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We develop a generalBethe ansatzformalism for diagonalizing an integrable model of a magnetic
impurity of arbitrary spin coupled ferro- or antiferromagnetically to a chain of interacting electrons. The
method is applied to an open chain, with the exact solution revealing the existence of a “hidden” Kondo
effect driven by forward electron scattering off the impurity. We argue that the so-called “operator
reflection matrices” proposed in recentBethe ansatzstudies of related models emulate only forward
electron-impurity scattering, which may explain the absence of complete Kondo screening for certain
values of the impurity-electron coupling in these models. [S0031-9007(98)07209-3]
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The study of magnetic impurities in one-dimension
(1D) strongly correlated electron or spin systems has
tracted great interest in the last few years. The availab
of nonperturbative methods in one dimension has allow
for a detailed picture of the relevant physics, reveal
some rather unexpected features, such as the com
screening of an impurity spin for aferromagneticKondo
exchange [1]. Future possible experiments on magn
impurities implanted in quantum wires or carbon nan
tubes, as well as analogies with related phenomena (x
boundary effects, metal point-contact spectroscopies, e
provide additional impetus for studying this problem.

TheBethe ansatz(BA) has played a particularly impor
tant role in the study of magnetic impurities. As is w
known, the method has successfully been employed fo
exact treatment of a Kondo impurity in a free electron h
as well as for mixed-valence impurities (with hybridiz
impurity and host wave functions) [2]. The method h
also been used to study magnetic impurities in spin ch
[3], and more recently incorrelatedelectron hosts [4]. In
most of this workperiodicboundary conditions (PC) wer
imposed on the electron (or spin) host. However, th
exists an alternative approach, also exact, whereopen
boundary conditions (OC) are implemented within a B
framework [5]: A boundary potential at the edge of the s
tem here plays the role of impurity scatterer. In a rec
series of very interesting papers, Wang and collabora
[6] proposed several new BA solutions for magnetic i
purities in correlated hosts with OC. In their approach
magnetic impurity is attached to the edge of the chain
gether with an auxiliary boundary potential that preser
integrability. The effect of the resulting composite ed
on the electrons is coded in a “reflection matrix,” inte
preted in [6] as simulating backscattering (BS) of electr
off an ordinary (nonintegrable) Kondo impurity in a corr
lated electron system. However, the absence of comp
0031-9007y98y81(13)y2751(4)$15.00
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Kondo screening—as predicted by Furusaki and Naga
[1]—for certain values of the ferromagnetic exchange c
pling in [6] raises some concern about this interpretatio

In this Letter, we revisit the problem via an alternati
route, exploiting the quantum inverse scattering meth
(QISM) [7] to study the algebraic structure of this class
models. This allows us to explicitly exhibit the form of th
reflection matrix used in [6] and show that it contains on
forward electron scattering (FS) off the magnetic impuri
with the backscattering against the (infinite wall) free ed
potential playing no essential role for the physics of t
impurity. This is different from a nonintegrable Kond
impurity in a correlated host, where thedynamicbackscat-
tering against the impurity crucially influences the prop
ties of the system [1,8]. By a more general constructi
valid for an integrable impurity spin ofarbitrary magni-
tude coupled ferro-or antiferromagnetically to an electro
host, we show that a Kondo effect is still operative a
when the impurity appears to be unscreened: The ass
ated hidden Kondo screening becomes manifest only in
presence of an external magnetic field or at nonzero t
peratures. Most importantly, our analysis shows that f
ward electron-impurity scattering, without the assistan
of backward scattering off a free edge potential, can dr
Kondo screening in a correlated electron host. For tra
parency, we focus on the supersymmetrict-J model of
1D correlated electrons with a spin-S impurity. However,
the principal results of our analysis hold forany integrable
electron model with gapless low-lying excitations, and
not depend on the specific form of the host Hamiltonia

The key object in the QISM [7] is the two-particle sca
tering matrix,Xa,msud, whereu is a spectral parameter,a
labels a subspaceVa of an auxiliary particle, andm labels
the Hilbert spaceVm of a particle at a sitem on a 1D lattice
[7]. The necessary and sufficient condition for integrab
ity is that the scattering matrix satisfies the Yang-Bax
© 1998 The American Physical Society 2751
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equation (YBE)Xabsu 2 ydXamsudXbmsyd ­ Xbmsyd 3

XamsudXabsu 2 yd, implying that onlyforward scattering
(FS) is allowed. To maintain integrability in the pre
ence of an impurity, located at a siten say, the impurity-
host scattering matrixRansud also must satisfy a YBE
Xabsu 2 ydRansudRbnsyd ­ RbnsydRansudXabsu 2 yd.

To set the stage, let us first look at the simplest c
of an impurity in a spin-12 chain [3]. The host as well a
the impurity scattering matrices here belong to the SU
symmetric rational solutions of the YBE:Xamsud ­
Asud fuÎ 1 icP̂amg sm ­ 1, 2, . . . , Nd and Ransud ­
Asu 2 iad fsu 2 iadÎ 1 icP̂ang, respectively. Herec
is a coupling constant (fixed by the YBE to be the sa
for host and impurity exchange),jaj measures the shif
of the impurity level from the Kondo resonance [4],Asyd
with y ­ u, u 2 ia are normalization constants, andPaj

is a permutation operator on the corresponding spa
with Vj carrying a spin2 1

2 (spin-S) representation o
SUs2d for j­mfin s j­nd. Given Xamsud and Ransud
and imposing PC, QISM constructs the Hamiltonian
the system as a logarithmic derivative (with respect to
spectral parameter) of thetransfer matrixtPCsud of the
associated 2D statistical mechanics problem:tPCsud ;
Tra

QL
m XamsudRansu 2 iad. It is important to note tha

the position of the impurity matrix in this product has
influence on the dynamics: The auxiliary particle simp
scatters off all spins on the chain consecutively, includ
the impurity. For the OC case, one introduces additio
reflectionmatrices,Kasud [9] which describe the backsca
tering off the open boundary. In contrast to the host
impurity scattering matrices, these arec-number matri-
ces. They satisfy the reflection equation (RE)Xabsu 2

ydKasudXabsu 1 ydKbsyd ­ KbsydXabsu 1 ydKasud 3

Xabsu 2 yd, as required by integrability. Given the r
flection matrices, the analog of the transfer matrix for
OC, tOCsud, is defined bytOCsud ­ TraKasudTasud 3

KasudT21
a s2ud, where Tasud ­

QL
m XamsudRansu 2 iad

is the PC monodromy matrix. The recently propos
operator reflection matrix for the spin model in [6] h
the simple structureRsudKsudR21s2ud with Ksud ­ Î,
i.e., it is just the ordinaryc-number reflection matrixKsud
of a free boundary sandwiched between two FS impu
matrices [6,10]. The auxiliary particle here scatters
the impurity, reflects at the free edge, and then sca
off the impurity once more, but moving in the oppos
direction.

The QISM for correlated PC [11] or OC [12] electro
chains with an impurity works similar to the scheme abo
with one essential difference: electrons carry spinand
charge, and, hence, twonestedtransfer matrices have t
be introduced. The first-level transfer matrix describ
the charge sector, while the second-level transfer ma
describes the spin sector. Because of the nesting, a
netic impurity inserted into a correlated electron chain
to carry both spinandcharge degrees of freedom in ord
to preserve integrability. Its spin part drives the Kon
2752
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effect while the charge part provides the mixed-valen
behavior of an impurity [13].

Specializing to the supersymmetrict-J model [14]
with a magnetic impurity, its Hamiltonian can be d
composed asH ­ Hbulk 1 Himp 1 Hbound. Here

Hbulk ­ Kab

PL21
n­1 sJa

n J
b
n11 1 H.c.d defines the bulk

Hamiltonian for a chain of lengthL, with Ja
n the genera-

tors in the defining representation of the supersymme
algebrasls1j2d, andKab ; TrJaJb [11]. The impurity
HamiltonianHimp (with the impurity coupled to sitesn
andn 1 1) has the form

Himp ­ c0sHn,S 1 HS,n11 2 sssa2 1 2SsS 1 1ddddHn,n11

2 2iafHS,n 1 HS,n11, Hn,n11g
1 hHn,S , HS,n11jd . (1)

The commutator-anticommutator structure in (1) is gene
and applies toany impurity model [with SUs2d or slsnjmd
symmetry] constructed by QISM. It is here realized
takingHn,S ­ KabsJa

n J
b
S 1 h.c.d, whereJa

S are the gen-
erators for the spin-S impurity, with c0 ­ ffsS 1

1
2 d2 2

a2g21 being an effective impurity-host coupling consta
[ f ­ 1 for an exchange impurity, whilef ­ sMsjM 1

sd
p

2S 1 1 for a hybridization impurity, withsMsjM 1

sd the Clebsch-Gordan coefficients [4] ]. The boun
ary HamiltonianHbound has a trivial structure for PC
Hbound ­ KabJa

1 J
b
L 1 H.c. The OC boundary Hamil-

tonian, on the other hand, is obtained by making the
placementsJad1,L ! h1,L, whereh1,L define theboundary
fieldsat the edges atm ­ 1 andm ­ L [15]. This proce-
dure is directly applicable when the impurity is located
the bulk. However, a similar construction can be used a
for an impurityat the edge:We now putn ­ L, and re-
place the operator at the “phantom site” with indexn 1 1
in Eq. (1) by the boundary fieldhL. Note that by this pro-
cedure the three-particle commutator and anticommuta
terms in (1) collapse to two-particle terms.

Inspection of Eq. (1) shows that the parametera deter-
mines the coupling between impurity and host. For ima
nary a, and for reala with jaj , S 1

1
2 , we have an

antiferromagnetic (AFM) coupling, while for reala with
jaj . S 1

1
2 we get a ferromagnetic (FM) coupling. A

real a, however, corresponds to a non-Hermitian imp
rity Hamiltonian, making the ferromagnetic case unphy
cal unless one places the impurity at the edge with azero
boundary field[4,10]. For this special choice,hL ­ 0,
only the first term survives in Eq. (1):Himp ­ c0HL,S.
Thus, the FS impurity is here connected to the host b
single link with coupling constantc0, providing a simple
and natural impurity Hamiltonian. Analogous to the spi
chain case, the reflection matrix including the impur
is obtained by sandwiching the ordinaryfree edgereflec-
tion matrix Ksud ­ Î between two FS impurity matrices
RaLsudÎRaLs2ud with RaLsud from [4]. This structure is
general and holds also for the models considered in [6
is evident from inspection of the resulting BA equation
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Its form implies that the backscattering from the free ed
which is present in any open chain, decouples from
scattering governed by the FS impurity matrices. As
consequence, the position of the impurity on the chain
immaterial to the physics when the interaction is AFM w
imaginarya. On the other hand, as we have just seen,
real a (including FM interaction) a real energy spectru
requires the impurity to be attached to the edgewith zero
boundary potential.

Eigenfunctions and eigenvalues of the model are
rametrized by sets of quantum numbers, partitioned i
charge rapiditieshujjN

j­1 (with N the number of electrons
andspin rapidities,hyqjM

q­1 (with M the number of “down
spins”). The rapidities are the solutions of the BA equ
tions, which for the OC zero-boundary case take the foY

6

e2S6asypd
NY

j­1

e1syp 6 ujd ­
Y
6

MY
q­1

e2syp 6 yqd

e2L
1 sujd ­

Y
6

Y6sujd
MY

p­1

e1suj 6 ypd , (2)

with ensxd ­ s2x 1 indys2x 2 ind. The functions con-
taining a describe spin and charge degrees of freed
of the impurity [Y6sxd ­ e2S116asxd for a hybridization
impurity and Y6sxd ­

p
e2S116asxdye26asxd for an ex-

change impurity [4] ]. These BA equations can be tra
formed into a form similar to the PC case by a chan
of variables:uj ! 2uj , j ­ 2N , . . . , 21, 0; yp ! 2yp ,
p ­ 2M, . . . , 21, 0 which gives the OC energiesE ­P2N11

j­1 su2
j 1

1
4 d21. We also remove the roots correspon

ing to uj ­ yp ­ 0 (which label unphysical null states
It is important to stress that the states which are presen
OC but not PC determine the BS singularitiesindependent
of the FSimpurity terms.

The ground state of the supersymmetrict-J model in an
external field is obtained by filling up two Dirac seas f
singlet Cooper-like pairs and unbound electrons, resp
tively [16]. The structure of the singlet-paired ground sta
for zero magnetic fieldH ­ 0 conspires with the magneti
impurity to produce a nonzeromixedimpurity valencen:
For H ­ 0 there are no unbound electrons, but scatt
ing of Cooper pairs off the exchange (hybridization) imp
rity makesn smoothly vary from zero for an empty ban
to 11 s21d for a half-filled band, a process common
both FM and AFM impurity-host coupling. By an analy
sis of the counting functions that define the number of B
states [17] one can show that the impurity magnetizat
Mimp in the limit of zero magnetic fieldcan take either
the valueMimp ­ S 2

1
2 (as in the ordinary Kondo ef

fect) orMimp ­ S. In the latter case the Kondo screeni
is hidden, and becomes manifest only for nonzero field
temperatures. This effect, which is generic to this class
theories, is particularly transparent in the present mode

To see how it comes about, let us first consider the c
with AFM impurity-host coupling and imaginarya. Here
the impurity “traps” a fraction of a Cooper pair whic
e,
e
a
is

r

a-
to

-

m

-
e

-

for

r
c-
e

r-
-

n

or
of
.
se

gets polarized by the field to produce aneffectiveimpu-
rity spinSeff ­ S 1

jnj

2 . However, the magnetic field als
excites unbound electrons from the sea of Cooper pa
For a sufficiently weak field, these unbound electrons p
tially screen the effective impurity spin, a process in co
plete analogy with the ordinary Kondo effect with th
only difference being that aneffective spinSeff . S gets
(partially) screened. As the field increases it eventua
breaks up the impurity-screening cloud composite, leav
behind the effective (unscreened) spinSeff. For S .

1
2

there is a crossover between low- and high-energy beh
iors of the magnetic impurity: For low fields one has
asymptotically free underscreened spinS, while for high
fields the asymptotically free spin isS 1

n
2 . We can also

see the features of the hidden Kondo effect in the fin
temperature properties. For example, in the Kondo reg
(with charge degrees of freedom suppressed) the effec
spin is S for low temperatures,T ø TK , andS 1

1
2 for

high temperatures,T ¿ TK , with Curie-like behavior and
usual Kondo logarithmic corrections. The zero field res
ual entropy is given byS ­ ln 2S for imaginarya. The
specific heat has a Shottky peak atT ~ H and a Kondo
resonance atT ~ TK for a weak magnetic fieldH, with the
two peaks merging into one for largeH. This behavior is
typical for an “underscreened” magnetic impurity [2].
contrast,completeKondo screening is present for the ca
of an exchange impurity withS ­ 1

2 or a hybridization
impurity with S ­ 0. The impurity susceptibility is pro-
portional toT21

K , with a specific heat linear inT at low
energies, and one thus recovers a standard Fermi-li
scenario generic for AFM impurity models.

We can illustrate the above, e.g., by explicitly calcul
ing the impurity magnetizationMimp at half filling, using
the BA equations (2). In fact, we find a universal expre
sion forMimp , valid for the AFM as well as the FM case

Mimp ­ Seff

∑
1 6

1
2 lnsHyTK d

2
ln lnsHyTK d
4 ln2sHyTK d

1 . . .

∏
,

(3)

where for imaginarya the Kondo energy scale isTK ­
H0 exps2pjajd with H0 ­

p
p3ye, and where we have

subtracted the contributionMedge ­ j2 lnsHyH0dj21 2

ln ln j
p

HyH0 jy4 ln2sHyH0d 1 . . . from the free edges
For low fields, andS .

1
2 , H ø TK , Seff ­ S with the

upper sign in (3) definingMimp. On the other hand, fo
fields which are large on the Kondo scale but still mu
smaller than the spin saturation field,TK ø H ø 1,
Seff ­ S 1

1
2 with Mimp defined by the lower sign in

(3). For anS ­ 0 hybridization impurity or anS ­ 1
2

exchange impurity one obtainsSeff ~ HyTK for low
magnetic fields, whileSeff ­ 1

2 for high fields [4].
Let us now consider the FM case, or more genera

the case of reala, with 2jaj ­ f2jajg 1 h2jajj, where
fxg (hxj) denotes the integer (fractional) part ofx. Equa-
tion (3) still describes the impurity magnetization, wi
2753
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the fractional part determining the “Kondo temperatur
TK ­ H0y cossph2jajjy2d. This is in contrast to the cas
with imaginarya which exhibits a usual exponential d
pendence ofTK on the coupling constant. (Note that f
2jaj an integer we haveTK ­ H0.) Hence the crossove
scale is here larger,TK . 1, than the critical field that de
termines the transition to the spin-saturated, ferromagn
phase of the host. It follows that for reala a high-field
region for a magnetic impurity is absent[18]. Another
feature special for reala is that incident and reflecte
particles effectively scatter offdifferent impurity spins:
S 6

f2jajg
2 andS 1

16f2jajg
2 , respectively. Thus, depend

ing on the value ofa, the impurity exhibits different
characteristics. Iff2jajg , 2S 2 1, f2jajg ­ 62S, or
f2jajg . 2S 1 1 (FM domain), thenSeff ­ S in Eq. (3):
the impurity spins “seen” by incident and reflected wav
are both underscreened. Thus, for the FM regime, the
purity spin isalwaysunderscreened, also forS ­ 1

2 . This
suggests that the complete screening for FM Kondo c
pling as proposed in [1] crucially depends on the pr
ence of backscattering for this case. For the special va
f2jajg ­ 2S 6 1, Seff ­ S 6

1
4 s1 2

H
TK

d we obtainboth
a remnant spin and terms linear inH. Similar features
also appear for the specific heat for these critical valu
The Curie-like behavior of the remnant spin (the und
screened effective spin seen by incoming waves) is acc
panied by a Fermi-liquid behavior (of the totally screen
effective spin seen by reflected waves) [19]. Negative
fective spins signal the appearance of local levels (bo
states of host excitations). These levels, which influe
the value of the remnant impurity entropy, are generate
the FS magnetic impurity, and are insensitive to the e
potential. We point out thata determines the shift of th
Kondo resonance, with imaginarya (AFM coupling) cor-
responding to a resonance with the band excitations o
host, while for reala (FM or AFM coupling) local impu-
rity levels may decouple from the bands.

To conclude, we have shown that forward electro
impurity scattering in a correlated host can drive a Kon
effect without the assistance of backward scattering fr
a free edge potential. This Kondo effect, which is pres
both for ferro- and antiferromagnetic impurity-electro
coupling, is hidden for impurity spinS .

1
2 (as well

as for S ­ 1
2 when the coupling is ferromagnetic) an

becomes manifest only in the presence of a magnetic
or at nonzero temperatures. We have argued that the
called operator reflection matrices proposed in recentBethe
ansatzstudies of related models [6] emulate only forwa
scattering off a magnetic impurity. This may explain t
observed absence of complete Kondo screening for ce
values of the Kondo coupling in these models.
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