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We study the low-temperature properties of a spin-1
2 magnetic impurity coupled to a one-dimensional

interacting electron system. Using a formalism by Affleck and Ludwig, with a scale invariant boundary
condition replacing the impurity, we exploit boundary conformal field theory to deduce the impurity thermal
and magnetic response. In the case of only forward electron scattering off the impurity, we predict the same
critical scaling as for the two-channel Kondo effect for noninteracting electrons, but with a different Wilson
ratio. Backward electron scattering off the impurity destabilizes this behavior and drives the system to a new
fixed point. In the case of equal amplitudes for forward and backward scattering(Kondo interaction), we show
that there are only two types of scaling behaviors consistent with the symmetries of the problem:eithera local
Fermi liquid or a critical theory with an anomalous specific heat. The latter case agrees with a recent poor-
man’s scaling result proposed by Furusaki and Nagaosa.

I. INTRODUCTION

Quantum many-particle systems sometimes exhibit a
growth of an effective coupling at low energies, resulting in
a nonperturbative ground state. The maybe simplest example
of this phenomenon is the Kondo effect,1 arising from the
exchange interaction between a spin-1/2 magnetic impurity
and a gas of free quasiparticles~‘‘dressed electrons’’! in an
s-wave band. As the temperature is decreased, the system
crosses over from weak electron-impurity coupling to strong
coupling, with a complete screening of the impurity spin at
T50. The resulting ground state is of Fermi liquid type, with
the single quasiparticle wave functions acquiring a phase
shift ~‘‘one-channel Kondo effect’’!.2 The picture changes
when electrons in degenerate orbital bands are allowed to
interact with the impurity, and the ground state is now de-
scribed by a non-Fermi liquid fixed point~‘‘multichannel
Kondo effect’’!.3

What is the corresponding scenario for aninteracting one-
dimensional electron systemcoupled to a magnetic impurity?
The question may soon become of experimental relevance,
considering the rapid progress in the fabrication and study of
very narrow conduction channels~‘‘quantum wires’’!, ob-
tained, for example, by gating two-dimensional~2D! electron
gases in GaAs inversion layers.4 A possible laboratory real-
ization would be a single conduction channel with a trapped
atom containing two~or several! spin levels.~The related
problem of tunneling through potential barriers in 1D
correlated systems is already being addressed by
experimentalists,5 following the pioneering work of Kane
and Fisher.6! The question is also interesting considering re-
cent work on exotic superconductivity, where the analogue to
the multichannel Kondo effect has been exploited.7 Other
realizations of Kondo physics that have been proposed in-
clude two-level tunneling in metallic glasses,8 and certain
heavy-fermion materials.9 Treating the effect of a magnetic
impurity in the presence of interacting electrons may offer a

new perspective on these intriguing connections.
More importantly, one is faced here with an archetype

problem of describing the interplay between direct fermion
correlations~from interaction and statistics! and correlations
induced via a coupling to a local quantum mechanical degree
of freedom. As is well known, the notion of free quasiparti-
cles (low-temperature Fermi liquid)breaks down in one di-
mension: any arbitrarily small electron-electron interaction
wipes out the single-particle poles of the electron propagator,
leaving behind only collective charge- and spin-density ex-
citations. In the limit of weak electron-electron interaction,
these excitations are well described by a system of noninter-
acting spin-charge separated bosonic modes(Luttinger
liquid).10,11 By adding a localized magnetic impurity, one
confronts the problem of how to incorporate its coupling to
single electronsin the description of the bosonic collective
degrees of freedom.

A first attack on the problem was launched by Lee and
Toner,12 employing Abelian bosonization followed by a per-
turbative scaling analysis of a resulting ‘‘kink-gas’’ action.
For the case of a spin-1/2 impurity, and with the electron gas
away from half-filling, it was found that the Kondo tempera-
ture TK ~setting the scale for the weak-to-strong coupling
crossover! depends on the bare Kondo couplinglK in a
power-law fashion,TK;(lKt0)

2/h. Here t0 is a short-time
cutoff, andh is the exponent characterizing the equal-time
spin-spin correlation in a Luttinger liquid. For temperatures
T,TK , the physics is controlled by some strong-coupling
fixed point — as in the ordinary Kondo problem — not
directly accessible via this kind of analysis. In a recent work,
Furusaki and Nagaosa13 derived a set of improved scaling
equations in the weak-coupling regime, preserving the spin
SU~2! symmetry of the problem. By tentatively extending
these equations to the strong-coupling regime, Furusaki and
Nagaosa conjectured that the fixed-point Hamiltonian con-
sists of two semi-infinite Luttinger liquids and a completely
screened impurity ~decoupled spin singlet!. The low-
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temperature impurity contributions to the specific heat and
magnetic susceptibility were calculated toCimp;T(1/Kr)21

andx imp;T0, respectively, withKr the usual Luttinger liq-
uid charge parameter.10,11 Support for this scenario can be
found in earlier work14 on impurity spins in antiferromag-
netic spin-1/2 chains~a ‘‘stripped-down’’ version of the
Kondo effect in a Luttinger liquid!. In the case of an external
S51/2 impurity coupled to a single site on the chain, the
impurity was found to be completely screened, severing the
chain at the impurity site.

In this paper we explore the problem usingexact methods,
expanding upon results announced in Ref. 15. We shall begin
by studying a simplified model. Specifically, we consider a
spin-1/2 impurity coupled with equal strength to two next-
nearest-neighbor sites on a Hubbard chain. In the continuum
limit, and with quarter-filling of the band, this becomes a
Tomonaga-Luttinger~TL! model16,17 with forward electron-
impurity scatteringonly:

H5HTL1HF , ~1.1!

where

HTL5
1

2pE dxH vFF :cL,s
† ~x!i

d

dx
cL,s~x!:

2:cR,s
† ~x!i

d

dx
cR,s~x!:G

1
g

2 (
r ,s5L,R

:c r ,s
† ~x!c r ,s~x!::cs,2s

† ~x!cs,2s~x!:

1g:cR,s
† ~x!cL,s~x!cL,2s

† ~x!cR,2s~x!:J ~1.2!

and

HF5l@ :cL,s
† ~0! 1

2ssmcL,m~0!:•S

1:cR,s
† ~0! 1

2ssmcR,m~0!:•S#. ~1.3!

Here cL,s(x) and cR,s(x) are the left- and right-moving
components, respectively, of the electron fieldCs(x), with
spin projections5↑,↓, expanded about the Fermi momenta
6kF in the long-wavelength limit:

Cs~x!5e2 ikFxcL,s~x!1eikFxcR,s~x!. ~1.4!

The fields are normalized such that

$c r ,s~x!,cs,m
† ~y!%52pd rsdsmd~x2y! ~1.5!

and summation over repeated~Greek! indices is implied. The
first term in ~1.2! describes free left- and right-moving elec-
trons, whereas the second and the third terms describe for-
ward and backward electron-electron scattering, respectively.
The couplingsg ~.0! andl ~.0! depend on the microscopic
parameters of the lattice model andvF is the Fermi velocity.
Normal ordering :: is carried out with respect to the filled
Dirac sea.

We shall treat the model in~1.1! using the newly devel-
oped conformal field theory approach to quantum impurity

problems by Affleck and Ludwig.18–20The basic idea of this
method is to replace the impurity by aboundary condition, in
the spirit of Nozières’ local Fermi liquid theory of the ordi-
nary Kondo effect.2 At the low-temperature fixed point, the
long-wavelength properties are described by a conformally
invariant boundary condition andboundary conformal field
theory21–23 essentially determines all universal properties.
Specifically, the theory predicts all boundary scaling opera-
tors that govern the asymptotic autocorrelation functions in
the neighborhood of the impurity. As was realized by No-
zières many years ago,2 the impurity response to an external
bulk field is governed by the leading irrelevant boundary
operators. Thus, knowing these, one can directly deduce the
impurity critical behavior. The difficulty, though, is to iden-
tify the right boundary condition, although frequently the
symmetries of the problem cut down the list of candidates to
a small number. In short, each boundary condition is associ-
ated with a selection rule for combining the various degrees
of freedom~such as charge and spin! at the boundary. The
problem thus reduces to identifying the right selection rule.
This can be done, according to the fusion-rule hypothesis of
Affleck and Ludwig19,24 by applying conformal field theory
fusion rules.25

With only forward electron-impurity scattering present in
~1.3!, the model can easily be cast on a form where boundary
conformal field theory applies. Writing the Hamiltonian in
terms of charge and spin currents~Sugawara construction25!,
the effect of the impurity is traded for a new boundary con-
dition in the spin sector. At this point, however, two new
elements enter the problem~as compared to the treatment of
the single-impurity Kondo effect for free electrons!. First,
charge and spin excitations — although dynamically decou-
pled — are still connected via a selection rule of the type
mentioned above. This must be carefully analyzed in the
basis of states which diagonalize the interacting Hamil-
tonian. Second, by having both left- and right-moving elec-
trons coupled to the impurity, left- and right-moving spin
excitations are no longer separately conserved, only the total
spin remains conserved. In technical terms~to be made pre-
cise!, the chiral spin SU(2)3SU~2! symmetry of the critical
bulk theory is not recovered at the fixed-point value of the
electron-impurity couplingl. This symmetry breaking intro-
duces boundary operators with noninteger scaling dimen-
sions by a mechanism similar to that operating in the two-
impurity Kondo problem.24

The picture that emerges is consistent with that recently
suggested by Furusaki and Nagaosa13 in their ‘‘poor-man’s
scaling’’ analysis of the problem: the system renormalizes
onto a low-temperature fixed point with the same critical
exponents for impurity specific heat and susceptibility as in
the two-channel Kondo problem.19 Any asymmetry in the
left-right electron-impurity coupling destabilizes this critical
point, driving the system to a one-channel~Fermi-liquid-
like! fixed point. An interesting feature of our solution is that
the leading correction-to-scaling boundary operator at the
symmetric fixed point is unique, in contrast to previous treat-
ments of two-channel Kondo physics.19 Specifically, for van-
ishing electron-electron interaction, this implies a unique
Wilson ratio also at low temperatures.
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To make contact with possible future experiments, one
necessarily has to add electron back scattering off the impu-
rity. This is so, since a ‘‘real’’~Kondo type! spin exchange

HK5l:Cs
†~0! 1

2ssmCm~0!:•S, ~1.6!

with Cs(x) the electron field in~1.4!, decomposes into

HK5HF1HB , ~1.7!

HF being the forward scattering term in~1.3!, and

HB5l@cL,s
† ~0! 1

2ssmcR,m~0!•S

1cR,s
† ~0! 1

2ssmcL,m~0!•S#. ~1.8!

The back scattering termHB mixes left and right electron
fields, and thus breaks both chiral spin@SU(2)3SU(2)# and
charge@U(1)3U(1)# symmetry of the bulk critical theory.
This results in the appearance of a relevant boundary opera-
tor which takes the system to a new fixed point, describing
Kondo scattering in a Luttinger liquid. Turning off the
electron-electron interaction, the system may still be repre-
sented by a two-channel Hamiltonian, but now coupled to a
magnetic impurity in only one of the channels. This is known
to give a fixed-point theory with Fermi liquid exponents~as
for the ordinary one-channel Kondo problem!.3,26 To include
the effect of the electron-electron interaction is a more deli-
cate problem: the mixing of left- and right-moving electrons
in ~1.8! obstructs a Sugawara construction in a basis where
the interaction remains local.

Not being able to attack the problem directly at a Hamil-
tonian level, we shall make the natural assumption that the
full Kondo interaction may nonetheless be described by a
renormalized boundary condition on the critical bulk theory.
This is in accord with the expected behavior ofanyquantum
impurity interaction, as discussed in Ref. 20. Note that the
relevant operator due to the Kondo interaction only couples
to the boundary, i.e., the new fixed point in this scheme is a
new boundary fixed point with the critical bulk theory un-
changed, and that all conformally invariant boundary condi-
tions are scale invariant and correspond to such boundary
fixed points. By demanding that the noninteracting limit is
correctly reproduced, with analytic scaling in temperature for
the impurity specific heatCimp and susceptibilityx imp , it
turns out that conformal invariance together with the sym-
metry of the problem restrict the possible types of critical
behavior to only two:Either the theory remains a local Fermi
liquid in the presence of electron-electron interaction,or
electron correlations drive the system to a new fixed point
where~to leading order in temperature!

Cimp5c1@~1/Kr!21#2T~1/Kr!211c2T,
~1.9!

x imp5c3T
0,

Kr5(112g/vF)
21/2 being the Luttinger liquid charge pa-

rameter, andc1,2,3 amplitudes depending on the scaling
fields. The second case~1.9! agrees with the finding by Fu-
rusaki and Nagaosa referred to above.13 In the conformal
field theory scheme this scaling is implied by a certain selec-
tion rule for recombining the degrees of freedom at the im-
purity site, and we will discuss its propertiesin extenso.

It should be noted that a faithful modeling of a magnetic
impurity must allow for the possibility that the impurity car-
ries a net charge giving rise to a screened local potential. In
the case of a Fermi liquid its effect can be absorbed by pass-
ing to a new electronic basis with renormalized single-
particle energies~which is the reason why potential scatter-
ing is often neglected in the ordinary Kondo problem!.
However, for a Luttinger liquid the effect of a local potential
is more dramatic, as shown in Ref. 6. For this reason, poten-
tial scattering must here be treated on equal footing with the
spin exchange interaction.27 Some attempts in this direction
have recently been discussed in Ref. 28, but we will not
address the problem here.

The rest of the paper is organized as follows. In the next
section we introduce the Hubbard chain coupled to an impu-
rity spin, and perform a continuum limit retaining only for-
ward electron scattering off the impurity. In Sec. III we de-
rive the finite-size energy spectrum and the corresponding
spectrum of boundary operator dimensions, employing a par-
ticular variant of Affleck and Ludwig’s fusion-rule hypoth-
esis. This section also contains a matching of the Luttinger
liquid selection rule for combining charge and spin excita-
tions against that from aBethe-ansatzanalysis of the Hub-
bard model.29–31Employing the results for the boundary op-
erator spectrum, the impurity critical behavior is identified in
Sec. IV as that of the two-channel Kondo problem. In Sec. V
we then consider the effect of adding electron back scattering
off the impurity, thus treating the full Kondo interaction in a
Luttinger liquid. Section VI, finally, summarizes our results.
Throughout the paper we try to provide sufficient informa-
tion to make it essentially self-contained for a reader with
some acquaintance with conformal theory.

II. THE MODEL

A. The Hubbard chain

To make the physical picture clear we start by considering
an explicit model for interacting electrons on a one-
dimensional lattice, coupled to a singleS51/2 impurity. The
Hamiltonian

H5HH1H I ~2.1!

consists of a periodic Hubbard chain with nearest-neighbor
hopping (t) and repulsive on-site interactions (U)

HH52t(
n

~cn,s
† cn11,s1cn11,s

† cn,s!1U(
n

nn,↑nn,↓ ,

U.0, ~2.2!

and couplings (Jn) of the electron spins to the impurity

H I5(
n

Jncn,s
† 1

2ssmcn,m•S, ~2.3!

where we implicitly sum over repeated Greek indices as be-
fore. The electron creation and annihilation operators satisfy
canonical anticommutation relations

$cm,s ,cn,m
† %5dnmdsm , ~2.4!
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and the number of electrons with spins at siten is given by
nn,s5cn,s

† cn,s ~without summation!. The electron density
ne is the expectation value ofnn,↑1nn,↓ .

Without interactions,~2.2! yields a free electron disper-
sione(k)522tcosak, with a the lattice constant. The Fermi
surface consists of the two pointsk56kF , kF5nep/2a. For
small excitations~weak interaction! one may linearize the
spectrum around the Fermi points, which gives rise to left-
and right-moving particles with velocities 6vF ,
vF52atsin(pne/2). In terms of electron operators one has

cn,s5e2 ikFnacL,n,s1eikFnacR,n,s , ~2.5!

with cL,n,s and cR,n,s referring to the excitations around
k52kF andk5kF , respectively. The sign ofkF in ~2.5! is a
matter of convention; we use thatcn,s is expanded in
$eikna%. These electron operators, defined on the lattice, are
replaced in the continuum limit by the Dirac fieldsc r ,s(x):

cr ,n,s;A a

2p
c r ,s~na!, ~2.6!

with normalization given by~1.5!. It is then straightforward
to verify that the free part of the Hamiltonian~2.2! equals
HTL in ~1.2! with g50.

As for the electron-electron interaction, it follows from
substituting~2.5! in ~2.2! that

HHu t505U(
n

H 12 (
r ,s5L,R

cr ,n,s
† cr ,n,scs,n,2s

† cs,n,2s

1cR,n,s
† cL,n,scL,n,2s

† cR,n,2s

1@e2 i2pnnecR,n,↑
† cL,n,↑cR,n,↓

† cL,n,↓1H.c.#J ,
~2.7!

describing forward, backward, and Umklapp electron-
electron scattering, respectively. Due to phase oscillations,
however, the Umklapp term cancels away from half-filling
(neÞ1), and in the continuum limit we recover the interac-
tion part of~1.2! with g5Ua/2p. In this paper we will con-
sider gapless excitations only, which restricts us toU.0 and
neÞ1.

Finally, we rewrite the interaction with the impurity spin
in ~2.3!. It interacts locally with a few sites and we may
concentrate onn50 andn561, see Fig. 1. WithJ215J1
we recover in the continuum limit the previous electron-

impurity interactions~1.3! and~1.8! with the following cou-
plings for forward and backward scattering against the im-
purity spin:

lF5
a

2p
~J012J1!, ~2.8a!

lB5
a

2p
~J012J1cospne!. ~2.8b!

Note that backward, but not forward, electron-impurity scat-
tering depends on the filling factor when the impurity is
coupled to more than one site.32 The first case of impurity
interaction addressed in this paper concerns forward scatter-
ing only, and from this construction it is clear that one can
cancel backward scattering (lB50) by coupling the impu-
rity to the two nearest-neighboring sites at quarter-filling,
i.e., J050 andne51/2. For other filling fractions we may
also fulfill lB50 by allowingJ0Þ0. The next case of inter-
est is the Kondo interaction,lF5lBÞ0. It corresponds to
coupling the impurity to one site only at arbitrary filling, i.e.,
J150 in ~2.8!.

Let us mention that another way of canceling the back-
scattering term is to couple two neighboring sites toS at
half-filling and chooseJ05J1 ~and all otherJn50). With
ne51, Umklapp processes now come into play in~2.7!,
causing a mass gap in the charge sector.25 The spin sector
remains massless and describes a spin-1/2 antiferromagnetic
Heisenberg chain with two neighboring sites coupled antifer-
romagnetically to an impurity spin@Fig. 2~a!#:

Hspin5J(
n

Sn•Sn111J0~S01S1!•S, SN5S0 , ~2.9!

with J54t2/U. This situation is similar to that considered by
Eggert and Affleck,14 who studied a spin chain with two
open ends coupled symmetrically to a single impurity@Fig.
2~b!#. On the basis of bosonization and numerical renormal-
ization it was concluded that this system is in the same uni-
versality class as the two-channel Kondo model. The case
above @Fig. 2~a!# where the spins coupled to the impurity
interact mutually has been discussed by Clarkeet al.33 Also
using bosonization, these authors proposed that two-channel

FIG. 1. The Hubbard chain interacting with an impurity spinS
at a few sites. Solid lines represent electron hopping and dashed
lines spin interactions.

FIG. 2. The Heisenberg antiferromagnet in 1D coupled via two
neighboring sites to an impurityS. In ~a! the chain is closed, in~b!
open, although linked via the impurity.
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Kondo behavior is manifest for this case as well. Their argu-
ment is based on a formal similarity between the bosonized
versions of the Hamiltonians for the impurity-spin chain sys-
tem and the two-channel Kondo effect, and the situation is
somewhat less clear than for the open chain. It is therefore of
interest to reconsider the problem, and we shall return to it
below.

B. Sugawara form

In what follows we focus on the case away from half-
filling ( neÞ1), described by the Tomonaga-Luttinger model
~1.2!, together with the forward electron-impurity interaction
~1.3!. It is convenient to rewrite the Hamiltonian in terms of
charge and spin currents

Jr~x!5:c r ,s
† ~x!c r ,s~x!:, ~2.10a!

Jr~x!5:c r ,s
† ~x! 1

2ssmc r ,m~x!:, ~2.10b!

with r5L, R. These obey the~level-two! U~1! and level-one
SU~2! affine Kac-Moody algebras34

@J
R
L~x!,J

R
L~y!#564p id8~x2y!, ~2.11a!

@J
R
L
a
~x!,J

R
L
b
~y!#5 i eabcJ

R
L
c
2pd~x2y!6

p i

2
dabd8~x2y!,

~2.11b!

respectively, withJr
a the components ofJr5(Jr

x ,Jr
y ,Jr

z). The
normal-ordered products of the fields in~2.10! are defined by
the usual point-splitting procedure:

:c r ,s
† ~x!c r ,s~x!:[ lim

d→0
@c r ,s

† ~x1d!c r ,s~x!

2^c r ,s
† ~x1d!c r ,s~x!&#. ~2.12!

The terms of the Hamiltonian~1.1! can now be identified
with combinations of the quadratic forms :Jr(x)Js(x): and
:Jr(x)•Js(x):. As an example, let us consider the caser5s
5L. The normal ordering is again defined via point splitting,

:JL~x!JL~x!:[ lim
d→0

@JL~x1d!JL~x!2^JL~x1d!JL~x!&#,

~2.13!

and we need to evaluate

JL~x1d!JL~x!5:cL,s
† ~x1d!cL,s~x1d!:

3:cL,m
† ~x!cL,m~x!:. ~2.14!

This can be done by using Wick’s theorem and the Green’s
functions

^cL,s~x1d!cL,m
† ~x!&5^cL,s

† ~x1d!cL,m~x!&5
dsm

id
,

~2.15!

with the result that

JL~x1d!JL~x!5:cL,s
† ~x1d!cL,s~x1d!cL,m

† ~x!cL,m~x!:

1
1

id
:cL,s~x1d!cL,s

† ~x!:

1
1

id
:cL,s

† ~x1d!cL,s~x!:2
2

d2
. ~2.16!

Hence,

:JL~x!JL~x!:5:cL,s
† ~x!cL,s~x!cL,2s

† ~x!cL,2s~x!:

12:cL,s
† ~x!i

d

dx
cL,s~x!: ~2.17!

up to a total derivative from a partial integration. The analo-
gous procedure for the spin currents yields~using that
ssm•snh52dshdmn2dsmdnh)

:JL~x!•JL~x!:52
3

4
:cL,s

† ~x!cL,s~x!cL,2s
† ~x!cL,2s~x!:

1
3

2
:cL,s

† ~x!i
d

dx
cL,s~x!:, ~2.18!

and it is clear from~2.17! and ~2.18! that the first term of
~1.2! can be written entirely in terms of currents

:cL,s
† ~x!i

d

dx
cL,s~x!:5

1

4
:JL~x!JL~x!:1

1

3
:JL~x!•JL~x!:

~2.19!

~up to a total derivative!. In the same manner, one straight-
forwardly replaces all other terms and arrives at the Sug-
awara form25 of the Hamiltonian in~1.1!:

HTL5
1

2pE dxH vF1g

4
@ :JL~x!JL~x!:1:JR~x!JR~x!:#

1
vF2g

3
@ :JL~x!•JL~x!:1:JR~x!•JR~x!:#

1
g

2
@JL~x!JR~x!24JL~x!•JR~x!#J , ~2.20!

and

HF5l@JL~0!1JR~0!#•S, ~2.21!

with g5aU/2p for the Hubbard model. Rewriting the spin-
current part of the Hamiltonian on matrix form
:Jr(x)•Jr(x):51/2:J r ,sm(x)J r ,ms(x): where J r ,sm(x)
[:c r ,s

† (x)c r ,m(x):2(1/2)dsm :c r ,n
† (x)c r ,n(x): such that

Jr(x)5(1/2)ssmJ r ,sm(x), one notes that the spin currents
are traceless@J r ,ss(x)50#, and hence have no charge com-
ponents. Thus, spin-charge separation is manifest in~2.20!.

The spin-interaction termJL(x)•JR(x) can be shown to
be marginally irrelevant forg.0,25 and will be dropped
henceforth.35 @The spin interaction is the only term in~2.20!
that renormalizes, the remaining terms inHTL being exactly
marginal.# The piece of the Hamiltonian containing charge
currents is diagonalized via the Bogoliubov transformation
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J
R
L~x!5 coshu j

R
L~x!2 sinhu j

L
R~x!. ~2.22!

The transformation is canonical, with the new currentsj
R
L

also satisfying the U~1! Kac-Moody algebra

@ j
R
L~x!, j

R
L~y!#564p id8~x2y!. ~2.23!

Inserting ~2.22! into ~2.20!, the transformation is found to
diagonalize the charge Hamiltonian when

tanh2u5
g

vF1g
. ~2.24!

Collecting the results,

H5HTL* 1HF ~2.25!

with

HTL* 5
1

2pE dxH vc4 @ : j L~x! j L~x!:1: j R~x! j R~x!:#

1
vs
3

@ :JL~x!•JL~x!:1:JR~x!•JR~x!:#J ~2.26!

the resulting critical bulk Hamiltonian, and withHF defined
in ~2.21!. Here

vc5vFA11
2g

vF
, ~2.27a!

vs5vF2g ~2.27b!

with vF andg defined above. It is easy to see thatHTL* is
invariant under independent global U~1! and SU~2! transfor-
mations on the left- and right-moving~chiral! fields:

c r ,s→eifrc r ,s , c r ,s→Ur ,smc r ,m , r5L,R
~2.28!

with f r a constant, andUr ,sm an element of SU~2!. In fact,
the Sugawara form ofHTL* implies invariance under the
larger chiral

G5U~1!L3U~1!R3SU~2!1,L3SU~2!1,R ~2.29!

Kac-Moody algebra34 @with the subscript ‘‘1’’ denoting the
level of the SU~2! algebras#. However, the chiral spin sym-
metry gets broken by the impurity-electron interactionHF
for any value of the couplingl . This is in contrast to the
Kondo effect for free electrons. In that case too there is only
forward electron scattering off the impurity, but only with
one type of chiral electrons~say, left movers!. The critical
bulk Kac-Moody symmetry is U~1!3SU~2! 1 @or U~1!
3SU~2! 23SU~2! 2 in the case of two channels#, and this
symmetry is restored precisely at the strong coupling fixed
point.19 We return to this below.

It should be emphasized that although the theory contains
two distinct velocities,vc and vs , Lorentz invariance is
manifest separately in the charge and spin sectors ofHTL* .
This can be seen via bosonization.25 The terms containing
charge currents represent a free boson theory, while the spin-
current terms represent an SU~2! k51 Wess-Zumino-Witten
~WZW! model. Both theories are conformally invariant, im-

plying also Lorentz invariance. This observation will be im-
portant for the applications to come.

C. Boundary formulation

At this point we reformulate the problem so that Cardy’s
boundary conformal field theory21–23 applies. The boosted
currents are defined in two-dimensional space-time (t,x),
with the impurity sitting on the time axis. We can think of the
time axis as a boundary with periodic boundary conditions
imposed on the currents

j r~t,01!5 j r~t,02!, Jr~t,01!5Jr~t,02!. ~2.30!

In Cardy’s formalism no excitations~or two-momentum!
may flow through the boundary, and hence periodic bound-
ary conditions are excluded. To circumvent this restriction,
we confine the system to the interval2l <x<l ~taking
l →` at the end!, fold it in half, double the currents, and
identify the two pointsx52l and x5l ,36 see Figs. 3~a!
and 3~b!. The new currents, defined forx>0 only, are related
to the old ones by

j L
1~x![ j L~x!, JL

1~x![JL~x!,

j L
2~x![ j R~2x!, JL

2~x![JR~2x!,
~2.31!

j R
1~x![ j R~x!, JR

1~x![JR~x!,

j R
2~x![ j L~2x!, JR

2~x![JL~2x!,

and the periodic boundary conditions in~2.30! become

j L
1~0!5 j R

2~0!, JL
1~0!5JR

2~0!,
~2.32!

j L
2~0!5 j R

1~0!, JL
2~0!5JR

1~0!.

Hence, a flow of excitations acrossx50 in the original sys-
tem corresponds to having them come in through one chan-
nel and then reflected back through the other.

FIG. 3. Equivalent representations of the Luttinger liquid. The
original c52 system~a! with left- and right-moving excitations on
@2l ,l # is folded into a two-channelc54 theory~b! on @0,l #. By
analytic continuation, this may be written as a chiralc54 system
on @2l ,l # with only left-moving excitations.
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With this procedure, the critical bulk Hamiltonian is now
defined on the positivex axis only:

HTL* 5
1

2p (
i51,2

E
0

l

dxH vc4 @ : j L
i ~x! j L

i ~x!:1: j R
i ~x! j R

i ~x!:#

1
vs
3

@ :JL
i ~x!•JL

i ~x!:1:JR
i ~x!•JR

i ~x!:#J , ~2.33!

with the boundary condition~2.32! imposed atx50. We also
see that the electron-impurity interaction can be written as

HF5l@JL
1~0!1JL

2~0!#•S. ~2.34!

The new Hamiltonian~2.33! is invariant under the full
G5U~1!3U~1!3SU~2! 13SU~2! 1 Kac-Moody algebra and
has conformal chargec54, i.e., we representour c52
theory defined on2l <x<l by a c54 theory on
0<x<l . However, we may analytically continue the left-
moving currents in~2.33! to the negativex axis37 @Fig. 3~c!#.
From ~2.32! it then follows that these can be identified with
the right-moving currents on the positive axis:

j L
1~2x!5 j R

2~x!, JL
1~2x!5JR

2~x!,
~2.35!

j L
2~2x!5 j R

1~x!, JL
2~2x!5JR

1~x!.

Hence we can formulate the theory in terms of left-moving
currents only. This leads to the form of the Hamiltonian that
we shall mostly use:

H5HTL* 1HF , ~2.36!

where

HTL* 5
1

2p (
i51,2

E
2l

l

dxH vc4 : j L
i ~x! j L

i ~x!:

1
vs
3
:JL

i ~x!•JL
i ~x!:J , ~2.37!

and withHF given in ~2.34!. The analytically continued
currents satisfy periodic boundary conditions:

j L
i ~2l !5 j L

i ~ l !, JL
i ~2l !5JL

i ~ l !, i51,2,
~2.38!

yielding a theory defined on a ring with circumference 2l .
Before proceeding, it is instructive to look at the special

case ofnoninteracting(g50) electrons, i.e., withvc5vs in
~2.37!. For this case, an alternative construction is possible:
Introducing two channels~‘‘flavors’’ ! of left-going fields,

cL,a
1 ~x![cL,a~x! , cL,a

2 ~x![2cR,a~2x! ~2.39!

the free part of the bulk Hamiltonian in~1.2! attains the form

H05
vF
2pE dx:cL,s

j† ~x!i
d

dx
cL,s
j ~x!: ~2.40!

with the electron-impurity interaction written as

HF5l:cL,s
j† ~0! 1

2ssmcL,s
j ~0!:•S. ~2.41!

With the simple transformation in~2.39!, one thus arrives at
a chiral~left-going! representation of thetwo-channel Kondo
model.3 This has the Sugawara form18

H01HF5
vF
2pE2l

l

dxH 18 :JL~x!JL~x!:1
1

4
:JL~x!•JL~x!:

1
1

4
:JL

F~x!•JL
F~x!:J 1lJL~0!•S, ~2.42!

where the currentsJL ~charge!, JL ~spin!, and JL
F ~flavor!

generate the affine U~1!, SU~2! 2 , and SU~2! 2 algebras, re-
spectively.

The structure in~2.42! is not easy to obtain in the pres-
ence of electron-electron interaction. Technically, the con-
struction requires all excitations to have the same velocity,
which is the case only wheng50. The result nonetheless
suggests that the interacting problem exhibits two-channel
Kondo behavior.13 Since the forward electron scattering off
the impurity only affects the spin sector, the fact that the
electron-electron interaction pushes the spin and charge ex-
citations apart by endowing them with different velocities
seems irrelevant. However, to put the conclusion on firm
ground, one must carefully check the role of the selection
rule for combining charge and spin excitations when interac-
tions are present. One should here recall that although the
electron-impurity interaction is entirely in the spin sector, the
charge sector may nonetheless contribute correction-to-
scaling operators, as in the~one-channel! Kondo effect for
noninteracting electrons. A second reason for dealing with
the electron-electron interaction ‘‘head on’’ is that it gives us
an inroad to attack the problem of Kondo interaction in a
Luttinger liquid @by including backward electron scattering
off the impurity ~see Sec. V!#.

Returning to ~2.37!, we see that the bulk Hamiltonian
HTL* separately conserves the U~1! and SU~2! excitations in
the two channels. This simply reflects the fact that the Kac-
Moody symmetry is given byG5U~1!3U~1!3SU~2!1
3SU~2!1, as it must. The electron-impurity interaction, how-
ever, breaks the SU~2! 13SU~2! 1 symmetry. This appears
similar to the effect of the Kondo interaction on free elec-
trons. In a left-~or right-! moving description, the Kondo
term breaks the single-spin SU~2! 1 symmetry@or SU~2! 2 in
the two-channel case# of the chiral electron Hamiltonian.
However, at a special value of the Kondo coupling,
lKondo5lKondo* , the impurity spin can be ‘‘absorbed’’ in the
electron spin current via a canonical transformation. The
impurity-electron interaction disappears from the Hamil-
tonian, and the SU~2! 1 @or two-channel SU~2! 2# symmetry is
restored~now generated by the spin current of thecombined
electron-impurity system!. In this scheme,lKondo* definesthe
local strong coupling fixed point. It is tempting to proceed in
an analogous way for the present problem, and try to absorb
the impurity via the transformationsJL

i (x)→JL
i (x)1Sd(x),

i51,2, judiciously choosing a special value of the impurity-
electron couplingl* . However, these transformations are
not canonical and couple the two spin currents at the impu-
rity site: the SU~2! 1 Kac-Moody algebras for channels 1 and
2 are no longer independent. Thus, the full U~1!3U~1!
3SU~2! 13SU~2! 1 symmetry ofHTL* is not recovered at
l* . Now, suppose we could rewrite the spin part ofHTL* in
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terms of thetotal electron spin currentJ(x)[JL
11JL

2 ~in ad-
dition to some auxiliary degrees of freedom!. The total cur-
rent J(x) generates the diagonal subgroup of SU~2!1
3SU~2!1, and, as may be easily verified, satisfies a level-two
SU~2! Kac-Moody algebra

@Ja~x!,Jb~y!#5 i eabcJc~x!2pd~x2y!1p idabd8~x2y!.
~2.43!

The impurity may now be absorbed without problem, using
the single canonical transformationJ(x)→J(x)1Sd(x)
[J8(x). The combined electron-impurity currentJ8(x) is
conserved, and the SU~2! 2 Kac-Moody symmetry is hence
restored.

To carry out this program, one needs a dictionary to trans-
late from the U~1!3U~1!3SU~2! 13SU~2! 1 formulation of
the problem to another representation in terms of U~1!
3U~1!3SU~2! 23G , whereG is the symmetry group of
some auxiliary degrees of freedom. Fortunately, such a dic-
tionary already exists in conformal field theory@the coset
constructionof Goddard, Kent, and Olive38 ~GKO!#, and
provides an elegant solution to the problem. Before exploit-
ing it, however, we set up the formalism for studying the
finite-size spectrum of the theory.

III. FINITE-SIZE SPECTRUM AND BOUNDARY
OPERATORS

The finite-size spectrum of a 111D scale-invariant theory
provides important information about its critical behavior.
This follows from a well-known result in conformal field
theory:39 The energy levels in a finite geometry are directly
connected to the~boundary! scaling dimensions of operators
in the ~semi-! infinite plane. More precisely, consider a con-
formally invariant theory defined on the strip
$w5vt1 ixu2`,t,`, 0<x<l % in Fig. 4~a!, with t
‘‘imaginary time’’ and x the space coordinate.~The velocity
of the excitations of the Hamiltonian is denoted byv.! Then
impose a conformally invariant boundary condition, call itA,
at the edgesx50 and x5l , and map the strip onto the
semi-infinite plane$z5vt81 ix8ux8>0% in Fig. 4~b!, using

the conformal transformationz5exp(pw/l ) ~implying
boundary conditionA at x850). With E0 the ground-state
energy, one has

E5E01
pvD

l
, ~3.1!

where $E% is the spectrum of excited energy levels in
0<x<l , and $D% is the spectrum ofboundary scaling di-
mensionsin the semi-infinite plane. In a 111D quantum me-
chanical realization the boundaryx850 coincides with the
time axis (t8 also being an imaginary time!, and it follows
that the boundary dimensions determine the asymptotic au-
tocorrelation functions. In other words, forut8u@x8,

^O ~t8,x8!O ~0,x8!&2^O ~t8,x8!&^O ~0,x8!&;
1

ut8u2D ,

~3.2!

with O an operator with boundary dimensionD.
For the present problem two additional features appear,

not present in the standard scenario discussed above. First,
the chiral~here, ‘‘left-moving’’! Hamiltonian in~2.37! repre-
sents a full 111D theory on the cylinder@via the folding
procedure in~2.31!#: the second channel of left-moving cur-
rents simulates the presence of right-moving currents. There-
fore, bulk dimensionsappear in the finite-size scaling for-
mula, disguised as sums of dimensions of left-moving
operators labeled by the channel index. Second,HTL* sup-
ports two kinds of excitations, charge and spin, with distinct
velocitiesvc and vs ~whengÞ0). However, as we already
noted, the charge and spin excitations are dynamically de-
coupled, and conformal invariance~including Lorentz invari-
ance! holds separately in the two sectors. Summing up, one
expects that~3.1! is replaced by

E2E05Ec1Es2~Ec
01Es

0!, ~3.3!

where

Ec2Ec
05

pvc
l

~Dc
11Dc

2!,

~3.4!

Es2Es
05

pvs
l

~Ds
11Ds

2!,

$Da
j % being the boundary dimensions in channelj51,2 and

sectora5c ~charge!, s ~spin!. ~This structure of the spectrum
has been exhibited in a Bethe-ansatz analysis of the Hubbard
chain;29 cf. the following section.!

As we have seen in Sec. II C, it is convenient to represent
a theory defined on a strip by achiral theory on a cylinder.
Formally, this follows from the vanishing of the energy-
momentum tensor at the boundary,21 implying that left- and
right-moving operators coincide at the boundary. This is pre-
cisely what we used in~2.35! when we continued the charge
and spin currents to the negativex axis. We know that the
energy spectrum of this theory is in one-to-one correspon-
dence to the boundary scaling dimensions due to the bound-
ary conditions applied at the edges of the strip. However,
these scaling dimensions are only a subset of all possible
chiral dimensions of the bulk conformal field theory. One is
thus faced with the task to pick out those chiral dimensions
that represent the wanted boundary condition. Formally, this
may be done by connecting the boundary condition to ase-

FIG. 4. In Euclidean space-time, the finite-size theory~a! on the
strip @0,l # with boundary conditionA at both ends is conformally
mapped to a semi-infinite plane~b! with the same boundary condi-
tion A applied at the boundary.
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lection rule that prescribes how charge and spin excitations
are combined at that boundary. Knowing the selection rule,
and allowing only boundary operators that preserve the sym-
metry of the Hamiltonian, the formalism unambiguously pre-
dicts the set of possible boundary dimensions. For a quantum
impurity problem that we are dealing with here, the more
intricate task is to identify the correct boundary condition~or
selection rule! that represents the presence of the impurity:
According to a conjecture by Affleck and Ludwig,19,20 any
quantum impurity renormalizes, at the fixed point, into a
particular conformally invariant boundary condition on the
critical theory that carries the extended degrees of freedom
~in our case,HTL). Oneway of identifying this boundary
condition is to start with some known, trivial boundary con-
dition on the critical theory, with no coupling to the impurity.
The associated selection rule simply describes the allowed
combinations of charge and spin excitations when there is no
impurity present. Now, place a spin impurity at the boundary,
and couple it to the electrons. By redefining the spin current
as that of electronsand impurity, J(x)→J(x)1Sd(x)
[J8(x), the electron-impurity interaction is removed at the
fixed point. The spin quantum numbers$ j % will be shifted
accordingly:$ j %→$ j 8%. The new selection rule, describing
the renormalized boundary condition, is then obtained from
the old by substituting$ j 8% for $ j %. The fusion-rule hypoth-
esis by Affleck and Ludwig19 suggests that the shift of quan-
tum numbers is precisely governed by the conformal field
theory fusion rules, in our case those of the SU~2! 2 Kac-
Moody algebra: The set of states(conformal tower)labeled
by a quantum numberj is mapped onto new sets labeled by
j 8, where

j 85u j2 1
2 u,u j2 1

2 u11, . . . , min$ j1 1
2 ,22 j2 1

2 %. ~3.5!

This is the essence of the conformal field theory approach, to
be exploited below.

In this section we study the finite-size spectrum of
HTL* , and derive expressions for the scaling dimensions
$Da

j % on a form adapted to the impurity problem. We verify
our result by matching it to that of the exact Bethe-ansatz
analysis of the Hubbard model. Bringing the electron-
impurity interaction into play, we then use thecoset
construction38 to make a conformal embedding of the origi-
nal SU~2! 13SU~2! 1 spin currents into SU~2! 23Z2 . @This
corresponds to writing the spin part ofHTL* as a single
SU~2!2 Sugawara Hamiltonian together with an Ising model.#
With this proviso, we suggest a particular application of the
fusion-rule hypothesis,19,24 and absorb the impurity spin in
the total electron spin currentJ(x), using the conformal field
theory fusion rules for the SU~2! 2 Kac-Moody algebra. From
this, the spectrum of boundary scaling dimensions in the
presence of the impurity spin is read off.

A. Finite-size spectrum ofHTL*

Before applying these techniques to our Hamiltonian
~2.37!, we need to rewrite it in Fourier space. Introducing the
Fourier-transformed currents

S j miJmi D 5
1

2pE2l

l

dx eim
p
l
xS j Li ~x!

JL
i ~x!

D ~3.6!

for i51,2 andmPZ, the mode-expanded Hamiltonian takes
the form

HTL* 5 (
i51,2

H c
i 1H s

i , ~3.7!

where

H c
i 5

pvc
l

S 14 j 0i j 0i 1 1

2(
m51

`

j2m
i j m

i 2
1

24D , ~3.8a!

H s
i 5

pvs
l

S 13 J0i •J0i 1 2

3(
m51

`

J2m
i
•Jm

i 2
1

24D . ~3.8b!

This result is easy to verify. Consider first the U~1! currents,
with

: j L
i ~x! j L

i ~x!:[ lim
d→0

@ j L
i ~x1d! j L

i ~x!2^ j L
i ~x1d! j L

i ~x!&#.

~3.9!

Noting that j L
i is a dimension-one analytic operator with ar-

gument z5vct1 ix, it follows from the operator product
expansion40 of j L

i with itself that41

^ j L
i ~x1d! j L

i ~x!&5
2

~ id!2
1

1

l 2OF S d

l
D 0G , ~3.10!

where the last term is the correction due to the finitel . The
inverse of~3.6!,

S j Li ~x!

JL
i ~x!

D 5
p

l (
m52`

`

e2 im
p
l
xS j miJmi D , ~3.11!

together with~3.9! and ~3.10!, implies that

1

2pE2l

l

dx: j L
i ~x! j L

i ~x!:5 lim
d→0

Fp

l (
n

e2 in
p
l

d j n
i j2n

i 1
2l

pd2G .
~3.12!

Using the U~1! Kac-Moody algebra~2.23! in Fourier space,

@ j n
i , j m

k #52ndn1m,0d
ik, ~3.13!

we may write

(
n

e2 in
p
l

d j n
i j2n

i 5 j 0
i j 0

i 12(
n.0

cosS np

l
d D j2n

i j n
i

12(
n.0

ne2 in
p
l

d, ~3.14!

so that the last term cancels the singular part of~3.12!:

2p

l (
n.0

ne2 in
p
l

d52
2l

pd2
2

p

6l
1
1

l
OF S d

l
D 2G .

~3.15!

Hence,H c
i ~3.8a! follows from comparing~2.37! with

~3.12!. The analogous treatment of the Fourier transformed
spin currents, satisfying the SU~2! 1 Kac-Moody algebra

@Jn
ia ,Jm

kb#5 i eabcJn1m
ic d ik1

n

2
dn1m,0d

abd ik, ~3.16!

53 3219MAGNETIC IMPURITY IN A LUTTINGER LIQUID: . . .



leads to ~3.8b!. As can be seen from the derivation, the
Schwinger-type terms in~3.8a! and~3.8b!, including the con-
stant 1/24, are due to the regularization of the spectrum~nor-
mal ordering of the quadratic currents!. These terms encode
the conformal anomaly40 of the theory, and we shall discuss
their role below.

GivenH c
i ~3.8a! andH s

i ~3.8b!, it is now easy to ex-
tract the finite-size spectrum. Let us start with the charge
Hamiltonian,Hc5Hc

11Hc
2 , and make the connection to

the original electron fields in the Tomonaga-Luttinger Hamil-
tonian ~1.2!. By construction@cf. Eqs.~2.31! and ~2.35!# we
can identify

j m
1 5 j L,m , j m

2 5 j R,m , ~3.17!

where

j
R
L ,m5

1

2pE2l

l

dxe6 im~p/l !xj
R
L~x! ~3.18!

are the Fourier transforms of the left–right-moving U~1! cur-
rents introduced in~2.22!. Thus

j m
1 5coshuJL,m1sinhuJR,m ,

~3.19!
j m
2 5coshuJR,m1sinhuJL,m ,

with

J
R
L ,m5

1

2pE2l

l

dx e6 im~p/l !x:c
R
L ,s
†

~x!c
R
L ,s~x!:

~3.20!

the Fourier components of the original U~1! currents in
~2.10a!. For later convenience we impose antiperiodic
boundary conditions42 on c r ,s(x), which then can be ex-
panded as

c
R
L ,s ~x!5

p

l (
n

e7 i ~n11/2!~p/l !xc
R
L ,s,n. ~3.21!

This definition implies that the momenta forc
R
L ,s,n are given

by k57(p/l )(n11/2), so that the ‘‘single-particle’’ energy
levels7vck, with respect to the Fermi levelk50, both sat-
isfy

en5
vcp
l

~n1 1
2 !. ~3.22!

As follows from the definition of the integrand of~3.20! in
terms of point splitting~2.12!, we need the~finite-size!
Green’s function

^c
R
L ,s

†
~x1d!c

R
L ,s ~x!&5

2

~6 id!
1
1

l
OS d

l
D ~3.23!

to obtain

J
R
L ,m5 lim

d→0
Fp

l (
n

e6 i ~n11/2!~p/l !dc
R
L ,s,n
†

c
R
L ,s,n1m

7
2l dm0
ipd G .

~3.24!

It is now convenient to introduce normal ordering in Fourier
space. The filled Fermi sea occupies all levels forn,0, and
hence

:c r ,s,n
† c r ,s,m :5H c r ,s,n

† c r ,s,m , nÞm or n5m>0,

2c r ,s,mc r ,s,n
† , n5m,0,

~3.25!

for r5L orR. Using$c r ,s,m ,cs,m,n
† %5(l /p)d rsdsmdmn and

(
n.0

e6 i ~n1
1
2 !

p
l

d56
l

ipd
1OS d

l
D , ~3.26!

we may finally write

J
R
L ,m5

p

l (
n

:c
R
L ,s,n
†

c
R
L ,s,n1m

:. ~3.27!

The interpretation ofJ
R
L ,m is now straightforward: Form50

it counts the net number of left-~right-! moving particles
with respect to the Fermi sea, whereas formÞ0 it excites
particlesm steps.

Next we introduce a set ofKac-Moody primary states
uLP& with respect to the charge and spin currents,40 defined
by

J
R
L ,muLP&50, J

R
L ,muLP&50, m.0, ~3.28!

from which all other states can be generated. In an occupa-
tion number representation,43

uLP&[uQL↑ ,QL↓ ,QR↑ ,QR↓& ~3.29!

with the constraint

uQ
R
L↑2Q

R
L↓u<1. ~3.30!

Here uQrs& denotes a nonexcited state withQrs the number
of r5L, R electrons, carrying spins, added to the filled
Fermi sea. Hence, the total charge in channelr ,
Qr5Qr↑1Qr↓ , is the eigenvalue ofJr ,0 in ~3.27!. Combin-
ing ~3.8a!, ~3.19!, and~3.27!, we thus have

H c
i uLP&5

pvc
l H ~qi !2

4
2

1

24J uLP&, i51,2, ~3.31!

where we have introduced the eigenvalues ofj 0
i ,

q2
1
5Q

eu

2
6DQ

e2u

2
~3.32!

labeled by the quantum numbers

Q[QL1QR5QL↑1QL↓1QR↑1QR↓ ,

DQ[QL2QR5QL↑1QL↓2QR↑2QR↓ .
~3.33!

As QL ,QRPZ, it follows thatQ,DQPZ with the restriction
thatQ6DQ is even.

Turning to the spin Hamiltonian,Hs , we proceed analo-
gously. Writing J0

i
•J0

i 53J0
izJ0

iz in ~3.8b!, and identifying
Fourier modes,
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Jm
1z5JL,m

z , Jm
2z5JR,m

z , ~3.34!

the spin Hamiltonian~3.8b! and the Fourier transform of
~2.10b! imply that

H s
i uLP&5

pvs
l

S 14 ~Q↑
i 2Q↓

i !22
1

24D uLP&. ~3.35!

~In obvious notation,Q15QL and Q25QR .) Introducing
spin quantum numbersj i50,1/2, i51,2, connected to the
particle numbers by

4

3
j i~ j i11!5~Q↑

i 2Q↓
i !2<1, ~3.36!

the eigenvalues in~3.35! are expressed as

Es
i ~ j i !5

pvs
l H 13 j i~ j i11!2

1

24J , j i50, 1
2 . ~3.37!

@This result can also be obtained directly by noting that
J0
i
•J0

i is the Casimir invariant of SU~2! 1 , with eigenvalues
j i( j i11) when acting on the primary states.34#
As a consequence of@Hc ,Hs#50, the primary states

factorize in charge and spin,

uLP&5uLP&c^ uLP&s , ~3.38!

and as the Hamiltonians are diagonal in channels 1 and 2,

uLP&s5u j 1&~1!
^ u j 2&~2!, ~3.39a!

uLP&c5uq1&~1!
^ uq2&~2!, ~3.39b!

the superscripts denoting the two channels. Note that the
qi ’s mix the originalL andR channels and are defined by
~3.32! in terms of the quantum numbersQ andDQ.

To obtain a state of arbitrary particle number
(QL↑ ,QL↓ ,QR↑ ,QR↓) we undo the constraints~3.30! by ap-
plying the operatorsJr ,2m

6 5Jr ,2m
x 6Jr ,2m

y , with m.0, on
uLP&. These operators flip spin within the left- and right-
moving branches. The resulting states, call themuL&, are
still labeled byQ

R
La , which now may be any integer. Fur-

thermore, by acting with the operatorsJr ,2m and Jr ,2m
z

(m.0) on uL&, we also remove the constraint thatuQrs& is
nonexcited, i.e., we allow nonfilled levels below the highest
occupied level: As is readily verified, the Fourier modes
(1/2)Jr ,2m6Jr ,2m

z (m.0) create ‘‘particle-hole excitations’’
from the statesuL& within eachQrs branch.Any state of
particle number (QL↑ ,QL↓ ,QR↑ ,QR↓) can thus be obtained
from the set of primary states.~In the following, we label our
states in the diagonal basis ofH, though.! As follows from
~3.19! and ~3.28!, the primary statesuLP& are also primary
with respect to the diagonalized currentsj2m

i and J2m
i and

any other excited state is obtained by applying these opera-
tors form.0.

To extract the spectrum including the energy levels of the
descendant statesjust exposed, it is sufficient to note that the
operators $ j2m

k ;m.0, k51,2% and $J2m
k ;m.0, k51,2%

act as ‘‘raising operators’’ with respect to the primary states
in ~3.39a! and ~3.39b!. Explicitly, from ~3.8a! and ~3.13!,

@H c
i , j2m

k #5
pvc
l

mj2m
k d ik. ~3.40!

Thus, comparing with~3.31!, the descendant levels in~the
diagonal basis of! the charge sector are obtained by adding
energy to the primary levels in steps ofpvc /l . The result-
ing finite-size spectrum organizes intoconformal towers44 of
equally spaced energy levels, each tower having a primary
level qi as base:

Ec
i ~qi ,Nc

i !5
pvc
l H ~qi !2

4
2

1

24
1Nc

i J , Nc
i PN, i51,2,

~3.41!

with

q2
1
5Q

eu

2
6DQ

e2u

2
, Q, DQPZ. ~3.42!

Similarly, ~3.8b! and ~3.16! imply

@Hs ,J2m
k #5

pvs
l

mJ2m
k . ~3.43!

A comparison with~3.35! yields the finite-size spectrum in
the spin sector, with two conformal towers (j i50,1/2) per
channel:

Es
i ~ j i ,Ns

i !5
pvs
l H 13 j i~ j i11!2

1

24
1Ns

i J , Ns
i PN, i51,2.

~3.44!

PuttingQ5DQ5 j 15 j 250 and summing over the channels
in ~3.41! and ~3.44!, we obtain the ground-state energy
E05Ec

01Es
0 with

Ej
052

pv j
12l

, j5c,s. ~3.45!

As is well known, the finite-size correction to the ground-
state energyE05EL

01ER
0 of a conformally invariant Hamil-

tonian ~defined on a ring of circumferenceLx) scales as
E

R
L
0
52pvc/12Lx ,

45 v being the velocity of the massless ex-

citations. In the present case, we use a chiral formulation and
must accordingly compare~3.45! with EL

0 only. Putting
Lx52l , we obtainc52 in the charge and spin sectors, re-
spectively, yielding a totalc54. This is what we expect,
since we are using ac54 representation of our originalc52
theory.

Given the finite-size spectrum, we now identify the corre-
sponding scaling dimensions. Using~3.4!, together with
~3.41! and ~3.45!, we have

Dc
i 5

1

4 S eu
Q

2
2~21! ie2u

DQ

2 D 21Nc
i , i51,2, Nc

i PN.

~3.46!

Similarly, ~3.4!, ~3.44!, and ~3.45! imply for the scaling di-
mensions in the spin sector:

Ds
i 5

1

3
j i~ j i11!1Ns

i , j i50, 1
2 , i51,2, Ns

i PN.

~3.47!
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The dimension of a composite operator is thus given by

D5Dc
11Dc

21Ds
11Ds

2 . ~3.48!

We recognize the scaling dimensions in~3.46! as those of a
U~1! Gaussian theory represented by free bosons with peri-
odicity f5f12pR, with R5e2u/A2.46 The same struc-
ture is hidden in ~3.47!. Substituting Q65Q↑

12Q↓
1

6(Q↑
22Q↓

2) for Q andDQ, respectively, choosinge2u51
and using~3.36!, ~3.46! gives~3.47!. For this special value of
the periodicity (R51/A2), it is known that the symmetry is
enhanced to SU~2!,47 and the scaling dimensions become
those of an SU~2! k51 WZW model.

It may here be worthwhile to recall the key elements of
the analysis: Eq.~3.48! gives the spectrum ofchiral dimen-
sionsof the analytically continued theory in the full complex
plane. As we pointed out above,boundary scaling dimen-
sions in the half-plane correspond to subsets of this spec-
trum, with one subset for each particular boundary condition.
By the ‘‘folding procedure’’ in~2.31!, the subset correspond-
ing to the boundary condition~2.32! exactly coincides with
the set ofbulk dimensionsof the original theory in the full
plane. To pick out these dimensions from~3.48! we must first
identify the rule for assigning values to the quantum numbers
(Q,DQ, j 1, j 2) in the presence of the boundary condition
~2.32!. By the equivalence with the bulk problem, this is the
same as identifying the selection rule governing the bulk
energy spectrum ofHTL* .

Assuming that the electron-electron interaction does not
obstruct the choice of particle number
(QL↑ ,QL↓ ,QR↑ ,QR↓), ~3.33! and~3.36! imply theLuttinger
liquid selection rule:

j 15
1

4
~Q1DQ! mod1,

~3.49!

j 25
1

4
~Q2DQ! mod1.

Remember thatQ6DQ is even, which is consistent with the
allowed values ofj i . At this point we would also like to
point out that this selection rule includes an implicit relation
between the two charge channels 1 and 2: The definition of
qi in terms ofQ andDQ only permits certain combinations
of theq1 andq2 conformal towers. In contrast, the conformal
towers in the spin sector are not constrained by such a rela-
tion.

The scaling dimensions of the possible boundary opera-
tors are now obtained from~3.48! by feeding into~3.46! and
~3.47! the allowed values of (Q,DQ, j 1, j 2) according to
~3.49!. Not all of these operators appear, though, in the ef-
fective theory describing the scaling region. In general, this
can be written as an expansion

H5H*1(
k
gkO k~0!, ~3.50!

whereH* is the fixed-point Hamiltonian, andgk andO k are
the associated scaling fields and boundary operators. Correc-
tions to scaling are produced by the irrelevant operators, and
these must be invariant under the continuous symmetries of
H ~as must any relevant operators in the absence of external

perturbations!. Applied to our case, H5HTL*
1(kgkO k(0), invariant under chiral U~1!3U~1!3
SU~2!13SU~2! 1 . In other words, charge and spin are con-
served separately in the two channels, implying
Q5DQ50 and j 15 j 250 for O k . Hence, the only bound-
ary operators appearing at the fixed point are descendants of
the identity. This trivial content of correction-to-scaling op-
erators could of course have been predicted directly from
symmetry arguments, without invoking the finite-size spec-
trum. However, having the spectrum in hand,including the
selection rule in~3.49!, we can attack the more challenging
problem of electron-impurity scattering.

Before doing so, however, we shall compare our spectrum
and selection rule to those from an exact Bethe-ansatz analy-
sis of the Hubbard chain~of whichHTL* is the fixed-point
theory!. As was first shown by Woynarovich29 ~see also Refs.
30 and 31!, the Bethe-ansatz spectrum of a Hubbard model
on a finite ring also organizes into conformal towers. Away
from half-filling:

E2E0;
2pvc
N

~Dc
11Dc

2!1
2pvs
N

~Ds
11Ds

2!1OS 1N2D .
~3.51!

HereN is the number of sites on the ring,vc and vs are
model dependent charge and spin velocities, andDc

6 and
Ds

6 are given by

Dc
65

1

2 S I c
2jc

6jcSDc1
Ds

2 D D 21Nc
6 , ~3.52a!

Ds
65

1

4 S I s2 I c
2

6DsD 21Ns
6 , ~3.52b!

with Nc
6 ,Ns

6PN. As in the conformal approach, the positive
integersN6 label ‘‘particle-hole excitations’’~although the
notion of a ‘‘particle’’ or ‘‘hole’’ in a Bethe-ansatz basis is
different from that used here!. The parameterjc is a nonuni-
versal function of the microscopic parameters, while
(I c ,I s ,Dc ,Ds) are quantum numbers subject to the Bethe-
ansatz selection rule

Dc5
1

2
~ I c1I s! ~ mod1!,

~3.53!

Ds5
1

2
I c ~ mod1!,

where 2Dc ,2Ds ,I c ,I sPZ.
To match our result in~3.46! and ~3.47! to that in ~3.52!,

we note that the dressed chargejc and our parametere
u both

measure the strength of the Hubbard interaction. Explicitly,
using the parametrization in Sec. II, we have that
eu5$11U/@2ptsin(akF)#%

1/4, while jc5A2$12U/
@8ptsin(ak0)#%,

30 k0 playing the role of a ‘‘Fermi momen-
tum’’ in the Bethe-ansatz formalism. Puttingk05kF , it fol-
lows thatjc5A2e2u1O@(U/t)2#. To lowest order inU/t,
Dc
11Dc

2 andDs
11Ds

2 in ~3.46! and~3.47! indeed exhaust the
same combined spectrum of scaling dimensions as
Dc

11Dc
2 andDs

11Ds
2 in ~3.52!. This can be seen from the

following analysis.
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Let us first generate all combinations of scaling dimen-
sions according to the Luttinger liquid selection rule~3.49!
and show that they equal allowed combinations of scaling
dimensions according to the Bethe-ansatz selection rule
~3.53!. We may concentrate onNc

i 5Ns
i 50, as higher levels

can be trivially mapped once the relation forNc
i 5Ns

i 50 has
been established. Moreover, if we formally setQ5I c and use
jc5A2e2u, we see that it is sufficient to check thatDQ and
4Dc12Ds span the same range of integers whenDs

11Ds
2 5

Ds
11Ds

2 . Whether this correspondence is possible or not
depends on the selection rule.

ConsiderQ52n, nPZ. By construction,DQ is even, and
from ~3.47! and ~3.49! it follows that for Ds

11Ds
250 we

have DQ54m for n even andDQ54m12 for n odd
~mPZ!. This is exactly reproduced in the Bethe-ansatz spec-
trum by choosingDs50 ~which is allowed asI c is even! and
I s5n. According to the selection rule, the allowed values of
Dc are p for n even andp1 1

2 for n odd ~pPZ!, i.e.,
4Dc12Ds gives the same range of integers asDQ. The
other possibility,Ds

11Ds
251/2, is analogously combined

with the above values ofDQ shifted by 2, which is repro-
duced by choosingDs50, I s5n11, andDc5p11/2 for n
even andDc5p for n odd ~pPZ!.

Next, considerQ52n11, nPZ. Then Ds
11Ds

25 1
4 and

DQ spans all odd integers. ChoosingI s5n andDs561/2 is
consistent with~3.53! and givesDs

11Ds
25 1

4. For I s even,
the allowed values ofDc arep1 1

2 and forI s odd, they arep
~pPZ!. In both cases, 4Dc12Ds spans all odd integers as
required. This completes the first part of our comparison.

In order to prove that the Luttinger liquid and Bethe-
ansatz spectra are identical, we must also check that any
other allowed combination of quantum numbers of the latter
only reproduce energy levels already obtained.~Note that we
only compare energy levels and not their degeneracies.! So
far we have exhausted all combinations ofI c andDc . By
also allowingI s andDs to take any permissible value, one
can show that all energy levels in the Bethe-ansatz solution
for Nc

65Ns
650 correspond to allowed combinations of

Dc
11Dc

2 andDs
11Ds

2 with Nc
i 50 andNs

i PN, respectively.
The calculation is straightforward, so we leave it out for
brevity. As before, it is trivial to extend the mapping to in-
cludeNc

6 ,Ns
6PZ1, and thus the desired result follows.

B. Coset construction: Boundary operators in presence ofHF

Having established the spectrum ofHTL* , we now include
the electron-impurity term

HF5l@JL
1~0!1JL

2~0!#•S ~3.54!

and explore how this interaction affects the boundary scaling
dimensions. For this purpose, it is useful to rewrite the
HamiltonianHTL* 1HF in terms of the total spin current
J5JL

11JL
2 : The chiral SU~2! 13SU~2! 1 symmetry ofHTL*

gets broken byHF , whereas the diagonal subgroup SU~2!2,
generated byJ, remains as a symmetry~cf. our discussion in
Sec. II!.

In the conformal field theory formalism it is sufficient to
work at the level of representations of the SU~2! k algebras.
Given a direct product of two irreducible representations

~conformal towers! of SU~2! 1 , we thus ask how the states
reappear using representations of SU~2! 2 . The answer is im-
mediately obtained from the GKO coset construction:38

Products of two SU~2! 1 conformal towers (j 1)13( j 2)1 de-
compose into products of SU~2! 2 and Ising model conformal
towers (j )23(f) according to

~0!13~0!15~0!23~1!1~1!23~e!,

~0!13~ 1
2 !15~ 1

2 !23~s!, ~3.55!

~ 1
2 !13~ 1

2 !15~0!23~e!1~1!23~1!.

@Note that (1/2)13(0)1 is degenerate with (0)13(1/2)1 .#
Here j i50,1/2 andj50,1/2,1 label the conformal towers of
SU~2! 1 and SU~2! 2 , respectively, whilef51 ~identity!, s
~order parameter!, ande ~energy density! label the three con-
formal towers of the Ising model (c51/2). The scaling di-
mensions in the SU~2! 2 sector are given by

DS5
1

4
j ~ j11!1NS , NSPN, ~3.56!

while

D Ising55
0 1 N ~1!,

1

16
1 N ~s!, NPN

1

2
1 N ~e!,

~3.57!

are those of the Ising sector.
All primary states in the new representation are now la-

beled by (Q,DQ, j ,f), with the new selection rule obtained
by combining~3.49! and ~3.55!:

~ j ,f!55
~0,1! or ~1,e!, Q even,

1

2
~Q1DQ! even,

~0,e! or ~1,1!, Q even,
1

2
~Q1DQ! odd,

S 12 ,s D , Q odd.

~3.58!

At the Hamiltonian level, the conformal embedding SU~2!1
3SU~2!1→SU~2!23Ising implies that the spin part ofHTL
decomposes into a sum of an SU~2! 2 Sugawara and a free
Majorana Hamiltonian:

H̃s5
vs
2pE2l

l

dxH 14 :J~x!•J~x!:1hL~x!i
d

dx
hL~x!J ,

~3.59!

with hL a left-moving Majorana fermion. This enables us to
absorb the electron-impurity termHF5lJ(0)•S into H̃s by
making the canonical transformation

J~x!→J~x!1Sd~x!, ~3.60!

and choosingl5l*[vs/4p. In this schemel* defines the
~nonuniversal! fixed-point coupling: the elimination ofHF
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by ~3.60! restores translational~and thereby conformal! in-
variance, implying a fixed-point theory.

The redefinition of the total current in~3.60! changes the
rule for coupling conformal towers. Effectively,~3.60! adds
an extra spin-1/2 degree of freedom to the SU~2! 2 sector,
leaving the U~1! and Ising sectors intact. As a result, the
SU~2! 2 conformal towers (j )2 get replaced, according to

~0!2→~ 1
2 !2 , ~ 1

2 !2→~0!2 or ~1!2 , ~1!2→~ 1
2 !2 .

~3.61!

These are the SU~2! 2 fusion rules, see~3.5!, describing the
effect of combining a tower of spinj with a spin-1/2 tower.
Together with~3.58! this leads to the new selection rule

~ j ,f!5H ~ 1
2 ,1! or ~ 1

2 ,e!, Q even,

~0,s! or ~1,s!, Q odd,
~3.62!

which governs the finite-size spectrum ofHTL* 1HF , or
equivalently, the spectrum ofHTL* with a modified boundary
condition atx50 representing the impurity spin.

However, to obtain the scaling dimensions related to a
boundary condition, we recall from the beginning of Sec. III
that these are in one-to-one correspondence to the finite-size
spectrum of the Hamiltonian with that boundary condition
applied atboth ends. In terms of the Hamiltonian~2.33!,
defined onxP@0,l #, this corresponds to having impurity
spins at both ends of the space interval. Passing over to the
chiral formulation~2.37!, we thus see that the boundary scal-
ing dimensions ofH5HTL* 1HF are in one-to-one corre-
spondence to the energy levels of theauxiliary Hamiltonian

H85HTL* 1lE
2l

l

dxJ~x!@S1d~x!1S2d~x2l !#.

~3.63!

The two impurity terms are removed at the fixed point by the
canonical transformation

J~x!→J~x!1S1d~x!1S2d~x2l !, ~3.64!

by which two extra spin-1/2 degrees of freedom are added to
the SU~2! 2 sector. The fusion hypothesis19 suggests that the
effect is described bytwo repeated fusions of the spinj
conformal towers with aj51/2 tower. The new selection
rule that emerges is readily extracted, using~3.61! twice to
replace the SU~2! 2 towers in ~3.58! by the resulting set of
conformal towers. One finds

~ j ,f!5H ~0 or 1, 1 or e!, Q even,

~ 1
2 ,s!, Q odd.

~3.65!

As before,DQ has the same parity asQ, i.e., they are both
even or both odd.

Summarizing, the spectrum of boundary dimensions in
the presence ofHF is obtained from

D5Dc
11Dc

21DS1D Ising, ~3.66!

using ~3.65! to insert the allowed combinations of
(Q,DQ, j ,f) into the expressions forDc

i ( i51,2), DS, and
D Ising in ~3.46!, ~3.56!, and~3.57!, respectively.

IV. CRITICAL BEHAVIOR

We now turn to the question of theimpurity critical be-
havior, exploiting the result derived in the previous section.
To do so requires two steps. First, thesymmetry preserving
boundary operators must be identified from the spectrum in
~3.66!. With these in hand, one then selects the operator of
lowest dimension to perturbatively calculate the leading
finite-size corrections to the fixed-point theory. Treating the
~inverse! length as a temperature variable allows for the cal-
culation of the finite-T scaling of physical response func-
tions, such as the impurity contribution to the specific heat
and magnetic susceptibility.

It is tempting to make a shortcut and refer to the logic of
our procedure to conclude that the impurity critical behavior
must be that of the two-channel Kondo problem: The selec-
tion rule in ~3.65!, describing the renormalized boundary
condition due to the impurity, descends from the Luttinger
liquid selection rule in~3.49! via the coset construction and
‘‘double fusion.’’ This selection rule in turn is nothing but the
free electron selection rule in disguise, ‘‘rotated’’ to a diag-
onal basis in the charge sector. One thus infers that the inter-
acting problem cannot differ in essence, provided that the
charge sector does not contribute a~nontrivial! leading
correction-to-scaling boundary operator~which, by chiral
charge conservation, is excluded!. Although this line of rea-
soning is essentially correct, it is instructive to carry out the
analysis ‘‘by hand,’’ and observe how two-channel Kondo
physics emerges in the scheme proposed here. In fact, certain
novel features appear: the leading correction-to-scaling
boundary operator~LCBO! is found to beuniqueat the fixed
point, suggesting a universal Wilson ratio in the low-
temperature, strong-coupling limit. Also, by working out the
solution explicitly in the new scheme we gain a number of
important insights, to be exploited when extending the analy-
sis to Kondo scattering in a Luttinger liquid~Sec. V!.

A. Finite-temperature scaling

To provide some background, let us briefly review the
finite-temperature scaling approach to the problem, including
the rather exotic mechanism that brings theirrelevantbound-
ary operators to center stage. For more details, we refer to
Refs. 19 and 20.

Consider the~folded! system confined to a spatial interval
@0,l # and in the presence of an external magnetic fieldh. By
treating temperatureT as an inverse length 1/b, we may
extract the low-temperature thermodynamics via finite-size
scaling on a cylinder with circumferencevb. A convenient
choice is to map the upper half-planeC15$Imz.0% @T50
geometry in Fig. 4~b!# onto a cylinder
G15$w5(vb/p)arctanz% ~finite-T geometry in Fig. 5!. At
finite temperature the free energy separates into two pieces,
describing the bulk and the impurity, respectively,

F~b,h,l I !52l f bulk~b,h!1 f imp~b,h,l I !, ~4.1!

with l I the leading irrelevant boundary scaling field.48 By
writing 2l instead ofl in ~4.1!, we let f bulk refer to the
free-energy density of the original~unfolded! system; cf.
Figs. 3~a! and 3~b! and the remark after~2.34!.
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From the standard finite-size scaling hypothesis,49 it fol-
lows that the reduced free-energy density of a critical theory,
defined on a cylinder with circumferencevb, scales as

bF/l 5 f 0vb1Y~hb!/vb1•••, ~4.2!

where the universal amplitudeYbulk(0)52pc/6.45 In our
case, the critical theory is a sum of two conformal theories,
each withc52, and with effective velocitiesv5 vc and
vs , respectively. Moreover, as the magnetic fieldh only
couples to the spin sector, we may simply add the contribu-
tions from the two sectors:

f bulk~b,h!5Ebulk2
p

6vcb
2 1

1

2vsb
2Ys~hb!1•••,

~4.3!

with Ebulk a nonuniversal quantity andYs(0)52p/3. Put-
ting b51/T one thus obtains for the bulk specific heat:

Cbulk~T!52T
]2f bulk
]T2

5
p

3 S 1vc 1
1

vs
DT1•••, ~4.4!

with ‘‘ ••• ’’ denoting subleading terms asT→0. The bulk
magnetic susceptibility can similarly be obtained fromf bulk
by expandingYs to second order inh/T, and one finds

xbulk~T!52
]2f bulk

]h2 U
h50

5
1

2pvs
1•••. ~4.5!

In the same manner as forf bulk one can write down a
finite-size scaling ansatz for the impurity part of the free
energy:

f imp~b,h,l I !5Eimp1
1

b
Yimp~hb,l Ib

y!1•••, ~4.6!

with Eimp nonuniversal. The exponenty is a renormalization-
group eigenvalue, connected to the dimensionD of the lead-
ing irrelevant boundary operator byy512D. As the bound-
ary scaling fieldl I may couple to both the charge and the
spin sector (D5Dc1Ds), Yimp is not just a sum of a charge
and a spin part. This will not be important, though, as we
will later calculate f imp without any assumptions about
Yimp . However, forl I50 there is only one scaling fieldh

and it couples only to the spin sector. Theh dependence of
Yimp is therefore given by the same universal function as in a
theory with a single velocity.

From the scaling form ofYimp one expects nonanalytic
temperature terms inf imp for nonintegery and l IÞ0. Re-
markably, the impurity specific heat and susceptibility vanish
identically whenl I50, so these nonanalytic terms become
dominant. The mechanism behind this unusual behavior is
particularly transparent within the conformal field theory ap-
proach: Since,at the fixed point, the impurity spin has been
absorbed in the spin currentJ, the fixed point theory has lost
all memory of the impurity. Specifically, the total magnetiza-
tion

E
2`

`

dx^Jz~x!&5
]F~b,h,l I50!

]h
~4.7!

is insensitive to the impurity, and thus, from~4.6!,

]Yimp~hb,l I50!

]~hb!
50. ~4.8!

This implies that exactlyat the fixed point

x imp~l I50!52
]2f imp
]h2 U

h50

52b
]2Yimp~hb,l I50!

]~hb!2
U
h50

50, ~4.9!

and analogously

Cimp~l I50!52T
]2f imp
]T2

50. ~4.10!

To ‘‘put back’’ the effect of the impurity, the leading irrel-
evant boundary operator must be added, and this operator
then produces thedominantterm in the scaling in tempera-
ture.

B. Boundary operators

Following the procedure outlined in the beginning of this
section, we first pick out the scaling dimensions in~3.66!
corresponding to the symmetry preserving operators.

It is easiest to start in the charge sector. Chiral U~1! in-
variance implies charge conservation in each channel, hence
Q5DQ50. The selection rule in~3.65! then implies that
possible boundary operators can appear only in the products
of conformal towers

~Q,DQ, j ,f!5~0,0,0,1!,~0,0,1,1!,~0,0,0,e!, and ~0,0,1,e!.
~4.11!

The first and fourth structures in~4.11! contain only op-
erators with integer scaling dimensions. As we shall see in
the next section, these produce Fermi-liquid-like, analytic
scaling in temperature, and will be disregarded at this point.
Turning to the second and third structures, we note that both
contribute arelevantboundary operator, withD,1.50 The
second possibility, (0,0,1,1), contains the spin-1 primary
field, call it f, with D51/2. However, thetotal spin is con-
served, requiring all operators in the SU~2! 2 sector to trans-
form as singlets. This expelsf, leaving only descendant
operators in this sector withD>3/2. The third structure,

FIG. 5. Finite-temperature geometry with periodic boundary
condition in imaginary timet. The temperatureT is identified as
1/b and the circumferencevb of the cylinder satisfiesvb!l . For
l →`, this geometry is related to the zero-temperature geometry in
Fig. 4~b! via the conformal mapw5(vb/p) arctan(z).
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(0,0,0,e), contains the Ising energy density as a primary
field, also with dimensionD51/2. Is it also suppressed by
symmetry, or do we have to ‘‘fine-tune’’ the theory to stay at
the fixed point? Consider the latter alternative. The operator
e originates from the conformal embedding of SU~2!1
3SU~2!1 into SU~2! 23Z2 . The only parameter in
H5HTL* 1HF multiplying the SU~2! 1 currents is the spin
velocity vs5vF2g. A ‘‘fine-tuning’’ scenario thus implies
that we can stay at the fixed point only for some privileged
value ofg, which, considering the known solution for non-
interacting electrons, must beg50. Although not excludeda
priori , this is not a likely situation. Let us instead explore
whether there is any symmetry that suppressese.

The important symmetry to consider is invariance under
channel exchange:E :1↔2, under whichJL

1(x)↔JL
2(x). To

test forE , we connecte to the spin currents via the follow-
ing observation: The difference of SU~2! 1 currents,
JL
1(x)2JL

2(x), transforms in the adjoint~spin-1! representa-
tion of global SU~2! ~with the Schwinger term subtracted!:

@JL
1a~x!1JL

2a~x!,JL
1b~y!2JL

2b~y!#5 i eabc@JL
1c~x!

2JL
2c~x!]d~x2y!.

~4.12!

Knowing that the currents carry dimension one, one is led to
the identification

JL
1~x!2JL

2~x!;f~x!3e~x!. ~4.13!

This gives the correct assignment of spin~51! and scaling
dimension (Df1De51/211/251). Now consider a chan-
nel exchangeE . According to~4.13!,

E :f3e→2f3e. ~4.14!

A consistent conformal representation hence requires that we
assign evenness~oddness! to e (f) underE , or vice versa.
Consider the first possibility:e even andf odd. SinceH is
invariant underE , f and all its descendants become sup-
pressed. The operatore, on the other hand, is allowed, and
the required fine-tuning leaves us with a critical theory only
at g50, according to the argument above. The first descen-
dant of e, L21e with scaling dimension 3/2, here becomes
the leading irrelevant operator. But this is exactly the bound-
ary operator that drives two-impurity Kondo behavior,24 in
contradiction to theknown two-channel behavior atg50.
Agreement with established results in the noninteracting
limit forces us to make the alternative assignment underE :
e odd andf even. Now thee conformal tower gets sup-
pressed, with no fine-tuning necessary. Our analysis shows
that there is no relevant boundary operator present: The only
candidates appearing in~4.11!, f (D51/2) ande (D51/2)
are expelled by symmetry. This yields the important conclu-
sion that the theory flows onto astable fixed point in the
absence of external perturbations.

The leading irrelevant boundary operator, call itO I , is
obtained by contractingf with the first SU~2! 2 raising op-
eratorJ21: O I5J21•f, with dimension 3/2. As expected,
O I is the same boundary operator that appears in the analysis
of the two-channel Kondo effect, using the ‘‘charge-spin-
flavor’’ scheme,19 reviewed in Sec. II. In that formulation,

however, the flavor sector contributes a second operator with
dimension 3/2, call itO flavor. This is different from our ap-
proach where the leading correction-to-scaling operatorO I is
unique. Consistency between the two schemes requires that
the scaling field conjugate toO flavor vanishes at the fixed
point. Based on the related case of ‘‘underscreening,’’ it has
been argued that this indeed happens: When the impurity
carries unit spin both the charge and flavor sectors contribute
correction-to-scaling operators with the same dimension
~52! as the spin sector. Given a proper regularization of the
theory, one can show that the conjugate charge and flavor
scaling fields→0 at the trivialT.TK fixed point. There is
evidence that an analogous mechanism is at play at the
‘‘overscreened’’T,TK fixed point ~with s51/2), leaving
only the operatorO I effective. Our result supports this pic-
ture, and allows for the definition of a universal Wilson ratio
in the limit of vanishing electron-electron interaction.

C. Low-temperature thermodynamics

The low-temperature thermodynamics driven byO I has
been studied in Ref. 19. In the next section we shall review
this analysis, and extend it to theories with more than one
velocity and boundary operators of arbitrary dimensions.
Here we only quote the result for the impurity specific heat
Cimp and magnetic susceptibilityx imp :

Cimp~T,l I !5
l I
29p2

vs
3 T lnS 1

t0T
D1O~t0T!, ~4.15!

x imp~T,l I !5
l I
218

vs
3 lnS 1

t0T
D1O@~t0T!0#, ~4.16!

with t0 a short-time cutoff, playing the role of an inverse
‘‘Kondo temperature.’’ The scaling fieldl I ~conjugate to
O I) appears with the same power in~4.15! and~4.16!. Thus,
given the known bulk response in~4.4! and ~4.5!, one may
form thel I- andT-independent Wilson ratio

RW[
x imp /xbulk

Cimp /Cbulk
5
4

3 S 11
vs
vc

D5
8

3 H 12
g

vF
1OF S gvFD

2G J .
~4.17!

In the g→0 (vc ,vs→vF) limit we recover the universal
number 8/3 obtained by Affleck and Ludwig19 for the two-
channel Kondo effect.

In the alternative charge-spin-flavor scheme for the two-
channel Kondo effect, the flavor sector also contributes a
dimension-3/2 boundary operator. This produces a second
term inCimp , proportional to the square of a flavor scaling
field lflavor. To obtain the Wilson ratioRW58/3, one has to
resort to the argument sketched above, suggesting that
lflavor→0 as one approaches the fixed point. In contrast, the
reduction toone scaling field l I is automatic in our ap-
proach.

The results in~4.15! and ~4.16! also apply to the associ-
ated spin-chain problem, with two neighboring sites coupled
antiferromagnetically with equal strengthJ0 to a spin-1/2
impurity ~cf. Fig. 2 and the discussion in Sec. II!. This cor-
roborates the result in Ref. 33, and shows that the closing of
an open chain with its two ends coupled symmetrically to the
same impurity does not affect the scaling behavior: both the
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open and closed chains exhibit the same ‘‘two-channel
Kondo physics.’’14 This, from a naive point of view, is some-
what surprising: The two spins at the end points of the open
chain are locked into anS51 state via the interaction with
the impurity. This causes overscreening of the impurity spin,
resulting in the two-channel Kondo behavior. Upon closing
the chain the end point spins get mutually coupled via an
antiferromagnetic exchange, call itJ. As J is increased
aboveJ0 one may have guessed that the localS51 state gets
destabilized, thus inhibiting overscreening, and leading to a
decoupling of the impurity spin~‘‘Curie behavior’’!. This
does not happen however. The results in~4.15! and~4.16! are
valid independent of the relative strengths of the bare cou-
plings J0 and J: The low-temperature fixed point isstable,
attracting a flow for arbitrary initial~bare! values of the cou-
plingsJ andJ0 . Whatdoeschange, however, is the tempera-
ture scale at which one reaches this fixed point. For example,
if the ratio J0 /J is very small, the Kondo temperature will
also be small, and one has to go to very low temperatures to
see the ‘‘two-channel behavior.’’

D. Symmetry breaking perturbations

It is instructive to study the stability of the forward scat-
tering fixed point against symmetry breaking perturbations.
Consider first an asymmetric electron-impurity interaction,

HF85lLJL~0!•S1lRJR~0!•S, ~4.18!

with lL and lR arbitrary. This may be expressed as
HF85HF1Hpert where HF is the symmetric electron-
impurity interaction@with l5(1/2)(lL1lR)# studied above,
and

Hpert5
1

2
~lL2lR!@JL

1~0!2JL
2~0!#•S. ~4.19!

Hpert breaks invariance under channel exchange, and using
~4.13! one has

Hpert;@f~0!3e~0!#•S. ~4.20!

It follows that e enters as an allowed boundary operator,
being contained in the spectrum~4.11!. Having dimension
D51/2, it is relevant, and destabilizes the symmetric for-
ward scattering fixed point.51 This is similar to adding a fla-
vor anisotropic perturbation to the two-channel Kondo inter-
action, using a charge-spin-flavor scheme.26 In this case the
flavor sector contributes a dimension-1/2 operator which
takes the system to a one-channel~Fermi-liquid-like! fixed
point. Again, equivalence between the two schemes requires
e to perform the same way. An interesting question is how
the scaling region about this one-channel fixed point is influ-
enced by the electron-electron interaction. However, we shall
not pursue this problem here.

Instead, let us study the effect of adding electron back-
scattering on the impurity, that is, addingHB in ~1.8! to
HF . HB breaks both chiral SU~2! andU~1! invariance. In
particular, this means that the numbers of left- and right-
moving particles are not conserved separately. As a conse-
quence,DQ[QL2QR is no longer restricted to zero, and the
charge sector can now make nontrivial contributions to the

spectrum of boundary operators. The lowest-dimension op-
erator withDQÞ0 allowed by the selection rule in~3.65! is
obtained from

~Q,DQ, j ,f!5~0,62,0,1!, ~4.21!

and has dimensionD5(1/2)e22u<1/2. Any uDQu.2 will
produce an irrelevant operator, and hence the composite pri-
mary operator from~4.21! is the unique relevant operator
generated by breaking chiral U~1! invariance.@Note that the
breaking of chiral SU~2! invariance is already effected by
HF .# As expected,HB is thus arelevant perturbationthat
pulls the system away from the forward scattering fixed
point, towards a new fixed point. The scaling behavior about
this new fixed point is the topic of the next section.

V. KONDO INTERACTION

The problem we have studied so far~with only forward
electron scattering off the impurity! is a model problem: we
do not expect it to be observed in the laboratory. The reason
is simply that by inserting a spinful~and chargeless! impurity
into a, say, quantum wire, one necessarily produces a sharp
scattering potential, the core of the interaction being a local-
ized spin exchange. In contrast, the exclusion of electron
back scattering off the impurity, i.e., the exclusion oflarge
momentum transfers, requires an effective scattering poten-
tial that varies slowly in space. To have an experimentally
relevant model we must therefore incorporate the back scat-
tering termHB , as in Eq.~1.8!, and study thefull electron-
impurity ~Kondo! interaction HF1HB in the strong-
coupling, low-temperature regime. As we shall see, the
insights gained from the treatment of the forward-scattering
problem will turn out to be crucial in attacking this more
difficult problem.

Before plunging into the analysis, we briefly comment
upon the recent work by Furusaki and Nagaosa13 who exploit
a version of ‘‘poor-man’s scaling’’ to analyze the problem.
As for the ordinary Kondo problem,52 a set of scaling equa-
tions is derived perturbatively in the limit of weak electron-
impurity coupling, and tentatively extended into the strong-
coupling regime. This procedure suggests that the coupling
increases indefinitely, implying a ground state where the im-
purity spin locks into a singlet with the conduction electrons,
causing the chain to break. A drawback of this method is that
the scaling equations are formally valid only for weak cou-
plings, and may miss out on possible intermediate-coupling
fixed points, as in the two-channel Kondo effect. However,
considering the analogy with the ordinary~one-channel!
Kondo problem, it is quite likely that the result that ensues is
in fact valid. Nonetheless, it is important to make aninde-
pendenttest of the result, using a method that is internally
consistent. This is the aim of the following analysis.

A. The noninteracting problem

As a preliminary, let us look at the case of 1Dfree elec-
trons coupled to a localized spin (S51/2) by the Kondo
interaction HK5HF1HB . The total Hamiltonian
H5H01HK is given by
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H05
vF
2pE dxF :cL,s

† ~x!i
d

dx
cL,s~x!:

2:cR,s
† ~x!i

d

dx
cR,s~x!: G , ~5.1!

HK5lK :@cL,s
† ~0!1cR,s

† ~0!# 1
2ssm@cL,m~0!

1cR,m~0!#:•S. ~5.2!

Noting that only the even-parity part of the electron field
couples to the impurity, it is convenient to pass to aWeyl
basisvia the canonical transformation

c6,s~x!5
1

A2
@cL,s~x!6cR,s~2x!#. ~5.3!

From this construction it follows that bothc1,s and c2,s
are chiral, left-moving fields with definite parityP under
x→2x:

Pc6,s~x!56c6,s~x!. ~5.4!

In this basis the total Hamiltonian takes the form

H01HK5
vF
2p (

r51,2
E dx:c r ,s

† ~x!i
d

dx
c r ,s~x!:

12l:c1,s
† ~0! 1

2ssmc1,m~0!:•S. ~5.5!

We recognize~5.5! asidentical to the Hamiltonian represent-
ing three-dimensional free electrons in two channels~‘‘ 1 ’’
and ‘‘2 ’’ !, coupled to a Kondo impurity in the ‘‘1 ’’ channel
only. This leads to a one-channel Kondo fixed point with a
p/2 phase shift of the single-electron levels in the ‘‘1 ’’
channel, the ‘‘2 ’’ channel being unaffected.@In fact, as
pointed out already by Nozie`res and Blandin3 ~see also Ref.
26!, the same conclusion holds for any channel-anisotropic
Kondo interaction: the screening of the impurity is fully at-
tained by the electrons in the more strongly coupled chan-
nel.#

The low-temperature impurity thermodynamics of the
one-channel problem is that of a local Fermi liquid.2 In par-
ticular, the impurity specific heatCimp and magnetic suscep-
tibility x imp scale as

Cimp;T1O~T2!, x imp;T01O~T!. ~5.6!

From ~5.5!, this result also holds forone-dimensionalfree
electrons coupled to a spin-1/2 Kondo impurity.

B. The interacting problem

The construction above is no longer useful when the
electron-electron interaction is included, that is, when

H int5
1

2pE dx

3H g2 (
r ,s5L,R

:c r ,s
† ~x!c r ,s~x!::cs,2s

† ~x!cs,2s~x!:

1g:cR,s
† ~x!cL,s~x!cL,2s

† ~x!cR,2s~x!:J ~5.7!

is added toH01HK : The interaction in~5.7! mixes left-
and right-moving fields, and hence becomes nonlocal in the
Weyl basis.

To make progress we must take a less direct route. We
shall here exploit the expectation~see Sec. I and Ref. 20! that
the full Kondo interactionHK can be described as a renor-
malized boundary condition onHTL* , analogous to the case
of the ‘‘forward’’ interactionHF studied in the previous sec-
tions. This is indeed a well-founded assumption: In the non-
interacting limit (g50) a canonical transformation on the
even-parity spin current removes the impurity from the
Hamiltonian in the Weyl basis~cf. Sec. V A!. This, ‘‘by con-
struction,’’ automatically leads to a change of boundary con-
dition on the critical bulk theory. Turning on the bulk inter-
action, this boundary condition must still be present,
although its effect~coded in the new selection rule for com-
bining conformal towers! may change with a variation of the
bulk coupling. However — as we have just seen — when
gÞ0,HK cannot be reformulated in terms of spin currents
without violating locality of the electron-electron interaction.
Therefore, we cannot identify the correct selection rule
~boundary condition! by a redefinition of the spin current, as
we did forHF in Sec. III. In fact, we should not even expect
that the new selection rule is simply related to the old one by
a recombination of conformal towers in the spin sector only.
To the contrary: Since the Kondo interactionHK carries a
charge component in the chiral basis, the charge sector is
affected too. In other words, the selection rule for combining
the two charge conformal towers may also change. This im-
plies that the boundary operators may be composites of non-
trivial operators from the spinand charge sectors. The fact
that these are described bytwo distinct conformal field theo-
ries signals the novel aspect of the problem.

To obtain a sufficiently general framework for this new
situation, we introduce a notation that does not make an im-
plicit relation between the two charge towers, and denote a
general combination of conformal towers by

~C1 ,D1 ;C2 ,D2 ; j ;f!. ~5.8!

Here (Ci ,Di) labels the U~1! channel-i tower (i51,2),
while j andf, as before, denote the SU~2! 2 and Ising tow-
ers. The two U~1! towers are now treated asindependent. In
the description ofHTL* 1HF , as well as that ofHTL* with a
trivial boundary, C15C25Q and D15D25DQ. These
identities are the above-mentioned implicit relations between
the charge towers and may be interpreted as part of the cor-
responding selection rule, whereas more general boundary
conditions, associated with other types of impurity interac-
tions, likeHK , may requireC1ÞC2 andD1ÞD2 . Note that
we still requireCi6Di to be even fori51,2, so as to pre-
serve the spectrumwithin each conformal tower.
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The next step is to find the selection rule, and we first
focus on the effect ofHK on the charge sector. As the quan-
tum numbersCi and Di can take any integer values, we
assume that any selection rule for combining the U~1! con-
formal towers can be expressed by a linear relation:

C15aC21bD21h, ~5.9a!

D15gC21dD21z, ~5.9b!

with a,b, . . . ,z integers satisfyingad2bgÞ0. As we shall
see, a few symmetry constraints severely limit the number of
possibilities and leave us with only two permissible selection
rules. Given these two rules for the U~1!3U~1! charge sec-
tor, we then consider all possible combinations of conformal
towers from the SU~2! 23 Ising sector. Each combination of
states corresponds to a~composite! boundary operator, and
those with scaling dimensions>1 are candidates for being
the leading correction-to-scaling-boundary operator (LCBO)
that governs the critical behavior at the ‘‘Kondo fixed point’’
in a Luttinger liquid. As the Kondo interaction~5.2! breaks
the chiral U~1! @as well as the SU~2!# invariance ofHTL* ,
Ci andDi of the LCBO may now take nonzero values. How-
ever, global U~1! @as well as SU~2!# remains a symmetry,
imposing other, weaker, constraints on these quantum num-
bers.@The conditions on the quantum numbers in the SU~2!

2 and Ising sectors are as before.# The list of candidate op-
erators is then restricted by requiring that any LCBO respects
the symmetry of the original Hamiltonian~includingHK),
and that the Fermi liquid scaling in~5.6! is correctly repro-
duced asg→0. ~Note that a selection rule defines aboundary
fixed point, and is valid for all values of the marginal bulk
couplingg. Hence, given a selection rule, Fermi liquid scal-
ing must emerge in the limitg→0.)

With these preliminaries, let us make a first list of candi-
date LCBO scaling dimensions at theHTL1HK fixed point.
From ~3.46!, ~3.56!, and~3.57!, treating the two U~1! towers
in ~3.46! as independent, we have

D5Dc1Ds , ~5.10!

where

Dc5
1

4
$~q1!

21~q2!
2%1Nc , NcPN, ~5.11!

with

q15
1
2C1e

u1 1
2D1e

2u,

~5.12!

q25
1
2C2e

u2 1
2D2e

2u

@replacing the formerqi of ~3.32!# and

Ds5H 0
3
16

1
2

J 1H 0
1
16

1
2

J 1Ns , NsPN. ~5.13!

To cut down the list of possible scaling dimensions in
~5.10!, we next study the constraints imposed by the symme-
tries of the model.

C. Symmetries and selection rules

All states in the charge sector are combinations of states
from the two U~1! conformal towers labeled by (C1 ,D1) and
(C2 ,D2), or q1 and q2 for short. Similarly, we label the
Kac-Moody primary states of these conformal towersuq1&
and uq2&, respectively. They transform under independent
U~1! transformations as

uqj&→eiq jf j uqj&. ~5.14!

It is convenient to introduce the linear combinations

q[q11q25
1
2 ~C11C2!e

u1 1
2 ~D12D2!e

2u,
~5.15!

Dq[q12q25
1
2 ~C12C2!e

u1 1
2 ~D11D2!e

2u

and

f[ 1
2 ~f11f2!,

~5.16!

Df[ 1
2 ~f12f2!,

so that we get a general combination of U~1! transformations
as

uq1& ^ uq2&[uq1 ,q2&→eiwuq1 ,q2& ~5.17!

with

w5q1f11q2f25qf1DqDf. ~5.18!

In terms of these phase factors, global U~1! is generated by
f and chiral U~1! by f andDf. Hence,uq1 ,q2& is global
U~1! invariant if q50 and chiral U~1! invariant if
q5Dq50. This is consistent with our previous notion of
global and chiral U~1! invariance in terms ofQ and DQ,
becauseq5Qeu andDq5DQe2u for the ~bulk! Luttinger
liquid and forward scattering problem, whereQ5C15C2
andDQ5D15D2 .

Consider now the original fixed-point theoryHTL* without
impurity. AddingHK breaks chiral, but not global, U~1! in-
variance. AsHTL* satisfies the Luttinger liquid selection rule,
we see that the effect of adding the perturbationHK is to
breakDf invariance, i.e., to remove the constraintDq50.
Under renormalization the theory flows to a new fixed point,
also associated withHTL* , but with a different selection rule,
where, possibly, the two U~1! towers are decoupled. Whereas
Q and DQ can then no longer be used to label the U~1!
sector,q and Dq remain well defined. Hence, at the new
Kondo fixed point, the signature of adding backward scatter-
ing against the impurity is to allow operators withDqÞ0.
The same arguments lead to the requirementq50, in order
to preserve the global U~1! invariance ofHK . A LCBO
must therefore not only be compliant with the selection rules
~5.9!, but also with

C152C2 and D15D2 . ~5.19!

Next we consider the effect of a discrete symmetry. Al-
thoughHK breaks chiral U~1! symmetry, it is invariant un-
der channel exchangeE :1↔2, or equivalentlyL↔R in
~1.8!. This translates into invariance under
(q,Dq)→(q,2Dq), which is equivalent to invariance under
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E :C1↔C2 and D1↔2D2 . ~5.20!

Any candidate LCBO must respect this symmetry. In case
q5Dq50, this is trivially fulfilled andDc50. We will re-
turn to this special case later and now focus onDqÞ0. In-
variance under~5.20! then implies that a LCBO must be a
symmetric combination of operators with opposite signs of
Dq. To force the coexistence of two such operators, we have
to constrain the selection rules~5.9! to be invariant under
~5.20!, i.e., they must satisfy

C25aC12bD11h, ~5.21a!

2D25gC12dD11z. ~5.21b!

If we now require at least one boundary operator, there
must be a solution to~5.9!, ~5.19!, and ~5.21!. Inserting
~5.19! in ~5.9a! and ~5.21a! yields (11a)C15bD11h and
(11a)C15bD12h, respectively, i.e.,h50. Using ~5.9b!
and ~5.21b!, we similarly getz50. We may therefore con-
clude thath5z50 is a necessary condition for the selection
rules.

By demanding full consistency between~5.9! and ~5.21!
we may further reduce the list of possible selection rules: For
instance, combining ~5.9a! and ~5.21a! requires
(12a2)C152abD11bD2 . Let us first consider the case
a2Þ1. Thenab50, as otherwiseC1 would be a function of
D1 . ~Remember that selection rules only give relations be-
tween conformal towers and should not pose constraints
within.! b50 impliesC150, which is not allowed by the
same reason. The other possibility,a50, implies
C15bD2 . However, asC1 may be any integer, we can only
allow b561. Inserting this relation in~5.21b! yields
(b211g)C15dD1 . To avoid constraints within a conformal
tower, we must then requireb211g5d50. Hence, the only
solution fora2Þ1 is a5d50 andb52g561. The next
case,a51, impliesbD15bD2 . If we assumebÞ0, then
D15D2 , which givesC15C21bD1 using ~5.9a!. But then
b50, asC1 cannot be a function ofD1 , i.e.,bÞ0 leads to
a contradiction. The only possibility fora51 therefore is to
requireb50, which does not lead to a contradiction. The
same result holds fora521.

Analogous treatment of~5.9b! and ~5.21b! implies that
either a5d50 and b52g561 or else d561 and
g50. Hence, in total there are only six possible selection
rules in the charge sector:

C15C2 and D15D2 , ~5.22a!

C15C2 and D152D2 , ~5.22b!

C152C2 and D15D2 , ~5.22c!

C152C2 and D152D2 , ~5.22d!

and

C15D2 and D152C2 , ~5.23a!

C152D2 and D15C2 . ~5.23b!

The first selection rule~5.22a! is the Luttinger liquid se-
lection rule that we start off with before we include Kondo

scattering off the impurity. The effect of includingHK is to
move us to a new fixed point, which may be described by
any of the above six selection rules. In analogy to changing a
fixed point in the case of forward scattering off the impurity,
or any other quantum impurity problem, we shall call such a
transformation afusion in the charge sector. It is a prescrip-
tion for how the conformal towers are recombined when we
change fixed points. From~5.22! and ~5.23! it follows that
there are six possible fusion rules that can be applied to the
Luttinger liquid selection rule, and one of these should cor-
respond to addingHK to the fixed-point Hamiltonian. For
instance, the fusion rule (C2 ,D2)→(2C2 ,D2) changes
~5.22a! to ~5.22c! and (C2 ,D2)→(D2 ,2C2) changes
~5.22a! to ~5.23a!. Applying the correct fusion ruleonce to
~5.22a! gives the new Kondo fixed point, and the selection
rule can be used to extract the finite-size energy spectrum.
Furthermore, we expect that applying the same fusion rule
twice should give us the selection rule that determines the
boundary scaling dimensions. It is easy to check that any
fusion rule that takes~5.22a! to any of the selection rules in
~5.22! gives ~5.22a! back after double fusion, whereas the
fusion rules that take~5.22a! to any of ~5.23! give ~5.22d!
after double fusion. We therefore conclude that the only pos-
sible selection rules for the boundary scaling dimensions are
~5.22a! and ~5.22d!.

We may now apply the symmetry constraint~5.19! to ex-
tract a ‘‘short list’’ of boundary scaling dimensions from the
charge sector. The first rule,~5.22a!, together with~5.19!,
requires a LCBO to haveC15C250 andD15D2 an even
integer. Using~5.11! and ~5.12!,

Dc5
1
2p

2e22u1Nc , p,NcPN. ~5.24!

Similarly, the second selection rule,~5.22d!, combined with
~5.19!, requiresD15D250 andC152C2 an even integer,
i.e.,

Dc5
1
2p

2e2u1Nc , p,NcPN. ~5.25!

The full boundary dimensions are obtained by coupling
the SU~2! 2 and Ising conformal towers to the pairs of U~1!
towers in~5.22a! and~5.22d!, respectively. Starting with the
SU~2! 2 sector, thej51/2 tower is expelled by global SU~2!2
invariance: Spin rotational invariance of the Hamiltonian
HTL1HK implies that any LCBO must transform as a spin
singlet, which, however, is missing from thej51/2 tower.
Turning to the j51 tower, the primary operatorf is ex-
pelled by the same reason. The lowest-dimension SU~2! 2
singlet operator from this tower isJ21•f. However, this is
the same operator that drives critical scaling in the forward
scattering problem. In particular, it produces a diverging im-
purity susceptibility asT→0 @cf. ~4.16!#, in conflict with the
known Fermi liquid scaling~5.6! in the g→0 limit of the
present problem.53Assigning evenness to thej51 conformal
tower under channel exchange~as in the forward scattering
problem! implies thatJ21•f is allowed by symmetry, and
hence any selection rule must suppress this tower. The re-
verse assignment of parity under channel exchange instead
implies that thej51 tower is suppressed by symmetry. Sum-
marizing, the only possible contributions to a LCBO from
the SU~2! 2 sector, consistent with established results for
g50, are the identity operator and its descendants. We are

3230 53PER FRÖJDH AND HENRIK JOHANNESSON



thus left with the problem of gluing together the pairs of
U~1! towers in ~5.22a! and ~5.22d! with the towers in the
Ising sector.

Let us start with~5.22a!. PuttingD15D250, the result-
ing identity towers can be combined only with the identity
tower in the Ising sector@together with that of SU~2! 2#. This
is so, since the presence of af5s or e tower would lead to
a relevant boundary operator: the primary operatorss and
e both have dimensions,1. However, atg50 the fixed
point is known to be stable~cf. Sec. V A!, excluding the
presence of a relevant operator. In fact, this conclusion may
be extended togÞ0: To remain at an unstable fixed point
~that is, to maintain criticality! requires fine tuning of some
parameter in the bare Hamiltonian. Asg is the only tunable
parameter inHTL* ~with a renormalized boundary condition
replacingHK), an unstable fixed point would imply noncriti-
cality for all values ofgÞ0. In other words, the total scaling
dimensionD5Dc1Ds of any boundary operator must be
.1. It is here important to stress that — by theraison d’etre
of renormalization —any boundary operator allowed by
symmetry will also appear at the fixed point. Therefore, one
cannot argue that a LCBO withD.1 can be obtained by
forming descendants in thef5s or e towers. If any of these
towers were present, the corresponding primary operators of
dimensionD51/16 and 1/2, respectively, would be present
as well, implying an unstable fixed point.

The lowest-dimension operators emerging from the iden-
tity towers are the first Kac-Moody descendants in the U~1!
sectors, with D51: The marginal boundary operators
O 1,2(w)5 j L

1,2(w) always appear in the charge sector, as the
particle-hole symmetry of the original lattice model in~2.2!
is broken away from half-filling.54 Upholding particle-hole
symmetry, the lowest dimension operators would instead be
the secondVirasoro descendants L221 in respective sectors,
of dimensionsD52. The next choice of U~1! quantum num-
bers,D15D252 @p51 in ~5.24!#, leads to a relevant bound-
ary operator for any combination of Ising towers, and is
therefore not allowed. In contrast,D15D2>4 @p>2 in
~5.24!# yields operators withD>1 when combined with any
Ising tower. Summarizing, the possible couplings of Ising
conformal towers to the U~1! towers selected by~5.22a!
yield the following candidate LCBO dimensions:

DLCBO51, 1
2p

2e22u1$0, 116 ,
1
2 %, pPN12. ~5.26!

Turning to the second selection rule for the U~1!3U~1! sec-
tor, ~5.22d!, employing the same reasoning as above, one
finds a second class of possible LCBO dimensions:

DLCBO51, 12e
2u1 1

2 ,
1
2p

2e2u1$0, 116 ,
1
2 %, pPN12.

~5.27!

Before exploring the critical behavior implied by the vari-
ous dimensions in~5.26! and ~5.27!, two comments may be
in order. First, note that no scaling dimensions of descendant
operators — other than those of the identity — appear in
~5.26! or ~5.27!. This is so, since a LCBO is the~composite!
boundary operator withlowestdimension>1, given a par-
ticular combination of conformal towers. Only if one, or sev-
eral, of the nontrivial primary operators are expelled by sym-
metry can a descendant operator enter the stage~as in the

forward scattering problem!. This is not the case here. Sec-
ond, the appearance of thee conformal tower requires the
reverse assignment of parity under channel exchange, as
compared to the forward scattering problem. That is, a con-
sistent representation now forces thee tower to be invariant
under channel exchange, whilef and its descendants~al-
ready suppressed by the selection rules! change sign.~Note
that there is no contradiction with the forward scattering
case, as the argument in Sec. IV B for the other assignment
of parity no longer applies.!

D. Impurity specific heat

Analogous to the forward scattering problem, an effective
scaling HamiltonianH is obtained by adding a boundary
term to the fixed-point theory ofHTL5H01H int :

H5HTL* 1l IO ~0!, ~5.28!

whereO (0) is a LCBO with conjugate scaling fieldl I . By
mapping the half-planeC15$Imz.0% for zero temperature
onto the finite-T geometry ~Fig. 5!, G15$w5vt
1 ix5(vb/p) arctan(z)% @with v5vc(vs) for a LCBO from
the charge~spin! sector55#, the partition function in zero
magnetic field is written

e2bF~b,l I !5e2bF~b,0!K expS l IE
2b/2

b/2

dt Õ ~t,0! D L
T

,

~5.29!

so thatd f imp(b,l I)[ f imp(b,l I)2 f imp(b,0) satisfies

e2bd f imp~b,l I !5K expS l IE
2b/2

b/2

dt Õ ~t,0! D L
T

.

~5.30!

We have here used the decomposition in~4.1! and passed to
a Lagrangian formalism, ‘‘tilde’’ and̂ &T referring toG1.
By a linked cluster expansion,

d f imp52
l I

b E
2b/2

b/2

dt^Õ ~t,0!&T

2
l I
2

2bE E
2b/2

b/2

dt1 dt2^Õ ~t1 ,0!Õ ~t2 ,0!&T,c

1O~l I
3!, ~5.31!

with ^ &T,c denoting a cumulant inG1.
Here two cases must be distinguished:~i! O is a Virasoro

descendant of1. Then^Õ (t,0)&T may be nonzero and hence
the leading contribution tod f imp will be linear inl I . ~ii ! In
any sector of the theory,O is Virasoro primary or a Virasoro
descendant of an operator other than1. Then^Õ (t,0)&T50
andd f imp is quadratic inl I . To see how this comes about,
consider a chiral~say, left-moving! Virasoro primary opera-
tor A(z)Þ1 with dimensionD ~Þ0! in the half-planeC1.
The expectation value of a chiral operator in a half-plane is
the same as in the full plane, as translational invariance in
one direction implies this in all directions.~Uniqueness of
analytic functions implies that the expectation value is con-
stant everywhere.! The scale transformationz→z/a, where
we later choosea5z, implies
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^A~z!&5z2D^A~1!&, ~5.32!

and we conclude that̂A(z)&50. ~Note that the argument
crucially depends onA being chiral: a nonchiral operator
may pick up a nonzero expectation value in the presence of a
boundary.! Any Virasoro descendant operator
L2n1

L2n2
•••L2nM

A(z) (nj.0) has a vanishing expecta-

tion value as well, since ^L2n1
•••L2nM

A(z)&
5L2n1

•••L2nM
^A(z)&50, L2nj

( j51,•••,nM) being

differential operators.56 Now mapC1 onto G1. Again, by
conformal invariance, ^Ã(w)&T5(dw/dz)2D^A(z)&50.
The transformation law for a Virasoro descendant is more
complicated and relates one descendant inG1 with a sum of
operators from the same Virasoro tower inC1. However, as
the expectation values of these are zero, it follows that the
expectation value of a Virasoro descendant ofA vanishes in
G1 as well. In contrast to this, descendants of the unit op-
erator1 may acquire nonzero expectation values inG1. As
an example, the energy-momentum tensor is a descendant of
1 and satisfieŝT̃(w)&T5(c/12)$z,w%, with c the conformal
anomaly number and $z,w%5d3z/dw3/dz/dw
2(3/2)(d2z/dw2/dz/dw)2 the Schwarzian derivative of the
mapC1→G1.

Let us first study case~i! whereO is a descendant of1.
Since L2115d1/dz50, the energy momentum tensor
T(z)[L221 is the leading Virasoro descendant of1 and has
D52. In the present problem, each sector contributes its own
energy momentum tensor,T1(z)5

1
4: j L

1(z) j L
1(z):, T2(z)

5 1
4: j L

2(z) j L
2(z):, T3(z)5

1
4:J(z)•J(z): andT4(z)5TIsing(z),

all with D52 and satisfying^Tj (z)&50 in C1. In other
words, there arefour degenerate LCBO’s for this case. Pass-
ing to G1, their contribution to the impurity specific heat is
given by

d f imp52(
j51

4
l j

b E
2b/2

b/2

dt^T̃j~t,0!&T , ~5.33!

with

^T̃j~w!&T5
cj
12

$z,w%5
cj
6 S p

v jb
D 2, ~5.34!

where c15c251, c353/2, andc451/2 are the conformal
anomaly numbers of the different sectors, andv15v25vc
and v35v45vs are the corresponding velocities. Inserting
~5.34! into ~5.33!, integrating, and summing over the sectors,
it follows that

d f imp52
p2

6 (
j51

4
l j cj
v j
2 T2, ~5.35!

producing a linear specific heat

Cimp52T
]2f imp
]T2

5
p2

3 (
j51

4
l j cj
v j
2 T, ~5.36!

where we have used~4.10!. This is the dominant contribution
to Cimp that is linear in the scaling fields: higher-order de-
scendants of1 produce higher powers in temperature.

We now turn to the more interesting case~ii ! where the
candidate LCBO’s arenot Virasoro descendants of the unit
operator. The one-point function in~5.31! then vanishes, and
we are left with

d f imp52
l I
2

2bE E
2b/2

b/2

dt1 dt2^Õ ~t1 ,0!Õ ~t2 ,0!&T1O~l I
3!.

~5.37!

According to our symmetry analysis, any LCBO that isnot a
descendant of1 must be a Virasoro primary operator.57 It is
therefore sufficient to consider the case whenO is Virasoro
primary, for which the two-point function inC1 takes the
familiar form

^O ~z1!O ~z2!&5
A

~z12z2!
2D . ~5.38!

Here D ~Þ0! is the scaling dimension ofO , and A is a
normalization constant ~to be determined!. Using
z→w5vt1 ix5(vb/p) arctanz and the transformation rule
for a Virasoro primary operator, we can get
^Õ (w1)Õ (w2)&T . However, asO may be composed of op-
erators from sectors with different velocitiesv, we must per-
form the transformation in each sector independently. The
expression simplifies somewhat on the boundaryx50 and
becomes

^Õ ~t1,0!Õ ~t2,0!&T5
A

~vc
Dcvs

Ds!2Ubp sinFpb ~t12t2!GU2D ,

~5.39!

whereD5Dc1Ds , and the subscripts refer to the charge and
spin sectors, respectively. The integrand~5.39! of ~5.37! is
even and periodic, with periodb, and can be replaced by a
single integral overt5t12t2 . Puttingu[ tan(p/b), and
inserting a short-time cutofft05eb/p, yields the expression

d f imp52
l I
2A

~vc
Dcvs

Ds!2
S p

b D 2D21E
tane

`

du
~11u2!D21

u2D .

~5.40!

Let us first study the case whenD>1 is an integer. We
can then make the expansion (11u2)D21511(D21)u2

1•••1u2(D21), which yields

I[E
tane

`

du
~11u2!D21

u2D 5
1

2D21

1

~ tane!2D21

3S 11
D21

2D23
~2D21!tan2e1O~e4! D . ~5.41!

In the limit of smalle, i.e., t0T→0, Eqs.~5.40! and ~5.41!
give

Cimp52T
]2f imp
]T2

5
l I
2A

~vc
Dcvs

Ds!2
2D

3~2D23!

3p2t0
322DT~11O@~t0T!2# !. ~5.42!
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The case of noninteger dimensionD.1 requires a more
lengthy analysis. One partial integration ofI yields

I5
1

2D21 S b

pt0
D 2D21H 11

D22

3 S pt0
b D 21OF S pt0

b D 4G J
1
2~D21!

2D21
I 1 ~5.43!

with I 1 defined by

I j5E
tane

`

du
~11u2!D2 j21

u2~D2 j ! , jPN. ~5.44!

WhenD,3/2, I 1 is finite ase→0, whileD53/2 produces a
logarithmic singularity:

I 1→5
1

2
BS 322D,

1

2D , D,
3

2
,

ln
1

t0T
1const, D5

3

2
,

as t0T→0 ~5.45!

with B(p,q)5G(p)G(q)/G(p1q) the beta function.

ForD.3/2, I 1 diverges algebraically with the cutoff, and

we must perform a second partial integration to identify the

rate of divergence. This leads to

I 15
1

2D23 S b

pt0
D 2D23H 11OF S pt0

b D 2G J 1
2~D22!

2D23
I 2

~5.46!

with I 2 defined as in~5.44!. In the interval 3/2,D,5/2, I 2
is finite ase→0, while for D55/2 one gets the same loga-

rithmic singularity as for D53/2, i.e., I 2(D55/2)

5I 1(D53/2). The procedure is now iterated,I j11 being the

remainder from partially integratingI j . However, the terms

in T thus generated are alwayssubleadingcompared to those
coming from the partial integrations ofI andI 1 in ~5.43! and
~5.45!, respectively. Thus, collecting the results, we obtain

for the impurity specific heat

Cimp5
l I
2A

~vc
Dcvs

Ds!2
35

2D

3~2D23!
p2t0

322DT1•••, D51 or D.
3

2
,

2~D21!2p2D21BS 322D,
1

2DT2D221•••, 1,D,
3

2
,

p2T lnS 1

t0T
D1•••, D5

3

2
,

~5.47!

where ‘‘••• ’’ denotes subleading corrections.
Combining ~5.36! and ~5.47! with the result from the

symmetry analysis,~5.26! and ~5.27!, we find that there are
only two distinct possibilities for critical scaling:

~ i! Cimp5O~T!, ~5.48!

and

~ ii ! Cimp5
l I
2Ap1/Kr

2vsvc
1/Kr S 1Kr

21D 2BS 12
1

2Kr
,
1

2DT1/Kr 21

1O~T!, ~5.49!

with Kr[e22u5(112g/vF)
21/2 the Luttinger liquid charge

parameter. The first case,~5.48!, is implied when the LCBO
carries dimensionD51 or D.3/2. In contrast, the leading
term in the second case,~5.49!, is driven by a composite
LCBO of dimension D5Dc1Ds5(1/2)(e2u11), corre-
sponding to the second entry in~5.27!.58 In terms of quantum
numbers (C1 ,D1 ;C2 ,D2 ; j ;f), the operator is given by the
sum of

~2,0;22,0;0;e! and ~22,0;2,0;0;e!. ~5.50!

Hence, the charge sector contributes a channel-symmetric
combination of primary operators withq50 and
Dq562eu @cf. discussion after~5.20!#, which can be explic-
itly expressed in terms of vertex operators of free boson
fields. The contribution to the scaling dimension is
Dc5(1/2)e2u51/2Kr . Only by combining these operators
with the Ising energy densitye does one obtain a boundary
operator of dimensionD>1, as required for a LCBO. The
linear term in~5.49! comes from subleading terms generated
by the same operator, as well as from leading terms due to
the marginal operatorsj 1(z) and j 2(z). As we have seen, the
latter operators are always present, in case~i! as well, due to
the breaking of particle-hole symmetry.

The specific heat in~5.49! exhibits the same anomalous
scaling in temperature as found by Furusaki and Nagaosa.13

Also, the way the anomalous terms vanish as
Kr→1(g→0) are identical.59Although more work is needed
to firmly establish which of the two cases applies,~5.48!
~Fermi liquid! or ~5.49! ~non-Fermi liquid!, the second, non-
Fermi liquid case is clearly favored considering its emer-
gence in an independent analysis. However, a caveat is ad-
visable. In a recent study, Schiller and Ingersent treat a
simplified model of a magnetic impurity in a ‘‘reduced’’ Lut-
tinger liquid, composed of right-moving spin-up electrons
and left-moving spin-down electrons.60 This problem, with
only two branches of electrons~compared to the four
branches of the full problem: two chiralities with two spin
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projections each! is mapped exactly onto the Kondo effect in
a Fermi liquid, withCimp as in~5.48!. Although the relevance
of this simplified model to the Kondo effect in a full Lut-
tinger liquid remains unclear to us, the result may be
taken — as argued by the authors in Ref. 60 — to give some
indirect support to a Fermi liquid scenario. In any event, it is
reassuring that our exact analysis gives roomonly to those
two scenarios that have been conjectured in the literature.

Before closing this section, let us point out that the impu-
rity specific heat~4.15! for the forward scattering problem
follows from the third case in~5.47! by insertingDc50,
Ds53/2, and the value of the normalization constant for this
case,A5^J21•fuJ21•f&59.61 The amplitude in~5.49! can
similarly be calculated by evaluating the norm of the corre-
sponding LCBO. However, as we shall find in the next sec-
tion, the favored case, with the LCBO in~5.50!, does not
lead to a universal Wilson ratio whengÞ0. For this reason
we here leave the amplitudes undetermined.

E. Impurity susceptibility

In the presence of a magnetic field, the partition function
takes the form

e2bF~b,h,l I !5e2bF~T,0,0!K expF E
2b/2

b/2 S l Idt Õ ~t,0!

1
h

2pE2`

`

dx J̃z~t,x! D G L
T

. ~5.51!

The shift of the magnetic susceptibility due to the impurity,

x imp52
]2f imp
]h2 U

h50

, ~5.52!

may thus be expanded to second order inl I as

x imp5
l I

4p2bE E
2`

`

dx1 dx2E •••E
2b/2

b/2

dt1•••dt3^J̃
z~t1 ,x1!J̃

z~t2 ,x2!Õ ~t3 ,0!&T,c

1
l I
2

8p2bE E
2`

`

dx1 dx2E •••E
2b/2

b/2

dt1•••dt4^J̃
z~t1 ,x1!J̃

z~t1 ,x2!Õ ~t3 ,0!Õ ~t4 ,0!&T,c . ~5.53!

Let us consider the non-Fermi liquid scenario withO
given by ~5.50!. The U~1!, SU~2! 2 , and Ising sectors are
decoupled, and hence there are no dynamical correlations
between operators belonging to different sectors. AsO con-
tains only the identity as a SU~2! 2 factor, it follows that

^J̃z~t1 ,x1!••• J̃
z~tm ,xm!Õ ~t,0!&T,c50, ~5.54!

using that the LCBO is Virasoro primary, i.e.,^Õ (w)&T50.
The expectation value ofJ̃z vanishes by the same reason, and
we may decompose

^J1
zJ2

z
O 3O 4&c5^J1

zJ2
z
O 3O 4&2^J1

zJ2
z&^O 3O 4&

2^J1
z
O 3&^J2

z
O 4&2^J1

z
O 4&^J2

z
O 3&50.

~5.55!

Hence, we infer thatO does not give any contribution to
x imp toO(l I

2). The same conclusion holds foranycandidate
LCBO obtained in Sec. V C, as all of them are Virasoro
primary and contain only the identity as a SU~2! 2 factor.
Higher order terms in an expansion ofx imp in l I can simi-
larly be shown to vanish. The leading contribution tox imp is
instead given by the lowest-dimension boundary operator
that has anontrivial SU~2! 2 factor. By our symmetry analy-
sis in Sec. V C, this is given by the SU~2! 2 energy-
momentum tensorT3(z)51/4:J(z)•J(z):, of dimension
D52. Analogous to the ordinary Kondo problem,20 T3(z)
produces a finite impurity susceptibility~to first order in
l I),

x imp;T01O~T!. ~5.56!

Thus, comparing with the free case~5.6!, the electron-
electron interaction is seennot to influencex imp : the impu-
rity remains completely screened, in agreement with the re-
sult of Furusaki and Nagaosa.13Also note that, by~5.49! and
~5.56!, the favored non-Fermi liquid scenario implies a Wil-
son ratio that is nonuniversal, and depends on temperature.

VI. SUMMARY

We have studied the low-temperature properties of a spin-
1/2 magnetic impurity coupled to a one-dimensional interact-
ing electron system. By turning the problem into a boundary
critical phenomenon and using conformal field theory we
have reached the important conclusion that the symmetry of
the problem admits only one of two possible fixed points
describing the local electron-impurity composite:Either the
theory remains a local Fermi liquid in the presence of
electron-electron interaction~as for the ordinary Kondo
problem with free electrons! or electron correlations drive
the system to a new fixed point with an anomalous specific
heat, identical to that proposed recently by Furusaki and
Nagaosa.13We have also shown that the suppression of back
scattering off the impurity destabilizesboth fixed points and
produces an impurity critical behavior identical to that of the
two-channel Kondo model, but with a new Wilson ratio.

The non-Fermi liquid fixed point is distinguished by the
presence of a leading correction-to-scaling operator of di-
mensionD5Dc1Ds5(1/2)e2u11/2, corresponding to the
energy levelE8, with62

E82E05
pvc
l

1

2
e2u1

pvs
l

1

2
. ~6.1!
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By numerically computing the finite-size energy spectrum of
the two-impurity auxiliary problem and checking for the
presence ofE8, one has, in principle, a diagnostic tool for
deciding which scenario is realized: Fermi or non-Fermi liq-
uid. Unfortunately, with our approach we cannot derive a
unique and complete finite-size spectrum at the non-Fermi
liquid fixed point as the selection rule in~5.22d! only applies
to the charge sector; there are still a multitude of ways of
coupling the two U~1! conformal towers to those in the
SU~2! 2 and Ising sectors. When deriving possible LCBO di-
mensions we were helped by symmetry constraints, which,
however, are no longer applicable when considering the full
spectrum. This fact makes the check against numerics more
difficult, as one is essentially restricted to search for the
single levelE8.

To make contact with future experiments clearly requires
a more complete description of the system, as well as the
inclusion of potential scattering off the impurity~see Sec. I!.
In the case of a magnetic defect implanted in a quantum
wire, the observable of greatest interest is the shift of the

average conductance due to the impurity, as this is the quan-
tity most easily accessible in the laboratory. Other important
characteristics include the local spin and charge Green’s
functions, the scattering matrix, and the residual entropy.
Considering the success of conformal field theory techniques
for obtaining these quantities in the multichannel Kondo
problem,19 we judge that the approach as presented in this
paper will be equally powerful. We hope to return to these,
and related issues in a future publication.
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15P. Fröjdh and H. Johannesson, Phys. Rev. Lett.75, 300~1995!; J.

Low Temp. Phys.99, 325 ~1995!.
16S. Tomonaga, Prog. Theor. Phys.5, 544~1950!; J. M. Luttinger, J.

Math. Phys.4, 1154~1963!.
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