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H3b Time dependent quantum mechanics

Here you are asked to implement and apply the split operator FFT method
on various time-dependent quantum problems. You will consider both a
scattering problem in one dimension and a so called curve-crossing problem.

Time evolution

In quantum mechanics the time evolution of the state vector is given by the
time-dependent Schrödinger equation

ih̄
∂

∂t
|ψ(t)〉 = Ĥ|ψ(t)〉 (1)

This is the analogue of Newton’s equation of motion in classical mechanics.
Formally the solution can be written as

|ψ(t)〉 = Û(t)|ψ(0)〉 (2)

where the time-evolution operator Û(t) is given by

Û(t) = exp [− i
h̄
Ĥt] (3)

In position representation the formal solution for the motion of a single
particle 1 dimension can be written as

ψ(x, t) = 〈x|ψ(t)〉
= 〈x|Û(t− t′)|ψ(t′)〉

=

∫
dx′〈x|Û(t− t′)|x′〉ψ(x′, t′)

≡
∫
dx′G(x, t;x′, t′)ψ(x′, t′) (4)

where G(x, t;x′, t′) is known as the propagator or the Green’s function for
the time-dependent Schrödinger equation. It is the amplitude for finding
the particle at x at time t, if it was at x′ at time t′. Multiplying G(x, t;x′, t′)
by ψ(x′, t′) and integrating over x′ gives the total amplitude for finding the
particle at x at time t.

Wave packets

If a particle is localized at a specific position x the uncertainty in momen-
tum will be infinite, and vice versa, a particle with definite value for the
momentum will be completely delocalized in coordinate space. To describe
particles which are reasonably well localized in coordinate space and at the
same time has a fairly well defined momentum one has to use wave packets.
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Consider a one-dimensional Gaussian wave packet which in coordinate space
is given by

〈x|ψ〉 = (
1

πd2
)1/4 exp [−(x− x0)2

2d2
] exp [ip0(x− x0)/h̄] (5)

This function describes a particle localized around x0, or more precisely, the
probability density is a Gaussian centered around x0 and with the width
being equal to ∆x = d/

√
2. The expectation value for the momentum is

p0, a particle moving in the positive x-direction, and the uncertainty in
momentum is ∆p = h̄/

√
2d. The Gaussian wave packet fulfills the relation

∆x∆p = h̄/2, the lower limit set by Heisenberg’s uncertainty relation, and
it is therefore often called a minimum uncertainty wave packet.

Short-time propagators

In the general case the time-dependent Schrödinger equation has to be solved
by numerical methods. A convenient approach is to introduce short-time
propagators. This is done by decomposing the the time-evolution operator
into a product of short-time propagators

Û(ttot) =
N∏

n=1

Û(n∆t, (n− 1)∆t) (6)

with ttot = N∆t. The time-evolution is then obtained by repeatedly apply-
ing the short-time propagator according to

|ψ(t+ ∆t)〉 = exp (− i
h̄
Ĥ∆t)|ψ(t)〉 (7)

Cayley’s form The short-time propagator in eqn (7) has to be approxi-
mated. The simplest scheme is to expand the propagator in a Taylor series,
and to keep the first term only,

|ψ(t+ ∆t)〉 = (1− i

h̄
Ĥ∆t)|ψ(t)〉 (8)

When this equation is discretized an explicit method is obtained. This means
that |ψ(t+∆t)〉 can be calculated from what is known at the previous time-
step. However, the method is unstable for any value of ∆t because the
eigenvalues of the operator, (1− iεn∆t/h̄), has the moduli greater than one,√

1 + (εn∆t/h̄)2 > 1. The solution will grow in time. To obtain a stable
method we write instead

exp (
i

h̄
Ĥ∆t)|ψ(t+ ∆t)〉 = |ψ(t)〉

and expand

(1 +
i

h̄
Ĥ∆t)|ψ(t+ ∆t)〉 = |ψ(t)〉
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or

|ψ(t+ ∆t)〉 =
1

(1 + i
h̄Ĥ∆t)

|ψ(t)〉 (9)

This is stable for any ∆t because the moduli of the eigenvalues, 1/(1 −
iεn∆t/h̄), for the operator are all smaller than one, 1/

√
(1 + (εn∆t/h̄)2 <

1. The solution does not increase uncontrolled but the method becomes
implicit.

However, both operators in eqns (8) and (9) do not have the important
unitary property of the exact evolution and the norm of the wave function
will not be conserved. This is a major drawback. To obtain a unitary
operator we make the following symmetric construction

exp (
i

2h̄
Ĥ∆t)|ψ(t+ ∆t)〉 = exp (− i

2h̄
Ĥ∆t)|ψ(t)〉

and expand to obtain Cayley’s form (cf. chapter 19.2 in [1])

(1 +
i

2h̄
Ĥ∆t)|ψ(t+ ∆t)〉 = (1− i

2h̄
Ĥ∆t)|ψ(t)〉

or

|ψ(t+ ∆t)〉 =
(1− i

2h̄Ĥ∆t)

(1 + i
2h̄Ĥ∆t)

|ψ(t)〉 (10)

This is unitary and therefore unconditionally stable. The error in the time
propagation will only accumulate in the phase, not in the absolute value of
the wave function. It is also second order accurate in time which is one more
power compared with eqns (8) and (9).

By combining Cayley’s form for the short-time propagator together with
the finite difference approximation in evaluating the Hamiltonian acting on
a state vector the so called Crank-Nicholson method is obtained.

Split operator FFT method A somewhat different approach has been
developed based on a scheme where the short-time propagator is split into
different parts. Consider the propagator in eqn (7). We split it into two
parts according to

exp (− i
h̄

(T̂ + V̂ )∆t) = exp (− i
h̄
T̂∆t) exp (− i

h̄
V̂∆t) +O(∆t2) (11)

where the error is due to that T̂ and V̂ do not commute. This propagator
is strictly unitary. Higher order accuracy can be obtained by making the
following symmetric decomposition

exp (− i
h̄

(T̂ + V̂ )∆t) = exp (− i

2h̄
T̂∆t) exp (− i

h̄
V̂∆t) exp (− i

2h̄
T̂∆t)+O(∆t3)

(12)
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The Fourier method is then used to evaluate the propagators. By using the
fast Fourier transform (FFT) technique the method becomes numerically
very efficient.

For motion in one dimension one time-step is obtained from the following
formula

ψ(x, t+ ∆t) = 〈x| exp (− i
h̄
T̂∆t) exp (− i

h̄
V̂∆t)|ψ(t)〉

=

∫
dx′〈x| exp (− i

h̄
T̂∆t)|x′〉 exp (− i

h̄
V (x′)∆t) ψ(x′, t)

=

∫
dp′

∫
dx′〈x|p′〉 exp (− i

h̄

p′2

2m
∆t)〈p′|x′〉 exp (− i

h̄
V (x′)∆t) ψ(x′, t)

= F−1

[
exp (− i

h̄

p′2

2m
∆t) F

[
exp (− i

h̄
V (x′)∆t) ψ(x′, t)

]]

where F denotes the Fourier transform. The coordinate space is discretized

xj = x0 + j∆x; j = 0, ..., N − 1

and the Fourier transform becomes discrete (cf. chapter 12.1 in [1])

ψm =
N−1∑
j=0

exp (−ikmxj) ψj

where

km = (m− N

2
) ∆k; m = 0, ..., N − 1

and

∆k =
2π

N∆x

The method is implemented in the following way:

• The wave function ψj(t) is given on a grid.

• It is multiplied by exp [−(i/h̄)Vj∆t] and a discrete Fourier transform
is performed.

• The Fourier transformed wave function is multiplied by
exp [−(i/h̄)(h̄2k2

m/2m)∆t] and an inverse discrete Fourier transform is
performed.

• The wave function in coordinate space is now obtained at the next
time step ψj(t+ ∆t) and the procedure is repeated.

Typically the number of grid points is of the order 100 in each dimension.
For a three dimensional problem this implies 106 grid points. Straight-
forward evaluation of the discrete Fourier transform leads to N2 complex
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multiplications (for each m you have to do N multiplications). Using a fast
Fourier transform (FFT) routine (see chapter 12 in [1]) this number is re-
duced to N log2N . The difference between N2 and N log2N is immense.
With N = 106 and with a Mflops (million floating points operations per
second) computer we have that N2 ∼ 106 seconds ∼ 278 hours ∼ 12 days
and N log2N ∼ 20 seconds, respectively.

Dynamics with electronic transitions

We have up to now considered the motion on a single potential energy
surface. For instance, that could correspond to atomic motion on the adi-
abatic potential energy surface, the potential energy surface corresponding
to the ground-state of the electronic degrees of freedom. Important quan-
tum effects are then tunneling, interference and level quantization. Another
important quantum effect is connected to electronic transitions to excited
states. Within the Born-Oppenheimer approximation for separating the
nuclear and electronic degrees of freedom these are excluded. When a tran-
sition between electronic states occurs, the forces experienced by the atoms
changes, often dramatically. Proper incorporation of this effect is crucial in
many physical, chemical and biological processes.

If two electronic states are relevant the state-vector has to include two
components

|ψ(t)〉 =

[
|ψ1(t)〉
|ψ2(t)〉

]
(13)

For motion in one-dimension the Hamiltonian Ĥ = T̂ + V̂ is generalized to
a 2x2 matrix with

T̂ =

[
− h̄2

2m
∂2

∂x2 0

0 − h̄2

2m
∂2

∂x2

]
(14)

and

V̂ =

[
V11(x) V12(x)
V21(x) V22(x)

]
(15)

Here the diabatic representation is used and V11(x) and V22(x) are the two
diabatic potential energy surfaces. The coupling between the two different
surfaces is given by the nondiagonal terms.

An important model case that contains two electronic states is the so
called curve crossing problem. It could for instance describe the neutral and
ionic states for an atom approaching a solid surface. Close to the surface
the ionic state may be lowest in energy while further away from the surface
the neutral state is lower. At some distance these two diabatic curves then
have to cross each other.

Consider for simplicity the following model system. In the diabatic rep-
resentation the potential energy is given by the expressions

V11(x) = a [2− exp (−x/b)], x > 0
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V11(x) = a exp (x/b), x < 0

V22(x) = 2a− V11(x)

V12(x) = V21(x) = c exp (−(x/d)2)

The two curves V11(x) and V22(x) cross each other at x=0. In the adiabatic
representation, where V̂ is diagonal, there will be a splitting around x = 0
between the ground state and the excited state. The magnitude of the
splitting depends on the strength of the coupling V12(x). If the coupling
strength is large the splitting is also large and the probability for a transition
between the adiabatic states becomes small. An analytical expression for
this transition probability has been derived under certain assumptions by
Landau [2], Zener [3] and Stückelberg [4].

Task

1. Consider a hydrogen atom with mass m. Assume that it is described
by a Gaussian wave packet

ψ(x) = (
1

πd2
)1/4 exp [−(x− x0)2

2d2
] exp [ip0(x− x0)/h̄]

with the width d=0.5 Å. The magnitude of the mean momentum p0 is
such that p2

0/2m = 0.1eV . A suggestion is to use Å, fs and eV as units
for length, time and energy, respectively. What are then m and h̄ in
these units? Determine the probability density n(x) = |ψ(x)|2 and the
corresponding density in momentum space numerically using a FFT
routine. Compare with the analytical results and convince yourself
that the Fourier transformation is done correctly. (2p)

2. Consider now the motion of the hydrogen atom in the previous exer-
cise. Assume that it is moving as a free particle and determine the
time-evolution numerically using the split-operator FFT method. Vi-
sualize your results. Determine the time-evolution of the width of the
Gaussian wave packet both in real and momentum space. You can
compare with the analytical results (see for instance Ref. [5] which is
available electronically at the Chalmers library). (2p)

3. Consider now the scattering against a one-dimensional Eckart barrier
described by the expression

V (x) = V0 cosh−2(x/α)

using the Gaussian wave packet from the previous exercises. Assume
that V0=0.1 eV and consider two cases for the width, α=0.5 Å and
α=2.0 Å. Solve the scattering problem using the split-operator FFT
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method for three cases; p2
0/2m=0.08 eV, 0.10 eV and 0.12 eV. Deter-

mine the following integrated probability densities

n<(t) =

∫ 0

−∞
|ψ(x, t)|2dx

and

n>(t) =

∫ ∞
0
|ψ(x, t)|2dx

which can be used to determine the transmission and reflection prob-
abilities. Interpret your results. (4p)

4. Consider now the curve crossing problem and the model system de-
scribed in the text. Use the following numbers for the parameters that
enter in the potential: a = 0.3 eV, b = 0.4 Å, d = 0.7 Å. Consider two
cases for the coupling strength: c = 0.05 eV and c = 0.1 eV, respec-
tively. Determine the adiabatic states by diagonalizing the matrix V̂
and plot your results both for the diabatic and adiabatic surfaces, for
the two different coupling strength. If a classical particle is moving
on the adiabatic ground state it will be reflected at the crossing point
for energies E < E0. How large is E0 for the two different coupling
strengths? (1p)

5. Consider now a quantum particle which is represented initially by a
Gaussian wave-packet. Locate it to the left of the crossing point with
momentum in the positive direction. Assume the mass to be given by
the proton mass. Choose the width of the wave-packet such that the
initial energy spread is about ±10 % of the initial energy. Consider
energies in the range 0 < E < 5a. A quantum particle with E < E0

can tunnel and there is a finite probability for transmission on the
adiabatic ground state. For E > E0 the probability for transmission
is not unity due to non-classical reflection. The upper adiabatic state,
the excited state, will also influence the motion of the quantum par-
ticle. For not too high energies it can be temporarily trapped in the
crossing region and reflected back. At high energies there is also a
large probability of transition to and transmission on the upper state.

Propagate the wave-packet using the split operator fast Fourier trans-
form technique. The following references can be useful when general-
izing and implementing the method for a two state system [6, 7, 8].
Study the probabilities for the following processes: (i) transmission
on the adiabatic ground state; (ii) reflection on the adiabatic ground
state; and (iii) transmission on the upper adiabatic state, the excited
state. Interpret your results! (7p)
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