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H3a Diffusion Monte Carlo

Here you are asked to implement the Diffusion Monte Carlo technique. You
will first study the one-dimensional harmonic oscillator problem and then
the Helium atom. Atomic units (a.u.) are used, i.e. h̄ = e = me = 4πε0 = 1,
and the equation numbers refer to the Lecture Notes ”Quantum Structure”.

Task

1. Study first the one-dimensional harmonic oscillator problem. Its Hamil-
tonian is given by

H = − h̄2
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We use atomic units and assume that the force constant k is equal to
1 in these units, i.e.
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The ground-state wavefunction is then given by

ψ(x) =
1√
2π
e−x2/2

and the ground-state energy is E0 = 1/2.

The diffusion Monte Carlo method can then be implemented as

• Put N0 walkers at random position and choose a value for ET

• For all walkers

– displace each walker according to the diffusive part, Eq. (61)

– evaluate the weight factorW (x) and eliminate or create walk-
ers according to Eq. (62)

• Update ET according to Eq. (63) so that the number of walkers
will stabilize around the value N0

• Repeat many times

For this problem a suitable number of walkers N0 is a few hundred.
The time step ∆τ should be less than 1. You could test a few values
in the range 0.01 < ∆τ < 0.1. Plot your result for ET as function
of time τ . It is also useful to plot the number of walkers as function
of time τ . Does the simulation result stabilize, equilibrate, when τ is
increasing? It should approach the correct ground-state energy. When
the system has stabilized you can use that part of the simulation to
determine the ground-state energy. It is instructive to also plot the
density n(x) = |ψ(x)|2 as function of x. Normalize and compare with
the exact result for the ground-state density. To get better statistics
for the density make an average over time. (6p)
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2. Consider nowthe Helium atom.
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Use the same algorithm as above. However in this case the walkers are
not moving in one-dimension. You have to generalize to 6 dimensions.
In this case you will find that the algorithm is less efficient. It takes
a very long time to reach an accurate sampling due to the divergence
of the potential. However, try to convince yourself that the program
is working correctly in 6 dimensions. (0p)

3. The problem associated with the divergent potential can be solved us-
ing importance sampling. One then introduces a trial wavefunction
ΨT(R) that mimics the real wave function Ψ(R). Here, R denote
the position in 6 dimensions of the two electrons. You should use the
same trial wave-function has in the homework problem H2b Varia-
tional Monte Carlo. The original Schrödinger equation is then trans-
formed to a Fokker-Planck equation (see Sec. 6.3 in the Lecture Notes
”Quantum structure”) for the function f(R, τ) = ΨT(R)Ψ(R, τ). The
pure diffusive step in Eq. (61) is replaced by a guided step, as in Eq.
(44). The walkers are pushed into important regions. The technique,
guided sampling, is described in Sec. 5.3 in the Lecture Notes ”Quan-
tum structure”.

Perform a Diffusion Monte Carlo study of Helium. In this case do not
try to extract the density n(R) from f(R). Also do not try to correct
for the time-step error (described in Sec. 5.3 in the Lecture Notes
”Quantum structure”) introduced by the finite value of ∆τ . What
value do you obtain for the ground-state energy of Helium? (8p)

4. Implement now the correction for the time-step error. Perform long
simulations and estimate also the error for the ground-state energy.
Compare result from the simulation without and with correction for
the time-step error. Does the correction improve on the value for the
ground-state energy? Give your final result for the ground-state energy
with error bars. (2p)

2


