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H3a Diffusion Monte Carlo

Here you are asked to implement the Diffusion Monte Carlo technique. You
will first study the one-dimensional harmonic oscillator problem and then
the Helium atom. Atomic units (a.u.) are used, i.e. h = e = m, = 4meg = 1,
and the equation numbers refer to the Lecture Notes ” Quantum Structure”.

Task

1. Study first the one-dimensional harmonic oscillator problem. Its Hamil-
tonian is given by
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We use atomic units and assume that the force constant k is equal to
1 in these units, i.e.
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The ground-state wavefunction is then given by

H=—
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and the ground-state energy is Ey = 1/2.

The diffusion Monte Carlo method can then be implemented as

e Put Ny walkers at random position and choose a value for Evt
e For all walkers

— displace each walker according to the diffusive part, Eq. (61)

— evaluate the weight factor W (z) and eliminate or create walk-
ers according to Eq. (62)

e Update Et1 according to Eq. (63) so that the number of walkers
will stabilize around the value Ny

e Repeat many times

For this problem a suitable number of walkers Ny is a few hundred.
The time step A7 should be less than 1. You could test a few values
in the range 0.01 < A7 < 0.1. Plot your result for Et as function
of time 7. It is also useful to plot the number of walkers as function
of time 7. Does the simulation result stabilize, equilibrate, when 7 is
increasing? It should approach the correct ground-state energy. When
the system has stabilized you can use that part of the simulation to
determine the ground-state energy. It is instructive to also plot the
density n(z) = |[)(x)]* as function of z. Normalize and compare with
the exact result for the ground-state density. To get better statistics
for the density make an average over time. (6p)



2. Consider nowthe Helium atom.
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Use the same algorithm as above. However in this case the walkers are
not moving in one-dimension. You have to generalize to 6 dimensions.
In this case you will find that the algorithm is less efficient. It takes
a very long time to reach an accurate sampling due to the divergence
of the potential. However, try to convince yourself that the program
is working correctly in 6 dimensions. (Op)

3. The problem associated with the divergent potential can be solved us-
ing importance sampling. One then introduces a trial wavefunction
Ut(R) that mimics the real wave function ¥(R). Here, R denote
the position in 6 dimensions of the two electrons. You should use the
same trial wave-function has in the homework problem H2b Varia-
tional Monte Carlo. The original Schrédinger equation is then trans-
formed to a Fokker-Planck equation (see Sec. 6.3 in the Lecture Notes
”Quantum structure”) for the function f(R,7) = ¥1(R)¥(R, 7). The
pure diffusive step in Eq. (61) is replaced by a guided step, as in Eq.
(44). The walkers are pushed into important regions. The technique,
guided sampling, is described in Sec. 5.3 in the Lecture Notes ” Quan-
tum structure”.

Perform a Diffusion Monte Carlo study of Helium. In this case do not
try to extract the density n(R) from f(R). Also do not try to correct
for the time-step error (described in Sec. 5.3 in the Lecture Notes
”Quantum structure”) introduced by the finite value of Ar. What
value do you obtain for the ground-state energy of Helium? (8p)

4. Implement now the correction for the time-step error. Perform long
simulations and estimate also the error for the ground-state energy.
Compare result from the simulation without and with correction for
the time-step error. Does the correction improve on the value for the
ground-state energy? Give your final result for the ground-state energy
with error bars. (2p)



