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Two-species reaction-diffusion system with equal diffusion constants: Anomalous density decay
at large times
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We study a two-species reaction-diffusion model whereA1A→0”, A1B→0”, andB1B→0”, with annihi-
lation ratesl0 , d0.l0, andl0, respectively. The initial particle configuration is taken to be randomly mixed
with mean densitiesnA(0).nB(0), and with the twospeciesA and B diffusing with the same diffusion
constant. A field-theoretic renormalization group analysis suggests that, contrary to expectation, the large-time
density of the minority species decays at the same rate as the majority whend<2. Monte Carlo data support
the field theory prediction ind51, while in d52 the logarithmically slow convergence to the large-time
asymptotics makes a numerical test difficult.

PACS number~s!: 82.20.Fd, 05.40.2a
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Fluctuation effects in low-dimensional reaction-diffusio
systems have received considerable attention lately@1#.
When the dimensiond of the system is sufficiently small
below a critical dimensiondc , spatial fluctuations in the par
ticle concentration dramatically influence the large-time
havior of the system. Most strikingly, the large-time scali
exponents and, sometimes, amplitudes of various obs
ables become universal and independent of the microsc
description of the system. Indeed, the quest for possible
universality classes has intensified in recent years, with s
ies of a variety of models exhibiting fluctuation-dominat
kinetics at different levels of complexity. Theoretical a
vances, together with a growing number of experimenta
accessible realizations of low-dimensional reaction-diffus
models—like reaction kinetics of excitons in polymer cha
or surface deposition of certain proteins@1#—have further
accelerated these studies.

We here consider a generalization of the well-kno
single-speciesA1A→0” and two-speciesA1B→0” annihila-
tion models@2# by coupling them together and allowingall
particles to react:

A1A→
l0

0”, A1B→
d0

0”, B1B→
l08

0”. ~1!

TheA andB particles are assumed to perform a random w
on a d-dimensional lattice with diffusion constantsDA and
DB , respectively. When two particles meet on the same
they annihilate with probabilities given by the reaction ra
l0 , d0, and l08 in Eqs. ~1!. Among a number of possible
applications, the model may be used to describesteric
reaction-diffusion processes@3#, with the two species repre
senting the projections of the chemically ‘‘active spots’’
the reactants onto some fixed reference direction@4#.

The question we wish to address is how the average
ticle densitiesnA(t) andnB(t) decay in time when there is a
initial imbalancenA(0).nB(0) in the population of the two
species.~In an application to a steric reaction-diffusion pr
cess, this would correspond to a bias in the initial orien
tions of the reactants, triggered by some external field@3#.!
When d0.l0 ,l08 we expect the minority species ofB par-
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ticles to die out before the majorityA. This has been con
firmed by a field-theoretic renormalization group analysis
the case whenDAÞDB @5#: Independent of dimensionality
the minority species was shown to vanish before the ext
tion of the majority. Here we shall focus on the case wh
l085l0 and with the diffusion constants tuned to the sa
value, DA5DB[D, as would be the proper choice whe
applying the model to a steric reaction-diffusion process@3#.
Since theeffective time-dependent reaction rates are co
trolled by the diffusion constants@2#, it is interesting to ex-
plore whether the case ofequal diffusion constants could
lead to new effects.

To set the stage, let us briefly study the classical r
equations implied by Eqs.~1!:

da

dt
52~l0a21d0ab!,

db

dt
52~l0b21d0ba!, ~2!

with a,b the mean-field densities of speciesA,B, and with
initial conditionsa(0)5nA(0) andb(0)5nB(0).

The qualitative behavior of Eq.~2! can be studied by a
mapping to a Poincare´ sphere@6# with z51/a andu5b/a:

dz

dt
5l01d0u~ t !,

du

dt
5~l02d0!u~12u!/z, ~3!

whereu is assumed to be in the interval@0,1#. With l0,d0,
Eqs. ~3! imply that for u(0),1 and for large times 1/u(t)
diverges as

1

u~ t !
5

a~ t !

b~ t !
}td0 /l021→`, t→`, ~4!

whena(0).b(0). Thus, withl0 andd0 fixed, the minority
species is killed off early, as expected. Note, however, t
Eq. ~4! suggests thatu(t) could saturate to a constant if th
effectivediffusion-controlledreaction rates replacingl0 and
d0 in the presence of fluctuations approach each ot
asymptotically. To explore this possibility it is convenient
pass to a field-theoretic formulation of the problem.
3276 ©2000 The American Physical Society
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For this purpose, let us consider the master equation
the system:

d

dt
P~c,t !5(

c8
Rc8→cP~c8,t !2(

c8
Rc→c8P~c,t !. ~5!

Here P(c,t) denotes the probability of a configurationc at
time t, andRc8→c is the transition rate from statec8 into c,
determined byD, d0, andl0. We takeP(c,0) as a Poisson
distribution, with averages denoted bynA(0) andnB(0) for
A and B particles, respectively. Equation~5! can be trans-
lated into a Schro¨dinger-type equation with a second
quantized Hamiltonian@7#, which in the continuum limit
turns into a field theory with actionS:

S5E ddxE dtF (
a5A,B

f̄a~] t2¹2!fa

1 (
a,b5A,B

labf̄a~11f̄b/2!fafbG
2E ddx (

a5A,B
na~0!f̄a~x,0!, ~6!

with rescaled time variableDt→t. The scalar fieldsfA and
fB describe theA and B particles with initial densities
na(0), a5A,B, and with the coupling constantslAA5lBB
5l0 and lAB5lBA5d0 encoding the reaction rates. Th
action in Eq.~6! faithfully mimics the master equation in Eq
~5!, up to terms irrelevant under renormalization. Note t
the rate constants become dimensionless whend52 which
suggests thatdc52, a result confirmed by standard pow
counting@8#. Since we are interested in effects from fluctu
tions, we focus ond<2 in what follows.

When d<2 the particle densities can be calculated p
turbatively from Eq.~6! asna(t)5^fa&S using ane expan-
sion, with the rate constantsl0 andd0 replaced by renormal
ized ratesga(k22)5k2ea0 /(11k2ea0 /g* ), with a5l
and d, respectively, and withk the renormalization scale
Divergent logarithmic terms in the expansion are con
niently grouped together using ‘‘running coupling co
stants’’

gl~ t !5
g*

11~ t/td* !2e/2
, gd~ t !5

g*

11~ t/tl* !2e/2
, ~7!

where g* 5G(e/2)21(8p)d/2 is the renormalization group
~RG! fixed point to whichgl(t) and gd(t) flow under a
change of time scale@9#. The running coupling constants i
Eqs. ~7! are obtained from the Callan-Symanzik equati
which expresses the independence of the densitiesna(t) on
the choice ofk:

na„t;gl~k22!,gd~k22!;nA,0 ,nB,0 ;k…

5~k2t !2d/2na„k
22;gl~ t !,gd~ t !;ñA,0~ t !,ñB,0~ t !;k…,

a5A,B ~8!

with ña,0(t)5(k2t)d/2na,0 .
of

t

-

-

-

Employing the mean-field densities from Eqs.~2! in Eq.
~8! ~fluctuation-improved mean-field treatment@5,10#!, we
obtain

u~ t !→u* 5~V21!/~V11!, ~9!

where V25114j* u0 /(12u0)2 and j* 5exp@28p(1/l0
21/d0)#, for d51, 2. Thus, at this level of analysis th
minority species at large times decays at the same rate a
majority (u* Þ0). Note also that Eq.~9! implies thatu(d
51,t).u(d52,t) as t→`, suggesting that the survival rat
of the minority particles increases with reduced dimensi
ality.

The fluctuation-improved mean-field analysis~where all
tree-level diagrams are summed! takes into account effect
from fluctuations via the renormalized coupling constan
However, in order to fully account for fluctuations one has
explicitly consider the loop diagrams. For this purpose it
convenient to expand in the asymptotically small parame
h(t)[gl(t)2gd(t). To one-loop level and to first order inh
we thus obtain

na~ t !5maN~ t !@11Da~ t !#, a5A,B. ~10!

Here mA51/(11u* ), mB5u* /(11u* ), and DA(t),DB(t)
}h(t)ln td/2→0 ast→`, and we hence recover the result
Eq. ~9! at very large times. The common factorN(t) in Eq.
~10! coincides with the density of the single speciesA1A
→0 model, with N(t)5 ln t/8pt in d52 and N(t)
51/A8pt21/2 in d51 @10#. The approach of the total densit
nA(t)1nB(t) to that of the single-species model reflects t
fact that the equal values of the diffusion-controlled rates
Eqs. ~7! at large times make the two species indistinguis
able, effectively leaving us with a single-species system.
should here stress that the values of the amplitudes in
~10! have been obtained by ignoring all irrelevant terms~in
the RG sense! that could be added to the action in Eq.~6!.
Since we do not expect the amplitudes to be universal, s
terms—if included—could shift the value ofu* in Eq. ~9!.
The scaling form ofnA(t) and nB(t) on the other handis
expected to be universal~considering the generic behavior o
this class of problems@2#!, and should be insensitive to an
left-out irrelevant terms.

To summarize, our RG analysis to the one-loop level s
gests that the minority species at large times decays at
same rate as the majority whend<2. This result—if robust
against contributions from higher-order terms in the lo
expansion—is quite remarkable and very different from
conventional picture implied by classical rate theory. Unfo
tunately, due to the difficulty of keeping track of possib
‘‘correction-to-scaling’’ terms@8#, the present model~in con-
trast to the simplerA1A→0” model! is intractable to stan-
dard procedures for assessing higher-loop effects@11#.
Therefore, to check the robustness of the result in Eq.~10!
we have resorted to a Monte Carlo simulation of the mas
equation~5! ~which in addition provides information on th
transient kinetics!.

To perform the simulation we have used animproved
minimal process algorithm@12#: At each time step a lattice
site, say,i, is picked at random~out of L possible sites!, and
a table of statistical weightswa

( i ) for the possible processe
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pa , a51, . . . ,M , at this site is constructed, withpM a
‘‘null process.’’ The weights are defined as cumulative pro
abilities: wa

( i )5(b51
a Rb

( i )/Q, with Q5(a51
M Ra

( i ) , whereRa
( i )

denotes the rate forpa . HereQ is the total rate which is kep
the same for all sites by properly adjusting the ratesRM

( j ) , j
51, . . . ,L, for the null processes. After selecting a rando
number 0<r ,1 that processpa is carried out for which
wa21

( i ) <r ,wa
( i ) (w21

( i ) [0), and time is incremented byt→t
11/LQ.

Figure 1 shows results for the density ratiosnA(t)/nB(t)
from simulations in one, two, and three dimensions. Initia
the system is homogeneous with randomly mixedA and B
particles, withnA(0).nB(0). At early times a typical minor-
ity particle is then surrounded by severalA’s, and is there-
fore likely to be killed off. As seen in Fig. 1, this is indee
the case: in all dimensions the density ratio grows initia
However, for sufficiently large rates there is arecovery ef-
fect: After the initial growth the density ratio drops — th
minority species finds a way to recover.~Here and in the
following ‘‘recovery’’ is understood in relative terms. Th
number of minority particles still decays in time but the ra
of majority to minority densities decreases in favor of t
minority!. As seen in Fig. 1 the large-time behavior of t
curves depends on the dimensionality as well as on the
ues of the reaction rates. Ford053l05150 thed53 curve
takes off after the recovery phase, in agreement with
classical mean field result Eq.~4!. This is in striking contrast
to thed51 curve which saturates to a plateau, as predic
by the one-loop RG result in~10!. The eventual fate of the
d52 curve is more difficult to foretell since the convergen
to the asymptotic scaling regime ind52 is logarithmically
slow @11#. Unfortunately, with available techniques it is ha
to push thed>2 simulations reported in Fig. 1 much beyon
log10(t)'0.5 where the number of particles becomes
small to obtain a reliable statistics. Turning to thed053l0
530 runs, thed51 curve again saturates to a plateau, wh
the d52 andd53 curves take off even before a peak h
developed. For this case it may be harder to argue that
d52 curve may eventually also saturate, although it can
be excluded considering the slow convergence. Note tha

FIG. 1. Density rationA(t)/nB(t) obtained from a numerica
simulation of the master equation~5! in d51, 2, and 3 on a 106,
1033103, and 10231023102 lattice, and numerical solution of Eq
~5! in the limit of D50 ~‘‘decoupled-site problem’’!. The fixed
parameter values areD51s21, nA,B(0)52,1 particles/site. The re
action ratesl0 andd0 are given in units of the diffusion constantD.
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RG prediction of an enhanced survival rate in low dime
sions is confirmed for this choice of reaction rates as w
thed51 curve falls below that ford52. The runs with very
large reaction ratesd053l053000 produce curves which
collapse onto a single curve, spuriously suggesting a pla
in all dimensions: Ind53, however, large reaction rates im
pede the crossover to the mean field asymptotics, and
expect thed53 curve to take off at a time not accessib
with our simulation. On the other hand, we do expect thed
51 curve to stay flat~considering the generic behavior fo
smaller rates!, while the asymptotics of thed52 curve is
again hard to predict due to the logarithmically slow conv
gence to the scaling region.

The buildup of a density-ratio peak with a subsequ
‘‘recovery phase’’ in the early stage of the kinetics~for suf-
ficiently large rates! is made transparent by solving the ma
ter equation~5! with the diffusion constantD set to zero~i.e.,
with an ensemble of decoupled single-site problems@13#!.
The hatched curves in Fig. 1 represent the correspond
density ratios for very large and small reaction rates. Initia
the dominantA1B→0” reactions on the different sites cau
a fast rise ofnA(t)/nB(t) ~peak formation!. After some time
this process gets exhausted with singleB particles left at a
finite fraction of the sites. TheA1A→0” reactions on the
remaining sites now become dominant, causing a deple
of A particles~recovery phasefor B particles!. As this pro-
cess in turn gets exhausted one is left with a constant r
nA(t)/nB(t) ~plateau!. As seen in Fig. 1, for small rates th
early-time decoupled-site kinetics gets perturbed by dif
sion of particles from neighboring sites, which leads to
enhanced mixing ofA and B particles and hence a steep
rise of the density-ratio curve. Still, ind51, the curve even-
tually saturates to a plateau. This plateau, however, is o
very different origin from that of the decoupled-site proble
with no diffusion. This is strikingly shown in Fig. 2 wher
we have plotted the individual densities ind51 for large and
small rates, with the corresponding density ratio curves
serted at the top. In both cases the individual densities
seen to decayafter the plateau has formed. Note in particular
that the decoupled-site plateau for large rates~with no decay
of the individual densities! persists only in the time interva
22.5< log10(t)<21. At later times effects from diffusion
set in, without, however, visibly distorting the plateau. No

FIG. 2. Plot of individual densities~bottom! together with den-
sity ratiosnA(t)/nB(t) ~top! in d51 obtained from simulations.
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FIG. 3. ~Color! ‘‘Cartoon’’ of the d51 kinetics. Time runs horizontally, with 300 lattice sites represented along the vertical axis. A
top the corresponding density ratio is plotted for comparison. The reaction rates arel0 ,d0510,30. Red~blue! color denotes that a majority
of particles belong to theA(B) species. White indicates the same number ofA’s andB’s on a lattice site, with intermediate cases cover
by intermediate colors. Black color denotes an empty site.
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also that although the asymptotic curves come very clos
each other, they do not collapse onto a single curve, in ag
ment with the one-loop RG result: The total densitynA(t)
1nB(t) in ~10! is universal, whereas the individual comp
nents are not.

It is instructive to look at a Monte Carlo ‘‘cartoon’’ of the
to
e-
kinetics ind51, as plotted in Fig. 3. The ‘‘recovery phase
~for B particles! is visible as dense red ropes ofA particles
terminating in black~empty sites!, with the remaining par-
ticles diffusing as single threads colored red (A particles! or
blue (B particles!. Remarkably, at large times these threa
self-organize spatially in such a way as to keep the den



or

hi
in
-
th

io
an
rin
se

n-
e
ed
the
ons,
ds.

s-
ish

c-
Re-

3280 PRE 62ZORAN KONKOLI AND HENRIK JOHANNESSON
ratio at a constant value. By a comparison to theA1B→0
model @11# one observes that the tendency for domain f
mation in the present model is much weaker:A and B par-
ticles appear to be rather well mixed asymptotically. T
makes the anomalous density decay even more intrigu
suggesting that the averageA-A andA-B distances are cor
related asymptotically so as to precisely compensate for
smaller number ofA-B pairs ~with endangeredB particles!
as compared toA-A pairs.

To conclude, we have studied a two-species react
diffusion model where the particle densities exhibit
anomalous behavior at large times: The spatial self-orde
of the two species allows the minority population to per
vere, with the asymptotic density ratio~of majority to minor-
-

s
g,

e

n-

g
-

ity species! kept at a constant value. This apparent ‘‘no
Darwinian’’ kinetics is entirely driven by fluctuations in th
diffusion-controlled regime, typical for a system of reduc
dimensionality. A perturbative RG analysis suggests that
same remarkable behavior is present also in two dimensi
although this is still to be verified by independent metho
Details and extensions will be published elsewhere@11#.
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