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Two-species reaction-diffusion system with equal diffusion constants: Anomalous density decay
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We study a two-species reaction-diffusion model whareA— 0, A+B—0, andB+B—0, with annihi-
lation rates\, 5o>M\g, and\q, respectively. The initial particle configuration is taken to be randomly mixed
with mean densities1,(0)>ng(0), and with the twospeciesA and B diffusing with the same diffusion
constant. A field-theoretic renormalization group analysis suggests that, contrary to expectation, the large-time
density of the minority species decays at the same rate as the majoritydstiznMonte Carlo data support
the field theory prediction ird=1, while in d=2 the logarithmically slow convergence to the large-time
asymptotics makes a numerical test difficult.

PACS numbd(s): 82.20.Fd, 05.40-a

Fluctuation effects in low-dimensional reaction-diffusion ticles to die out before the majorit%. This has been con-
systems have received considerable attention lafély firmed by a field-theoretic renormalization group analysis for
When the dimension of the system is sufficiently small, the case whe® ,+# Dg [5]: Independent of dimensionality,
below a critical dimension., spatial fluctuations in the par- the minority species was shown to vanish before the extinc-
ticle concentration dramatically influence the large-time be+tion of the majority. Here we shall focus on the case when
havior of the system. Most strikingly, the large-time scaling\ j=\, and with the diffusion constants tuned to the same
exponents and, sometimes, amplitudes of various observalue, D,=Dg=D, as would be the proper choice when
ables become universal and independent of the microscopigpplying the model to a steric reaction-diffusion prodes
description of the system. Indeed, the quest for possible ne®ince theeffectivetime-dependent reaction rates are con-
universality classes has intensified in recent years, with studrolled by the diffusion constan{®], it is interesting to ex-
ies of a variety of models exhibiting fluctuation-dominatedplore whether the case afqual diffusion constants could
kinetics at different levels of complexity. Theoretical ad- lead to new effects.
vances, together with a growing number of experimentally To set the stage, let us briefly study the classical rate
accessible realizations of low-dimensional reaction-diffusiorequations implied by Eqg1):
models—Ilike reaction kinetics of excitons in polymer chains
or surface deposition of certain proteifis|—have further da 5 db 5
accelerated these studies. qi= ~ (hod"Fdpab), w=—(Nob"+ &oba),  (2)

We here consider a generalization of the well-known
single-specief\+ A—0 and two-specie+B—0 annihila-  \yith 4 b the mean-field densities of speciasB, and with
tlon_models[z] b;{ coupling them together and allowiredl  jqitial conditionsa(0)=n,(0) andb(0)=ng(0).
particles to react: The qualitative behavior of Eq2) can be studied by a
mapping to a Poincarspherd 6] with z=1/a andu=b/a:

Ao o No
A+A—0, A+B—0, B+B—0. 1 dz du
——=Not 6u(t), —=(Ao— dp)u(1—u)/z, 3
The A andB particles are assumed to perform a random walk de "0 % ® dt (Ro= do)ul ) ©

on ad-dimensional lattice with diffusion constani®, and
Dg, respectively. When two particles meet on the same sitéhereu is assumed to be in the interVdl, 1]. With o< o,
they annihilate with probabilities given by the reaction ratesEds. (3) imply that foru(0)<1 and for large times U(t)
Ao, 8o, and\g in Egs. (1). Among a number of possible diverges as
applications, the model may be used to descriiberic
reaction-diffusion process¢8], with the two species repre- i:ﬂxt%/)\o—l_}m
senting the projections of the chemically “active spots” of u(t) b(t)
the reactants onto some fixed reference diredtin

The question we wish to address is how the average pawhena(0)>b(0). Thus, with\, and &, fixed, the minority
ticle densitieqna(t) andng(t) decay in time when there is an species is killed off early, as expected. Note, however, that
initial imbalancen,(0)>ng(0) in the population of the two Eq. (4) suggests that(t) could saturate to a constant if the
species(In an application to a steric reaction-diffusion pro- effective diffusion-controlledreaction rates replacing, and
cess, this would correspond to a bias in the initial orienta-5, in the presence of fluctuations approach each other
tions of the reactants, triggered by some external fidBld  asymptotically. To explore this possibility it is convenient to
When 8,>\g,\ We expect the minority species 8 par-  pass to a field-theoretic formulation of the problem.

, too, 4
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For this purpose, let us consider the master equation of Employing the mean-field densities from Eqg) in Eq.
the system: (8) (fluctuation-improved mean-field treatmei®,10]), we
obtain

d
aP(C,t):g RC’HCP(CIJ)_; RCHCrP(C,t). (5) U(t)%U*Z(Q—l)/(Q'f‘l), (9)

Here P(c,t) denotes the probability of a configuraticnat ~ Where Q%=1+4¢*uy/(1—up)® and £ =exd —8m(1/\,

time t, andR,, _.. is the transition rate from stat intoc, ~ —1/6)], for d=1, 2. Thus, at this level of analysis the
determined byD, &, and\,. We takeP(c,0) as a Poisson Minority species at large times decays at the same rate as the
distribution, with averages denoted hy(0) andng(0) for ~ Majority (u*+#0). Note also that Eq(9) implies thatu(d

A and B particles, respectively. Equatiois) can be trans- =1t)>u(d=2{) ast—, suggesting that the survival rate
lated into a Schidinger-type equation with a second- of the minority particles increases with reduced dimension-

quantized Hamiltoniar{7], which in the continuum limit ality. o _ .
turns into a field theory with actios: The fluctuation-improved mean-field analysishere all

tree-level diagrams are summedkes into account effects
_ from fluctuations via the renormalized coupling constants.
S:J ddXJ dt[ 2 b=V, However, in order to fully account for fluctuations one has to
«mAB explicitly consider the loop diagrams. For this purpose it is
_ _ convenient to expand in the asymptotically small parameter
+ ZA . NapPall+ Ppl2) b dbp 7(t)=g,(t) —gs(t). To one-loop level and to first order in
wH=A we thus obtain

- f d'x > n4(0)$a(x.0), 6) (D)= ND[1+A,(1)], a=A,B. (10

Here ua=1/(1+u*), pwg=u*/(1+u*), and A(t),Ag(t)
o« p(t)Int¥?—0 ast—o, and we hence recover the result in
Eq. (9) at very large times. The common factd(t) in Eq.
=)o and Aag=\ga= 3, encoding the reaction rates. The (10) coincides with the density of the single specikes A
action in Eq.(6) faithfully mimics the master equation in Eq. —0 mO?ﬁ}é_ with N(t)=Int8xt in d=2 and N(t)
(5), up to terms irrelevant under renormalization. Note that=1/v87t™"in d=1[10]. The approach of the total density
the rate constants become dimensionless wdve2 which ~ Na(t) +ns(t) to that of the single-species model reflects the
suggests thatl.=2, a result confirmed by standard powerfact that the equal values of the diffusion-controlled rates in
counting[8]. Since we are interested in effects from fluctua-EdS: (7) at large times make the two species indistinguish-
tions, we focus ord<2 in what follows. able, effectively leaving us with a single-species system. We
Whend<2 the particle densities can be calculated per_should here stress that the values of the amplitudes in Eq.
turbatively from Eq.(6) asn,(t)={¢.,)s using ane expan- (10 have been obtained by ignoring all irrelevant terfins

sion, with the rate constanis, and &, replaced by renormal- the RG sensethat could be added to the action in H).
ized ratesg,(k 2)=x"‘ag/(1+k aglg*), with a=\ Since we do not expect the amplitudes to be universal, such

and 5, respectively, and withc the renormalization scale. t€rms—if included—could shift the value of* in Eq. (9).
Divergent logarithmic terms in the expansion are conve-lN€ scaling form of,(t) and ng(t) on the other hands

niently grouped together using “running coupling con- expected to be universatonsidering the generic behavior of
stants” this class of problemf2]), and should be insensitive to any

left-out irrelevant terms.

To summarize, our RG analysis to the one-loop level sug-
, 7) gests that the minority species at large times decays at the
1+ (t/tr) <2 same rate as the majority whelss 2. This result—if robust

against contributions from higher-order terms in the loop

where g* =T'(e/2) }(87)%2 is the renormalization group expansion—is quite remarkable and very different from the
(RG) fixed point to whichg,(t) and gs(t) flow under a  conventional picture implied by classical rate theory. Unfor-
change of time scalg9]. The running coupling constants in tunately, due to the difficulty of keeping track of possible
Egs. (7) are obtained from the Callan-Symanzik equation‘correction-to-scaling” termg8], the present modéin con-
which expresses the independence of the densitjég on  trast to the simpleA+A—® mode) is intractable to stan-

with rescaled time variablBt—t. The scalar fieldsb, and
¢g describe theA and B particles with initial densities
n,(0), «=A,B, and with the coupling constanisa=\gg

g* g*

gxﬂFW, gs(t)=

the choice of«: dard procedures for assessing higher-loop effddt$].
Therefore, to check the robustness of the result in (E6)
N, (t;9\(k~%),95(k ?);Na0,Np o} K) we have resorted to a Monte Carlo simulation of the master
e dl2 o ~ ~ _ equation(5) (which in addition provides information on the
=(x) No(x ,g)\(t),g,s(t),nA,o(t),nB,o(t),K), transient kinetics

To perform the simulation we have used smproved
a=A,B (8)  minimal process algorithmi12]: At each time step a lattice
site, sayj, is picked at randongout of L possible sites and
with ﬁa,o(t)=(f<2t)d’2na,0. a table of statistical Weightwg) for the possible processes
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FIG. 1. Density rationa(t)/ng(t) obtained from a numerical
simulation of the master equatid@b) in d=1, 2, and 3 on a 10
10°x 10%, and 16x 10°X 107 lattice, and numerical solution of Eq.
(5) in the limit of D=0 (“decoupled-site problem). The fixed
parameter values al2=1s"1, nag(0)=2,1 particles/site. The re-
action rates\, and§, are given in units of the diffusion constabt

FIG. 2. Plot of individual densitiegbottom together with den-
sity ratiosn(t)/ng(t) (top) in d=1 obtained from simulations.

RG prediction of an enhanced survival rate in low dimen-
sions is confirmed for this choice of reaction rates as well:
thed=1 curve falls below that fod=2. The runs with very
T 3 . , , large reaction rate$,=3\,=3000 produce curves which
ng!l_proce(is)s. 'I;he vxéglghts are defm%ld as(i():umU|athe(iF)>r0b'co||apse onto a single curve, spuriously suggesting a plateau
abilities: w,’=>3_,R,'/Q, with Q=2 ,_,R,’, whereR," iy | dimensions: Ird=3, however, large reaction rates im-
denotes the rate far, . HereQ is the total rate which is kept pede the crossover to the mean field asymptotics, and we
the same for all sites by properly adjusting the &8, |  expect thed=3 curve to take off at a time not accessible
=1,... L, for the null processes. After selecting a randomwith our simulation. On the other hand, we do expectdhe
number O<r<1 that processr, is carried out for which =1 curve to stay flatconsidering the generic behavior for
wl)  <r<w{ (w®,=0), and time is incremented iy~t  smaller rates while the asymptotics of the=2 curve is
+1LQ. again hard to predict due to the logarithmically slow conver-
Figure 1 shows results for the density ratimgt)/ng(t) gence to the scaling region.
from simulations in one, two, and three dimensions. Initially ~The buildup of a density-ratio peak with a subsequent
the system is homogeneous with randomly mi¥edndB  “recovery phase” in the early stage of the kinetider suf-
particles, withn,(0)>ng(0). At early times a typical minor- ficiently large ratesis made transparent by solving the mas-
ity particle is then surrounded by seversl, and is there- ter equatior(5) with the diffusion constanb set to zerdi.e.,
fore likely to be killed off. As seen in Fig. 1, this is indeed with an ensemble of decoupled single-site probldi&]).
the case: in all dimensions the density ratio grows initially. The hatched curves in Fig. 1 represent the corresponding
However, for sufficiently large rates there isecovery ef-  density ratios for very large and small reaction rates. Initially
fect After the initial growth the density ratio drops — the the dominantA+ B— 0 reactions on the different sites cause
minority species finds a way to recovdHere and in the a fast rise ofn,(t)/ng(t) (peak formation After some time
following “recovery” is understood in relative terms. The this process gets exhausted with sinBlgarticles left at a
number of minority particles still decays in time but the ratio finite fraction of the sites. Thé+A—0 reactions on the
of majority to minority densities decreases in favor of theremaining sites now become dominant, causing a depletion
minority). As seen in Fig. 1 the large-time behavior of the of A particles(recovery phasdor B particles. As this pro-
curves depends on the dimensionality as well as on the vakess in turn gets exhausted one is left with a constant ratio
ues of the reaction rates. F6p=3\o=150 thed=3 curve  n,(t)/ng(t) (plateay. As seen in Fig. 1, for small rates the
takes off after the recovery phase, in agreement with thearly-time decoupled-site kinetics gets perturbed by diffu-
classical mean field result EG}). This is in striking contrast  sjon of particles from neighboring sites, which leads to an
to thed=1 curve which saturates to a plateau, as predicteénhanced mixing ofA and B particles and hence a steeper
by the one-loop RG result ifl0). The eventual fate of the rise of the density-ratio curve. Still, id=1, the curve even-
d=2 curve is more difficult to foretell since the convergencetually saturates to a plateau. This plateau, however, is of a
to the asymptotic scaling regime @2 is logarithmically  very different origin from that of the decoupled-site problem
slow[11]. Unfortunately, with available techniques it is hard with no diffusion. This is strikingly shown in Fig. 2 where
to push thed=2 simulations reported in Fig. 1 much beyond we have plotted the individual densitiesds 1 for large and
log;o(t)=0.5 where the number of particles becomes toosmall rates, with the corresponding density ratio curves in-
small to obtain a reliable statistics. Turning to thg=3\g serted at the top. In both cases the individual densities are
=30 runs, thed=1 curve again saturates to a plateau, whileseen to decagfter the plateau has forme#lote in particular
the d=2 andd=3 curves take off even before a peak hasthat the decoupled-site plateau for large rdteish no decay
developed. For this case it may be harder to argue that thef the individual densitigspersists only in the time interval
d=2 curve may eventually also saturate, although it cannot-2.5<log;o(t)<—1. At later times effects from diffusion
be excluded considering the slow convergence. Note that theet in, without, however, visibly distorting the plateau. Note

7., a=1,... M, at this site is constructed, withry, a
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FIG. 3. (Color) “Cartoon” of the d=1 kinetics. Time runs horizontally, with 300 lattice sites represented along the vertical axis. At the
top the corresponding density ratio is plotted for comparison. The reaction rateg,@g= 10,30. Redblue) color denotes that a majority
of particles belong to thA&(B) species. White indicates the same numbeAsfandB’s on a lattice site, with intermediate cases covered
by intermediate colors. Black color denotes an empty site.

also that although the asymptotic curves come very close tkinetics ind=1, as plotted in Fig. 3. The “recovery phase”
each other, they do not collapse onto a single curve, in agreéfor B particles is visible as dense red ropes Afparticles
ment with the one-loop RG result: The total dengity(t) terminating in black(empty sitey with the remaining par-
+ng(t) in (10) is universal, whereas the individual compo- ticles diffusing as single threads colored red garticles or

nents are not. blue (B particles. Remarkably, at large times these threads
It is instructive to look at a Monte Carlo “cartoon” of the self-organize spatially in such a way as to keep the density
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ratio at a constant value. By a comparison to &heB—0 ity specie$ kept at a constant value. This apparent “non-
model[11] one observes that the tendency for domain for-Darwinian” kinetics is entirely driven by fluctuations in the
mation in the present model is much weak&rand B par-  diffusion-controlled regime, typical for a system of reduced
ticles appear to be rather well mixed asymptotically. Thisdimensionality. A perturbative RG analysis suggests that the
makes the anomalous density decay even more intriguingame remarkable behavior is present also in two dimensions,
suggesting that the averageA andA-B distances are cor- ajthough this is still to be verified by independent methods.
related asymptotically so as to precisely compensate for thgetajls and extensions will be published elsewHérs.
smaller number ofA-B pairs (with endangered particleg ) ) ) )
as compared té\-A pairs. It is a pleasure to thank B. P. Lee for stimulating discus-
To conclude, we have studied a two-species reactionsions and for generously sharing his insights. We also wish
diffusion model where the particle densities exhibit anto thank K. Oerding, P. A. Rey, M. Howard, G. M. St¢hu
anomalous behavior at large times: The spatial self-orderingyl. Henkel, and I. Sokolov for helpful discussions. H.J. ac-
of the two species allows the minority population to perseknowledges support from the Swedish Natural Science Re-
vere, with the asymptotic density ratfof majority to minor-  search Council.
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