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H2b Variational Monte Carlo

Here you are asked to determine the ground state energy for the helium
atom using the variational Monte Carlo technique. It is an application of
the Metropolis algorithm. Atomic units (a.u.) are used, i.e. h̄ = e = me =
4πε0 = 1.

The variational Monte Carlo method

The variational Monte Carlo mehod is based on the variation theorem. This
theorem states that for some arbitrary (trial) wave function ΨT the expec-
tation value of the energy

E[ΨT ] =
〈ΨT | H | ΨT 〉
〈ΨT | ΨT 〉

≥ E0 (1)

is always larger or equal to the ground state energy E0. Only if ΨT is equal
to the ground state wave function Ψ0, the expectation value is equal to E0.

If the system contains many electrons the calculation of the expectation
value of the energy involves integrals over many degrees of freedom. It
can be solved using Monte Carlo integration together with the Metropolis
algorithm. The expression for the energy can be written as

E[ΨT ] =

∫
dREL(R)ρ(R) (2)

where

EL(R) =
HΨT (R)

ΨT (R)
(3)

is called the local energy and

ρ(R) =
| ΨT (R) |2∫
dR | ΨT (R) |2

(4)

is a normalized probability distribution for the coordinate R, which can
be used as the weight function in the Metropolis algorithm. Here, R de-
notes the combined coordinate of all N electrons, R = (r1, r2, . . . , rN ). If
ΨT (R) is parametrized with a set of S parameters α = (α1, α2, . . . , αS), the
expectation value becomes an ordinary function of α

E(α) =
〈ΨT | H | ΨT 〉
〈ΨT | ΨT 〉

(5)
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The trial wave function

Use the trial wave-function

ΨT (r1, r2) = exp [−2r1] exp [−2r2] exp

[
r12

2(1 + αr12)

]
(6)

which is parametrized with a single variational parameter α. The corre-
sponding expression for the local energy is

EL(r1, r2) = −4 +
(r̂1 − r̂2) · (r1 − r2)
r12(1 + αr12)2

− 1

r12(1 + αr12)3
− 1

4(1 + αr12)4
+

1

r12
(7)

where r̂ denote a unit vector along r. More information can be found in the
lecture notes ”Quantum structure”.

Task

1. Consider the helium atom. Implement the Metropolis algorithm and
use the ansatz in eqn (6) for the trial wave function. Use the value
α = 0.1.

You have to define how to generate a new configuration. The simpliest
is to choose one of the six coordinates (r1, r2) at random and displace
it symmetrically. You can also choose to displace all six coordinates at
each step. Introduce a parameter d to control the size of the symmetric
displacement(s). Determine an appropriate value for d by monitoring
the acceptance-rejection ratio.

To convince yourself that the program is working correctly, it is in-
structive to investigate the distribution of the sampled points. De-
termine the probability ρ(r) to find an electron at a distance r from
origo based on the sampled points from the Monte Carlo simulation.
Compare with the result

ρ(r) = Z34r2e−2Zr

from the central field approximation, both with an unscreened nucleus
Z = 2 and the variationally optimized value Z=27/16. Do you obtain
what you expect?

You should also try to investigate how correlated the two electrons are.
Denote the position of the two electrons with r1 and r2, respectively,
and determine the angle

θ = cos−1
(
r1 · r2
|r1| |r2|

)
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If the two electrons are uncorrelated the angle θ should be uniformly
distributed over the unit sphere, i.e.

P (θ) =
1

2
sin θ 0 < θ < π

where P (θ) is the probability to obtain the value θ. If you introduce

x = cos θ

the probability for x is given by

P (x) =
1

2
− 1 < x < 1

Determine the distribution for x based on the sampled points from the
Monte Carlo simulation. What do you obtain? Can you understand
the result?

Determine also the ground state energy by averaging the local energy
along the Markov chain. You should obtain about E0 = −3 a.u.. Do
you obtain a reasonable number? (4p)

2. In a Monte Carlo calculation using the Metropolis algorithm a large
number of steps, Ntot = Neq + N , are generated. The first Neq steps
is discarded, the system has to equilibrate, and the subsequent N
steps are used to compute different quantities. The configurations are
correlated and the statistical inefficiency, the correlation length, has
to be determined in order to be able to make a proper estimate of the
error.

Consider again the case α = 0.1 and determine the local energy at each
step. Start with some unlikely initial configuration and investigate the
number of steps Neq required to equilibrate the system by monitoring
the variation of the local energy. When Neq is reached no direct drift
of the local energy should be observable.

Determine next the statistical inefficiency using both the correlation
function method and block averaging. (3p)

3. You should now have a correct working program. Perform simulations
for several different α-values in the range 0.05 < α < 0.25. Determine
the energy with error bars. For the latter, you may use the statistical
inefficency you obtained above, i.e. you may neglect the (weak) α-
dependence of the statistical inefficiency.

You may also perform several independent calculations (for the same
α-value) to verify that you get results independent on the starting con-
figuration. In some cases one can get stuck in local minima, favourable
regions in configuration space, and the sampling of configuration space
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will not be correct. Independent runs are then a useful test. The in-
formation from the different runs can also be used to reduce the error
bars.

What optimum value do you obtain for the energy? What is the
corresponding α-value? (4p)

4. Variational Monte Carlo is an optimization method. It is possible to
adjust the parameter α directly in the simulation. In the case of a
large set of variational parameters αp this becomes essential.

Perform such a study using the method described in the lecture notes
”Quantum structure”, Sec. 5.2. Use the damped steepest descent
method, according to

αp+1 = αp − γp∇αE(αp) (8)

and for γp use the expression

γp = Ap−β (9)

with A=1 and investigate a few different values for the exponent β.
Do you converge to the same α value? Is your result for α consistent
with what you obtained above? (4p)

5. You should now have obtained an optimum value for α. Perform a
careful simulation using this α-value and compare your result with the
Hartree value -2.862 a.u. and the experimental number -2.9033 a.u.
(1p)
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