of the problem cut down the list of_c:_an¢dates to
imouri ; . a small number. In short, each boundary condition is associ-
purity scatteringonly: . ) . .
ated with a selection rule for combining the various degrees
To= T+ T, (1. of freedom(such as charge an'd ;piat thg boundary'The
problem thus reduces to identifying the right selection rule.
where This can be done, according to the fusion-rule hypothesis of
] Affleck and Ludwig®?* by applying conformal field theory
, 1 : fusi les®
oy T ot a ) usion rule
A wa dX[UF WL OO YL o(X): With only forward electron-impurity scattering present in
+ . d
- ‘ﬂR,o(X)| & wR,U(X):

(1.3), the model can easily be cast on a form where boundary

conformal field theory applies. Writing the Hamiltonian in

terms of charge and spin curreri@ugawara constructin,

g the effect of the impurity is traded for a new boundary con-

+2 2 : TU(X) LX) T—U(X) _ (%) dition in the spin sector. At this point, however, two new
r.s=L,R o vr Vs Vs elements enter the problefas compared to the treatment of

the single-impurity Kondo effect for free electrons-irst,
+g: ,ﬂ‘& SO UL (%) ¢I _o () UR _g(x):] 1.2 charge and spin excitations — although dynamically decou-
' ' ' ’ pled — are still connected via a selection rule of the type
mentioned above. This must be carefully analyzed in the
basis of states which diagonalize the interacting Hamil-
- .t 1 ) tonian. Second, by having both left- and right-moving elec-
']KF_)‘["'/’I'”(O) 200u1u(0):-S trons coupled to the impurity, left- and right-moving spin
oot 1 . excitations are no longer separately conserved, only the total
TYRo(0) 200,u0r,u(0):- S]. (1.3 spin remains conserved. In technical terfttsbe made pre-
Here l//L,zr(X) and wR,o(X) are the left- and right-moving cise, the chiral Spin SU(Z* SU(2) symmetry of the critical
components, respectively, of the electron fidld(x), with bulk theory is not recovered at the fixed-point value of the
spin projectiono=1, |, expanded about the Fermi momenta electron-impurity coupling.. This symmetry breaking intro-

and

+Kkg in the long-wavelength limit: duces boundary operators with noninteger scaling dimen-
. . sions by a mechanism similar to that operating in the two-
W (x)=e "y (x)+ e g (X). (1.4  impurity Kondo problenf*

The picture that emerges is consistent with that recently
suggested by Furusaki and Nagadsa their “poor-man’s

+ _ _ scaling” analysis of the problem: the system renormalizes

{.6(X), s, (¥)} =27 6,505, (X —Y) 19 onto a low-temperature fixed point with the same critical

and summation over repeaté@reeR indices is implied. The €xponents for impurity specific heat and susceptibility as in
first term in(1.2) describes free left- and right-moving elec- the two-channel Kondo problef.Any asymmetry in the
trons, whereas the second and the third terms describe fdeft-right electron-impurity coupling destabilizes this critical
ward and backward electron-electron scattering, respectiveljoint, driving the system to a one-chanr(@ermi-liquid-
The couplinggy (>0) and\ (>0) depend on the microscopic like) fixed point. An interesting feature of our solution is that
parameters of the lattice model angd is the Fermi velocity. the leading correction-to-scaling boundary operator at the
Normal ordering :: is carried out with respect to the filled symmetric fixed point is unique, in contrast to previous treat-
Dirac sea. ments of two-channel Kondo physitSpecifically, for van-

We shall treat the model ifiL.1) using the newly devel- ishing electron-electron interaction, this implies a unique
oped conformal field theory approach to quantum impurityWilson ratio also at low temperatures.

The fields are normalized such that
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To make contact with possible future experiments, one It should be noted that a faithful modeling of a magnetic
necessarily has to add electron back scattering off the impumpurity must allow for the possibility that the impurity car-
rity. This is so, since a “reallKondo type spin exchange ries a net charge giving rise to a screened local potential. In

the case of a Fermi liquid its effect can be absorbed by pass-
.,%K:)\:\IIL(O) %O'O.M\PM(O):'S, (1.6 ing to a new electronic basis with renormalized single-
particle energiegwhich is the reason why potential scatter-

with ¥ (x) the electron field in1.4), decomposes into ing is often neglected in the ordinary Kondo problem

oy — oy 1 oy However, for a Luttinger liquid the effect of a local potential
A= et M, (&7 is more dramatic, as g'Jshov:/qn in Ref. 6. For this reas%n, poten-
¢ being the forward scattering term (@.3), and tial scattering must here be treated on equal footing with the
spin exchange interactidd.Some attempts in this direction
,%B=)\[¢I’U(O) 30,,0r,(0)-S have recently been discussed in Ref. 28, but we will not
address the problem here.
+ 1/1;’(,(0) %a,mz//L,M(O)S]. (1.8 The rest of the paper is organized as follows. In the next

section we introduce the Hubbard chain coupled to an impu-

The back scattering tern¥g mixes left and right electron  rity spin, and perform a continuum limit retaining only for-
fields, and thus breaks both chiral spBU(2)xSU(2)]and  ward electron scattering off the impurity. In Sec. Il we de-
charge[U(1)xU(1)] symmetry of the bulk critical theory. rive the finite-size energy spectrum and the corresponding
This results in the appearance of a relevant boundary operapectrum of boundary operator dimensions, employing a par-
tor which takes the system to a new fixed point, describingicular variant of Affleck and Ludwig’s fusion-rule hypoth-
Kondo scattering in a Luttinger liquid. Turning off the esis. This section also contains a matching of the Luttinger
electron-electron interaction, the system may still be repreliquid selection rule for combining charge and spin excita-
sented by a two-channel Hamiltonian, but now coupled to aions against that from 8ethe-ansatanalysis of the Hub-
magnetic impurity in only one of the channels. This is knownbard modef°~3! Employing the results for the boundary op-
to give a fixed-point theory with Fermi liquid exponeriess  erator spectrum, the impurity critical behavior is identified in
for the ordinary one-channel Kondo problefif® To include  Sec. IV as that of the two-channel Kondo problem. In Sec. V
the effect of the electron-electron interaction is a more deliwe then consider the effect of adding electron back scattering
cate problem: the mixing of left- and right-moving electrons off the impurity, thus treating the full Kondo interaction in a
in (1.8 obstructs a Sugawara construction in a basis whereuttinger liquid. Section VI, finally, summarizes our results.
the interaction remains local. Throughout the paper we try to provide sufficient informa-

Not being able to attack the problem directly at a Hamil-tion to make it essentially self-contained for a reader with
tonian level, we shall make the natural assumption that theome acquaintance with conformal theory.
full Kondo interaction may nonetheless be described by a

renormalized boundary condition on the critical bulk theory. Il. THE MODEL
This is in accord with the expected behavioramly quantum _
impurity interaction, as discussed in Ref. 20. Note that the A. The Hubbard chain

relevant operator due to the Kondo interaction only couples 1o make the physical picture clear we start by considering
to the boundary, i.e., the new fixed point in this scheme is g, explicit model for interacting electrons on a one-

new boundary fixed point with the critical bulk theory un- gimensional lattice, coupled to a singde- 1/2 impurity. The
changed, and that all conformally invariant boundary condi-yamiltonian

tions are scale invariant and correspond to such boundary

fixed points. By deman_dlng that_ the noninteracting limit is T= T+ T, (2.2
correctly reproduced, with analytic scaling in temperature for

the impurity specific heaCi,,, and susceptibilityx;,,, it  consists of a periodic Hubbard chain with nearest-neighbor
turns out that conformal invariance together with the sym-hopping ¢) and repulsive on-site interactions {

metry of the problem restrict the possible types of critical

behavior to only twoEither the theory remains a local Fermi . T +

liquid in the presence of electron-electron interaction, '%H:_t; (Cﬂ,ocn+1,o+cn+l,acn,0)+U; Mn, 1My, |
electron correlations drive the system to a new fixed point

where(to leading order in temperatyre U>0, (2.2

— 27(1K,)—1
Cimp=Cal (1K) = 12T "+ ¢, T, wo and couplings ) of the electron spins to the impurity
1.9

Ximp™ CBTO:
K,=(1+2g/vg) 12 being the Luttinger liquid charge pa-
rameter, andc,,3; amplitudes depending on the scaling o o
fields. The second cagé.9) agrees with the finding by Fu- where we implicitly sum over repeated Greek indices as be-
rusaki and Nagaosa referred to abdven the conformal fore. The electron creation and annihilation operators satisfy
field theory scheme this scaling is implied by a certain selecé@nonical anticommutation relations
tion rule for recombining the degrees of freedom at the im- .
purity site, and we will discuss its propertigsextenso {Cm,o+Cn,ut = OnmSou (2.4

%f.:z InCh 30,80, S, (2.3
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1’ [N
:

FIG. 1. The Hubbard chain interacting with an impurity sgin S
at a few sites. Solid lines represent electron hopping and dashed (b T
lines spin interactions. LR

and the number of electrons with spinat siten is given by ’ \
nn,g=cﬁygcnvg (without summatioh The electron density
ne is the expectation value af, ;+n, | .

Without interactions(2.2) yields a free electron disper-
sion e(k) = — 2tcosak, with a the lattice constant. The Fermi
surface consists of the two poirks: = kg, ke =ngm/2a. For
small excitations(weak interaction one may linearize the

spectrum around the Fermi points, which gives rise to leftjmpyrity interactions(1.3) and (1.8) with the following cou-

and right-moving particles with  velocities *ve,  plings for forward and backward scattering against the im-
vg=2atsin(mn¢/2). In terms of electron operators one has pyrity spin:

FIG. 2. The Heisenberg antiferromagnet in 1D coupled via two
neighboring sites to an impurity. In (a) the chain is closed, itb)
open, although linked via the impurity.

— a—ikgna ikena a
Cno=€ "FCLnot € CrIg (29 )\F=Z(Jo+ 2J4), (2.8a
with ¢_,, andcg, , referring to the excitations around
k= —kg andk=Kkg, respectively. The sign & in (2.5 is a _a
matter of convention; we use that,, is expanded in Ag=5_—(Jo+2J,C08TNe). (2.8D
{e'*"a These electron operators, defined on the lattice, are ] )
replaced in the continuum limit by the Dirac fields ,(x):  Note that backward, but not forward, electron-impurity scat-
7 tering depends on the filling factor when the impurity is
coupled to more than one siteThe first case of impurity
|2 interaction addressed in this paper concerns forward scatter-
Crono r o(nNA), 269 , A
g 27" ing only, and from this construction it is clear that one can

cancel backward scattering. §=0) by coupling the impu-
with normalization given by1.5). It is then straightforward rity to the two nearest-neighboring sites at quarter-filling,
to verify that the free part of the Hamiltoniai2.2) equals i.e., J,=0 andn,=1/2. For other filling fractions we may

F#7 in (1.2) with g=0. also fulfill A\g=0 by allowingJy# 0. The next case of inter-
As for the electron-electron interaction, it follows from est is the Kondo interaction\p=\g#0. It corresponds to
substituting(2.5) in (2.2) that coupling the impurity to one site only at arbitrary filling, i.e.,

J1=0in (2.8).
1 Let us mention that another way of canceling the back-
%/H|t:0=UZ 3 SZL ] Cl hoCrinoCin —oCsn o scattering term is to couple two neighboring sitesStat

half-filling and choosely=J; (and all otherJ,=0). With
n.=1, Umklapp processes now come into play (ix7),
causing a mass gap in the charge settdihe spin sector
remains massless and describes a spin-1/2 antiferromagnetic
Heisenberg chain with two neighboring sites coupled antifer-
romagnetically to an impurity spifFig. 2(@)]:

T T
+CR,H,O'CL,FI,O'CL,H,—a'CR,r'I,—O'
+[e—i2wnneCT c et e +H.c]

R,n,7~L,n,T~¥R,n,| ~L,n,| Rl N

(2.7

describing forward, backward, and Umklapp electron- '%épin:J; S Si+1td(SH+S)-S =, (29
electron scattering, respectively. Due to phase oscillations,
however, the Umklapp term cancels away from half-filling with J=4t?/U. This situation is similar to that considered by
(ne#1), and in the continuum limit we recover the interac- Eggert and Affleck? who studied a spin chain with two
tion part of(1.2) with g=Ua/27. In this paper we will con- open ends coupled symmetrically to a single impufFig.
sider gapless excitations only, which restricts uite0 and  2(b)]. On the basis of bosonization and numerical renormal-
ne# 1. ization it was concluded that this system is in the same uni-
Finally, we rewrite the interaction with the impurity spin versality class as the two-channel Kondo model. The case
in (2.3). It interacts locally with a few sites and we may above[Fig. 2(a)] where the spins coupled to the impurity
concentrate om=0 andn=*+1, see Fig. 1. With)_,;=J; interact mutually has been discussed by Clakal.®* Also
we recover in the continuum limit the previous electron-using bosonization, these authors proposed that two-channel
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Kondc_J behavior is manifest fpr _this_ case as well. Their argu- J, (x+ 8)J (x)=: lﬂz,a(X‘F 8) L o(X+ ) sz’M(x) P (%)
ment is based on a formal similarity between the bosonized

versions of the Hamiltonians for the impurity-spin chain sys- 1 t )

tem and the two-channel Kondo effect, and the situation is + S"/’L’U(XJF O PL,o(X):

somewhat less clear than for the open chain. It is therefore of

interest to reconsider the problem, and we shall return to it 1 2
below. ’ bl Ok L0 - . (216

B. Sugawara form Hence,
In what follows we focus on the case away from half- ;JL(X)JL(X);:;¢[ S0P (X) ¢,‘[ oW (X):
filling (ng# 1), described by the Tomonaga-Luttinger model ' g ’
(1.2), together with the forward electron-impurity interaction Lt . a i
(1.3). It is convenient to rewrite the Hamiltonian in terms of 2 (X dxva“(X)' (.17
charge and spin currents
up to a total derivative from a partial integration. The analo-
3.0 =107 () JX): (2.109  9ous procedure for the spin currents yielflssing that
R 7 Cop Oy =28378,0— 85,6,,)

w’ onQuv™ Oou

)= (X) 30,8 u(X):, (2.10p

with r=L, R. These obey thdevel-two) U(1) and level-one
SU(2) affine Kac-Moody algebra$

3
1300030001 == 2 00U 0L, () - o(X):

3 . d
+ §:¢L,U(X)I d_XwL,a'(X):! (218)
[JL(x),IL(y)]= = 4mi &' (x—y), (2119
and it is clear from(2.17) and (2.18 that the first term of
i (1.2 can be written entirely in terms of currents
[33(x),32(y) ] =i €2PCI5 2 S(x—y) £ — 62°8" (x—y),
R R R 2 d

1 1
(2.11b Y (0 T VLo (0:= 210000+ 3130() - I (x):

respectively, with]? the components of, = (J),JY,J7). The (219
normal-ordered products of the fields(h10 are defined by

. " (up to a total derivative In the same manner, one straight-
the usual point-splitting procedure:

forwardly replaces all other terms and arrives at the Sug-

W 0 ()= lim [y (X 8) i (%) awara forn?® of the Hamiltonian in(1.1):
Y LX) P (X)) = ro(X r (X

6—0

1 vetg
_<¢T (X+ 5)‘/4 (X)>] (2 12' -yfTLZZJ dX[ F4 [:‘JL(X)‘JL(X):+:JR(X)JR(X):]
r,o ,T . .

The terms of the Hamiltoniafil.1) can now be identified Ve—0 o ]
with combinations of the quadratic formd,(x)J4(x): and T g FIL00- 00+ Jr(X) - Jr(X):]
:Jr(X) - Jg(X):. As an example, let us consider the cases .
=L. The normal ordering is again defined via point splitting, " E[JL(X)‘]R(X)_4‘]L(X)"]R(X)] ’ (2.20

(3L O)I LX) =M I (X + 8) I (X) — (I (X+ 8)IL(X))],

5—0 and
(2.13

FHe=N[J(0)+Ig(0)]-S, (2.2)
and we need to evaluate
with g=aU/27 for the Hubbard model. Rewriting the spin-

ILXF &I = 41 (x+8) i (x+ b): current part of the Hamiltonian on matrix form
ST e e 0:(X) 3 (X): =112 71 (X) T o (0): WhETE 710, (X)
Xl 0L (%) 214 = (), .00~ (112)8,,, 07 (X ,(X): such  that

3 (X)=(12)0,, 7: -,(X), One notes that the spin currents
This can be done by using Wick’s theorem and the Green'gre tracelesg 7, ,,(x) = 0], and hence have no charge com-
functions ponents. Thus, spin-charge separation is manife€2.20).
The spin-interaction ternd, (x) - Jg(x) can be shown to
; : Sop be marginally irrelevant forg>0,2® and will be dropped
(P, o(XH )Y (X)) = (L (X + ) P (X)) = T henceforth®® [The spin interaction is the only term {&.20
(2.15 thatrenormalizes, the remaining termsiir_being exactly
marginal] The piece of the Hamiltonian containing charge
with the result that currents is diagonalized via the Bogoliubov transformation



3216

(2.22

The transformation is canonical, with the new curre'ygs
also satisfying the (1) Kac-Moody algebra

Ji(x)= costp jL(x)— sinhd jRr(x).

(2.23

Inserting (2.22) into (2.20, the transformation is found to
diagonalize the charge Hamiltonian when

[1L(0,JL(Y)]= * 47i &' (x—y).

g
tanh26= S (2.24
Collecting the results,
=I5+ T e (2.29

with
1 Vo . . . .
%”-FL:EJ dx[Z[:JL(X)JL(X):+:JR(X)]R(X):]

+%[:JL(x).JL(x):+:JR(x)-JR(x):]] (2.26

the resulting critical bulk Hamiltonian, and with defined

in (2.21). Here
29
ve=vp\/1+—, (2.273
UF
Vs=VE—( (2.279

with v andg defined above. It is easy to see thaf;, is
invariant under independent globa(1) and SU2) transfor-
mations on the left- and right-movinghiral) fields:

‘pr,a‘)ei‘ﬁrwr,a! ’pr,o‘)Ur,a,u‘pr,,u,r r=L,R

(2.28

with ¢, a constant, antl, ,,, an element of S(2). In fact,
the Sugawara form of#77, implies invariance under the
larger chiral

Z=U(1) XU(1)gXSU(2)1 XSU(2);5 (2.29

Kac-Moody algebri¥ [with the subscript “1” denoting the
level of the SUW2) algebras However, the chiral spin sym-
metry gets broken by the impurity-electron interactigry

for any value of the coupling . This is in contrast to the

Kondo effect for free electrons. In that case too there is only
forward electron scattering off the impurity, but only with

one type of chiral electronésay, left movers The critical
bulk Kac-Moody symmetry is )XSU(2); [or U(1)
X SU(2),XSU(2), in the case of two channd]sand this
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R——
(b) =L
R——=>;
{ 2
0 1
©
L _L ]
I T { 1
| —L | 2

FIG. 3. Equivalent representations of the Luttinger liquid. The
original c=2 system(a) with left- and right-moving excitations on
[—/,/] is folded into a two-channel=4 theory(b) on[0,/]. By
analytic continuation, this may be written as a chitai4 system
on[—/,/] with only left-moving excitations.

plying also Lorentz invariance. This observation will be im-
portant for the applications to come.

C. Boundary formulation

At this point we reformulate the problem so that Cardy’s
boundary conformal field theot} 2 applies. The boosted
currents are defined in two-dimensional space-timge)(,
with the impurity sitting on the time axis. We can think of the
time axis as a boundary with periodic boundary conditions
imposed on the currents

jr(7,00)=]j,(7,0_),

In Cardy’s formalism no excitationgor two-momentum
may flow through the boundary, and hence periodic bound-
ary conditions are excluded. To circumvent this restriction,
we confine the system to the interval/<x</ (taking
/—co at the eng, fold it in half, double the currents, and
identify the two pointsx=—/ and x=/,%¢ see Figs. &)

and 3b). The new currents, defined fge0 only, are related

to the old ones by

3,(7,0,)=3,(,0_). (2.30

L=,  I)=3.(x),

200=jr(—%), JEX)=JIr(—x),
(2.3
JROO=jR(X),  JRO=IR(X),

JZ0=jL(=x), JR)=I(—X),

symmetry is restored precisely at the strong coupling fixedand the periodic boundary conditions (.30 become

t19

point.”” We return to this below.

It should be emphasized that although the theory contains

two distinct velocities,v. and vg, Lorentz invariance is
manifest separately in the charge and spin sectorgZf .
This can be seen via bosonizatiohThe terms containing

iL(0)=j&(0), Ji(0)=J30),

(2.32

j2(0)=j&0), JZ(0)=JI}0).

charge currents represent a free boson theory, while the spiktence, a flow of excitations acrogs=0 in the original sys-

current terms represent an @Y k=1 Wess-Zumino-Witten

tem corresponds to having them come in through one chan-

(WZW) model. Both theories are conformally invariant, im- nel and then reflected back through the other.
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With this procedure, the critical bulk Hamiltonian is now With the simple transformation i2.39, one thus arrives at
defined on the positive axis only: a chiral(left-going) representation of thevo-channel Kondo
model® This has the Sugawara fotfn
1 / v o B o i,
Hmge S [[ad St ook .
i=12.J0 .7J”O+.%F=EJ_/dx §:JL(X)J,_(X):+ ZZJL(X)-JL(X)Z

+ %S[:J[(x)-JL(x): +:3h00- 350001, (233

1. F F .
+ 7300030001 [ +23(0)-S, (2.42)

with the boundary conditiof2.32 imposed ak=0. We also
see that the electron-impurity interaction can be written as Where the currents, (charge, J_ (spin), and J; (flavon
generate the affine @), SU?2),, and SUY2), algebras, re-
Te=\[IL(0)+I2(0)]-S. (2.39  spectively.
o o ) The structure in(2.42) is not easy to obtain in the pres-
The new Hamiltonian(2.33 is invariant under the full ence of electron-electron interaction. Technically, the con-
Z=UD)X U)X SU(2) 1 X SU(2), Kac-Moody algebra and stryction requires all excitations to have the same velocity,
has conformal charge=4, i.e., werepresentour c=2  which is the case only wheg=0. The result nonetheless
theory defined on—/<x</ by a c=4 theory on gyggests that the interacting problem exhibits two-channel
O=x=/. However, we may analytically continue the left- Kondo behaviot* Since the forward electron scattering off
moving currents in2.33 to the negatives axis’’ [Fig. 3c)].  the impurity only affects the spin sector, the fact that the
From (2.32) it then follows that these can be identified with glectron-electron interaction pushes the spin and charge ex-

the right-moving currents on the positive axis: citations apart by endowing them with different velocities
seems irrelevant. However, to put the conclusion on firm
L0 =100, (=) =J&X) i
L R L RA)s ground, one must carefully check the role of the selection
(2.35 rule for combining charge and spin excitations when interac-
JH=0=]R%),  F(=x)=IX). tions are present. One should here recall that although the

) . _electron-impurity interaction is entirely in the spin sector, the
Hence we can formulate the theory in terms of left-movingcparge sector may nonetheless contribute correction-to-

currents only. This Igads to the form of the Hamiltonian thatscaling operators, as in tHene-channelKondo effect for
we shall mostly use: noninteracting electrons. A second reason for dealing with
the electron-electron interaction “head on” is that it gives us

K= T+ T, (2.36 an inroad to attack the problem of Kondo interaction in a
where Luttinger liquid [by including backward electron scattering
off the impurity (see Sec. V.
1 v ve _ Returning to(2.37, we see that the bulk Hamiltonian
%”Ffz— > J dX[ Z:j'L(X)j'L(X): /% separately conserves thél) and SU2) excitations in
Ti=12 -/ the two channels. This simply reflects the fact that the Kac-
v _ Moody symmetry is given by<=U(1)xU(1)xSU(2),
+ §:J'L(x)-J'L(x):], (2.37 XSU(2),, as it must. The electron-impurity interaction, how-
ever, breaks the SW);xXSU(2); symmetry. This appears
and with .7 given in (2.34. The analytically continued Similar to the effect of the Kondo interaction on free elec-
currents satisfy periodic boundary conditions: trons. In a left-(or right) moving description, the Kondo
term breaks the single-spin $2); symmetry[or SU?2), in
==, I(=NH=3I(), i=1.2, the two-channel cageof the chiral electron Hamiltonian.

(2.39 However, at a special value of the Kondo coupling,
L ) . o ) N kondo= Mondo» the impurity spin can be “absorbed” in the
yielding a theory defined on a ring with circumferenc€.2 — gjectron spin current via a canonical transformation. The
Before proceeding, it is instructive to look at the specialimnrity-electron interaction disappears from the Hamil-
case ofnonln'geractlng(g=0) elec_trons, ie., Wl_th;c_= vsin  tonian, and the S(2), [or two-channel S(2),] symmetry is
(2.37. For this case, an alternative construction is poss'blefestored(now generated by the spin current of t@mbined
Introducing two channel§'flavors”) of left-going fields, electron-impurity systein In this scheme) %4, definesthe
local strong coupling fixed point. It is tempting to proceed in
1 - 2 =_ _
PLaX)=a(X) L) ="dra(=X) (239 55 analogous way for the present problem, and try to absorb

the free part of the bulk Hamiltonian ifl.2) attains the form the impurity via the transformationg (x)—Jj (x) +S&(x),
i=1,2, judiciously choosing a special value of the impurity-

Vg L electron coupling\*. However, these transformations are
'%ozﬂf dx: gl ,(x)i 5(%,,;()()1 (240 not canonical and couple the two spin currents at the impu-
rity site: the SUW2), Kac-Moody algebras for channels 1 and
with the electron-impurity interaction written as 2 are no longer independent. Thus, the ful{l1<U(1)

_ _ X SU(2) X SU(2), symmetry of 777, is not recovered at
Te=N\: ’LTU(O) %(r(mz//{yg(O):-S. (2.4)  \*. Now, suppose we could rewrite the spin part#@®, in
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(a) x the conformal transformationz=exp(@@w//) (implying
) boundary conditiorA at x’=0). With E° the ground-state
AL z energy, one has
0 TvA
A 0 v E=E"+ VR (3.0

where {E} is the spectrum of excited energy levels in
0=x=</, and{A} is the spectrum oboundary scaling di-
, mensionsn the semi-infinite plane. In a11D quantum me-
b) * chanical realization the boundar/ =0 coincides with the
time axis (' also being an imaginary timeand it follows
that the boundary dimensions determine the asymptotic au-

0 24 tocorrelation functions. In other words, fpr'|>x’,
4 7 7 1
(AT X)X = (A7 XINAOX)) = Tz,
FIG. 4. In Euclidean space-time, the finite-size the@yon the (3.2

strip [0,/'] with boundary conditiorA at both ends is conformally

mapped to a semi-infinite plar(g) with the same boundary condi- With ¢ an operator with boundary dimensidn
tion A applied at the boundary. For the present problem two additional features appear,

not present in the standard scenario discussed above. First,
the chiral(here, “left-moving”) Hamiltonian in(2.37) repre-

i - sents a full 31D theory on the cylindefvia the folding
dition to some auxiliary degrees of freedprithe total cur- procedure in(2.31)]: the second channel of left-moving cur-

rent J(x) generates the diagonal subgroup of (8 | onts simulates the presence of right-moving currents. There-
xXSU(2);, and, as may be easily verified, satisfies a level-tWagre pulk dimensionsappear in the finite-size scaling for-

terms of thetotal electron spin current(x)=J! + J? (in ad-

SU(2) Kac-Moody algebra mula, disguised as sums of dimensions of left-moving
A b . abeac - ab o operators labeled by the channel index. Second, sup-
[J%(X),3°(Y)]=1€V(X) 2w S(X—y) + i 625" (X—Y). portstwo kinds of excitations, charge and spin, with distinct

(243 velocitiesv, andvg (wheng+#0). However, as we already
noted, the charge and spin excitations are dynamically de-
coupled, and conformal invarian¢ecluding Lorentz invari-
ance holds separately in the two sectors. Summing up, one
expects that3.1) is replaced by

The impurity may now be absorbed without problem, using

the single canonical transformationJ(x)— J(X)+ Sd(x)

=J'(x). The combined electron-impurity curredt(x) is

conserved, and the $B), Kac-Moody symmetry is hence

restored. E-E%=E.+E.—(E°+EY), (3.3
To carry out this program, one needs a dictionary to trans-

late from the W1)x U(1)x SU(2),X SU(2), formulation of ~ Where

the problem to another representation in terms dfl)U v,

X U(1)xSU(2),X &, where ¢ is the symmetry group of E.—El=——(Al+A2),

some auxiliary degrees of freedom. Fortunately, such a dic- )

tionary already exists in conformal field theofthe coset i 3.4
constructionof Goddard, Kent, and Olivé (GKO)], and E,—E’= /S(A§+A§),

provides an elegant solution to the problem. Before exploit-
ing it, however, we set up the formalism for studying the{Al} being the boundary dimensions in chanpel1,2 and

finite-size spectrum of the theory. sectora=c (charge, s (spin). (This structure of the spectrum
has been exhibited in a Bethe-ansatz analysis of the Hubbard
lll. FINITE-SIZE SPECTRUM AND BOUNDARY chain;™ cf. the following section. _
OPERATORS As we have seen in Sec. Il C, it is convenient to represent

a theory defined on a strip bydchiral theory on a cylinder.

The finite-size spectrum of at1lD scale-invariant theory Formally, this follows from the vanishing of the energy-
provides important information about its critical behavior. momentum tensor at the boundahimplying that left- and
This follows from a well-known result in conformal field right-moving operators coincide at the boundary. This is pre-
theory?® The energy levels in a finite geometry are directly cisely what we used if2.35 when we continued the charge
connected to théboundary scaling dimensions of operators and spin currents to the negatixeaxis. We know that the
in the (semiy infinite plane. More precisely, consider a con- energy spectrum of this theory is in one-to-one correspon-
formally invariant theory defined on the strip dence to the boundary scaling dimensions due to the bound-
{w=vr+ix|—o<7<ew, 0sx</} in Fig. 4a), with 7 ary conditions applied at the edges of the strip. However,
“imaginary time” and x the space coordinatéThe velocity  these scaling dimensions are only a subset of all possible
of the excitations of the Hamiltonian is denoteddy Then  chiral dimensions of the bulk conformal field theory. One is
impose a conformally invariant boundary condition, cal\jt  thus faced with the task to pick out those chiral dimensions
at the edgex=0 andx=//, and map the strip onto the that represent the wanted boundary condition. Formally, this
semi-infinite planglz=v 7' +ix’|x’=0} in Fig. 4b), using may be done by connecting the boundary condition tza
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lection rulethat prescribes how charge and spin excitationgor i =1,2 andme 7, the mode-expanded Hamiltonian takes

are combined at that boundary. Knowing the selection rulethe form

and allowing only boundary operators that preserve the sym-

metry of the Hamiltonian, the formalism unambiguously pre- , ,

dicts the set of possible boundary dimensions. For a quantum A= 2 a ot 7 s’ @7

impurity problem that we are dealing with here, the more

intricate task is to identify the correct boundary condition

selection rulg that represents the presence of the impurity: %

According to a conjecture by Affleck and Ludwi§? any 7 =ﬂ(}ji il Ez i i) (3.8
. . . X H . 7% ¢ / 4 oJo -mim 94 '

guantum impurity renormalizes, at the fixed point, into a

particular conformally invariant boundary condition on the

critical theory that carries the extended degrees of freedom .

(in our case,”7 ). Oneway of identifying this boundary H = Va

condition is to start with some known, trivial boundary con-

dition on the critical theory, with no coupling to the impurity. This result is easy to verify. Consider first thelcurrents,

The associated selection rule simply describes the allowewith

combinations of charge and spin excitations when there isno . y o r y y

impurity present. Now, place a spin impurity at the boundary, -JLCOJLO):= 1M [ (x+8)jL () = (jL(X+ )L (X))].

and couple it to the electrons. By redefining the spin current =0 3.9

as that of electronsand impurity, J(X)— J(X)+ S&(x)

=J'(x), the electron-impurity interaction is removed at the Noting thatj,_ is a dimension-one analytic operator with ar-

fixed point. The spin quantum numbefg will be shifted gumentz=v.r+ix, it follows from the operator product

accordingly:{j}—{j'}. The new selection rule, describing expansiof’ of j| with itself thaf’

the renormalized boundary condition, is then obtained from ) 510

the old by substitutingj’} for {j}. The fusion-rule hypoth-

esis by Affleck and Lgdvjiﬁ’ su{géests that the shift of quan- (JL(xX+d)jLX)= |5) (7) } (3.10

tum numbers is precisely governed by the conformal field

theory fusion rules, in our case those of the(3lyJ Kac- where the last term is the correction due to the fiiteThe

Moody algebra: The set of statésonformal tower)abeled ~ Inverse of(3.6),

by a quantum numbsgris mapped onto new sets labeled by i

jI| where JL(X) B z

(%)

together with(3.9) and(3.10, implies that
This is the essence of the conformal field theory approach, to

where

mug[ 1 i : i
(33 b+ = EJ In= /- (38D

1
O

im
J ) (3.11

m

” Lo
—im-—=X
// m; © € -

i'=li—zLli—z+1,. .., midj+3,2-j-3}.

7 2/’
be exploited below. d =i |n7
In this section we study the finite-size spectrum of 27 XJLOOJLO0: (;Lno 2 © it
.7/-*“_, and derive expressions for the scaling dimensions (3,12)

{Al} on a form adapted to the impurity problem. We verify
our result by matching it to that of the exact Bethe-ansatz
analysis of the Hubbard model. Bringing the electron- [iL,i%]=2n8, 4 m 06 3.13
impurity interaction into play, we then use theoset nem nem '

constructiori® to make a conformal embedding of the origi- we may write

nal SU2),XSU(2); spin currents into S(2),X7,. [This

corresponds to writing the spin part o3, as a single 2 efin7ﬁjljl _jiji +22 Cos(nfé)ji ji
SU(2), Sugawara Hamiltonian together with an Ising moHel. n " 010" T N bl

With this proviso, we suggest a particular application of the

fusion-rule hypothesi¥*?* and absorb the impurity spin in 123 ne-inzs (3.14
the total electron spin curred{x), using the conformal field n>0 ’

theory fusion rules for the S@) , Kac-Moody algebra. From
this, the spectrum of boundary scaling dimensions in thé
presence of the impurity spin is read off. 20 2/ o 1 [

Using the U1) Kac-Moody algebrd2.23) in Fourier space,

so that the last term cancels the singular part3012):
_ E ne |n75_ _

S 2
___+_ J— .
o 7 & =5 6/ 7° /H
A. Finite-size spectrum of 77, (3.15

Before applying these techniques to our Hamiltonian
(2.37), we need to rewrite it in Fourier space. Introducing the
Fourier-transformed currents

Hence, 7/'C (3.89 follows from comparing(2.37) with
(3.12. The analogous treatment of the Fourier transformed
spin currents, satisfying the $2J,; Kac-Moody algebra

jim HES) | -
( i ) 2’7TJ dx ém ( y ) (36) [‘]Ir‘|al\]ﬁ1b]:i€abc‘]lnc+mélk+E

J ‘]L(X) 25n+m,05ab5ik, (3.16
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leads to(3.8h). As can be seen from the derivation, the It is now convenient to introduce normal ordering in Fourier

Schwinger-type terms i(8.89 and(3.8b), including the con-
stant 1/24, are due to the regularization of the spectnon

mal ordering of the quadratic currepntIhese terms encode
the conformal anomaf{ of the theory, and we shall discuss

their role below. _
Given. .7 ;, (3.89 and.” § (3.8b), it is now easy to ex-

space. The filled Fermi sea occupies all levelsrfer0, and
hence

W othroms NFM or n=m=0,

T _
- ’pr,o,m‘pr,a,n o N= m<0'

A —
. r,g,nlﬁl’,o',m -

(3.2

tract the finite-size spectrum. Let us start with the charge _ : ,
Hamiltonian, 7= 771+ 72, and make the connection to forr=L orR. Using{¢ ;m.¥s , n} =(/17) 6565, 6mnand

the original electron fields in the Tomonaga-Luttinger Hamil-

tonian(1.2). By constructior{cf. Egs.(2.31) and(2.35] we
can identify

(3.17

im=iLm  Ja=irm

where

1 (7 )
jé,mz Eji/dxetlm(‘rr//)xj' ;(X)

(3.18

are the Fourier transforms of the left—right-movinglUcur-
rents introduced ir{2.22). Thus

jm=cosmJ_ n+sinhJg m,

(3.19

j2=coshJg m+sinhd, .

with

1 (7 _
_ +im(wl/)x. ;T .
I m 27Tj7/dX(,r .lp:i’o_(X)l/I:i’o_(X).
(3.20

the Fourier components of the original(1) currents in

(2.103. For later convenience we impose antiperiodic

boundary conditiorf¢ on ¥ »(X), which then can be ex-
panded as

a .
Qb:i,g-(x):? ; e+|(n+l/2)(w//)xl!/|§’mn (32])

This definition implies that the momenta f%,(,,n are given

by k=¥ (#//)(n+ 1/2), so that the “single-particle” energy

levels ¥ vk, with respect to the Fermi levé&l=0, both sat-

isfy

(3.22

VT
€n= ; (n+1).
As follows from the definition of the integrand ¢8.20 in
terms of point splitting(2.12, we need the(finite-size
Green’s function

t 21 (5)
W’;,g(” YL o (x))= =15 +-0|~| (323

to obtain
T i 276
— lim| — +i(n+1/2) (7l /)5, t _ mo
Yym=lm| 72 € Wl nsm™ Trg |

(3.29

/

. 1.7 4
Fin+3) 70— +__ 4 - )
2° im0 O/)’ (326
we may finally write
TS Lt _
Jlfe'm: / ; '¢I§,U,ﬂ$'§,o,n+m " (3.27)

The interpretation oﬂ; ‘m is now straightforward: Fom=0

it counts the net number of lefiright-) moving particles
with respect to the Fermi sea, whereas ffie# 0 it excites
particlesm steps.

Next we introduce a set okac-Moody primary states
|Ap) with respect to the charge and spin curréfitdefined

by

I mlAp)=0, I o/Ap)=0, m>0, (328

from which all other states can be generated. In an occupa-

tion number representatidi,

|AP>E|QLT ,Qu vQRT 1QRL>

with the constraint

(3.29

(3.30

Here|Q,,) denotes a nonexcited state wifh, the number
of r=L, R electrons, carrying spier, added to the filled
Fermi sea. Hence, the total charge in channel
Qr=Q;+Q,, is the eigenvalue al, 4 in (3.27. Combin-
ing (3.83, (3.19, and(3.27), we thus have

mu[ ()% 1
~7~/"c|AP):7C[ 4 24

|QE¢‘Q§1|$1-

]|AP), i=1,2, (3.3))

where we have introduced the eigenvaluee}ioof

1 80 -0
#=Q7 =AQ%

(3.32
labeled by the quantum numbers
Q=QL+Qr=Q;+ QL +Qr;+ QR
AQ=QL~Qr=Q;+Q;~Qr;~Qg;-
(3.33

As Q. ,Qre Z, it follows thatQ,AQ e Z with the restriction
thatQ+AQ is even.

Turning to the spin Hamiltonian7Z;, we proceed analo-
gously. Writing Jg-J5=3J5Jg in (3.8b, and identifying
Fourier modes,
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Jiz=g2z - g22=37 (3.39 . e .
moThmoTmoTRm [ ¢ J  m]=—miE s, (3.40
the spin Hamiltonian(3.8b and the Fourier transform of .
(2.10b imply that Thus, comparing with(3.31), the descendant levels iithe

diagonal basis 9fthe charge sector are obtained by adding
i _mus(1 N2 1 energy to the primary levels in steps 8t .//. The result-
H S|AP>_7 Z(QT Q) 24 [Ap). (339 ing finite-size spectrum organizes intonformal tower$' of
equally spaced energy levels, each tower having a primary
(In obvious notationQ'=Q, and Q*=Qg.) Introducing |evel ¢' as base:
spin guantum numberg=0,1/2, i=1,2, connected to the

particle numbers by o ave[ (@Y 1 Do
\ E(d' Np=—"1 —— =5 +Nef,  Neel, i=12,
S+ D =(Q)-Q))?*=1, (336 (3.4
3 .
with
the eigenvalues i(3.35 are expressed as ) ol ot
02=Q—=*AQ—, Q, AQeZ. (3.42
Bl = T2 T - ot =02 (337 ° :
VA TR 240 1797 & Similarly, (3.89 and (3.16 imply
[This result can also be obtained directly by noting that o TUs
Jy- Jy is the Casimir invariant of S(2),, with eigenvalues [ A 9oml=— M3 . (343

j'(j'+1) when acting on the primary stat&$. _ _ _ S _
As a consequence {f7.,7%]=0, the primary states A comparison with(3.39 yields the finite-size spectrum in
factorize in charge and spin, the spin sector, with two conformal tower$'€0,1/2) per
channel:

|AP>:|AP>C®|AP>sv (3.39

i mus| 1o 1 i P
and as the Hamiltonians are diagonal in channels 1 and 2, Es(j'Ng) = A §JI(JI+1)_ Z1+NS » NgeN, i=1.2.

(3.49

PuttingQ=AQ=j'=j?=0 and summing over the channels
in (3.4) and (3.44, we obtain the ground-state energy
E°=E%+E? with

the superscripts denoting the two channels. Note that the

g"'s mi_x the originalL and R channels and are defined by = j=c,s. (3.45
(3.32 in terms of the quantum numbe@ and AQ. ! 12/

To obtain a state of arbitrary particle number
(QL1,Qv| ,Qr;.Qg|) We undo the constraini8.30 by ap-
plying the operators);”_ =JF =3/ ., with m>0, on
|Ap). These operators flip spin within the left- and right-
moving branches. The resulting states, call thgn), are
still labeled byQEa, which now may be any integer. Fur- citations. In the present case, we use a chiral formulation and
thermore, by acting with the operatods, _, and J%_,, must Eilccordingly comparé3.43 with EE only. Putting
(m>0) on|A), we also remove the constraint tHex, ) is LX:2(, we pbtglnc=2 in the charge _and spin sectors, re-
nonexcited, i.e., we allow nonfilled levels below the highestSPectively, yielding a totat=4. This is what we expect,
occupied level: As is readily verified, the Fourier modesSINCe We are using@=4 representation of our originat=2
(1/2)3, =37 _,, (m>0) create “particle-hole excitations” theo_ry. L . .
from the stategA) within eachQ,, branch.Any state of Given the finite-size spectrum, we now identity the corre-
particle number Q,;,Q.;,Qgr;,Qg;) can thus be obtained (ngl})dg]r?d écigngwg'?ails'ons' Using.4), together with
from the set of primary state@n the following, we label our ' o
states in the diagonal basis .6f, though) As follows from 1 Q ’ AQ\2 _

(3.19 and (3.29, the primary state$Ap) are also primary  Al=—|e’>—(-1)'e *—| +N., i=1,2, NLeN\.
with respect to the diagonalized currents,, and J',, and 4\ 2 2 3.4
any other excited state is obtained by applying these opera- (3.49
tors for m>0. Similarly, (3.4), (3.44), and(3.45 imply for the scaling di-

To extract the spectrum including the energy levels of themensions in the spin sector:
descendantkstate}est exposed, it is suffli(cient to note that the L
operators{j* ,;m>0, k=1, and {J°,;m>0, k=1,2 it i PR -
act as “raising operators” with respect 0 the primary states AS_§J (F+D+Ng, =0, 7, =12, Nye .
in (3.393 and(3.39h. Explicitly, from (3.89 and(3.13), (3.4

[Ap)s=iH P elj?)@), (3.393

[Ap)c=la")V®[a?)?, (3.399

As is well known, the finite-size correction to the ground-
state energf’=E?+E2 of a conformally invariant Hamil-
tonian (defined on a ring of circumference,) scales as
Egz —mvc/12L,,*° v being the velocity of the massless ex-



3222 PER FRG@DH AND HENRIK JOHANNESSON 53

The dimension of a composite operator is thus given by  perturbations  Applied to our case, 7=.77%

a1 A2 Al a2 +2,9k%(0), invariant under chiral @)X U(1)X

A=ActActAstAs. (3.48 SU(2); XSU(2) ;. In other words, charge and spin are con-

We recognize the scaling dimensions(8146 as those of a served separately in the two channels, implying
U(1) Gaussian theory represented by free bosons with per@=AQ=0 andj!=j?=0 for ©. Hence, the only bound-
odicity ¢= ¢+ 2.7, with . Z=e" 0/\/5.46 The same struc- ary operators appearing at the fixed point are descendants of
ture is hidden in (3.47. Substituting Qt:Q%_Qi the identity. This trivial content of correction-to-scaling op-
i(Q?—Qf) for Q andAQ, respectively, choosing =1 erators could of course have been predicted directly from

and using3.36), (3.46 gives(3.47). For this special value of symmetry arguments, without invoking the finite-size spec-

C o . trum. However, having the spectrum in hamugluding the
the periodicity (2= 1/\/2), it is known that the symmetry is X . .
enhgnced toyS(/éZ) 47 \zi;Zj the scaling dimensigns bec)i)me selection rule in(3.49, we can attack the more challenging

those of an S(2) k=1 WZW model problem of electron-impurity scattering.
It may here be worthwhile to reéall the key elements of Before QOlng s0, however, we shall compare our spectrum
the analysis: Eq(3.48 gives the spectrum afhiral dimen- and selection rule to those from an exact Bethe-ansatz analy-

sionsof the analytically continued theory in the full complex SiS Of the Hubbard chaifof which .77, is the fixed-point

plane. As we pointed out abovepundary scaling dimen- theory. As was first shown by Woynarovih(see also Refs.
sionsin the half-plane correspond to subsets of this spec;)’0 an(_j .31’ Fhe Bethe-ansqtz spectrum of a Hubbard model
trum, with one subset for each particular boundary condition®" & f|n|te.r|_ng also organizes into conformal towers. Away
By the “folding procedure” in(2.31), the subset correspond- rom half-filling:

ing to the boundary conditiof2.32) exactly coincides with 20 20 1

the set ofbulk dimension®f the original theory in the full E—Eo~ _C(Ac++AE)+ —S(AS++A§)+O _2)
plane. To pick out these dimensions fr¢&48 we must first N N N

identify the rule for assigning values to the quantum numbers (3.5
(Q,AQ,j4,j? in the presence of the boundary condition Here N is the number of sites on the ring, and v are
(2.32. By the equivalence with the bulk problem, this is the model dependent charge and spin velocities, Ard and
same as identifying the selection rule governing the bquASt are given by

energy spectrum of75, .

Assuming that the electron-electron interaction does not A IS DJ\\?
obstruct  the  choice  of  particle  number Ac=§(2—§ci§c Dt ?)) +Ng, (3523
(QL1,Qv; Qg ,QR)), (3.33 and(3.36 imply the Luttinger
liquid selection rule: L1 e 2
AEZZ(|S—§iDs +Ng, (3.52h

1
j1=—(Q+AQ) mod1, P
I"=2 (Q+4Q) with N; ,Ns e N. As in the conformal approach, the positive

(3.49 integersN= label “particle-hole excitations™(although the
notion of a “particle” or “hole” in a Bethe-ansatz basis is
different from that used hereThe parameteg. is a nonuni-
versal function of the microscopic parameters, while
(I¢,15,D.,Dg) are quantum numbers subject to the Bethe-
ansatz selection rule

J'2=1(Q—AQ) mod1
7 :

Remember thaQ*+ AQ is even, which is consistent with the
allowed values ofj'. At this point we would also like to
point out that this selection rule includes an implicit relation

between the two charge channels 1 and 2: The definition of 1

g' in terms ofQ andAQ only permits certain combinations De=5(lc+1y) (mod,

of theq! andg? conformal towers. In contrast, the conformal 35
towers in the spin sector are not constrained by such a rela- 1 (353
tion. Ds=5l. (modl),

The scaling dimensions of the possible boundary opera- 2
tors are now obtained fror(8.48 by feeding into(3.46 and  \\here D, 2D 1.l e7.

(3.47 the allowed values of @,AQ,j*,j?) according o 1o match our result if3.46 and(3.47) to that in(3.52),
(3.49. Not all of these operators appear, though, in the efye note that the dressed chaggeand our parametes’ both
fective theory describing the scaling region. In general, thispeasyre the strength of the Hubbard interaction. Explicitly,

can be written as an expansion using the parametrization in Sec. I, we have that
e’={1+U/[2nmtsin(ak:) ]}  while  &=\2{1-U/
H=T*+ 2, 90, (350  [8tsin(aky)1},* ko playing the role of a “Fermi momen-
3

tum” in the Bethe-ansatz formalism. Puttihkg=Kkg, it fol-

where.77* is the fixed-point Hamiltonian, angi and, are  lows thaté,=y2e™ ?+O[(U/t)2]. To lowest order inU/t,
the associated scaling fields and boundary operators. Corred++AZ andA{+AZ in (3.46 and(3.47) indeed exhaust the
tions to scaling are produced by the irrelevant operators, ansame combined spectrum of scaling dimensions as
these must be invariant under the continuous symmetries af +A; andAJ +Ag in (3.52. This can be seen from the
¢ (as must any relevant operators in the absence of externtdllowing analysis.
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Let us first generate all combinations of scaling dimen-(conformal towers of SU(2),, we thus ask how the states
sions according to the Luttinger liquid selection rg&49 reappear using representations of(3l. The answer is im-
and show that they equal allowed combinations of scalingnediately obtained from the GKO coset construcidn:
dimensions according to the Bethe-ansatz selection rulProducts of two S(2), conformal towers (%), X (j?), de-
(3.53. We may concentrate oN.=N¢=0, as higher levels compose into products of $B), and Ising model conformal
can be trivially mapped once the relation féf=N;=0 has towers (),X(¢) according to
been established. Moreover, if we formally €t 1. and use
&= J2e ¢, we see that it is sufficient to check tha@ and
4D+ 2D, span the same range of integers wint A2 =

(0)1x(0)1=(0)2x (1) +(1)2X (e),

1y (1
AJ+A . Whether this correspondence is possible or not (0)1X(3)1=(3)2% (), (359
depends on the selection rule. ) .
ConsiderQ=2n, ne 7. By constructionAQ is even, and (2)1%X(2)1=(0)2X (€) +(1)2X(1).

: T, A2
rom (A3-4Z) a”df(3-49) it f°”°WZAthat_f°r a0 "€ [Note that (1/2)x(0), is degenerate with () (1/2) ]
ave Q—_4m or n even an Q—4m+ orno Herej'=0,1/2 andj=0,1/2,1 label the conformal towers of
(meZ). This |s.exactly reprpdu.ced in the Bethe-ansatz specsu(z)1 and SU2),, respectively, whiled=1 (identity), o
tru_m by choo§|ngDS=h0 (WT'Ch.'S allt?we(kj‘ a$?| is even almd f(order parametgyrande (energy densitylabel the three con-
Is=n. According to the selection rule, the allowed values o formal towers of the Ising modelcE& 1/2). The scaling di-

D. are p for n even andp+3 for n odd (peZ), ie., mensions in the S sector are given b
4D +2Dg gives the same range of integers &8. The @) g y

other possibility, A§+ A§=1/2, is analogously combined 1 .

with the above values oAQ shifted by 2, which is repro- As=7i(j*1)+Ns, Nsel, (3.56

duced by choosin@ =0, I;=n+1, andD,=p+1/2 forn

even andD .= p for n odd (peZ). while
Next, considerQ=2n+1, neZ. ThenAl+A2=% and

AQ spans all odd integers. Choosing=n andD¢s=*1/2 is o + N (D),
consistent with(3.53 and givesA] + A =3. For I even, 1, N Nl
the allowed values oD arep+ 3 and forl odd, they arep Agng=1{ 16 (o), Ne (3.57
(peZ). In both cases, B.+ 2D, spans all odd integers as 9 1
required. This completes the first part of our comparison. Z + N (e),
In order to prove that the Luttinger liquid and Bethe- 2

ansatz spectra are identical, we must also check that anyq those of the Ising sector.

other allowed combination of quantum numbers of the latter 4 primary states in the new representation are now la-

only reproduce energy levels already obtain@ibte that we beled by Q,AQ,j, ), with the new selection rule obtained

only compare energy levels and not their degeneracgss. by combining(3.49 and (3.55:

far we have exhausted all combinationsigfand D.. By

also allowinglg and D to take any permissible value, one ( 1

can show that all energy levels in the Bethe-ansatz solution (0) or (Le),  Q even, 5(Q+AQ) even,

for N =N; =0 correspond to allowed combinations of

Al+ A2 and AL+ A2 with N.=0 andNLe N, respectively. (.6)=1{ (0. or (1), Q even E(Q+AQ) odd

The calculation is straightforward, so we leave it out for =’ ’ e 12 ’

brevity. As before, it is trivial to extend the mapping to in- 1

cludeN, ,Ng € Z*, and thus the desired result follows. ( ,(r),
\

Q odd.
(3.58

At the Hamiltonian level, the conformal embedding @)
Having established the spectrum.afy, , we now include  xSU(2),—SU(2),xIsing implies that the spin part of7y,
the electron-impurity term decomposes into a sum of an &J, Sugawara and a free

Majorana Hamiltonian:

B. Coset construction: Boundary operators in presence ofZ¢

He=\[JIL(0)+I2(0)]-S (3.59 P
z, _Us <. . : P
and explore how this interaction affects the boundary scaling %s—zwf/dx( 4 H0) - I3+ (X dan(x) '
dimensions. For this purpose, it is useful to rewrite the (3.59

Hamiltonian 773, +.7¢ in terms of the total spin current
J=J1+J2: The chiral SW2),xSU(2),; symmetry of 7%
gets broken by7, whereas the diagonal subgroup @),
generated by, remains as a symmet(gf. our discussion in
Sec. I). 3(X)—I(X) +S8(x 3.6
In the conformal field theory formalism it is sufficient to (%)= J(x) ), (3.60
work at the level of representations of the (8, algebras. and choosing.=\*=uv¢/4. In this schema* defines the
Given a direct product of two irreducible representations(nonuniversal fixed-point coupling: the elimination ofZ:

with 7. a left-moving Majorana fermion. This enables us to
absorb the electron-impurity teror=\J(0)- Sinto .7 by
making the canonical transformation
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by (3.60 restores translationdbnd thereby conformalin- IV. CRITICAL BEHAVIOR
variance, implying a fixed-point theory.

The redefinition of the total current i{8.60 changes the
rule for coupling conformal towers. Effectively3.60 adds
an extra spin-1/2 degree of freedom to the(8y sector,
leaving the UW1) and Ising sectors intact. As a result, the
SU(2), conformal towers ), get replaced, according to

We now turn to the question of thenpurity critical be-
havior, exploiting the result derived in the previous section.
To do so requires two steps. First, tegmmetry preserving
boundary operators must be identified from the spectrum in
(3.66). With these in hand, one then selects the operator of
lowest dimension to perturbatively calculate the leading
1 1 1 finite-size corrections to the fixed-point theory. Treating the

(0)2=(2)2, (2)2=(0)2 or (1)2, (1)2—(2)2. (inverse length as a temperature variable allows for the cal-
(3-8 cyation of the finiteT scaling of physical response func-
These are the S), fusion rules see(3.5), describing the tions, such as the impurity contribution to the specific heat
effect of combining a tower of spij with a spin-1/2 tower. and magnetic susceptibility.

Together with(3.58 this leads to the new selection rule It is tempting to make a shortcut and refer to the logic of
our procedure to conclude that the impurity critical behavior
_ (3,1) or (3,e), Q even, must be that of the two-channel Kondo problem: The selec-
(&)= (3.62  tion rule in (3.65, describing the renormalized boundary
(0,0) or (1o), Q odd, condition due to the impurity, descends from the Luttinger

liquid selection rule in(3.49 via the coset construction and
equivalently, the spectrum o##*, with a modified boundary “double fusion.” This selection rule in turn is nothing but the
' L free electron selection rule in disguise, “rotated” to a diag-

condition atx=0 representmg the |mpur|ty Spin. onal basis in the charge sector. One thus infers that the inter-
However, to obtain the scaling dimensions related to a . . . .
- - acting problem cannot differ in essence, provided that the

boundary condition, we recall from the beginning of Sec. Ill

that these are in one-to-one correspondence to the finite—sizctglarge sector does not contribute (Bontrivia) leading

spectrum of the Hamiltonian with that boundary condition gﬁgf?ggﬁg:rszugﬂ ?sozggligedoﬁﬁcﬁtoﬂﬁz’Iir?(}a/ cghr';aal_
applied atboth ends. In terms of the Hamiltonia(®.33), 9 ' g

defined onxc[0,], this corresponds to having impurit soning is essentially correct, it is instructive to carry out the
) v P ng Impunty analysis “by hand,” and observe how two-channel Kondo
spins at both ends of the space interval. Passing over to th

chiral formulation(2.37), we thus see that the boundary scal- §nysics emerges in the scheme proposed here. In fact, certain

ing di . = W 4 : i novel features appear: the leading correction-to-scaling
Ing dimensions oL7=.77y T.77¢ aré I ONe-10-0N€ COMe- ,,,qary operatoiLCBO) is found to beuniqueat the fixed
spondence to the energy levels of taexiliary Hamiltonian point, suggesting a universal Wilson ratio in the low-

y temperature, strong-coupling limit. Also, by working out the
'%,:‘74L+)‘f dxJI(X)[S;8(X)+S,8(x—)]. solution explicitly in the new scheme we gain a number of
=/ important insights, to be exploited when extending the analy-
(3.63  sis to Kondo scattering in a Luttinger liquigec. \).

The two impurity terms are removed at the fixed point by the
canonical transformation A. Finite-temperature scaling

which governs the finite-size spectrum GFF +.7, or

J(X)—=I(X) +S,8(X) + S,8(x— /), (3.64) To provide some background, let us briefly review the
finite-temperature scaling approach to the problem, including

by whichtwo extra spin-1/2 degrees of freedom are added tahe rather exotic mechanism that brings ilielevantbound-
the SU2), sector. The fusion hypothesissuggests that the ary operators to center stage. For more details, we refer to
effect is described bywo repeated fusions of the spin  Refs. 19 and 20.
conformal towers with g =1/2 tower. The new selection Consider thefolded) system confined to a spatial interval
rule that emerges is readily extracted, us{B¢51) twice to  [0,/] and in the presence of an external magnetic fel&y
replace the S(2), towers in(3.58 by the resulting set of treating temperaturd as an inverse length @/ we may

conformal towers. One finds extract the low-temperature thermodynamics via finite-size
scaling on a cylinder with circumfereneg3. A convenient
_ (0 or 1,1 or e, Q even, choice is to map the upper half-plafngé ={Imz>0} [T=0
(J.¢)= (.0, Q odd. (369  geometry in Fig. )] onto a cylinder

I'*={w=(vB/m)arctarz} (finite-T geometry in Fig. & At
As before,AQ has the same parity &3, i.e., they are both finite temperature the free energy separates into two pieces,

even or both odd. describing the bulk and the impurity, respectively,
Summarizing, the spectrum of boundary dimensions in
the presence ofZ¢ is obtained from F(B.hA) =2/ Tou B + Fimp(BNN), (4D
A=A+ AZ+Agt Agng, (3.66

with A, the leading irrelevant boundary scaling fiéfdBy
using (3.65 to insert the allowed combinations of writing 2/ instead of/ in (4.1), we let fy, refer to the
(Q,AQ,j,¢) into the expressions fak, (i=1,2), Ag, and free-energy density of the origingunfolded system; cf.
Ajsing In (3.46, (3.56), and(3.57), respectively. Figs. 3a) and 3b) and the remark afte2.34).
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and it couples only to the spin sector. Thedependence of
Yimp IS therefore given by the same universal function as in a
Y i theory with a single velocity.

From the scaling form ofY;;,,, one expects nonanalytic
temperature terms ifi,, for nonintegery and A, #0. Re-
markably, the impurity specific heat and susceptibility vanish
identically when\,=0, so these nonanalytic terms become
0 - dominant. The mechanism behind this unusual behavior is
particularly transparent within the conformal field theory ap-
proach: Sinceat the fixed pointthe impurity spin has been
absorbed in the spin curredt the fixed point theory has lost

FIG. 5. Finite-temperature geometry with periodic boundary‘?1II memory of the impurity. Specifically, the total magnetiza-

condition in imaginary timer. The temperaturd is identified as

1/B and the circumferencepg of the cylinder satisfies 8</. For - IF(B,h,\,=0)

/' —, this geometry is related to the zero-temperature geometry in f dx(J¥(x))= AR (4.7
Fig. 4(b) via the conformal mapv= (v B/ ) arctang). —o oh

B
2

S

From the standard finite-size scaling hypothé3is, fol- Is insensitive to the impurity, and thus, frof.6),

lows that the reduced free-energy density of a critical theory, Y imp(hB, N =0)
defined on a cylinder with circumferenogs, scales as TB): . (4.8
BFI/=fB+Y(hB)lvB+---, (4.2 This implies that exactlat the fixed point
where the universal amplitud‘ébu|k(0)=—1-rc/6.45 In our P imp Y BN =0)|
case, the critical theory is a sum of two conformal theories, xijmp(A|=0)=— on2 =—p a(hp)? ’
each withc=2, and with effective velocities = v, and h=0 B h=0
vs, respectively. Moreover, as the magnetic figldonly -0 (4.9
couples to the spin sector, we may simply add the contribu- '
tions from the two sectors: and analogously
2
m 1 A d fimp_
fbu|k(ﬂ,h)=Ebu|k—W"'WYS(?LBH"'. Cimp(M=0)=—=T—=-=0. (4.10

43 710 “put back” the effect of the impurity, the leading irrel-
with Ep, @ nonuniversal quantity and(0)=— /3. Put-  €vant boundary operator must be added, and this operator

ting 8= 1/T one thus obtains for the bulk specific heat: then produces thdominantterm in the scaling in tempera-
ture.
Pl 7[ 1
CouT)=—T T2 3\ . ve T+, (49 B. Boundary operators
with * - .. denoting subleading terms a§—0. The bulk Following the procedure outlined in the beginning of this

section, we first pick out the scaling dimensions(8166)
corresponding to the symmetry preserving operators.
It is easiest to start in the charge sector. Chirél)Un-
92fbu|k| 1 variance implies chargg conser\{ation in each chqnnel, hence
Xou(T)=— 2 | +.-. (45 Q=AQ=0. The selection rule in3.65 then implies that
possible boundary operators can appear only in the products
of conformal towers

magnetic susceptibility can similarly be obtained frdgy,
by expandingY to second order itn/T, and one finds

heo 2Tvg
In the same manner as fdg,,, one can write down a

finite-size scaling ansatz for the impurity part of the free (Q,AQ,j,¢)=(0,0,0]1),(0,0,1]),(0,0,0¢€), and (0,0,1¢).

energy: 4.1)

The first and fourth structures i@.11) contain only op-
fimp(B,0N ) =Ejmpt EYimp(hﬁa)\IBy)+ -+, (460  erators with integer scaling dimensions. As we shall see in
the next section, these produce Fermi-liquid-like, analytic
with Ejr,, nonuniversal. The exponeptis a renormalization-  scaling in temperature, and will be disregarded at this point.
group eigenvalue, connected to the dimengioaf the lead-  Turning to the second and third structures, we note that both
ing irrelevant boundary operator lyy=1—A. As the bound-  contribute arelevantboundary operator, witth<1.° The
ary scaling field\, may couple to both the charge and the second possibility, (0,0,1), contains the spin-1 primary
spin sector f =A;+Ay), Yim, is not just a sum of a charge field, call it ¢, with A=1/2. However, theotal spin is con-
and a spin part. This will not be important, though, as weserved, requiring all operators in the &), sector to trans-
will later calculate fi,, without any assumptions about form as singlets. This expelg, leaving only descendant
Yimp- However, for\;=0 there is only one scaling field  operators in this sector with=3/2. The third structure,
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(0,0,0¢), contains the Ising energy density as a primaryhowever, the flavor sector contributes a second operator with
field, also with dimensiom\=1/2. Is it also suppressed by dimension 3/2, call it7y,,.. This is different from our ap-
symmetry, or do we have to “fine-tune” the theory to stay at proach where the leading correction-to-scaling operaids
the fixed point? Consider the latter alternative. The operatounique. Consistency between the two schemes requires that
e originates from the conformal embedding of @)  the scaling field conjugate t0;,, Vanishes at the fixed
xXSU@2); into SW2),X7Z,. The only parameter in point. Based on the related case of “underscreening,” it has
=%+ 7 multiplying the SU2), currents is the spin been argued that this indeed happens: When the impurity
velocity vs=ve—g. A “fine-tuning” scenario thus implies carries unit spin both the charge and flavor sectors contribute
that we can stay at the fixed point only for some privilegedcorrection-to-scaling operators with the same dimension
value ofg, which, considering the known solution for non- (=2) as the spin sector. Given a proper regularization of the
interacting electrons, must fgg=0. Although not excluded  theory, one can show that the conjugate charge and flavor
priori, this is not a likely situation. Let us instead explore scaling fields—0 at the trivial T>Ty fixed point. There is
whether there is any symmetry that suppresses evidence that an analogous mechanism is at play at the
The important symmetry to consider is invariance under‘overscreened” T<Ty fixed point (with s=1/2), leaving
channel exchange?: 12, under Which]i(x)HJE(x)_ To  only the operator?, effective. Our result supports this pic-
test for £, we connect to the spin currents via the follow- ture, and allows for the definition of a universal Wilson ratio
ing observation: The difference of $2)1 CurrentS, in the I|m|t Of Vanishing eleCtron-electron interaction.
JH(x)— J2(x), transforms in the adjoinfspin-1) representa-

tion of global SU(2) (with the Schwinger term subtracted C. Low-temperature thermodynamics
) The low-temperature thermodynamics driven 4y has
1 2 1b 2b _ b 1
[IL200+ 3T, I(Y) = IP (V)] =1 €I (%) been studied in Ref. 19. In the next section we shall review
- this analysis, and extend it to theories with more than one
=L (X)]8(x=y). velocity and boundary operators of arbitrary dimensions.

(4.12 Here we only quote the result for the impurity specific heat
Knowing that the currents carry dimension one, one is led t&imp @nd magnetic susceptibilityim,:

the identification £29 772
|
Cimo(TN)=—73—T In| —= | +O(7yT), (4.1
JH(X)— J2(X)~ (X)X e(X). (4.13 imp(T A1) vs (TOT (roT), (413

This gives the correct assignment of sjjinl) and scaling A%18 1
dimension @ 4+ A =1/2+1/2=1). Now consider a chan- Ximp( T A )= —3|n(ﬁ) +0O[(7oT)°], (4.19
nel exchanges. According to(4.13), Us 0

B with 75 a short-time cutoff, playing the role of an inverse

CipXe——PXe. (414 “Kondo temperature.” The scaling field, (conjugate to

v@) appears with the same power(#15 and(4.16). Thus,
given the known bulk response {#.4) and (4.5, one may

form the \,- and T-independent Wilson ratio
/]

the required fine-tuning leaves us with a critical theory only UF 417
at g=0, according to the argument above. The first descen- ’
dant of ¢, L ;e with scaling dimension 3/2, here becomesin the g—0 (v.,vs—vg) limit we recover the universal
the leading irrelevant operator. But this is exactly the boundnumber 8/3 obtained by Affleck and Ludwgfor the two-
ary operator that drives two-impurity Kondo behavidin  channel Kondo effect.
contradiction to theknown two-channel behavior agj=0. In the alternative charge-spin-flavor scheme for the two-
Agreement with established results in the noninteractingchannel Kondo effect, the flavor sector also contributes a
limit forces us to make the alternative assignment uritter dimension-3/2 boundary operator. This produces a second
€ odd and¢ even. Now thee conformal tower gets sup- term in C;,,, proportional to the square of a flavor scaling
pressed, with no fine-tuning necessary. Our analysis showfeld \,,o,. TO Obtain the Wilson rati&k\,= 8/3, one has to
that there is no relevant boundary operator present: The onlgesort to the argument sketched above, suggesting that
candidates appearing {#.11), ¢ (A=1/2) ande (A=1/2)  Afavo— 0 a@s one approaches the fixed point. In contrast, the
are expelled by symmetry. This yields the important conclureduction toone scaling field\, is automatic in our ap-
sion that the theory flows onto stable fixed point in the proach.
absence of external perturbations. The results in(4.15 and(4.16 also apply to the associ-

The leading irrelevant boundary operator, calkit, is  ated spin-chain problem, with two neighboring sites coupled
obtained by contractingd with the first SU2), raising op-  antiferromagnetically with equal strength, to a spin-1/2
eratorJ_,: ?,=J_;- ¢, with dimension 3/2. As expected, impurity (cf. Fig. 2 and the discussion in Sec).This cor-
@, is the same boundary operator that appears in the analysigborates the result in Ref. 33, and shows that the closing of
of the two-channel Kondo effect, using the “charge-spin-an open chain with its two ends coupled symmetrically to the
flavor” scheme!® reviewed in Sec. II. In that formulation, same impurity does not affect the scaling behavior: both the

A consistent conformal representation hence requires that
assign evennes®ddnessto e (¢) under#, or vice versa.
Consider the first possibilitye even andg odd. Since7” is
invariant underZ, ¢ and all its descendants become sup- ~ Ximp! Xbulk ~ 4(1 Us) 8[ g

pressed. The operater on the other hand, is allowed, and Ry= C.c.-—13 1- U—+O
imp/ ~bulk F

3

Uc
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open and closed chains exhibit the same “two-channetpectrum of boundary operators. The lowest-dimension op-
Kondo physics. This, from a naive point of view, is some- erator withAQ =0 allowed by the selection rule (8.6 is
what surprising: The two spins at the end points of the opembtained from

chain are locked into aB=1 state via the interaction with

the impurity. This causes overscreening of the impurity spin, .

resulting in the two-channel Kondo behavior. Upon closing (Q.4Q.),4)=(022,0.1), (4.2

the chain the end point spins get mutually coupled via an

antiferromagnetic exchange, call & As J is increased and has dimensiot =(1/2)e”?’<1/2. Any |[AQ|>2 will
aboveJ, one may have guessed that the Id8all state gets produce an irrelevant operator, and hence the composite pri-
destabilized, thus inhibiting overscreening, and leading to &nary operator from(4.21) is the unique relevant operator
decoupling of the impurity spi“Curie behavior”). This  generated by breaking chiral(l) invariance[Note that the
does not happen however. The result¢4rni5 and(4.16 are  breaking of chiral SW) invariance is already effected by
valid independent of the relative strengths of the bare cour -] As expected,” is thus arelevant perturbatiorthat
plings J, andJ: The low-temperature fixed point &table pulls the system away from the forward scattering fixed
attracting a flow for arbitrary initialbare values of the cou- point, towards a new fixed point. The scaling behavior about
p||ngsJ andJo_ Whatdoeschange, however, is the tempera- this new fixed point is the tOpiC of the next section.

ture scale at which one reaches this fixed point. For example,
if the ratio Jo/J is very small, the Kondo temperature will

also be small, and one has to go to very low temperatures to V. KONDO INTERACTION

see the “two-channel behavior.” The problem we have studied so favith only forward
electron scattering off the impuritys a model problem: we
D. Symmetry breaking perturbations do not expect it to be observed in the laboratory. The reason

is simply that by inserting a spinfghnd chargelegsmpurity

into a, say, quantum wire, one necessarily produces a sharp
scattering potential, the core of the interaction being a local-
ized spin exchange. In contrast, the exclusion of electron
o back scattering off the impurity, i.e., the exclusionlafge
HE=AIL(0) ST ARIR(0)- S, (4.18 momentum transfers, requires an effective scattering poten-

with A, and Ag arbitrary. This may be expressed as tial that varies slowly in space. To have an experimentally
W= He+ Ty Where 7 is the symmetric electron- relevant model we must therefore incorporate the back scat-
=T+ T per T

; - ; Sy — : tering term.7%g, as in Eq.(1.8), and study théull electron-
= +
g?]gunty interactionwith A =(1/2) (A +\g)] studied above, impurity (Kondo) interaction .77+ 7, in the strong-

coupling, low-temperature regime. As we shall see, the
1 insights gained from the treatment of the forward-scattering
jf/pert:E()\L—)\R)[J&(O)—JE(O)]~S. (4.19 p_ro.blem will turn out to be crucial in attacking this more
difficult problem.
Before plunging into the analysis, we briefly comment
on the recent work by Furusaki and Nagads#ho exploit
a version of “poor-man’s scaling” to analyze the problem.
Tper= [ H(0) X €(0)]-S. (4.20 As for the ordinary Kondo propleﬁf—,a.sgt of scaling equa-
tions is derived perturbatively in the limit of weak electron-
It follows that e enters as an allowed boundary operator,impurity coupling, and tentatively extended into the strong-
being contained in the spectruf.11). Having dimension coupling regime. This procedure suggests that the coupling
A=1/2, it is relevant, and destabilizes the symmetric for-increases indefinitely, implying a ground state where the im-
ward scattering fixed point This is similar to adding a fla- purity spin locks into a singlet with the conduction electrons,
vor anisotropic perturbation to the two-channel Kondo inter-causing the chain to break. A drawback of this method is that
action, using a charge-spin-flavor scheffign this case the the scaling equations are formally valid only for weak cou-
flavor sector contributes a dimension-1/2 operator whichplings, and may miss out on possible intermediate-coupling
takes the system to a one-chanfieérmi-liquid-like) fixed fixed points, as in the two-channel Kondo effect. However,
point. Again, equivalence between the two schemes requiregpnsidering the analogy with the ordinafpne-channel
€ to perform the same way. An interesting question is howKondo problem, it is quite likely that the result that ensues is
the scaling region about this one-channel fixed point is influin fact valid. Nonetheless, it is important to make iade-
enced by the electron-electron interaction. However, we shafpendenttest of the result, using a method that is internally
not pursue this problem here. consistent. This is the aim of the following analysis.

Instead, let us study the effect of adding electron back-
scattering on the impurity, that is, adding’g in (1.8) to
He . Fg breaks both chiral S(2) and U(1) invariance. In
particular, this means that the numbers of left- and right- As a preliminary, let us look at the case of fie elec-
moving particles are not conserved separately. As a consérons coupled to a localized spirb€1/2) by the Kondo
guenceAQ=Q, — Qg is no longer restricted to zero, and the interaction 7y =.7/r+.77/g. The total Hamiltonian
charge sector can now make nontrivial contributions to theZZ= .7+ 7 is given by

It is instructive to study the stability of the forward scat-
tering fixed point against symmetry breaking perturbations
Consider first an asymmetric electron-impurity interaction,

T pert breaks invariance under channel exchange, and using
(4.13 one has p

A. The noninteracting problem
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1
7/"“:%] dx
K DS g o0 (X (X):
2/ 5L R

gk OO UL )W (XD g o(X): (5.7

is added to7Z,+.7 : The interaction in(5.7) mixes left-
and right-moving fields, and hence becomes nonlocal in the

Noting that only the even-parity part of the electron field Weyl basis.

couples to the impurity, it is convenient to pass té\ayl
basisvia the canonical transformation

1

Pe o(X)= \/E[IJIL,U(X)i Pro(—=X)]. (5.3

From this construction it follows that bottt, , and _ ,
are chiral, left-moving fields with definite paritl? under
X— —X:

Pwi,a(x):iwi,a(x)' (54)

In this basis the total Hamiltonian takes the form

Z 2 UF
%0+7/K:Z L

T ; d
dx: ’#r,o(x)| & l/’r,a(x):

+2N:4) 4(0) 30,0 ,(0):-S. (5.5

We recogniz&5.5) asidenticalto the Hamiltonian represent-

ing three-dimensional free electrons in two chanréls”
and “—"), coupled to a Kondo impurity in the+" channel

To make progress we must take a less direct route. We
shall here exploit the expectatigsee Sec. | and Ref. 2€hat
the full Kondo interaction7Z can be described as a renor-
malized boundary condition o773, , analogous to the case
of the “forward” interaction.7Zr studied in the previous sec-
tions. This is indeed a well-founded assumption: In the non-
interacting limit (@=0) a canonical transformation on the
even-parity spin current removes the impurity from the
Hamiltonian in the Weyl basi&f. Sec. V A. This, “by con-
struction,” automatically leads to a change of boundary con-
dition on the critical bulk theory. Turning on the bulk inter-
action, this boundary condition must still be present,
although its effectcoded in the new selection rule for com-
bining conformal towersmay change with a variation of the
bulk coupling. However — as we have just seen — when
g#0, 7 cannot be reformulated in terms of spin currents
without violating locality of the electron-electron interaction.
Therefore, we cannot identify the correct selection rule
(boundary conditionby a redefinition of the spin current, as
we did for.7Z¢ in Sec. Ill. In fact, we should not even expect
that the new selection rule is simply related to the old one by
a recombination of conformal towers in the spin sector only.
To the contrary: Since the Kondo interactio# carries a
charge component in the chiral basis, the charge sector is
affected too. In other words, the selection rule for combining
the two charge conformal towers may also change. This im-

only. This leads to a one-channel Kondo fixed point with ap”es that the boundary operators may be Composites of non-
m/2 phase shift of the single-electron levels in the-™  trivial operators from the spimnd charge sectors. The fact
channel, the *-" channel being unaffected[in fact, as that these are described two distinct conformal field theo-
pointed out already by Nozies and Blandih(see also Ref. ries signals the novel aspect of the problem.

26), the same conclusion holds for any channel-anisotropic To obtain a sufficiently general framework for this new
Kondo interaction: the screening of the impurity is fully at- situation, we introduce a notation that does not make an im-
tained by the electrons in the more strongly coupled chanpiicit relation between the two charge towers, and denote a

nel] general combination of conformal towers by
The low-temperature impurity thermodynamics of the

one-channel problem is that of a local Fermi lig@ith par-
ticular, the impurity specific hedt;,,, and magnetic suscep-
tibility ximp Scale as

(C1,D1:C5,Dy55j5 ). (5.9
Here (C;,D;) labels the Wl) channelr tower (i=1,2),
while j and ¢, as before, denote the &), and Ising tow-
ers. The two 1) towers are now treated asdependentin
the description of7%%, +.7¢ , as well as that ofZ5, with a
trivial boundary, C;=C,=Q and D;=D,=AQ. These
identities are the above-mentioned implicit relations between
the charge towers and may be interpreted as part of the cor-
responding selection rule, whereas more general boundary
conditions, associated with other types of impurity interac-
tions, like 7y , may requireC,# C, andD,# D,. Note that

The construction above is no longer useful when thewe still requireC;=D; to be even foi=1,2, so as to pre-
electron-electron interaction is included, that is, when serve the spectrumwithin each conformal tower.

Cimp~T+O(T?),  Ximp~T°+O(T). (5.6)

From (5.5), this result also holds foone-dimensionafree
electrons coupled to a spin-1/2 Kondo impurity.

B. The interacting problem
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The next step is to find the selection rule, and we first C. Symmetries and selection rules
focus on the effect a7 on the charge sector. As the quan- A states in the charge sector are combinations of states

tum numbersC; and D; can take any integer values, We fom the two U1) conformal towers labeled byd;,D;) and
assume that any selection rule for combining th@)ton- (C,,D,), or q; and g, for short. Similarly, we label the

formal towers can be expressed by a linear relation: Kac-Moody primary states of these conformal towfs)
and |q,), respectively. They transform under independent

C1=aCotBDo+ 7, (5.99 U(1) transformations as

D;=vyCy+ D+, (5.90 |a;)—€'9i%i]q;). (5.19
with a, 8, ... ,{ integers satisfyinge6— By#0. As we shall |t is convenient to introduce the linear combinations
see, a few symmetry constraints severely limit the number of
possibilities and leave us with only two permissible selection q=0;+0,=32(C,;+C,)e’+1(D,—D,)e ?,
rules. Given these two rules for thg1)x U(1) charge sec- 5.15
tor, we then consider all possible combinations of conformal Ag=q;—q,=3(C;—Cp)e’+3(D1+Djy)e ’

towers from the S(®),X Ising sector. Each combination of nd
states corresponds to(aomposité boundary operator, and

those with scaling dimensior=s 1 are candidates for being d=3(Pp1+ b,),

theleading correction-to-scaling-boundary operator (LCBO) (5.1
that governs the critical behavior at the “Kondo fixed point” ‘

in a Luttinger liquid. As the Kondo interactiof®.2) breaks Ap=3(p1— ¢»),

the chiral U1) [as well as the S(2)] invariance of 773, ,

C; andD; of the LCBO may now take nonzero values. How-
ever, global U(1) [as well as S(R)] remains a symmetry,
imposing other, weaker, constraints on these gquantum num-
bers.[The conditions on the quantum numbers in theZU

, and Ising sectors are as befdréhe list of candidate op- with
erators is then restricted by requiring that any LCBO respects
the symmetry of the original Hamiltoniagincluding . 7), P=01¢1+022=qd+AqA . (5.18
and that the Fermi liquid scaling if5.6) is correctly repro- In terms of these phase factors, globdlllis generated by

duced ag— 0. (Note that a selection rule define®aundary : .
fixed point, and is valid for all values of the marginal bulk S(%ndi:\grr?;nLtll)ifb)ai)oangﬁ dd)' cﬂﬁglc eLL(i)l?I%K/:rl é;rl](t)bﬁl

pouplingtg. Hence, g:\éer}_a.selegtion rule, Fermi liquid scal- , _ \ q—0. This is consistent with our previous notion of
|nani1tLrJ]sthemergre Ilirr1ninerilmgl_; ) make a first list of ndi_global and chiral 1) invariance in terms of) and AQ,
ese pre aries, fet us make a first ist ot candi-po 5 useq=Qe? and Ag=AQe ? for the (bulk) Luttinger

date LCBO scaling dimensions at th&g +.7% fixed point. . . e~
From (3.46), (3.56), and(3.57), treating the two 1) towers g%léngarldeor_w[z)ird scattering problem, whei@=C,;=C,
— 1= va2-

In (346 as independent, we have Consider now the original fixed-point theag, without
A=A +A, (5.10 impurity. Adding. 7 breaks chiral, but not global, (@) in-
variance. As777, satisfies the Luttinger liquid selection rule,
where we see that the effect of adding the perturbatiafy is to
break A ¢ invariance, i.e., to remove the constraing=0.
Under renormalization the theory flows to a new fixed point,
also associated with77, , but with a different selection rule,
where, possibly, the two (2) towers are decoupled. Whereas
Q and AQ can then no longer be used to label th€lJ
q,=%C,e’+1iD,e "’ sector,q and Aq remain well defined. Hence, at the new
’ Kondo fixed point, the signature of adding backward scatter-
(5.12 ing against the impurity is to allow operators wiftg+ 0.
The same arguments lead to the requirengenD, in order
_ to preserve the global @) invariance of 7. A LCBO
[replacing the formeq' of (3.32] and must therefore not only be compliant with the selection rules
(5.9, but also with

so that we get a general combination dfltransformations

la1)®]a2)=]91,02)—€'¢|d1,02) (5.17

1
Ac:Z{(Q1)2+(Q2)2}+Nc: Nce N, (5.1

with
0,=3Ce’—3D,e™’

- D;=D5. 1
+Ng, NgeN.  (5.13 C;=-C, and D;=D, (5.19

> g
[
Il
Nl ’5;|m o
+
INE = )

Next we consider the effect of a discrete symmetry. Al-
though .77 breaks chiral §1) symmetry, it is invariant un-

To cut down the list of possible scaling dimensions inder channel exchang€:1+2, or equivalentlyL«R in
(5.10, we next study the constraints imposed by the symme¢1.8).  This  translates into invariance under
tries of the model. (9,A9)—(g,—Aq), which is equivalent to invariance under
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#:C1<Cy, and D+ —D,. (5.20 scattering off the impurity. The effect of including’ is to

Any candidate LCBO must respect this symmetry. In caseOve us to a new fixed point, which may be described by

T o ) B . any of the above six selection rules. In analogy to changing a
?u:nAt?)_tr%stQLSe(I:Siaﬁng;”eyI;Ltjglrnggdagg\,%cfggjsmlv (I)" Irre] fixed point in the case of forward scattering off the impurity,
variance under5.20 then implies that a LCBO must be a or any other quantum impurity problem, we shall call such a

. - i Lo ransformation dusionin the charge sector. It is a prescrip-
symmetric combination of operators with opposite signs o

Aq. To force the coexistence of two such operators, we havgion for how the conformal towers are recombined when we
to constrain the selection rulds.9) to be invariant under hange fixed points. Frortb.22 and (5.23 it follows that

- . there are six possible fusion rules that can be applied to the
(5.20), i.e., they must satisfy Luttinger liquid selection rule, and one of these should cor-

C,=aC,;— D1+ 7 (5.213 respond to addingZy to the fixed-point Hamiltonian. For
’ instance, the fusion ruleQ,,D,)—(—C,,D,) changes
—D,=yC;— 6D, +¢. (5.21H (5.229 to (56.229 and (C,,D,)—(D,,—C,) changes

(5.223 to (5.233. Applying the correct fusion rulenceto

If we now require at least one boundary operator, therd5.228 gives the new Kondo fixed point, and the selection
must be a solution tq5.9), (5.19, and (5.21). Inserting rule can be used to extract the finite-size energy spectrum.
(5.19 in (5.99 and(5.213 yields (1+«)C,=8D,+ n and  Furthermore, we expect that applying the same fusion rule
(1+ a)C,=pBD;— 7, respectively, i.e.;p=0. Using(5.9p  twice should give us the selection rule that determines the
and (5.21b, we similarly getZ=0. We may therefore con- boundary scaling dimensions. It is easy to check that any
clude thaty=¢=0 is a necessary condition for the selectionfusion rule that take$5.223 to any of the selection rules in
rules. (5.22 gives (5.229 back after double fusion, whereas the

By demanding full consistency betwe¢h9) and(5.21)  fusion rules that také5.223 to any of (5.23 give (5.220
we may further reduce the list of possible selection rules: Fogfter double fusion. We therefore conclude that the only pos-
instance, combining (5.99 and (5.213 requires Sible selection rules for the boundary scaling dimensions are
(1-a?)C,=—aBD,+BD,. Let us first consider the case (5.223 and(5.220.
a?# 1. ThenaB=0, as otherwis€; would be a function of We may now apply the symmetry constraibt19 to ex-
D,. (Remember that selection rules only give relations belract a “short list” of boundary scaling dimensions from the
tween conformal towers and should not pose constraint§harge sector. The first rul¢5.223, together with(5.19,
within.) B=0 implies C,;=0, which is not allowed by the requires a LCBO to hav€;=C,=0 andD;=D, an even
same reason. The other possibilityp=0, implies integer. Using(5.11) and(5.12),
C,=BD,. However, asC; may be any integer, we can only _
allow B==1. Inserting this relation in(5.21h yields Ac=3zp%e *"+Ne, p.NceN. (5.29
(B~ '+ y)C,1=6D;. To avoid constraints within a conformal Similarly, the second selection rulés.22d, combined with
tower, we must then requig” 1+ y= §=0. Hence, the only (5.19, requiresD,;=D,=0 andC,=—C, an even integer,
solution fora?#1 is a=6=0 andf=—y==*1. The next i.e.,
case,a=1, implies BD;=BD,. If we assumeB+0, then

D,=D,, which givesC;=C,+ 8D, using(5.93. But then A.=3p%€*’+N;, p,Ncel. (5.29
B=0, asC, cannot be a function db,, i.e., 8#0 leads to ) ) ) ]

a contradiction. The only possibility far=1 therefore is to The full boundary dimensions are obtained by coupling
require 8=0, which does not lead to a contradiction. The the SU2), and Ising conformal towers to the pairs of W
same result holds for= — 1. towers in(5.22g and(5.224d, respectively. Starting with the

Analogous treatment of5.95 and (5.218 implies that SU(2)2 sector, thg =1/2 tower is expelled by global SP),
either @=6=0 and B=—y=*1 or else 6==1 and invariance: Spin rotational invariance of the Hamiltonian

y=0. Hence, in total there are only six possible selection” 1L+ #i implies that any LCBO must transform as a spin

rules in the charge sector: singlet, which, however, is missing from the=1/2 tower.
Turning to thej=1 tower, the primary operato® is ex-
C,=C, and D;=D,, (5.223  pelled by the same reason. The lowest-dimensiori25J
singlet operator from this tower i%_;- ¢. However, this is
C,=C, and D;=-D,, (5.22h  the same operator that drives critical scaling in the forward
scattering problem. In particular, it produces a diverging im-
C,=—-C, and D;=D,, (5.229 purity susceptibility ad — 0 [cf. (4.16)], in conflict with the
known Fermi liquid scaling’5.6) in the g—0 limit of the
C,=—C, and D;=-D,, (5.229 present problem? Assigning evenness to the= 1 conformal

tower under channel exchangas in the forward scattering

and problem implies thatd_;- ¢ is allowed by symmetry, and
C,=D, and D;=-C,, (5.233  hence any selection rule must suppress this tower. The re-
verse assignment of parity under channel exchange instead
C,=-D, and D;=C,. (5.23h  implies that thg =1 tower is suppressed by symmetry. Sum-

marizing, the only possible contributions to a LCBO from
The first selection rul€5.223 is the Luttinger liquid se- the SU2), sector, consistent with established results for
lection rule that we start off with before we include Kondo g=0, are the identity operator and its descendants. We are
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thus left with the problem of gluing together the pairs of forward scattering problemThis is not the case here. Sec-

U(1) towers in(5.22a and (5.229 with the towers in the ond, the appearance of tkeconformal tower requires the

Ising sector. reverse assignment of parity under channel exchange, as
Let us start with(5.223. PuttingD,=D,=0, the result- compared to the forward scattering problem. That is, a con-

ing identity towers can be combined only with the identity sistent representation now forces théower to be invariant

tower in the Ising sectdtogether with that of S(2),]. This  under channel exchange, whilp and its descendanil-

is s0, since the presence offe= o or € tower would lead to  ready suppressed by the selection rulgsange sign(Note

a relevant boundary operator: the primary operatorand that there is no contradiction with the forward scattering

€ both have dimensions<1l. However, atg=0 the fixed case, as the argument in Sec. IV B for the other assignment

point is known to be stablécf. Sec. V A, excluding the of parity no longer applies.

presence of a relevant operator. In fact, this conclusion may

be extended t@+0: To remain at an unstable fixed point D. Impurity specific heat

(that is, to maintain criticalityrequires fine tuning of some

parameter in the bare Hamiltonian. gsis the only tunable

parameter in7%, (with a renormalized boundary condition

replacingH), an unstable fixed point would imply noncriti-

cghty fqr all values ofg+ 0. In other words, the total scaling =05 +\0(0), (5.29

dimensionA=A_.+ A4 of any boundary operator must be

>1. Itis here important to stress that — by ttasson d’etre ~ Where(0) is a LCBO with conjugate scaling field, . By

of renormalization —any boundary operator allowed by Mapping the half-plané™ ={Imz>0} for zero temperature

symmetry will also appear at the fixed point. Therefore, oneonto  the  finiteT  geometry (Fig. 5, T'"={w=v7

cannot argue that a LCBO with>1 can be obtained by +ix=(vp/m) arctang)} [with v=v(vs) for a LCBO from

forming descendants in thé= o or € towers. If any of these the charge(spin sector”], the partition function in zero

towers were present, the corresponding primary operators épagnetic field is written

dimensionA=1/16 and 1/2, respectively, would be present

Analogous to the forward scattering problem, an effective
scaling Hamiltonian7 is obtained by adding a boundary
term to the fixed-point theory ofZt =7 g+ . Zint:

/2 -
as well, implying an unstable fixed point. e—ﬁF(B,M>:e—/3F<B,0)< ex;{ A fﬁ dr (r, 0))> ,
The lowest-dimension operators emerging from the iden- —BI2 T
tity towers are the first Kac-Moody descendants in th&)U (5.29

sectors, with A=1: The marginal boundary operators
621'2(w)=jf2(w) always appear in the charge sector, as th
particle-hole symmetry of the original lattice model(i.2) BI2 ~

—BI2 T

eso thatsfimp( 8.\ 1) = fimp(8,N1) — fimp(8,0) satisfies

is broken away from half-filling* Upholding particle-hole “(7,0)

symmetry, the lowest dimension operators would instead be

the secondvirasoro descendants_L,1 in respective sectors, (5.30
of dimensionsA =2. The next choice of 1) quantum num- We have here used the decompositiorf4rl) and passed to
bers,D;=D,=2[p=1 in (5.24], leads to a relevant bound- a Lagrangian formalism, “tiide” and )t referring toT'*.
ary operator for any combination of Ising towers, and isBy a linked cluster expansion,

therefore not allowed. In contrasD,=D,=4 [p=2 in
(5.24)] yields operators witlA =1 when combined with any
Ising tower. Summarizing, the possible couplings of Ising
conformal towers to the (1) towers selected by5.223
yield the following candidate LCBO dimensions:

N (B2
Ofimp=— EJBIZdT(@( 7,0))1

N2 [ (B2 - -
__J' j d’Tl d72<67(71,0)(5;(72,0)>TC
2B) J-pr :
Alcgo=1, 3p%e ?’+{0,%5,3}, peN+2. (5.26
+O(\}), (5.3
Turning to the second selection rule for thélx U(1) sec- ) . .
tor, (5.229, employing the same reasoning as above, ondVith { )t denoting a cumulant i .

finds a second class of possible LCBO dimensions: Here two cases must be distinguishédx” is a Virasoro
descendant of. Then{(7,0)); may be nonzero and hence
Alcso=1,1e?"+1, 1p2e?’+{0%, 1}, peN+2. the leading contribution t@f;,, will be linear in\, . (ii) In

(527  any sector of the theory; is Virasoro primary or a Virasoro
descendant of an operator other thariThen((7,0));=0
Before exploring the critical behavior implied by the vari- and 6f;,, is quadratic in\,. To see how this comes about,

ous dimensions i1t5.26) and (5.27), two comments may be consider a chira(say, left-moving Virasoro primary opera-
in order. First, note that no scaling dimensions of descendarior . Z(z) #1 with dimensionA (#0) in the half-planeC™.
operators — other than those of the identity — appear infhe expectation value of a chiral operator in a half-plane is
(5.26 or (5.27). This is so, since a LCBO is theomposit¢  the same as in the full plane, as translational invariance in
boundary operator withowestdimension=1, given a par- one direction implies this in all directiongUniqueness of
ticular combination of conformal towers. Only if one, or sev- analytic functions implies that the expectation value is con-
eral, of the nontrivial primary operators are expelled by sym-stant everywherg.The scale transformation— z/a, where
metry can a descendant operator enter the stagen the we later choose&=z, implies
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<t4,g(z)>=z—A<',,4g(1)>, (5.32 We now turn to the more interesting cade where the
candidate LCBO’s ar@ot Virasoro descendants of the unit
and we conclude that 7(z))=0. (Note that the argument operator. The one-point function {6.31) then vanishes, and
crucially depends on# being chiral: a nonchiral operator we are left with
may pick up a nonzero expectation value in the presence of a
boundary.  Any Virasoro descendant operator i B2 - - s
L onL n, -L_n, 2 (nj>0) has a vanishing expecta- 5fimp:_ﬁf f_ﬁ/zdﬁ d7y((71,0)%(73,0))r+O(N\}).

tion value as well, since (L_,---L_, .%(2)) (5.37)
=L n Loy (A2)=0, Z_pn (j=1,--,ny) being

According to our symmetry analysis, any LCBO thahit a

descendant of must be a Virasoro primary operafdrit is

therefore sufficient to consider the case wiiéris Virasoro
&rimary, for which the two-point function if.* takes the
familiar form

differential operatoré6 Now mapC+ onto 1“+ Again, by

conformal invariance, Q%(W))T (dw/d2) *(A(z))=0.

The transformation law for a Virasoro descendant is mor

complicated and relates one descendart inwith a sum of

operators from the same Virasoro tower(ii. However, as

the expectation values of these are zero, it follows that the

expectation value of a Virasoro descendant#fvanishes in (N20)N25))= ———x - (5.39

I'* as well. In contrast to this, descendants of the unit op- (2:72,)

eratorl may acquire nonzero expectation valued'in. As  Here A (+£0) is the scaling dimension of’, and A is a

an example, the energy-momentum tensor is a descendant @hrmalization constant (to be determined Using

1 and satisfie§T(w))r=(c/12){z,w}, with ¢ the conformal  z_,w=y 7+ix= (v 8/ ) arctanz and the transformation rule

anomaly number and {zw}=d’z/dw’/dzZdw  for a Virasoro primary operator, we can get

—(3/2)(d’z/dw?/dz/dw)? the Schwarzian derivative of the (Z(w,)7(wy));. However, as” may be composed of op-

mapC*—I"". _ _ erators from sectors with different velocities we must per-
Let us first study casé) where is a descendant df.  form the transformation in each sector independently. The

Since L_,1=dl/dz=0, the energy momentum tensor expression simplifies somewhat on the boundasy0 and
T(z)=L_,l is the leading Virasoro descendantlofind has pecomes

A=2. In the present problem, each sector contributes its own

energy momentum tensorT,(2)=%jl(2)ji(2):, T.(2) N . A

=342k Ta(@=33(2)-I(2): andTy(D)=Tigng(2), (0 (72.0)1= B 2y

all with A=2 and satisfying(T;(z))=0 in C". In other (v v S)2 —sm ,8(71_72)}

words, there aréour degenerate LCBO’s for this case. Pass- (5.39

ing to'", their contribution to the impurity specific heat is '

given by whereA=A_ .+ Aq, and the subscripts refer to the charge and

spin sectors, respectively. The integrai®d39 of (5.37) is
i - even and periodic, with perio8, and can be replaced by a

Sfimp=— .21 Ef_ /2dT<Tj(TvO)>T’ (5.33  single integral overr=1,— 7,. Puttingu= tan(=/g), and
= p inserting a short-time cutoff,= eB/ 7, yields the expression

with
5t NA [\t g (1+u?)* 1
7 \2 imp= m E ft uUT'
T(w zZ,wW}= 5.3 ¢ Us ane
(Tj(w))r= 12{ = ( ,,8) (5.39 (5.40
wherec;=c,=1, c3=3/2, andc,=1/2 are the conformal Let us first study the case when=1 is an integer. We

anomaly numbers of the different sectors, andcv,=v:  can then make the expansion €1%)% =1+ (A—1)u?
andvz=v,=v, are the corresponding velocities. Inserting 4 ...+ y2(A=1) \hich yields

(5.34 into (5.33), integrating, and summing over the sectors,
it follows that (1+u?)A-1 1 1

4 '= tanedu u?s 2A—1 (tane)ZA’l
2 N CJ 2
Ofimp=— 5 2 —T (5.35 A 1

=1 + 533520 Dtarfe+0(e?) |. (54D

producing a linear specific heat
In the limit of smalle, i.e., 7oT—0, Egs.(5.40 and (5.4])
52fimp a2 A i€ give
Cimp=—-T—==— > —5T, 5.3
SR N ST Pl NA 28
Cip=—T

where we have used.10). This is the dominant contribution mp aT? (v ) S)2 3(2A-3)

to Ciyp that is linear in the scaling fields: higher-order de- oA 5
scendants of produce higher powers in temperature. X w?rg 2AT(1+O[(7oT)?)). (5.42
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The case of noninteger dimensidr>1 requires a more
lengthy analysis. One partial integration lofields

oL (B A2 mn|® T mro)t
2A—1\7my 3 B B
2(A-1)
toATT (Y (5.43
with 1, defined by
= (1+udritt
lj= du jeN. (5.44

tane uz(Afl) ’

WhenA<3/2, |, is finite ase— 0, while A=23/2 produces a
logarithmic singularity:
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with B(p,q)=T'(p)I'(q)/T'(p+q) the beta function.

For A>3/2, |, diverges algebraically with the cutoff, and
we must perform a second patrtial integration to identify the
rate of divergence. This leads to

2A-3
A o

| _ 7T7'0 2
172A-3

B

2(A—2)
toa—3 2
(5.4

mTTo

with 1, defined as in5.44). In the interval 3/2ZA<5/2, 1,
is finite ase—0, while for A=5/2 one gets the same loga-
rithmic singularity as for A=3/2, i.e., 1,(A=5/2)
=1,(A=3/2). The procedure is now iteratdd, ; being the

EB(ﬁ—A }) A<§ remainder from partially integrating . However, the terms
2°\2 2) 2’ in T thus generated are alwagsbleadingcompared to those
l,— 1 3 as 7oT—0 (5.4 coming from the partial integrations bfandl ; in (5.43 and
In—T+c0nst, A= X (5.45), respectively. Thus, collecting the results, we obtain
T
0 for the impurity specific heat
( 2A 3
—— 2 372A .. = _—
3(2A_3)’7T Tq T+ , A=1 or A>2,
A2A 3 1 3
_— _1V2.2A-1p| 2 A Zlg2a-2, . e
Clmp WX < Z(A 1w B( A,2>T + , 1<A<2, (547)
T In[ | + A=l
L m i T 2

where “- - -” denotes subleading corrections.

Combining (5.36) and (5.47 with the result from the
symmetry analysis(5.26) and(5.27), we find that there are
only two distinct possibilities for critical scaling:

(i) Cimp:O(T)a (5.48
and
. 7\|2A771/K” 1 2 1 1k o1
(i) Cimp_m K_p_l B 1_2_Kp'§ T
+0(T), (5.49

with K, =e~2%=(1+2g/vg) 2 the Luttinger liquid charge
parameter. The first cas€.48), is implied when the LCBO
carries dimensiomd =1 or A>3/2. In contrast, the leading
term in the second casé€5.49, is driven by a composite
LCBO of dimension A=A +A¢=(1/2)(e?’+1), corre-
sponding to the second entry ({®.27).° In terms of quantum
numbers C,,D1;C,,D,;j; ), the operator is given by the
sum of

(2,0,—2,0;0¢) and (—2,0;2,0;0¢). (5.50

Hence, the charge sector contributes a channel-symmetric
combination of primary operators withg=0 and
Aq= =+ 2e’ [cf. discussion aftef5.20)], which can be explic-

itly expressed in terms of vertex operators of free boson
fields. The contribution to the scaling dimension is
A= (1/2)e?’= 1/2K,. Only by combining these operators
with the Ising energy density does one obtain a boundary
operator of dimensiod=1, as required for a LCBO. The
linear term in(5.49 comes from subleading terms generated
by the same operator, as well as from leading terms due to
the marginal operatois(z) andj?(z). As we have seen, the
latter operators are always present, in casas well, due to

the breaking of particle-hole symmetry.

The specific heat i5.49 exhibits the same anomalous
scaling in temperature as found by Furusaki and Nag&bsa.
Also, the way the anomalous terms vanish as
K,—1(g—0) are identicaf® Although more work is needed
to firmly establish which of the two cases appli€5,48
(Fermi liquid) or (5.49 (non-Fermi liquid, the second, non-
Fermi liquid case is clearly favored considering its emer-
gence in an independent analysis. However, a caveat is ad-
visable. In a recent study, Schiller and Ingersent treat a
simplified model of a magnetic impurity in a “reduced” Lut-
tinger liquid, composed of right-moving spin-up electrons
and left-moving spin-down electrofi.This problem, with
only two branches of electrongcompared to the four
branches of the full problem: two chiralities with two spin
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projections eachis mapped exactly onto the Kondo effect in E. Impurity susceptibility
a Fermi liquid, withCi,, as in(5.48. Although the relevance | the presence of a magnetic field, the partition function
of this simplified model to the Kondo effect in a full Lut- 51es the form
tinger liquid remains unclear to us, the result may be
taken — as argued by the authors in Ref. 60 — to give some Bi2 5
indirect support to a Fermi liquid scenario. In any event, it is eBF<th,>\|>:eBF(T,0,0>< eXF{J (Md‘f (1,0)
reassuring that our exact analysis gives roomty to those -Bl2
two scenarios that have been conjectured in the literature.

Before closing this section, let us point out that the impu- h (= ~
rity specific heat(4.15 for the forward scattering problem + EJ:Dde F(7.%)
follows from the third case in5.47) by insertingA.=0,
A =3/2, and the value of the normalization constant for thi
case A=(J_;- ¢|I_;- ¢)=95" The amplitude in5.49 can
similarly be calculated by evaluating the norm of the corre-

> . (5.50
T

SThe shift of the magnetic susceptibility due to the impurity,

2
sponding LCBO. However, as we shall find in the next sec- Ximp= — L‘?P , (5.52
tion, the favored case, with the LCBO i5.50, does not P oh* |, _,
lead to a universal Wilson ratio whagw 0. For this reason
we here leave the amplitudes undetermined. may thus be expanded to second ordek ras
N oc Bl2 - - -
Ximp:mf J;iwdxl dXQJ tee J"Blszl' . 'd'7'3<\] (Tl'xl)‘] (7'2,X2)6"( 7-310)>T,C
A2 e B2 " " " "
* SWZﬂJ f,wdxl dXZJ T fBIZdTl. : 'dT4<JZ(7'1,X1)JZ(7'1,Xz)@'(73,0)§(7410)>T,c- (5.53

Let us consider the non-Fermi liquid scenario with  Thus, comparing with the free cag®.6), the electron-
given by (5.50. The U1), SU2),, and Ising sectors are electron interaction is seamot to influencey;n,: the impu-
decoupled, and hence there are no dynamical correlatiorrty remains completely screened, in agreement with the re-
between operators belonging to different sectorscAson-  sult of Furusaki and Nagao$&Also note that, by(5.49 and
tains only the identity as a SB), factor, it follows that (5.56), the favored non-Fermi liquid scenario implies a Wil-

. 5 ~ son ratio that is nonuniversal, and depends on temperature.
<\]Z(Tl,X1)' . 'JZ(Tm,Xm)@(T,O)>T’C:0, (554)
~ VI. SUMMARY
using that the LCBO is Virasoro primary, i.€4(w))r=0.
The expectation value dF vanishes by the same reason, and We have studied the low-temperature properties of a spin-

we may decompose _1/2 magnetic impurity couple_d toa one-dime_nsional interact-
ing electron system. By turning the problem into a boundary

(I35 0)c= (313573 4) = (I1IEN “5a) critical phenomenon and using conformal field theory we
s o have reached the important conclusion that the symmetry of

—(J13)(J2074) —(I17a)(I273) =0. the problem admits only one of two possible fixed points

(5.55 describing the local electron-impurity composit&ther the
theory remains a local Fermi liquid in the presence of
Hence, we infer that” does not give any contribution to electron-electron interactiorfas for the ordinary Kondo
Ximp tO O(\?). The same conclusion holds fany candidate  problem with free electronsor electron correlations drive
LCBO obtained in Sec. VC, as all of them are Virasorothe system to a new fixed point with an anomalous specific
primary and contain only the identity as a &)Y, factor.  heat, identical to that proposed recently by Furusaki and
Higher order terms in an expansion gf,, in A, can simi- Nagaosd® We have also shown that the suppression of back
larly be shown to vanish. The leading contributionyig, is  scattering off the impurity destabilizésoth fixed points and
instead given by the lowest-dimension boundary operatoproduces an impurity critical behavior identical to that of the
that has anontrivial SU(2) , factor. By our symmetry analy- two-channel Kondo model, but with a new Wilson ratio.
sis in Sec. VC, this is given by the %2, energy- The non-Fermi liquid fixed point is distinguished by the
momentum tensorT;(z)=1/4:3(z)-J(z):, of dimension presence of a leading correction-to-scaling operator of di-
A=2. Analogous to the ordinary Kondo probléfhT;(z) mensionA=A .+ A =(1/2)e?’+ 1/2, corresponding to the
produces a finite impurity susceptibilitto first order in  energy levelE’, with®?
N, L
MU

~ 2e2“’+ 5 (6.2

mue 1

E'— EO:

Ximp~ T+ O(T). (5.56
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By numerically computing the finite-size energy spectrum ofaverage conductance due to the impurity, as this is the quan-
the two-impurity auxiliary problem and checking for the tity most easily accessible in the laboratory. Other important
presence oE’, one has, in principle, a diagnostic tool for characteristics include the local spin and charge Green’s
deciding which scenario is realized: Fermi or non-Fermi lig-functions, the scattering matrix, and the residual entropy.
uid. Unfortunately, with our approach we cannot derive aConsidering the success of conformal field theory technigues

unique and complete finite-size spectrum at the non-Fernfor obtaining these quantities in the multichannel Kondo

liquid fixed point as the selection rule {8.229 only applies

problem?® we judge that the approach as presented in this

to the charge sector; there are still a multitude of ways ofpaper will be equally powerful. We hope to return to these,
coupling the two W1) conformal towers to those in the and related issues in a future publication.

SU(2), and Ising sectors. When deriving possible LCBO di-
mensions we were helped by symmetry constraints, which,
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