
Thomas ErissonComputational Mathematis, Chalmers/GU2013 1
A short introdution to C, Fortran 90, Fortran 77, tsh and bashThomas ErissonComputational MathematisChalmers/GU2013

HPC

2 Thomas ErissonComputational Mathematis, Chalmers/GU2013Contents1 A short introdution to C 42 Hello World! 43 Funtions, a �rst example 64 Separate ompilation and ld 95 More on prototypes and type onversion 96 void funtions, passing parameters 117 Arrays 147.1 Two-dimensional arrays . 168 A matter of style 179 If-statements and logial expressions 1810 Some useful C-tools 1911 A few words about the C99 standard 1912 More on pp 2113 Using the man-ommand 2214 More on matries 2314.1 Dynami memory alloation . 2414.2 This will not work with Fortran . 2614.3 This will work with Fortran . 2714.4 C and large arrays . 2815 A note on struts and onst 3015.1 Strutures . 3015.2 onst . 3115.3 onst and strutures . 3116 Assert, a debugging tool 3217 Preedene and assoiativity of C-operators 3318 A short introdution to Fortran 3519 A simple example 3620 Numerial onstants 3820.1 Warning: do not mix single and double preision . 3821 The simple example in Fortran 77 3922 How to ompile 4223 If-statements and logial expressions 42HPC

Thomas ErissonComputational Mathematis, Chalmers/GU2013 324 A small Fortran 90-example 4325 A ommon Fortran onstrution 4426 Dynami memory alloation in Fortran 90 4727 Some dangerous things 4728 Preedene of Fortran 90-operators 5029 A few words about tsh and bash 5129.1 The path . 5129.2 Now something about bash . 5329.3 A note on the student environment . 53

HPC

4 Thomas ErissonComputational Mathematis, Chalmers/GU20131 A short introdution to CC is a widely used programming language, espeially in Unix appliations. The language was developed in 1972by Dennis Rithie at Bell Labs for use with the Unix operating system. I learnt C reading the lassi book �TheC Programming Language� by Brian Kernighan and Dennis Rithie. The book was published 1978. C is a fairlysmall language, the book is only 228 pages. I have several C++ books, all ontaining more than 1000 pageseah. Sine C was used to develop the Unix system, it has support for low level operations, suh as �nding outthe address of a variable. It is also a very onise language, having abbreviations for ommon operations.k = k + 1 and s = s + term an be written k++ and s += term, for example.This is onvenient if you are an experiened C-programmer, but it may ause problems for the novie.Here is another C-feature. In C an assignment suh as k = 2 * j - m; has a value, whih is the value of k, theleftmost variable. Matlab follows C when it omes the logial values in if-statements, zero is false and non-zerois true. This means that the following C-statement is orretif (k = 2 * j - m) {do something}It omputes the value of k and heks if it is non-zero. If we had intended to do something when k equals2 * j - m we should have writtenif (k == 2 * j - m) {do something}Another, more severe, problem is that there is no index ontrol for array indies, like there is in Matlab. Onetends to use pointers (addresses) frequently as well and there is little ontrol of these. So, in short, one shouldbe very areful when writing C-programs, or there is a large risk that one has to spend long hours debugging.In 1989 C beame an ANSI standard, often referred to C89, and the year after ame the ISO-standard, C90(although C89 and C90 desribe the same language). In 1999 ame a new standard, C99.For more history and bakground see the Wikipedia artile:http://en.wikipedia.org/wiki/C_(programming_language) .There is also a page about the book:http://en.wikipedia.org/wiki/The_C_Programming_Language_(book) .The following introdution is su�ient for the assignments, but you need more for real programming.I have not tried to show all the di�erent ways a program an be written. C has several forms ofsome onstruts. Professional ode has many extra details as well.C an be very hard to read and there even was the �International Obfusated C Code Contest�.See http://en.wikipedia.org/wiki/IOCCC for unreadable and amusing programs.2 Hello World!We start with the ompulsory Hello World!-program. I wrote the program using an editor and saved it in the�le hello.. If you do not have a favourite editor like vim, gvim, emas et, I reommend using nedit, theNirvana editor. It is quite apable and easy to use, although it does not have support for the utf-8 haraterset (used on the lab omputers). This is mostly a problem if you write in Swedish (using å-ö). In the printoutbelow, I listed the program in a terminal window using the at-ommand (you do not have to do this everytime, of ourse :-)
HPC

Thomas ErissonComputational Mathematis, Chalmers/GU2013 5% at hello.#inlude <stdio.h>int main(){ printf("Hello World!\n");return 0;}% g hello.% a.outHello World!% ./a.outHello World!% is the prompt. I ompiled the program using, g, the GNU C-ompiler. The exeutable (�mahine ode�)was stored in the �le named a.out (you an store it in another �le if you like). Finally I exeuted the programby typing the name of the exeutable. If you do not have . in your Unix-path you would type ./a.out instead.The dot means the urrent working diretory, so ./a.out means the a.out in the diretory where I am at themoment.Let us look at the ode. The �rst line, the one starting with a # is read by the C preproessor, pp. Itwill read the �le, /usr/inlude/stdio.h, and plae it in the program. This �le, a so-alled inlude �le orheader �le, typially ontains named onstants, maros (somewhat like funtions) and funtion prototypes.Named onstants are used so we do not have to write numbers to hoose a partiular option, instead we anwrite a name.The main program, must be alled main, is an integer (int) funtion. It an take parameters, but we ig-nore them in this example (the ()) and it returns status information to the Unix-system (to the shell, bash ottsh), using the return-statement, zero usually means OK. We an print the status in the shell (eho $statusin tsh, eho $? in bash). One ould also use the status in if-statements in the shell. If you like, you anreturn EXIT_SUCCESS (or EXIT_FAILURE) instead of zero and one, provided you inlude the header �le stdlib.h.The input parameters are used to pass arguments from the shell to the program. When giving the ls ommandwith the long �ag, ls -l, the ls-ommand (a ompiled C-program) an aess the �ag -l.printf is a print statement, and \n means newline. Semiolon, ;, ends a statement, so it is not like in Matlabwhere an end of line su�es. If we forget the semiolon after the printf statements, we get a syntax error andthe ompiler omplains:% g hello.hello.: In funtion `main':hello.:5: error: syntax error before "return"The braes, { }, are used to delimit the body of the funtion.To �nd out more about what �ags (options) g an take, we type man g in a terminal window. Thefollowing ommand% g -o hello -O hello.optimizes the ode for speed (overkill for this tiny example) and plaes the exeutable in hello instead of ina.out. To exeute the program we type hello or ./hello .HPC

6 Thomas ErissonComputational Mathematis, Chalmers/GU20133 Funtions, a �rst exampleNow to a more ompliated example, where we use a very primitive method (the trapezoidal method) toapproximate
∫

b

a

e−x
2

dx, a < bThe interval, (a, b), is divided into n intervals and on eah interval the integral is approximated by the area ofa trapezoid, and the formula is:
∫ b

a

f(x) dx ≈ h

[

f(a)

2
+ f(a + h) + f(a + 2h) + · · ·+ f(b− h) +

f(b)

2

]

, where h =
b− a

nThere are muh better methods and one ould write a ode that aepts more general integrands, but this is,after all, not a ourse in numerial analysis.Sine the program would beome too messy if I added all the omments to the ode, I have numbered thelines and added omments afterwards. Note that the line numbers are not part of the ode.1 #inlude <stdio.h>2 #inlude <math.h>34 double trapeze(double, double, int);56 int main()7 {8 printf("The integral is approximately = %e\n", trapeze(0, 1, 100));910 return 0;11 }1213 double trapeze(double a, double b, int n)14 {15 /* A primitive quadrature method for approximating16 the integral of exp(-x^2) from a to b.17 n is the number of sub intervals.18 */1920 int k;21 double x, h, sum = 0.0;2223 if (n <= 0) {24 printf("*** n must be at least 1.\n");25 return -1;26 }2728 h = (b - a) / n;29 x = a;30 sum = 0.5 * exp(-x * x);31 for (k = 1; k < n; k = k + 1) {32 x = x + h;33 sum = sum + exp(-x * x);34 }35 sum = sum + 0.5 * exp(-b * b);HPC

Thomas ErissonComputational Mathematis, Chalmers/GU2013 736 sum = sum * h;3738 return sum;39 }The example ode ontains a main-program and a funtion. On line 2, we inlude math.h sine the programuses the exponential funtion, exp, and we need the prototype for the funtion. A prototype gives the name ofthe funtion and the types of input and output parameters. Sine exp takes a double preision argument andreturns a double preision value the prototype is:double exp(double);double is the name of the double preision (8 bytes) �oating point type. The reason we use prototypes is tosupply the ompiler with more information, so it an warn us if we all a funtion with the wrong number ortypes of the parameters. The ompiler would also use the information to make type onversions of parameters(more below).Our own funtion, trapeze, takes three input arguments, the interval endpoints a and b, and a number,n, of intervals, and returns the approximation of the integral. On line 4 I have supplied a prototype for thefuntion. One an, but does not have to, supply the variable names as well.On line 8 I print some text and all the funtion. printf is a funtion that an take a di�erent numberof arguments. In this ase the �rst is a string, and the seond the value returned from trapeze. %e is a formatode, whih tells printf that the integral value should be written using an engineering format (deimals andexponential part). To see the other format odes, we use the manual ommand in Unix.Type man -s3 printf in a terminal window (note that man printf gives you another manual page).Lines 13-39 show the trapeze funtion. Note that the �rst line looks like the prototype, but now with variablenames. Comments are written between /* */, but many ompilers allow for C++-omments as well (linesstarting with //), this ame with the C99-standard.Lines 20, 21 are type delarations of so-alled automati variables. These variables are loal to the funtion.Spae is alloated when the funtion is entered and the memory is dealloated when we return from the funtion.The sum-variable is initialized as well, this ould be done in the exeutable ode instead (similar to line 29).Lines 23-26 show an if-statement. The rules are roughly as in Matlab, although negation is written using ! andnot ~.The then-part is made up by two statements and they must be grouped together using braes. The braesare not neessary for one statement, but some programmers add them anyhow. The trapeze funtion shouldalways return a value, even when n has an illegal value, so the program returns the impossible value, -1 in thatase. The statement, return value;, is similar to assigning value to the output parameter in Matlab, butreturn also means that we jump bak to the main program.In line 30 we all the exponential funtion. Note that x^2 does not work in C (or rather, it means bitwiseexlusive OR). Lines 31-34 form a loop, the two statements, 32-33, are grouped together using braes. If weforget the braes, only line 32 will be repeated in the loop, and line 33 will be exeuted one after the loop.The general format of the for-statement is:
HPC

8 Thomas ErissonComputational Mathematis, Chalmers/GU2013for(init; test; update)loop bodyWritten with a while loop we understand the meaning:init:while (test) {loop bodyupdate;}So k = 1 orresponds to init, the test is k < n and update is k = k + 1. In words, set k to one, then theloop is entered. Repeat the loop body as long as k < n. At the end of eah loop iteration, the loop variable, kis updated by one. To updatee by two, write k+=2 and to derease by two use k-=2 et.C has many abbreviations, k = k+1 an be written k++ and a = a + b an be abbreviated as a += b. Usingthese shorter forms, the loop an be written:for (k = 1; k < n; k++) {x += h;sum += exp(-x * x);}Sometimes one an see strange looking loops (at least to a C-novie). The following two loops both omputean approximation to 1 + 1/2 + 1/3 + · · ·+ 1/1000.sum = 0;k = 1;for(; k <= 1000;) {sum += 1.0 / k;k++;}sum = 0;k = 1;for(;;) {sum += 1.0 / k;if (k == 1000)break; // Jump out of the loopk++;}On line 38 the funtion returns the value to main.Let us now ompile and exeute the ode:% g trap. -lm% a.outThe integral is approximately = 7.468180e-01The exat value is approximately 0.74682413. -lm informs the ompiler that we need to use a library, themathematis library, sine the ode alls the exponential funtion. We say that we link with the math library.A speial program, the linker, takes are about this part (more about this in the letures). The math libraryresides in a �le, /usr/lib64/libm.so (for our 64-bit system). The m-part of libm is what is used in -lm. Someompilers do not require that we write -lm, but they will link with library automatially. If we forget it on oursystem we get a link error: HPC

Thomas ErissonComputational Mathematis, Chalmers/GU2013 9% g trap./tmp/gqMVKZ.o(.text+0xd2): In funtion `trapeze':: undefined referene to `exp'et.4 Separate ompilation and ldIn the example I have stored both main and trapeze in the same �le trap.. This would be unrealisti in largeappliations, however, so it is possible to split the �le into separate �les. So, suppose that we have two �les,trap_main. ontaining lines 1, 4-11 (i.e. not line 2, sine main does not use exp), and trapeze. ontaininglines 2, 13-39. Here are two ways to ompile the ode.% g trap_main. trapeze. -lm% a.outThe integral is approximately = 7.468180e-01If a large part of a program does not hange, we an ompile that part one and for all. In the �rst g-ommandI ompile trapeze., using the - �ag (option). This tells the ompiler to produe an objet �le, trapeze.o,but not to try to produe an exeutable. The objet �le is later used when ompiling trap_main.. We savetime by not having to reompile trapeze. (think of a �le ontaining thousands of lines).% g - trapeze. an objet file is produed% ls -l trapeze.o-rw------- 1 thomas _math 1232 Nov 18 15:49 trapeze.o% g trap_main. trapeze.o -lm use it here% a.outThe integral is approximately = 7.468180e-01If we forget trapeze.o we get a link error.% g trap_main./tmp/gkJmlR.o(.text+0x3d): In funtion `main': undefined referene to `trapeze'ollet2: ld returned 1 exit statusWe will get the same e�et if we make a spelling error when alling trapeze. Say we type Trapeze instead oftrapeze in the printf statement in main. We get:% g trap_main. trapeze.o -lm/tmp/4JCXzK.o(.text+0x29): In funtion `main': undefined referene to `Trapeze'ollet2: ld returned 1 exit statuseven though trapeze.o is inluded. The reason is that C is ase sensitive, trapeze and Trapeze refer todi�erent funtions. ld, whih is mentioned, is the so-alled linker, whih ombines objet �les, libraries (e.g.the math library) to an exeutable. This is not the whole truth (there is a dynami linker as well), but it isaurate enough for this ourse. So, the g-ommand does not only ompile, but it runs pp and ld as well.5 More on prototypes and type onversionIt is easier to appreiate the prototypes when we use separate ompilation (di�erent �les). Suppose we havewritten trapeze(0, 100) in main. The ompiler omplains:HPC

10 Thomas ErissonComputational Mathematis, Chalmers/GU2013% g trap_main. trapeze.o -lmtrap_main.: In funtion `main':trap_main.:8: error: too few arguments to funtion `trapeze'If we remove the prototype, the following happens:% g trap_main. trapeze.o -lm% a.outThe integral is approximately = 7.234109e-320So, no omplaints and the wrong answer. This is di�erent from Java, whih would omplain. A C-programmermust be more areful. Be very areful when you all a funtion. Chek the number and types of parameters.I have been slightly areless when alling trapeze. 0 and 1 are integer onstants, but sine I have provided aprototype, the ompiler will automatially onvert the numbers to the orresponding double preision onstants,0.0 and 1.0. To avoid the type onversion I ould have written trapeze(0.0, 1.0, 100). The reverse anhappen, a double value an be trunated to an integer value (the deimals will deleted).Study the following example (%d is a format for printing integers):% at trun_ex.#inlude <stdio.h>int trun_ex(int, double);int main(){ double result;result = trun_ex(1.99, 23);printf("trun_ex = %e\n", result);return 0;}int trun_ex(int k, double d){ printf("k = %d, d = %e\n", k, d);return 3.1415926535897932;}% g trun_ex.% a.outk = 1, d = 2.300000e+01trun_ex = 3.000000e+00If we remove the prototype, the ompiler will not make the onversions for us. Instead we end up with garbage:% g trun_ex.% a.outk = 1030792151, d = 4.933640e-313trun_ex = 3.000000e+00In main, 1.99 is stored as an 8 byte double preision number and 23 as a four byte integer. When trun_exis alled it will pik up the �rst four bytes of the stored double, and interpret those bytes as an integer. ToHPC

Thomas ErissonComputational Mathematis, Chalmers/GU2013 11aess d the funtion will take the four bytes from 23 and the next four bytes, whatever they ontain, and makea double preision number of the eight bytes. Note that no onversion is made for either number, trun_exwill just read the bits and make numbers from them. Finally, the reason we get the orret onversion of3.1415926535897932 is that a funtion is of type int, by default.Division with integers behaves in a speial way (but the same rule applies to C++, Fortran, Java et).Integer division produes integer quotients, deimals are trunated. 5 / 2 will be 2, -2 / 5 beomes 0 et.5.0 / 2 or 5 / 2.0 or 5.0 / 2.0 will all give you 2.5 sine the integer will be onverted to the �dominatingtype� double before the division. Note that 10.0 * (1 / 10) is 0.0, sine 1 / 10 is omputed �rst, giving 0.The integer zero is then onverted to 0.0 and the produt is 0.0.6 void funtions, passing parametersThe funtions we have seen so far return values. There are funtions that do not return values this way, aso-alled void funtion. A void funtion orresponds to a Matlab funtion, looking something likefuntion funtion_name(list of parameters) (so no return variable).The di�erene is that one an write a C-funtion so that it an hange its input parameters (this is not possiblein Matlab). This makes it neessary to disuss how parameters (arguments) are passed when a funtion isalled. Let us look at trapeze again.double trapeze(double a, double b, int n){ ... }The funtion works with opies of a, b and n, so if the funtion hanges one of the variables, the originalvariables (or onstants) in main will not hange. This way of passing parameters is alled all-by-value.In order to be able to hange a variable, we use all-by-referene, i.e. we will pass the memory-address ofthe variable rather than the variable's value. Sine the funtion has aess to the address, it an hange thevalue of the variable. If var is the name of an integer or double variable, &var is its address, and & is alledthe address operator. We also say that &var is a pointer to var. If adr is an address to a loation in memory,*adr is the orresponding value of what is stored there. Using * is alled dereferening or indiretion, * is theindiretion or rediretion operator. An address to a variable is often alled a referene (like in Java programming).Time for an example. This piee of ode omputes approximations to ∑n

k=1
1/k and

∑n

k=1
1/k2.1 #inlude <stdio.h>23 void sums(double *, double *, int);45 int main()6 {7 double sum1 , sum2;89 sums(&sum1, &sum2, 1000);10 printf("The sums are: %e and %e\n", sum1 , sum2);1112 return 0;13 }1415 void sums(double *a_sum1, double *a_sum2, int n)16 {17 int k;18 HPC

12 Thomas ErissonComputational Mathematis, Chalmers/GU201319 *a_sum1 = 0.0;20 *a_sum2 = 0.0;2122 for (k = 1; k <= n; k++) {23 *a_sum1 += 1.0 / k; /* 1.0 to avoid integer divsion */24 *a_sum2 += 1.0 / (k * k);25 }26 }% g sums.% a.outThe sums are: 7.485471e+00 and 1.643935e+00Let us start with the sums funtion, lines 15-26. We have a void funtion whih takes three parameters, thethird is the number of terms. double *a_sum1 should be read in the following way. *a_sum1 is a double, and* is the indiretion operator, so a_sum1 must be an address to a double. I have tried to indiate this fatby naming the variable a_sum1, a for address. This is for pedagogial reasons, one would usually name thevariable sum1 and write double *sum1. We an now understand the prototype on line 3. The �rst (and seond)argument is of type double *, a pointer to double.On lines 19, 20 I set the values to zero. We should not try to set the addresses to zero. Note that weuse the same syntax on lines 23 and 24. Note that we use 1.0 / k rather than 1 / k (in whih ase the sumwould be one, sine 1 / k = 0 when k > 1).Let us now look at the main program. On line 7 we de�ne sum1 and sum2 as ordinary double variables.On line 9 we all the funtion. Note that sine we have a void funtion, it is illegal to try and write somethinglike variable = sums(...), sine sums does not return a value in its name. Note that we pass the addressesof sum1 and sum2, it would be wrong to write sums(sum1, sum2, 1000);.If you think these things are hard to follow, you should know that you are not alone, most beginners to C�nd this a bit hard.Let us delare two pointer variables by adding the following line to the ode (after line 7):double *p1, *p2;So, p1 an point at a double variable, it an ontain the address of a double preision variable. We an set p1to point at sum1 and p2 to point at sum2, like in the piee of ode:p1 = &sum1;p2 = &sum2;sums(p1, p2, 1000);printf("The sums are: %e and %e\n", *p1, *p2);but evenprintf("The sums are: %e and %e\n", sum1, sum2);How, you may ask, an we print sum1 and sum2, even though these variables have not been passed as argumentsto sums? The explanation, is that we passed the pointers, and sums an aess the memory where sum1 andsum2 are stored, through the pointers.Note that the following programming will end in tears (the remaining ode remains unhanged):HPC

Thomas ErissonComputational Mathematis, Chalmers/GU2013 13int main(){ double *p1, *p2;sums(p1, p2, 1000);printf("The sums are: %e and %e\n", *p1, *p2);return 0;}When we try to run it we get the feared error message:% g sums3.% a.outSegmentation faultA Segmentation fault (or abbreviated segfault) an be a nasty error, at least if we have a large ompliatedprogram, sine the bug an be very hard to �nd. It is aused by the program trying to aess a memory loationwhih it is not allowed to aess, or it may try to write to a read-only part of the memory. Another message ofthe same type is Bus error, where the program may try to aess a non-existent address, for example. In thesums-example it is very easy to �nd the bug. We have alloated memory for the pointer variables, but have notalloated memory for the summation variables. So p1 and p2 do not point to any variables, the pointers havenot been assigned any values, they point to random addresses in memory. The program rashes in sums when*a_sum1 = 0.0; is exeuted.Here omes another example where we must use addresses. We must use all-by-referene when readingdata, here are a few lines of ode:1 #inlude <stdio.h>23 int main()4 {5 int i;6 double d;78 printf("type a value for i: ");9 sanf("%d", &i);1011 printf("type a value for d: ");12 sanf("%le", &d);1314 printf("i = %d, d = %e\n", i, d);1516 return 0;17 }% a.outtype a value for i: -123type a value for d: -1.23e-45i = -123, d = -1.230000e-45On order for sanf to be able to return a value we must supply a pointer to the variable. On lines 8 and 11 wedo not supply a newline, that is why we an type the input on the same line as the prompt text. Note on line12 that is says le (the letter ℓ) for long. If we omit the letter, sanf will try to read a single preision numberinstead of a double. This will lead to a onversion error:HPC

14 Thomas ErissonComputational Mathematis, Chalmers/GU2013type a value for i: 12type a value for d: -1.23e3i = 12, d = 3.713054e-307Suppose we have a non-void funtion. In that ase it is bad programming pratie to return values in the inputparameters as well (even though it is possible). We say that the funtion has side-e�ets.7 ArraysIn this program we reate a one-dimensional array (vetor) ontaining ten elements. We all the funtion init toinitialize the elements to 1, 2, . . . , 10. Finally we ompute the sum of the element using the funtion array_sum.1 #inlude <stdio.h>23 void init(double [℄, int);4 double array_sum(double [℄, int);56 int main()7 {8 double ve[10℄;910 init(ve , 10);11 printf("The sum is: %e\n", array_sum(ve , 10));1213 return 0;14 }1516 void init(double v[10℄, int n)17 {18 int k;1920 for(k = 0; k < 10; k++)21 v[k℄ = k + 1;22 }2324 double array_sum(double v[10℄, int n)25 {26 int k;27 double sum;2829 sum = 0.0;30 for(k = 0; k < 10; k++)31 sum += v[k℄;3233 return sum;34 }% a.outThe sum is: 5.500000e+01On line 8 we reserve storage for an array having ten double elements. Indies start at zero and end at nine,unlike Matlab. Note that we use [℄ for the index. So, the loop variables in the loops, e.g. on line 20, go fromHPC

Thomas ErissonComputational Mathematis, Chalmers/GU2013 15zero to nine. It would be ine�ient to opy the array when the funtions are alled. Instead all-by-referene isused. So, if the funtion hanges an element in the array, it hanges the original. We do this in the init-routine.Note that we should not use the address or indiretion operators for the array.Compare the prototypes, lines 3, 4, with the funtion delarations, lines 16, 24. It is allowed to leave out thedimension of the array. So line 16 an be writtenvoid init(double v[℄, int n)and analogously for line 24. The reason is that the ompiler does not need to know the number of elements inthe array, the �nd the address of a spei� element. Note also that an array in C is not some kind of objet,like in Java. A funtion does not know the number of elements in the array unless we pass that information inan extra argument (the variable n in the example). In fat, when we all the funtion, only the address of v[0℄is sent to the funtion. We ould atually all init this way:init(&ve[0℄, 10);There is a lose relationship between pointers and arrays but I leave that out in this introdution.One should know that there is no index ontrol in C. Changing the loop in init tofor(k = -3; k < 11; k++)v[k℄ = k + 1;auses no omplaints, but nasty things may happen as in the following example.1 void fun(double a[℄);23 #inlude <stdio.h>4 main()5 {6 double b, a[10℄;78 b = 1;9 fun(a);1011 printf("%f\n", b);1213 return 0;14 }1516 void fun(double a[℄)17 {18 a[11℄ = 12345.0;19 }% g nasty.% a.out12345.000000On line 8 we set b to one, and then, on line 9, we all fun with the array, a. When we print b on line 10,the value has hanged, even though b is not an argument to the funtion. This is very nasty, and an bevery hard to �nd in a large program. What is going on? The elements of a one-dimensional array is storedonseutively, with no gaps, in memory. One an �nd out the addresses of the elements in the array and ofthe variable b, and it turns out that b is stored in a position that would orrespond to a[11℄, provided a hadtwelve elements. Changing a[11℄ to a[1000000℄, for example, gives Segmentation fault.HPC

16 Thomas ErissonComputational Mathematis, Chalmers/GU20137.1 Two-dimensional arraysYou an �nd more about arrays at the end of this tutorial. Here is one small example where we multiply two
4× 4-matries together.1 #inlude <stdio.h>23 void mat_mul(double [4℄[4℄ , double [4℄[4℄ , double [4℄[4℄);4 void mat_print(double [4℄[4℄);56 main()7 {8 int row , ol;9 double A[4℄[4℄ , B[4℄[4℄ , C[4℄[4℄;1011 for (row = 0; row < 4; row++)12 for (ol = 0; ol < 4; ol++) {13 A[row℄[ol℄ = row + ol;14 B[row℄[ol℄ = row - ol;15 }1617 mat_mul(A, B, C);18 mat_print(C);1920 return 0;21 }2223 void mat_mul(double A[4℄[4℄ , double B[4℄[4℄ , double C[4℄[4℄)24 {25 int row , ol , k;26 double sum;2728 for (row = 0; row < 4; row++)29 for (ol = 0; ol < 4; ol++) {30 sum = 0.0;31 for (k = 0; k < 4; k++)32 sum += A[row℄[k℄ * B[k℄[ol℄;33 C[row℄[ol℄ = sum;34 }35 }3637 void mat_print(double C[4℄[4℄)38 {39 int row , ol;4041 for (row = 0; row < 4; row++) {42 for (ol = 0; ol < 4; ol++)43 printf("%8.2f ", C[row℄[ol℄);44 printf("\n");45 }46 }One ould write a more general ode, but this is all we need. Line 37 an be written:HPC

Thomas ErissonComputational Mathematis, Chalmers/GU2013 17void mat_print(double C[℄[4℄)but notvoid mat_print(double C[℄[℄)for example. The reason is that C stores matries row-major order (row after row), in memory. So the memorylayout, of the matrix C, for example, would be:addressbase C[0℄[0℄ (see the note about byte addressablebase + 1 C[0℄[1℄ memory below)base + 2 C[0℄[2℄base + 3 C[0℄[3℄base + 4 C[1℄[0℄base + 5 C[1℄[1℄base + 6 C[1℄[2℄base + 7 C[1℄[3℄base + 8 C[2℄[0℄et.The ompiler knows the baseaddress, base = &C[0℄[0℄, and to ompute &C[row℄[ol℄ it needs to know thenumber of elements in a row, row_len, say (four in the example).&C[row℄[ol℄ = base + row_len * row + olIf one should be piky, the memory on one of our mahines is byte addressable, and sine a double preisionvariable is stored using eight bytes, the orret formula is:&C[row℄[ol℄ = base + 8 * (row_len * row + ol)So this is the reason why void mat_print(double C[℄[4℄) is su�ient, but void mat_print(double C[4℄[℄)or void mat_print(double C[℄[℄) are not.8 A matter of styleThe plaement of braes on other details of programming style, has been the fous of many heated and lengthydebates. In all my examples I have plaed the braes using a speial style, e.g:for (k = 1; k < n; k++) {x += dx;sum += exp(-x * x);}This style is known as the �Kernighan & Rithie oding style� and omes from the lassi book I mentioned onpage one. One an write this piee of ode in other ways, e.g.for (k = 1; k < n; k++){ x += dx;sum += exp (-x * x);}whih is the GNU-style, used to write GNU software. I will not start a debate about it in this introdution;�nd your own style and stik to it. One style I do not reommend is:for(k=1;k<n;k=k++){x+=+dx;sum+=exp(-x*x);}HPC

18 Thomas ErissonComputational Mathematis, Chalmers/GU2013indent is a very useful ommand for pretty printing, formatting, C-programs. There are many options, I usethe following:indent -kr -i2 -nut my_program.-kr is the Kernighan & Rithie style, -i2 means two spaes for indentation in loops and if-statements et, -nutmeans that spaes and not tabs are used for indentation.indent -gnu -i2 -nut my_program.gives you the GNU style instead.The hoie of style a�ets other parts of the program as well, e.g. the position of braes in if-statements,and the layout of omments and delarations.To read about the di�erent styles, type man indent, and read under COMMON STYLES. If you use indent on aprogram with syntax errors, indent may produe an inorretly indented program (if a brae is missing, forexample). For that reason, indent, makes a bakup opy of your original �le. In my example the opy is storedin my_program.~.9 If-statements and logial expressionsHere are a few examples. Logal and is written &&, or is || and negation ! . Note single & and | are bitwiseoperations.double a, b, , d, q;if (a < b && == d || !q) { // && logial and, || or, ! negation... zero or more statements} else {... zero or more statements}The relational operators, <, <=, ==, >=,> are written the same way as in Matlab, with the exeption of �notequal� whih is written !=.Note: if (! q == 1.25) ⇔ if ((!q) == 1.25), not if(! (q == 1.25)).Now a word about the so-alled dangling else. When we have nested if-statements, the else belongs to theinnermost if-statements, so with orret indentation this is how it works:if (ondition)if (other ondition) {statements} else {statements}If you want the else to belong the outer if, use braes:if (ondition) {if (other ondition) {statements}} else {statements} HPC

Thomas ErissonComputational Mathematis, Chalmers/GU2013 1910 Some useful C-toolsConsider the following lines (part of warn.):if (variable = 24)printf("var equals 24\n");This is probably not what we meant (an assignment), we probably meant �if (variable == 24)�. Theompiler warns us, provided we swith on the -Wall �ag, thus:% g warn. No warning% g -Wall warn.warn.: In funtion 'main':warn.:8: warning: suggest parentheses around assignment used as truth valueg atually warns us against something slightly di�erent. Assignments in if-statements are typially used inthe following situationif ((variable = fun()) == test_value)where the parentheses are neessary, sine == has higher priority than =.Another useful tool is splint, �seure programming lint� whih heks C-programs for seurity vulnerabili-ties and oding mistakes. splint analyzes the ode without exeuting it, so runtime errors are not aught.splint on the example above gives:% splint -weak warn.Splint 3.1.1 --- 19 Jul 2006warn.: (in funtion main)warn.:8:8: Test expression for if is assignment expression: variable = 24The ondition test is an assignment expression. Probably, you mean to use ==instead of =. If an assignment is intended, add an extra parentheses nesting(e.g., if ((a = b)) ...) to suppress this message. (Use -predassign toinhibit warning)Finished heking --- 1 ode warningsplint without -weak gives an additional warning:warn.:8:8: Test expression for if not boolean, type int: variable = 24Test expression type is not boolean or int. (Use -predboolint to inhibitwarning)If you want a very strit hek try splint -strit.11 A few words about the C99 standardNote that it is not supported by all ompilers.C99 extends the previous C-version, C89, and adds support for (among other things):
• a boolean data type, omplex numbers
• intermingled delarations and ode HPC

20 Thomas ErissonComputational Mathematis, Chalmers/GU2013
• //-omments
• inline funtions
• variable-length arrays
• restrit quali�er to allow more aggressive ode optimization (more later on)Here a few lines showing how to use the boolean data type:#inlude <stdbool.h>...bool b;b = a > b;b = true;b = false;...Here omplex numbers:#inlude <omplex.h>...double omplex z, w, wz;z = 1 + 2 * I;w = 3 + 4 * I;wz = 3 * w * z;printf("%e %e\n", real(wz), imag(wz));...Intermingled delarations and ode:#inlude <stdio.h>int main(){ int k = 22;for(int k = 0; k <= 2; k++) // C++ delaration styleprintf("%d\n", k);printf("%d\n", k);return 0;}% g -std=99 99_mixed. NOTE% a.out01222Inline funtions. From the C-standard: HPC

Thomas ErissonComputational Mathematis, Chalmers/GU2013 21inline double fun(double x)...Making a funtion an inline funtion suggests that alls to the funtion be as fast as possible. Theextent to whih suh suggestions are e�etive is implementation-de�ned.Variable-length arrays:double fun1(int, int);double fun2(int m, int n, double A[m℄[n℄);double fun3(double A[m℄[n℄, int m, int n); // WRONGint main(){ int m = 50, n = 100;double ve[n℄, A[m℄[n℄; // m, n OK here...}double fun1(int m, int n){ double A[m℄[n℄, tmp[n℄; // alloated when entering fun1fun2(m, n, A);...}double fun2(int m, int n, double A[m℄[n℄) // OK, m, n first then A{ ...}double fun3(double A[m℄[n℄, int m, int n) // WRONG, A first, m, n last{ ...}12 More on ppThe g-ommand �rst runs the C preproessor, pp. pp looks for lines starting with # followed by a diretive(there are several). From the man-page for pp:#inlude "filename"#inlude <filename>Read in the ontents of �lename at this loation. This data is proessed by pp as if it were part of the urrent�le. When the <filename> notation is used, �lename is only searhed for in the standard �inlude� diretories.It is possible to tell pp where to look for �les by using the -I-option.A typial header �le ontains named onstants, maros (somewhat like funtions) and funtion prototypes,e.g: HPC

22 Thomas ErissonComputational Mathematis, Chalmers/GU2013#define M_PI 3.14159265358979323846 /* pi */#define __ARGS(a) aextern int MPI_Send __ARGS((void *, int, MPI_Datatype, int, int, MPI_Comm));It is ommon to store several versions of a program in one �le and to use pp to extrat a speial version forone system.In _omp_init from Omni, a Japanese implementation of OpenMP:...#ifdef OMNI_OS_SOLARISlnp = sysonf(_SC_NPROCESSORS_ONLN);#else#ifdef OMNI_OS_IRIXlnp = sysonf(_SC_NPROC_ONLN);#else#ifdef OMNI_OS_LINUX... deleted odeUnder Linux we would ompile by: -DOMNI_OS_LINUX ...13 Using the man-ommandOne way of �nding out what header-�les are neessary, is to use the manual-ommand, e.g:% man sinSIN(3) Linux Programmer's Manual SIN(3)NAMEsin, sinf, sinl - sine funtionSYNOPSIS#inlude <math.h>double sin(double x);float sinf(float x);long double sinl(long double x);DESCRIPTIONThe sin() funtion returns the sine of x,where x is given in radians.RETURN VALUEThe sin() funtion returns a value between -1 and 1.CONFORMING TOSVID 3, POSIX, BSD 4.3, ISO 9899. The float andthe long double variants are C99 requirements.HPC

Thomas ErissonComputational Mathematis, Chalmers/GU2013 23SEE ALSOaos(3), asin(3), atan(3), atan2(3), os(3), tan(3)You will not �nd man-pages for everything. One an try to make a keyword searh: man -k keyword.14 More on matriesIn Fortran (dense) matries are stored in the same way in (almost) all programs. This is beause the matrix isa builtin type in Fortran and the language has a lot of support for matrix omputations. This is not the asein C, and so there are several possible data strutures for storing matries. It is important to pik the properdata struture if the matrix should be passed as an argument to a Fortran routine or used together with aperformane library. Another issue is how we would like to aess the elements in the matrix. Is it importantto be able to write A[row℄[ol℄ or will *(A + row * n + ol) do?Here omes a short desription of some alternative data strutures. Suppose we would like to store the matrix:
A =

[

1 2 3
4 5 6

]The most obvious way is illustrated by the following short program.#inlude <stdio.h>int main(){ double A[2℄[3℄, elem = 0;int row, ol;for(row = 0; row < 2; row++)for(ol = 0; ol < 3; ol++)A[row℄[ol℄ = ++elem;return 0;}This way to reate matries is rather limited. We would like to have a more dynami hoie of dimensions. The�rst step would be something like:#inlude <stdio.h>int main(){ onst int m = 2, n = 3;double A[m℄[n℄;...Some ompilers aept suh onstrutions, but not all (see page 21). The following is allowed, but a bit lumsy:#inlude <stdio.h>#define _M 2#define _N 3int main(){ onst int m = _M, n = _N;double A[_M℄[_N℄;...Suh a matrix an be passed as a parameter to a Fortran program.
HPC

24 Thomas ErissonComputational Mathematis, Chalmers/GU201314.1 Dynami memory alloationSome assignments in the ourse require that tests should be performed for a sequene of matries of inreasingsizes. It is inonvenient having to edit the program, hanging the dimensions, reompiling et. This leads us todynami memory alloation. So �rst a few words about that.The C-library routines mallo and free are used to alloate memory and to return it. stdlib.h ontainsthe prototypes. In C++ we have new and delete. Java has garbage olletion, so only new is neessary.Fortran90 has alloate and dealloate.We will onentrate on C from now on. ptr = mallo(size) returns a pointer, ptr, to a blok of data at leastsize bytes suitably aligned for any use. If there is not enough available memory ptr will be a null pointer.free(ptr) will return the memory to the appliation, though not to the system. Memory is returned to thesystem only upon termination of the appliation. If ptr is a null pointer, no ation ours. It is illegal to free thesame memory more than one, to try to use freed memory and to free using a pointer not obtained from mallo.Here is a typial piee of ode where we alloate 100 double preision numbers. Note the use of sizeofand the hek on the pointer value. We then store some values in the memory. The �rst loops uses pointerarithmeti and the seond uses vetor notation. Note that ve is a pointer and not a vetor but it is allowed tomix the notation.There are di�erenes between vetors and pointers though. If we have the delaration:double *ve, vetor[100℄;ve an point to something else but vetor annot. We need spae for the pointer variable, ve, but vetoritself takes no spae,#inlude <stdio.h>#inlude <stdlib.h>int main(){ double *ve; // ve is a pointer to doubleint n = 100, k;if((ve = mallo(n * sizeof(double))) == NULL) { // sizeof(double) = 8printf("mallo of ve failed.\n");exit(EXIT_FAILURE); // EXIT_FAILURE a named onstant defined in stdlib.h}for(k = 0; k < n; k++)*(ve + k) = k; // pointer notationfor(k = 0; k < n; k++)ve[k℄ = k; // vetor notationfree(ve); // release the memoryreturn 0;}What I would like to do is to alloate memory for an m × n-matrix A, using mallo, and then pass A as anargument to a funtion, reeiving A as an m× n-matrix so that I an use matrix-indexing A[row℄[ol℄ insidethe funtion. This an be done with some trikery (and with some ompilers), but I do not know how to do it ina ompletely legal way (following the C-standard) unless I use variable-length arrays de�ned in C99, see page 21.HPC

Thomas ErissonComputational Mathematis, Chalmers/GU2013 25The following pages show some ommon ways of storing matries in C. Some ways an work together withFortran and some annot. We know that a matrix is stored by rows in C. So if A is the address of the [0℄[0℄-element, A[row℄[ol℄ has address A + n * row + ol where n is the number of elements in a row. We anuse vetor indexing instead of using pointer arithmeti. Here is an example (to make the ode shorter I will nothek that mallo sueeded, a bad programming pratie). I have added a funtion to show how the parameterould be passed.#inlude <stdio.h>#inlude <stdlib.h>double sum_elements(double *A, int m, int n);int main(){ double *A;int m = 2, n = 3, k;A = mallo(m * n * sizeof(double)); // Alloate memory for the m x n-matrixfor(k = 0; k < m * n; k++)A[k℄ = k + 1; // This is ONE way to aess the elementsprintf("result = %e\n", sum_elements(A, m, n));free(A);return 0;}double sum_elements(double *A, int m, int n){ double sum = 0;int row, ol;for(row = 0; row < m; row++)for(ol = 0; ol < n; ol++)sum += A[n * row + ol℄; // This simulates A[row℄[ol℄-aess.// We ould use pointer notation.return sum;}One advantage of this approah is that it easy to pass the array as an argument to a Fortran routine (and it iseasy to store the matrix by olumns instead). Note that Fortran uses olumn-major order and not row-majororder as C.

HPC

26 Thomas ErissonComputational Mathematis, Chalmers/GU201314.2 This will not work with FortranHere ome two other ways to store a matrix. The �rst method does not work together with Fortran though,but the other does. Both methods support A[row℄[ol℄-indexing.Here omes the �rst example:#inlude <stdio.h>#inlude <stdlib.h>double sum_elements(double **A, int m, int n);int main(){ double **A, elem = 0; // Note **int m = 2, n = 3, row, ol;A = mallo(m * sizeof(double *)); // Alloate spae for row pointers.// Note double * . sizeof(double *) = 8.for(row = 0; row < m; row++)A[row℄ = mallo(n * sizeof(double)); // Alloate spae for elements in a row.// Note double.for(row = 0; row < m; row++)for(ol = 0; ol < n; ol++)A[row℄[ol℄ = ++elem; // Note A[row℄[ol℄printf("result = %e\n", sum_elements(A, m, n));for(row = 0; row < m; row++) // freefree(A[row℄);free(A); // free again,// Note the order of the alls to free.return 0;}double sum_elements(double **A, int m, int n){ double sum = 0;int row, ol;for(row = 0; row < m; row++)for(ol = 0; ol < n; ol++)sum += A[row℄[ol℄;return sum;}
HPC

Thomas ErissonComputational Mathematis, Chalmers/GU2013 27The memory layout may look something like this after we have initialised the matrix. The arrows show howthe addresses point.variable ontent address+----> A[0℄ 135200 134168 --+| A[1℄ 135232 134176 --|--+| | || A[0℄[0℄ 1 135200 <--+ | start of first row| A[0℄[1℄ 2 135208 || A[0℄[2℄ 3 135216 || 135224 | Note, a gap| A[1℄[0℄ 4 135232 <-----+ start of seond row| A[1℄[1℄ 5 135240| A[1℄[2℄ 6 135248|+---- A 134168 429080A points to A[0℄ whih in turn points to A[0℄[0℄, the �rst element in the �rst row. A[1℄ points to the beginningof the seond row, i.e. A[1℄[0℄. The �rst mallo alloates spae for A[0℄ and A[1℄ (m row pointers). Thenomes a loop with m alls to mallo where eah one alloates memory for storing the n elements in row.We note that sizeof(double *) is eight sine A[0℄ and A[1℄ are eight bytes apart (134176-134168=8). Thedouble preision numbers are eight bytes apart, exept between A[0℄[2℄ and A[1℄[0℄ where the gap happensto be 16 bytes. This is the reason this data struture annot be used when alling Fortran routines, the elementsare not ontiguous in memory.One advantage with this data struture is that all the rows need not have the same length.Note also that this storage requires more memory than the usual matrix data struture (we need extra spaefor the row pointers). That is true with the next method as well, but it has the advantage of giving ontiguouselements, making it possible to pass the array to a Fortran routine.14.3 This will work with Fortran...double **A;A = mallo(m * sizeof(double *)); // Alloate spae for row pointers.// Note double * .A[0℄ = mallo(m * n * sizeof(double)); // Alloate spae for the elements in the matrix.// Note that we get ontiguous elements.for(row = 1; row < m; row++)A[row℄ = A[0℄ + row * n; // Give the row pointers their values, i.e.// find out where eah row starts.// There are n elements in eah row.for(row = 0; row < m; row++)for(ol = 0; ol < n; ol++)A[row℄[ol℄ = ++elem;...The memory layout may look something like this after we have initialised the matrix. The arrows show howthe addresses point. HPC

28 Thomas ErissonComputational Mathematis, Chalmers/GU2013variable ontent address+----> A[0℄ 135768 134744 --+| A[1℄ 135792 134752 --|--+| | || A[0℄[0℄ 1 135768 <--+ | start of first row| A[0℄[1℄ 2 135776 || A[0℄[2℄ 3 135784 || A[1℄[0℄ 4 135792 <-----+ start of seond row| A[1℄[1℄ 5 135800| A[1℄[2℄ 6 135808|+---- A 134744 429080To pass the array to Fortran we use the parameter &A[0℄[0℄, A[0℄ or *A.For more details about this and other topis, see the C-FAQ:http://www.faqs.org/faqs/by-newsgroup/omp/omp.lang..html14.4 C and large arraysSome of the assignments require that you use large arrays. This may be a problem in C. Consider the followingprogram:#inlude <stdio.h>main(){ int k, n = 2000000;double large_array[n℄;for(k = 0; k < n; k++)large_array[k℄ = 1;printf("Last %f\n", large_array[n - 1℄);return 0;}When we try to run it we get:% g stak_problems_1.% a.outSegmentation faultThe reason is that large_array is alloated on the stak, whih has a limited size. We an �nd out the size byusing the ommand limit. Thus:% limit (works provided you use tsh, type ulimit -a if you are using bash)putime unlimitedfilesize unlimiteddatasize unlimited HPC

Thomas ErissonComputational Mathematis, Chalmers/GU2013 29staksize 10240 kbytesoredumpsize 0 kbytesmemoryuse unlimitedvmemoryuse unlimiteddesriptors 1024memoryloked 32 kbytesmaxpro 500So, the stak is limited to 10240 kbyte, but we need 2000000 * 8 / 1024 kbyte, i.e. 15625 kbyte (the stak isused for some other purposes as well so it must be a bit larger). So, let us inrease the stak size and try again:% limit staksize 15700 (in bash ulimit -s 15700)% a.outLast 1.000000Another way is to store the array in a segment in a.out. If we make large_array stati, i.e. we have the typedelaration: stati double large_array[2000000℄; our program will work with the default stak size. Thearray is now stored in the bss-segment.% g stak_problems_2.% limit staksizestaksize 8192 kbytes% a.outLast 1.000000% size a.outtext data bss de hex filename925 252 16000032 16001209 f428b9 a.outOne drawbak with stati variables is that they exist for the lifetime of the program (even if we do not use thearray). So, yet another way (ommon) is to use dynami memory alloation (i.e. we use mallo/free) plaingthe array on the heap:#inlude <stdio.h>#inlude <stdlib.h>int main(){ int k, n = 2000000;double *large_array;if ((large_array = mallo(n * sizeof(double))) == NULL) {printf("Could not mallo large_array.\n");exit(EXIT_FAILURE);}for(k = 0; k < n; k++)large_array[k℄ = 1;printf("Last %f\n", large_array[n - 1℄);free(large_array);return 0;} HPC

30 Thomas ErissonComputational Mathematis, Chalmers/GU201315 A note on struts and onstIn one leture and the orresponding lab we will use struts (reords in Pasal, post in Swedish). Think of astrut as a box, a ontainer, in whih we an store variables. We will also write the funtion:void mexFuntion(int nlhs, mxArray *plhs[℄, int nrhs, onst mxArray *prhs[℄)where mxArray is a strut. This setion will also explain what onst, in onst mxArray *prhs[℄ means.onst is used to protet variables against aidental hange. It also serves as doumentation for anyone readingthe ode (this variable is not supposed to be hanged). We start with some simpler examples, proteting salarvariables.15.1 StruturesHere is a toy-example of a strut, my_mxArray, where we store a pointer to double (will point to alloateddoubles) and an integer storing the number of alloated.#inlude <stdio.h>#inlude <stdlib.h>typedef strut {double *ve;int n;} my_mxArray;int main(){ // mx is a pointer to my_mxArray and pmx is a vetor of pointers to my_mxArraymy_mxArray mx, *pmx[2℄;// Store values in mxmx.n = 20;mx.ve = mallo(mx.n * sizeof(double));for(int k = 0; k < mx.n; k++)*(mx.ve + k) = k;printf("%f, %f\n", *(mx.ve), *(mx.ve + mx.n - 1));// Alloate spae for the my_mxArray:spmx[0℄ = mallo(sizeof(my_mxArray));pmx[1℄ = mallo(sizeof(my_mxArray));// and store values in the two struts(*pmx[0℄).n = 30; // *pmx[0℄.n is wrongpmx[1℄ -> n = 40; // a orret alternative (see the preedene table)pmx[0℄ -> ve = mallo(pmx[0℄ -> n * sizeof(double));pmx[1℄ -> ve = mallo(pmx[1℄ -> n * sizeof(double));for(int k = 0; k < pmx[0℄ -> n; k++)*(pmx[0℄ -> ve + k) = k;printf("%f, %f\n", *(pmx[0℄ -> ve), *(pmx[0℄ -> ve + pmx[0℄ -> n - 1));
HPC

Thomas ErissonComputational Mathematis, Chalmers/GU2013 31free(mx.ve);free(pmx[0℄);free(pmx[1℄);return 0;}15.2 onstonst_ex1(onst double a, onst double *b, double * onst , onst double * onst d){a++; // error: protets ab++; // OK: an hange the pointer itself(*b)++; // error: but not what it points to++; // error: protets the pointer(*)++; // OK: but not what it points tod++; // error: protets the pointer(*d)++; // error: and what it points to}% g - onst_ex1.onst_ex1.: In funtion 'onst_ex1':onst_ex1.:4: error: inrement of read-only loationonst_ex1.:6: error: inrement of read-only loationonst_ex1.:7: error: inrement of read-only loationonst_ex1.:9: error: inrement of read-only loationonst_ex1.:10: error: inrement of read-only loationonst double a and double onst a are equivalent, so those forms have not been inluded above.15.3 onst and struturesNow for a mix of onst and strutures. �illegal� means that the ompiler will omplain, OK means that it willnot omplain (though it may not be useful programming). To simplify the example we red�ned strut.typedef strut {double v[10℄;int n;} my_mxArray;void ex1(onst my_mxArray * s[℄) // or void ex1(my_mxArray onst * s[℄){ (*s[0℄).v[5℄ = 7; // illegals[0℄ -> v[5℄ = 7; // illegals[1℄ = s[0℄; // OK}void ex2(my_mxArray * onst s[℄){ s[0℄ -> v[5℄ = 7; // OKs[1℄ = s[0℄; // illegal}
HPC

32 Thomas ErissonComputational Mathematis, Chalmers/GU2013void ex3(onst my_mxArray * onst s[℄){ s[0℄ -> v[5℄ = 7; // illegals[1℄ = s[0℄; // illegal}void ex4(onst my_mxArray * onst s[℄){ double *pv;pv = (double *) s[0℄ -> v;pv[5℄ = 7; // OK, the ompiler annot protet us against everything}In the last example we �fool� the ompiler, hanging the proteted v-array using the pointer pv.16 Assert, a debugging toolassert an be used to generate error messages, both as a debugging tool and as a mehanism to generatewarnings. Here is a short example:#inlude <assert.h>#inlude <stdio.h>int main(){ double x;x = 10;assert(x <= 5);return 0;}./a.outa.out: assert.:9: main: Assertion `x <= 5' failed.Abort

HPC

Thomas ErissonComputational Mathematis, Chalmers/GU2013 3317 Preedene and assoiativity of C-operatorsOperators have been grouped in order of dereasing preedene, whereoperators between horizontal lines have the same preedene.Operator Meaning Assoiativity() funtion all →[℄ vetor index-> struture pointer. struture member++ post�x inrement� post�x derement! logial negation ←~ bitwise negation++ pre�x inrement-- pre�x derement+ unary addition- unary subtration* indiretion& address(type) type astsizeof number of bytes* multipliation →/ division% modulus+ binary addition →- binary subtration� left shift →� right shift< less than →<= less or equal> greater than>= greater or equal== equality →!= inequality& bitwise and →^ bitwise xor →| bitwise or →&& logial and →|| logial or →?: onditional expression ←= assignment ←+= ombined assignment and addition-= ombined assignment and subtration*= ombined assignment and multipliation/= ombined assignment and division%= ombined assignment and modulus&= ombined assignment and bitwise and^= ombined assignment and bitwise xor|= ombined assignment and bitwise or�= ombined assignment and left shift�= ombined assignment and right shift, omma →HPC

34 Thomas ErissonComputational Mathematis, Chalmers/GU2013Here are a few omments, see a textbook or my links for a omplete desription.
• Left to right assoiativity (→) means that a-b- is evaluated as (a-b)- and not a-(b-). a = b =, on the other hand, is evaluated as a = (b =). Note that the assignment b = returns the value of .if (a < b <) ...; means if ((a < b) <) ...; where a < b is 1 (true) if a < b and 0 (false)otherwise. This number is then ompared to . The statement does not determine �if b is between a and�.
• a++; is short for a = a + 1;, so is ++a;. Both a++ and ++a an be used in expressions, e.g. b = a++;, = ++a;. The value of a++; is a's value before it has been inremented and the value of ++a; is the newvalue.
• a += 3; is short for a = a + 3;.
• As in many languages, integer division is exat (through trunation), so 4 / 3 beomes 1.Similarly, i = 1.25;, will drop the deimals if i is an integer variable.
• expr1 ? expr2 : expr3 equals expr2 if expr1 is true, and equals expr3, otherwise.
• (type) is used for type onversions, e.g. (double) 3beomes 3.0 and (int) 3.25 is trunated to 3.
• sizeof(type_name) or sizeof expression gives the size in bytes neessary to store the quantity. So,sizeof(double) is 8 on our system and sizeof (1 + 2) is 4 (four bytes for an integer).
• When two or more expressions are separated by the omma operator, they evaluate from left to right.The result has the type and value of the rightmost expression. In the following example, the value 1 isassigned to a, and the value 2 is assigned to b. a = b = 1, b += 2, b -= 1;
• Do not write too triky expressions. It is easy to make mistakes, it is hard to read and one may endup with unde�ned statements. a[i++℄ = i; and i = ++i + 1; are both unde�ned. See the standard,setion 6.5, if you are interested in why.

HPC

Thomas ErissonComputational Mathematis, Chalmers/GU2013 3518 A short introdution to FortranThe next few pages ontain the rudiments of Fortran 90 and a glane at Fortran 77. This text is su�ientfor the assignments, but you need more for real programming. I have not tried to show all the di�erent ways aprogram an be written.Fortran was designed by a group, lead by John W. Bakus at IBM. The language was proposed as alter-native to oding in assembly language and the �rst ompiler appeared in 1957. The language evolved throughthe years but you will still �nd huge amounts of ode written in Fortran 66 (ame in 1966) and Fortran 77.So you must be able to read suh ode but you probably do not have to write any (if you are luky :-). You willuse some Fortran 77-ode in one of the labs.Fortran 90 (no apitalization) is essentially a new language. It has array operations (somewhat like Matlab),pointers, reursion, prototypes, modules, overloading of operators (and more). Fortran 77 has none of these.Fortran 90 is muh nier than Fortran 77, whih is quite primitive. Fortran 95 was a minor revision of Fortran90, but Fortran 2003 is a major update ontaining support for objet-oriented programming. The most reentversion is Fortran 2008, whih is a minor upgrade of the 2003-version. This text does not ontain any ode-examples in Fortran 2003 or Fortran 2008 and not many ompilers have full support for these latest versions.Fortran is used primarily for sienti� omputing, and in this author's view the language is muh better suitedfor suh tasks than C. The main reason is that Fortran has better support for vetors and matries.We start with a Fortran 90-example, but �rst some basi rules. Fortran 90 (and later) supports a free for-mat, you an write the statements wherever you like on the line (not so in Fortran 77 and earlier). Case orblanks (spae) are not signi�ant (unless they are in strings or serve as a separator between keywords). Theexamples ontain extra blanks to inrease readability. Comments are written using !. A statement ends whenthe line ends. Long statements an be ontinued by adding & at the end of the line that should be ontinued(like adding ... in Matlab).There should be one main program, program program_name where you an hoose program_name (the samerules as for variable names in Matlab). You end the main program with end or end program program_name .There are (essentially) two types of proedures, funtions and subroutines (orrespond to void funtions in C).Fortran has an impliit type rule. Unless you spei�ally give a type of a variable, all variables are singlepreision real unless the variable name starts with one of i, j, k, l, m, n in whih ase the variable is aninteger. Using the impliit rule is asking for problems, like in the following example: (using % as the prompt inthe ommand window):% at spell.f90 list the programprogram spellsum = 0.0 ! set summation variable to zerodo k = 1, 1000 ! when k = 1, 2, ..., 1000sum = sum + 1.0 / k ! update sumend doprint*, 'the sum is ', smu ! print the valueend program spell% gfortran spell.f90 ompile% a.out exeutethe sum is 8.6880505E-44 garbageNote that the ompiler, gfortran, does not warn us (ompilers usually do not). If we want a warning we addthe statement impliit none, after the �rst line, making it neessary to supply type delarations, soprogram spell HPC

36 Thomas ErissonComputational Mathematis, Chalmers/GU2013impliit none ! no impliit type rulereal :: sum ! a single preision variableinteger :: k ! an integer variable...% gfortran spell.f90In file spell.f90:10print*, 'the sum is ', smu ! print the value1Error: Symbol 'smu' at (1) has no IMPLICIT typeCorreting the error and running again we get the printoutthe sum is 7.485478In Fortran all by referene is used for both arrays and salars (it is possible to say muh more about thistopi, but this is su�ient for the HPC-ourse). This means that a proedure an hange the value of a salarargument, whih is not the ase in C unless you pass the address of the variable to the funtion.19 A simple exampleThe ode ontains one main-program one funtion and a subroutine. The funtion omputes the inner produtof two vetors and the subroutine sums the elements in an array and returns the sum in a parameter. Theline-numbers have been added to make it easier to omment the ode, they are not part of the program.1 program main2 impliit none ! Highly reommended!3 integer :: k, n, in4 double preision :: s5 double preision :: ddot ! the type of the ddot -funtion67 ! Array indies start at one by default.8 double preision , dimension(100) :: a, b910 n = 10011 print*, "Type a value for in:"12 read*, in13 print*, "This is how you write: in = ", in1415 do k = 1, n ! do when k = 1, 2, ..., n16 a(k) = k ! use do k = 1, n, step for a non -unit step17 b(k) = -sin(dble(k)) ! using sin18 end do1920 print*, "The inner produt is ", ddot(a, b, n)2122 all sum_array(a, s, n) ! NOTE , all23 print*, "The sum of the array is ", s2425 end program mainAdditional omments:line 5, tells the alling program the type of the funtion. It is possible, and sometimes neessary, to providemore elaborate prototypes, but this is not overed in this ourse. Single preision is written real in Fortran.HPC

Thomas ErissonComputational Mathematis, Chalmers/GU2013 37line 8: You an write the index-range dimension(begin:end), e,g, dimension(-20:35) or dimension(0:20)if you are a C-programmer (in whih ase 20 is the last and legal index).line 11-13: simple I/O-statements with a standard layout (there are more fany versions).line 15, 18: the standard loop. More generally, do variable = start, end, step, where step = 1 is thedefault.line 16: note () for the index.line 17: the type ast (type onversion) from integer k to double preision dble(k) is neessary, or the ompilerwill omplain. No automati onversion like in C.line 20: alling the funtion ddot.line 22: alling the subroutine, note that the result is returned in the salar s.1 funtion ddot(x, y, n) result(s)2 impliit none3 integer :: n4 double preision , dimension(n) :: x, y5 double preision :: s ! The type of the funtion67 integer :: k89 s = 0.010 do k = 1, n11 s = s + x(k) * y(k)12 end do1314 end funtion ddotline 1, result de�nes a result-variable. You give the funtion a value by assigning a value to the result-variable,muh like in Matlab.line 5, you give the funtion its type using a type delaration for the result-variable.line 7, k is loal to the funtion (as usual).line 9, 0.0 is atually a single preision zero, whih is onverted to a double preision zero (the type of s). Moreabout onstants later on.1 subroutine sum_array(a, s, n)2 impliit none3 integer :: n4 double preision :: s5 double preision , dimension(n) :: a67 integer :: k89 s = 0.010 do k = 1, n11 s = s + a(k)12 end do1314 end subroutine sum_arrayline 1, 9, 11: sine all by referene is used, the subroutine hanges the original value of s.Some additional omments.Sine Fortran 90 has support for array operations the main program ould have been shortened:print*, "The inner produt is ", dot_produt(a, b)HPC

38 Thomas ErissonComputational Mathematis, Chalmers/GU2013print*, "The sum of the array is ", sum(a)dot_produt and sum are built-in funtions.20 Numerial onstants1 is an integer onstant. Fortran (like C) performs integer division using trunation. 4/3 beomes 1 and -4/3beomes -1.1.0 is a real onstant (single preision) and 1.0d0 is a double preision onstant in Fortran77. The d0 standsfor zero exponent and d for double preision, so 1.0 · 100.-1.23e-14 is the single preision value −1.23 · 10−14 and -1.23d-14 the double preision value.Fortran has built-in support for omplex arithmeti. See a Fortran-book or tutorial for details.In Fortran90 it is possible to parameterize the real- and integer types and reate more portable ode using amodule (similar to a simple lass) e.g.:module floating_point! sp = at least 5 signifiant deimals and! |exponent range| <= 30 whih implies! IEEE single preision.integer, parameter :: sp = seleted_real_kind(5, 30)integer, parameter :: dp = seleted_real_kind(10, 300)integer, parameter :: pre = dp ! pik oneend module floating_pointprogram mainuse floating_point ! gives aess to the modulereal (kind = pre) :: x, yreal (kind = pre), dimension(100) :: a, bx = 1.24_pre ! onstant of kind (type) prey = 1.24e-4_pre !...20.1 Warning: do not mix single and double preisionYou an mix single and double preision, but the outome may be unexpeted. Here are a few examples.1 program warning2 impliit none3 real :: sp ! a 32-bit floating point variable4 double preision :: dp ! a 64-bit floating point variable56 sp = sqrt(2.0d0) ! you lose digits7 dp = sqrt(2.0) ! you lose digits89 ! the abs -values are the errors10 print*, sp, dp, abs(sp - sqrt(2.0d0)), abs(dp - sqrt(2.0d0))1112 print*, sqrt(2.0d0) * dp ! dp is already ruined13 HPC

Thomas ErissonComputational Mathematis, Chalmers/GU2013 3914 ! (2.0 / 3.0) is omputed in single, you lose digits15 print*, (2.0 / 3.0) * 3.0d0, 2.0 / 3.0 * 3.0d01617 ! 3.0 is first onverted to 3.0d0, then 2.0d0 / 3.0d0 is omputed18 print*, 2.0d0 / 3.0 * 3.0d01920 ! integer division21 print*, 4 / 3 * 3.0d02223 end program warningHere is the output:1.414214 1.41421353816986 2.420323430563087E-008 2.420323430563087E-0081.999999965771462.00000005960464 2.000000059604642.000000000000003.00000000000000SP = single preision and DP = double preision in these omments.line 3, 4, sp is 32-bit SP-variable and dp 64-bit DP-variable.line 6, sqrt(2.0d0) is omputed in DP but then assigned to single.line 7, sqrt(2.0) is omputed in SP but then assigned to a DP-variable.line 10, writing the values and errors (regarding sqrt(2.0d0) as exat).line 12, using the aurate sqrt(2.0d0) but the SP-value stored in dp. The produt is not 2.0.line 15, due to the (), (2.0 / 3.0) is omputed in single, this SP-quotient is then onverted to DP (butnot re-omputed) and the multiplied by the DP 3.0d0. The same happens with seond expression, sine it isomputed left to right (/ and * have the same priority).line 18, the �weaker� (smaller) 3.0 is �rst onverted to the �stronger� 3.0d0, giving 2.0d0 / 3.0d0, giving anaurate answer.line 21, 4 / 3 beomes 1 whih is promoted to 1.0d0 whih is multiplied by 3.0d0, so the answer is not 4.0.If you want to be on the safe side never mix preisions.21 The simple example in Fortran 77Here omes the Fortran 77-version, but �rst some omments. Fortran 90 is almost a new language, but in mysimple example the di�erenes are not that striking.
• Fortran 77 has a olumn oriented layout dating bak to the 80 olumn punhed ard. The �rst �veolumns are used for labels (positive integers), olumn six is for ontinuation statements, olumns 7-72for the statement and olumns 73-80 are for omments (used to number the ards in ase you droppedthem :-)If you are young and have not heard about punhed ards, have a look here:http://en.wikipedia.org/wiki/Punh_ards .
• There are no result-statements in funtions.
• The type delarations are written in a di�erent way:double preision a(n)instead of HPC

40 Thomas ErissonComputational Mathematis, Chalmers/GU2013double preision, dimension(n) :: aalthough Fortran 77-delarations are allowed in Fortran 90 as well. A Fortran 77-program is (es-sentially) also a Fortran 90-program, so it is possible to mix the two styles. There are a few Fortran77-onstrutions whih have been depreated in Fortran 90, and some Fortran 90-ompilers may omplainif you ompile old ode.The example program, oded in Fortran 77, is listed on the following two pages. It violates the ANSI-standard in several ways, the most important being the use of do/enddo. Here are proper ways of writingFortran 77-loops using labels (the numbers). ontinue is an empty statement often used to mark the end ofa loop. do 10 k = 1, ns = s + x(k) * y(k)10 ontinue or shorter do 20 k = 1, n20 s = s + x(k) * y(k)Here omes the ode:program main** Comments: , C or * in olumn one* text in olumns > 72* ! Fortran 90-omment* First five olumns: labels* Continuation line: non-blank in olumn 6* Statements: olumns 7 through 72* Case or blanks are not signifiant (unless they are in strings).** Arrays start at one by default.*234567890 to know where we areinteger k, n, indouble preision a(100), b(100), sumdouble preision ddotn = 100print*, "Type a value for in:"read*, inprint*, "This is how you write: in = ", indo k = 1, na(k) = kb(k) = -sin(dble(k))end doprint*, "The inner produt is ", ddot(a, b, n)all sum_array(a, sum, n) ! NOTE, allprint*, "The sum of the array is ", sumend HPC

Thomas ErissonComputational Mathematis, Chalmers/GU2013 41 double preision is the type of the funtiondouble preision funtion ddot(x, y, n)impliit noneinteger ndouble preision x(n), y(n)integer kdouble preision sumsum = 0.0 ! ould use ddot instead of sumdo k = 1, nsum = sum + x(k) * y(k)end doddot = sum ! give the funtion its valueendsubroutine sum_array(a, sum, n)impliit noneinteger ndouble preision a(n), suminteger ksum = 0.0do k = 1, nsum = sum + a(k)end doendSuppose you, by mistake, move the double preision-statement in sum_array one step to the left. The letterd, in the sixth olumn, tells the ompiler that ther previous line (integer n) ontinues, essentially giving (spaesare not signi�ant in variables names in Fortran 77), the line:integer ndoublepreisiona(n), sumresulting in omplaints, from the ompiler, about n and a laking a type delaration. Removing the impliitnone silenes the omplaints, the ompiler will assume that a(k) is a all of the funtion a.Removing one more spae will give another ompiler error, a non-digint in the label �eld.Writing a long line, like: omments23456789012345678901234567890123456789012345678901234567890123456789012s = s + long and ompliated expression + 2.1d72will add 2.1d7 and not the intended 2.1d72.Here is a �nal uriosity, whih aording to legend aused the rash of Mariner 1 spaeraft, but legend waswrong and Fortran was not to blame in this ase, see: http://en.wikipedia.org/wiki/Mariner_1and http://atless.nl.a.uk/Risks/9.54.html#subj1.1But Fortran 66 ould have aused a problem, as the Risks-artile says. Consider the following legal piee ofode (legal in Fortran 66 and 77, that is, not legal in Fortran 90):HPC

42 Thomas ErissonComputational Mathematis, Chalmers/GU2013do 5 k = 1. 125s = s + ve(k)5 ontinueThis is not a loop but an assignment, the variable do5k is assigned the value 1.125. The dot should have beena omma. There was no impliit-statement in Fortran 66 (it ame in Fortran 77), but a good ompiler ofits day ould list variables ourring one.Be very areful when programming in Fortran 77.22 How to ompileThe Fortran ompilers available on the student system are: g77 (Fortran 77) and gfortran (both Fortran 90and 77). It would be interesting to use the Intel ifort-ompiler, but we do not have a liense. You an fetha free opy for Linux (provided you have the disk spae, a few hundred Mbyte). See the ourse homepage fordetails.In these handouts I will use gfortran and I will assume that a Fortran90-program has the su�x .f90. Someexamples:% the prompt in the shell% gfortran prog.f90 if everything in one prog.f90, prog.f would be Fortran77Produes the exeutable �le a.out% a.out exeute% ./a.out if you don't have . in your pathSuppose we have three �les main.f90, dot.f90 and sum.f90.% gfortran main.f90 dot.f90 sum.f90Can ompile the �les one by one. - means �ompile only�, do not link.% gfortran - main.f90 produes the objet file main.o% gfortran - dot.f90 produes the objet file dot.o% gfortran - sum.f90 produes the objet file sum.o% gfortran main.o dot.o sum.o link the objet files% gfortran main.o dot.f90 sum.o works as well, note .f90The last version is useful if you are working with and re-ompiling a few routines and linking with existingobjet �les, ontaining a large part of the ode.One an give many options (or �ags) to the ompiler. Note that the names are not standardized betweenompilers.% gfortran -O3 prog.f90 optimize the ode23 If-statements and logial expressionsdouble preision :: a, b, , dlogial :: q ! Fortran has a logial typeif(a < b .and. == d .or. .not. q) then... zero or more statementselse... zero or more statementsend if HPC

Thomas ErissonComputational Mathematis, Chalmers/GU2013 43You annot use 0 and 1 to denote false and true, as you an in C. Instead you have the logial onstants,.false. and .true. (yes, the dots should be there).Operation Fortran 77 Fortran 90
< .lt. <
≤ .le. <=
= .eq. ==
6= .ne. /=
≥ .ge. >=
> .gt. >and .and. .and.or .or. .or.not .not. .not.24 A small Fortran 90-exampleHere is a tiny example showing some of the array apabilities of Fortran 90.program array_exampleimpliit none! works for other types as wellinteger :: kinteger, dimension(-4:3) :: a ! Note -4integer, dimension(8) :: b, ! Default 1:8integer, dimension(-2:3, 3) :: Ma = 1 ! set all elements to 1b = (/ 1, 2, 3, 4, 5, 6, 7, 8 /) ! onstant arrayb = 10 * b ! like in Matlab(1:3) = b(6:8) ! like in Matlabprint*, 'size(a), size() = ', size(a), size()print*, 'lbound(a), ubound(a) = ', lbound(a), ubound(a)print*, 'lbound(), ubound() = ', lbound(), ubound()(4:8) = b(8:4:-1) ! almost like Matlab, step is -1print*, ' = ', ! an print a whole arrayprint*, 'minval() = ', minval() ! a built-in funtionsa = a + b * ! elementwise *print*, 'a = ', aprint*, 'sum(a) = ', sum(a) ! another built-inM = 0M(1, :) = b(1:3) ! Row with index oneprint*, 'M(1, :) = ', M(1, :)M(:, 1) = 20 ! The first olumnwhere (M == 0) ! instead of two loopsM = -1end where

HPC

44 Thomas ErissonComputational Mathematis, Chalmers/GU2013print*, 'lbound(M) = ', lbound(M) ! an array! a = text format, i2 integer with width of 2do k = lbound(M, 1), ubound(M, 1) ! print Mprint '(a, i2, a, i2, 2i5)', ' M(', k, ', :) = ', &M(k, :)end doend% a.outsize(a), size() = 8 8lbound(a), ubound(a) = -4 3lbound(), ubound() = 1 8 = 60 70 80 80 70 60 50 40minval() = 40a = 601 1401 2401 3201 3501 3601 3501 3201sum(a) = 21408M(1, :) = 10 20 30lbound(M) = -2 1M(-2, :) = 20 -1 -1M(-1, :) = 20 -1 -1M(0, :) = 20 -1 -1M(1, :) = 20 20 30M(2, :) = 20 -1 -1M(3, :) = 20 -1 -125 A ommon Fortran onstrutionEven if we program in Fortran 90 we typially use huge amounts of Fortran 77-ode. This makes it neessaryto understand something about the layout of matries in memory and how the ompiler omputes the addressof a spei� element, the address omputation. If you get this wrong disaster will follow.Fortran 77 does not have dynami memory alloation (like Fortran 90 and C). Say you want to solve asequene of linear least squares problems of di�erent sizes. In Fortran 77 you would typially reserve spaefor the largest matrix you need, even though the atual problem might be smaller. Say that the largest problemhas max_m rows and max_n olumns and that atual (urrent) problem has m rows and n olumns (m ≤ max_mand n ≤ max_n).Say you pass the matrix as an argument to a proedure. The ompiler (when ompiling the proedure) mustbe told about the extent of the �rst dimension (the number of rows), of the matrix, in order to produe theaddress omputation ode.The reason for rows rather olumns, is that Fortran stores matries in olumn-major order (olumn afterolumn). If adr() is the address of A(j, k) thenadr(A(j, k)) = 8 * (adr(A(1, 1)) + max_m * (k - 1) + j - 1)eight, sine we assume that memory is byte-addressable and that A is a double preision matrix (eight bytes per�oating point number). In C a matrix is stored in row-major order (so the ompiler must know the number ofolumns in the matrix), but sine you an alloate the preise number of elements in C this is less of an issue.In the following program we reserve spae for a 5× 4-matrix, line 4, and all the elements are set to 0 (so we anspot inorret elements later on). parameter on line 3, de�nes named onstants, so max_m and max_n are notvariables but names for the numbers 5 and 4 respetively. We are only using a 3 × 3-sub matrix of A, and onlines 10-12 this matrix is set to [1, 2, 3; 4, 5, 6; 7, 8, 9℄ (using Matlab-syntax). On line 15 print_Ais alled, the subroutine prints the 3× 3-sub matrix. On line 19 print_A is alled again, but this time using minstead of the orret max_m. HPC

Thomas ErissonComputational Mathematis, Chalmers/GU2013 45The ruial line in print_A is line 26, where it says max_m in dimension(max_m, max_n). max_n is of noimportane (at least not for the address omputation). Line 30 is a more elaborate print-statement using aformat.1 program wrong_max_m2 impliit none3 integer, parameter :: max_m = 5, max_n = 44 integer, dimension(max_m , max_n) :: A = 05 integer :: m, n67 m = 3 ! using part of the max_m times max_n -matrix8 n = 3910 A(1, 1:n) = (/ 1, 2, 3 /)11 A(2, 1:n) = (/ 4, 5, 6 /)12 A(3, 1:n) = (/ 7, 8, 9 /)1314 print*, 'Calling print_A with the orret max_m '15 all print_A(A, max_m , max_n , m, n)1617 print*, '-------------------------------------'18 print*, 'Calling print_A with an inorret max_m '19 all print_A(A, m, max_n , m, n) ! using m instead of max_m2021 end program wrong_max_m2223 subroutine print_A(A, max_m , max_n , m, n)24 impliit none25 integer :: max_m , max_n , m, n26 integer, dimension(max_m , max_n) :: A27 integer :: row , ol2829 do row = 1, m30 write(*, '(a3, i2, a, 5i5)') 'row ', row , ':', A(row , 1:n)31 end do3233 end subroutine print_AHere is the run:Calling print_A with the orret max_mrow 1: 1 2 3row 2: 4 5 6row 3: 7 8 9-------------------------------------Calling print_A with an inorret max_mrow 1: 1 0 5row 2: 4 0 8row 3: 7 2 0To see how the seond result is produed we look at the memory layout (horizontally, to save spae). | denotesa olumn-break.In the main-program HPC

46 Thomas ErissonComputational Mathematis, Chalmers/GU2013after line 40 0 0 0 0 | 0 0 0 0 0 | 0 0 0 0 0 | 0 0 0 0 0after line 121 4 7 0 0 | 2 5 8 0 0 | 3 6 9 0 0 | 0 0 0 0 0in print_A with the inorret max_m = 31 4 7 | 0 0 2 | 5 8 0 | 0 3 6 | 9 0 0 | 0 0 0 | 0 0If we had not set all the elements in A to zero, the zeros in the seond printout ould have been random numbers(what happened to be stored in those memory loations). Removing the initialization on line 4 and runningagain, one may get things like (where I had to hange the format to make room for the large negative number):Calling print_A with an inorret max_mrow 1: 1 62 5row 2: 4 1 8row 3: 7 2 -1264574544It is not neessary for the ompiler to know max_n when ompiling print_A (unless A is a three dimensionalarray, of ourse), so it is legal to writedouble preision, dimension(max_m, *) :: Aordouble preision, dimension(max_m, 1) :: Ajust to tell the ompiler that A is two-dimensional (the * marks an index position). Better is:double preision, dimension(max_m, max_n) :: Asine index heks an be performed by some ompilers.A more ommon name for max_m is LDA, Leading Dimension A. This an be seen in the manual page forthe Fortran 77 Lapak routine dgesv:NAMEdgesv - ompute the solution to a real system of linear equations A * X = B,SYNOPSISSUBROUTINE DGESV(N, NRHS, A, LDA, IPIVOT, B, LDB, INFO)INTEGER N, NRHS, LDA, LDB, INFOINTEGER IPIVOT(*)DOUBLE PRECISION A(LDA,*), B(LDB,*) <---------- NOTE LDA...ARGUMENTSN (input) The number of linear equations, i.e., the order of the matrix A. N >= 0.NRHS (input)The number of right hand sides, i.e., the number of olumns of the matrix B. NRHS >= 0.A (input/output)On entry, the N-by-N oeffiient matrix A. On exit, the fators L and U from thefatorization A = P*L*U; the unit diagonal elements of L are not stored.LDA (input)The leading dimension of the array A. <---------- NOTE LDAHPC

Thomas ErissonComputational Mathematis, Chalmers/GU2013 47LDA >= max(1,N)....There is are nier interfae in Fortran90 (C++). Essentially, subroutine gesv(A, B, ipiv, info) wheregesv is polymorphi, (for the four types S, D, C, Z for single, double, omplex and double omplex) and wherethe size information is inluded in the matries. Most people seem to use the Fortran 77-interfae, however,and it is easier to use from C.26 Dynami memory alloation in Fortran 90Here are two ways, �rst automati arrays:...all dynami(k + r * s, 100) ! for example...subroutine dynami(m, n)integer :: m, ndouble preision, dimension(m, n) :: Adouble preision, dimension(-2:n) :: ve ! first index -2, just to show you anompute ...end subroutine dynamiThe seond method is similar to C's mallo/free.subroutine dynami(m, n)integer :: m, ndouble preision, alloatable, dimension(:, :) :: Adouble preision, alloatable, dimension(:) :: veinteger :: statusalloate(ve(-2:n)) ! first index -2, just to show you analloate(A(m, n), stat = status) ! if you are arefulif (status /= 0) then! some problem, this is very primitive error handlingprint*, 'Cannot alloate A'stopend ifompute ...dealloate(ve)dealloate(A)end subroutine dynami27 Some dangerous thingsWhen debugging ode it is very important to hek atual and formal parameter lists. Atual parameters arethe ones supplied when alling the routine, formal parameters are the ones inside the routine.HPC

48 Thomas ErissonComputational Mathematis, Chalmers/GU2013Chek position, number and type. It is possible to use so-alled interfae bloks (�prototypes�) for inreasedseurity.program maindouble preision :: a, ba = 0.0all sub(a, 1.0, b) ! three parametersprint*, a, bendsubroutine sub(i, j) ! two parameters and different types in the allinteger :: i, ji = i + 1j = 10.0 ! trying the hange the value of the onstant 1.0end% a.outSegmentation fault the result depends on the ompilerRemove the line j = 10.0 and run again:% a.out the result depends on the ompiler4.940656458412465E-324 1.330526861551857E-312b is unde�ned and the ontents of a is treated as an integer inside the subroutine. Sine Fortran uses all byreferene, the interpretation of the data, orresponding to the formal parameter a, inside the subroutine is givenby the type delaration, integer :: i.C- and Fortran ompilers do not usually hek array bounds. Here is an example in C.#inlude <stdio.h>void sub(double a[℄);int main(){ double b[10℄, a[10℄;b[0℄ = 1;sub(a);printf("%f\n", b[0℄);return 0;}void sub(double a[℄){ a[10℄ = 12345.0;}Running this program we get:% a.out12345.000000 HPC

Thomas ErissonComputational Mathematis, Chalmers/GU2013 49So b[0℄ has hanged even though it is not a parameter to the funtion, sub. The reason is that a[10℄ =12345.0; is illegal, nine is the largest index and a[10℄ happens to have the same address as b[0℄. Changinga[10℄ to a[1000000℄, in the funtion, gives Segmentation fault.Some Fortran-ompilers an hek subsripts (provided you do not lie):program maindouble preision, dimension(10) :: aall lie(a)print*, 'a(1) = ', a(1)end program mainsubroutine lie(a)double preision, dimension(10) :: ado j = 1, 100 !!! NOTEa(j) = jend doend subroutine lie% gfortran -fbounds-hek lie.f90% a.outFortran runtime error: Array referene out of bounds for array 'a', upper bound of dimension 1exeeded (in file 'lie.f90', at line 12)If we hange dimension(10) to dimension(100), in the subroutine, so lying, the ompiler will not detet theindex error.

HPC

50 Thomas ErissonComputational Mathematis, Chalmers/GU201328 Preedene of Fortran 90-operatorsOperators between horizontal lines have the same preedene.Operator Meaningunary user-de�ned operator** power* multipliation/ division+ unary addition- unary subtration+ binary addition- binary subtration// string onatenation== .EQ. equality/= .NE. inequality< .LT. less than<= .LE. less or equal> .GT. greater than>= .GE. greater or equal.NOT. logial negation.AND. logial and.OR. logial or.EQV. logial equivalene.NEQV. logial non-equivalenebinary user-de�ned operatorComments:== is the Fortran90 form and .EQ. is the Fortran77 form, et. In Fortran90 lower ase is permitted, .e.g .not. .About the user de�ned operators. In Fortran90 it is possible to de�ne ones own operators by overloadingexisting operators or by reating one with the name .name. where name onsists of at most 31 letters.

HPC

Thomas ErissonComputational Mathematis, Chalmers/GU2013 5129 A few words about tsh and bashThe shell is a ommand-line interpreter, usually running as a sub-proess to a ommand window. When you,for example, give the ommand d a_path, the shell will hange your urrent diretory, and when you type ls,the shell will reate a new proess, starting the ompiled C-program /bin/ls. There are a number of shells, twowellknown are the Bourne shell, /bin/sh, written by Stephen Bourne at Bell Labs and sh, /bin/sh, writtenby Bill Joy while at the University of California, Berkeley. See http://en.wikipedia.org/wiki/Unix_shellfor more historial notes.On the math-system /bin/sh is a symboli link to /bin/bash the Bourne-Again shell and /bin/sh is a symbolilink to /bin/tsh, the TENEX C shell.You an hange shell if you like, I am using tsh, and I will start with some aspets of tsh.29.1 The pathThe loation of a �le or a diretory is given by its path. An absolute path starts at the root in the �le tree. Theroot is denoted / (slash). The path to my HPC-diretory is /halmers/users/thomas/HPC . The �le ex.f90, inthis diretory, has the path /halmers/users/thomas/HPC/ex.f90. There are also relative paths.Suppose the urrent diretory is /halmers/users/thomas . A path to the ex.f90 is then HPC/ex.f90 .Suppose your urrent diretory is something else, then ~thomas/HPC/ex.f90 is a path to the �le. ~, by it-self, denotes your home diretory, ~user, is the path to the home diretory of user. So I ould have written,~/HPC/ex.f90 . .. is the level above, and . is the urrent diretory. That is why we sometimes write ./a.out,se below.The shell (sh, tsh, sh, ksh, bash, ...) keeps several variables. One important suh variable is the path.I will onentrate on [t℄sh, a few words about bash ome at the end of this setion. The path ontains ablank-separated list of diretories. When you type a ommand (whih is not built-in, suh as d) the shell willsearh for a diretory ontaining the ommand (an exeutable �le with the given name). If the shell �nds theommand it will exeute it, if not, it will omplain:% set path = () no diretories% d HPC d is built-in% lsls: Command not found.% /bin/ls worksA.mat ... et% set path = (/bin)% ls now tsh finds lsA.mat ... etThe set is loal to the partiular shell and lasts only the present login session.Sometimes there are several di�erent versions of a ommand. The shell will exeute the ommand it �nds�rst (from left to right).% whih ls/bin/ls% whih gfortran/usr/bin/gfortran omes with the system% whih gfortran used in the ourse 2006/halmers/users/thomas/HPC/gfortran/bin/gfortranHPC

52 Thomas ErissonComputational Mathematis, Chalmers/GU2013In the �rst whih, /usr/bin omes before the HPC-diretory, and in the seond /usr/bin omes after.If you do not have . in your path, the shell will not look for exeutables in the urrent diretory.% pwd print urrent diretory/halmers/users/thomas/HPC/Test% a.outa.out: Command not found. no . in the path% ./a.out works% set path = ($path .) add . to the path% a.out works$path is the value of path. Suppose the path ontains ~ .% p a.out ~/a.out1% whih a.out1a.out1: Command not found.% rehash rebuild the internal hash table% whih a.out1/halmers/users/thomas/a.out1A ommand does not have to be a ompiled program.% ls -l /bin/ls-rwxr-xr-x 1 root root 82796 Jun 20 13:52 /bin/ls% file /bin/ls/bin/ls: ELF 64-bit LSB exeutable, AMD x86-64, version 1 (SYSV), for GNU/Linux 2.6.9,dynamially linked (uses shared libs), for GNU/Linux 2.6.9, stripped% whih dd: shell built-in ommand.% whih apropos/usr/bin/apropos% file /usr/bin/apropos/usr/bin/apropos: Bourne shell sript text exeutable% head -3 /usr/bin/apropos#!/bin/sh## apropos -- searh the whatis database for keywords.A user would usually (perhaps not if one is a student; see below for more details) set the path-variable in thestartup �le .tshr whih usually resides in the login diretory. The period in the name makes the �le invisible.Type ls -a to see the names of all the dot-�les.To see your path, type eho $path, or give the ommand set, whih prints all the shell variables. Shell-variables are not exported to sub-proesses so the shell reates an environment variable, PATH, as well. PATH isexported to sub-proesses and it ontains a :-separated list of diretories).% set var = hello% eho $var like printhello HPC

Thomas ErissonComputational Mathematis, Chalmers/GU2013 53% tsh start a sub-shell% eho $varvar: Undefined variable.% exit% setenv var hello an environment variable, no =% tsh sub-shell% eho $varhelloTo see all your environment variables, type setenv. Another useful environment variable is the manual searhpath, MANPATH and the LD_LIBRARY_PATH (muh more details later on).29.2 Now something about bashMost of the above details about tsh work in bash as well. Here are some di�erenes. The shell startup �leis alled .bashr. The path-variable is named PATH. You an set (a short path) the following way (you do notuse set as in tsh):% PATH=/bin:/usr/binTo export a variable to a sub-proess, use the export-ommand, like in this example:bash-3.2$ A_VARIABLE=123 bash-3.2$ is the promptbash-3.2$ eho $A_VARIABLE123bash-3.2$ bash start a sub-shellbash-3.2$ eho $A_VARIABLE not definedbash-3.2$ export A_VARIABLE=123 use exportbash-3.2$ bash start a sub-shellbash-3.2$ eho $A_VARIABLE123 definedset prints all the variables, but there is no setenv-ommand, use export instead.For muh more on tsh and bash tryman tshman bashorinfo tshinfo bashfor a more strutured layout.29.3 A note on the student environmentTo make it easier for beginners (both teahers and students) Chalmers/GU has a standard environment whereyou do not have to reate your own startup �les. One does not have to use it (I do not). The following pagedesribes how to modify the standard environment:http://www.halmers.se/its/EN/omputer-workplae/linux/various-linux-questions
HPC

