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The Monte Carlo method

Based on extensive use of random numbers

Simulation of problems that are modelled as
stochastic in nature.

Ex. Brownian dynamics (E4)

Simulation of problems that are "deterministic”,
but reformulated such that a stochastic approach can be used.

Ex. Monte Carlo integration (E3)
- equilibrium properties in statistical mechanics (H2a)

- guantum stucture in high dimensions (H3a)
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n putting together this issue of Computing in
Science & Engineering, we knew three things:

¢ Metropolis Algorithm for Monte Carlo
¢ Simplex Mcthod for Linear Programming

itwould be difficult to list just 10 algorithms; ¢ Krylov Subspace Iteration Methods
it would be fun to assemble the authors and ® The Decompositional Approach to Matrix
read their papers; and, whatever we came up Computations
with in the end, itwould be controversial. We ® The Fortran Optimizing Compiler
tried to assemble the 10 algorithms with the greatest * QR Algorithm for Computing Eigenvalues
influence on the development and practice of science * Quicksort Algorithm for Sorting
and engineering in the 20th century. Following is our * Fast Fourier Transform
list (here, the list is in chronological order; however, * Integer Relation Detection

the articles appear in no particular order): * Fast Multipole Method
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THE JOURNAL OF CHEMICAL PHYSICS YVOLUME 21, NUMBER ¢ JUNE, 19523

Equation of State Calculations by Fast Computing Machines

Nicuoras METropoLis, ARIANNA W. RoseNBLuTH, MARsHALL N. RosEnBLUTH, AND Aucusta H. TELLER,
Los Alamos Scientific Laboratory, Los Alamos, New Mexico

AND

EpwARD TELLER,* Depariment of Physics, University of Chicago, Chicago, Illinois
(Received March 6, 1953)

A general method, suitable for fast computing machines, for investigating such properties as equations of
state for substances consisting of interacting individual molecules is described. The method consists of a
modified Monte Carlo integration over configuration space. Results for the two-dimensional rigid-sphere
system have been obtained on the Los Alamos MANTAC and are presented here. These results are compared
to the free volume equation of state and to a four-term virial coefficient expansion.

O
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Equation of state — system of many interacting particles

High-dimensional integrals
(Y

Probability distribution function

QOO
QC> PON) =~ exp [~V (V)
C) Mean value, e.g. the potential energy
Q0

(V) = f NV Y PN

Metropolis et al. introduced: Importance sampling

"instead of choosing configurations randomly, then
weighting them with exp [-8V (r!V)], we choose con-

figurations with the probability proportional to exp [-8V (rV)]
and weight them evenly”

‘ Markov Chain Monte Carlo (MCMC)

Goran Wahnstréom, Department of Physics, Chalmers



Monte Carlo

Content:

* Monte Carlo integration

Markov chains

The Metropolis algorithm

Error estimate

Variance reduction / Importance sampling
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Monte Carlo integration

I = /01 f(x)dx

H(x)=4/(1+x°)

0
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1. Choose N points z; at random
with uniform probability within the
integration interval [0,1]

2. Determine the mean value

1 N 1 N
In = U>EN.§ f(fﬂi)EN_; fi
i=1 =1
and the variance

of =((f = (N?) = (1) = (1

3. Approximate the value of the in-
tegral as

I=1Iy+
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Central limit theorem

The sum
1 N
=Nyt
is approximately Gaussian distributed

P(IN) =

(In — M)2]

ex —
D[ 20‘1

mor

with mean value
ElIn] =pn=(f)
and variance

Var[ly] = of = o7/N

The requirements are:

1. The variables (f1,...,fi,--., fN)
have to be statistically indepen-
dent.

2. The mean value p = (f) and the
variance a% = <(f— (f))2> have
to exist.

3. N has to be sufficiently large.

Notice: This is independent on the
actual distribution for f.
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Central limit theorem - example

Distribution of 20 000 Monte Carlo evalu- _
ations of ! o N=100

1 4
I=/ dx
01422

using N = 100 and N = 1000 points, re-
spectively, for each integral evaluation.

20
Analytical result:

o N=1000

15 |

10

%% ) . 2 33 34
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Monte Carlo integration - example

Numerical example

1 4
1:/ T e
0 14 2

The probability to find the
correct value within

+o; is 68%
and within
+20; itis 95%

Notice: The error is inde-
pendent on dimension, in com-
parison with more conven-
tional numerical integration
schemes.

N Iy or szaf/\/N
MC 10! 3.18266 0.61954 0.19592
MC 102 3.20677 0.60315 0.06032
MC 103 3.14463 0.65030 0.02056
MC  10% 3.14380 0.63989 0.00640
MC  10° 3.14096 0.64438 0.00204
exact 3.14159 0.64310
34 r .
33 ¢+
I

¢ ry = -»-
31 r
3.0 L.
295° 10 107 10° 10° 0 10
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Central limit theorem - example

Distribution of 20 000 Monte Carlo evalu-

ations of

I 11d
= — ax
0 vz

using N = 100 and N = 1000 points, re-
spectively, for each integral evaluation.

Analytical result:

p=2

oy undefined

< N=100

1.5 2.0 25 3.0

[+
o
© N=1000
o (o2
o}
o3
<&
o [+
<o
° °
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Monte Carlo

Content:

* Monte Carlo integration

Markov chains

The Metropolis algorithm

Error estimate

Variance reduction / Importance sampling
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Variance reduction / Importance sampling

of
[ =1Iy+—=
vV N
The error can be reduced by either
- increasing the number of sampling points N
or by

- decreasing the variance by using importance sampling
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Importance sampling

b
I:/ f(x) dz 1. Choose N points z; at random
¢ with probability p(z) within the
b b . . .
/ f(z) () dz _/ o(x) p(x)ds integration interval
a p(a)
5 - T - '( )' 2. Determine the mean value
“ T~ T 1 X
3'_ ] IN:<g>p:Nzg($z):_Zfz/pz
=1
2 | \ and the variance
e ] 2 _ o2\ _ /2 2
N e S, o5 = (9= (9),)?) =(d°) —(9);
00.0 0l2 0t4 0I6 018 1.0
5 ! ; : - 3. Approximate the value of the in-
.l — g(x) tegral as
ag
- [=Iy+t—L
3 ‘ N=UN
2 -
1} . ] Notice: og < oy

O P I " 1 i
00 - 02 0.4 0.6 0.8 1.0
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Importance sampling - example

Numerical example

1 4
=t
0 14 z2

p(x) =1

N Iy or szaf/\/ﬁ
MC 101 3.18266 0.61954  0.19592
MC 102 3.20677 0.60315  0.06032
MC 103 3.14463 0.65030 0.02056
MC  10% 3.14380 0.63989  0.00640
MC  10° 3.14096 0.64438  0.00204
exact 3.14159 0.64310

p(xz) = (4 —-2x)/3

N Iy og o =og/VN
MC 10! 3.18155 0.06746 0.02133
MC 102 3.14107 0.08327  0.00833
MC 103 3.13931 0.08102 0.00256
MC 104 3.14119 0.08072  0.00081
MC  10° 3.14200 0.08012  0.00025
exact 3.14159 0.08002
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Importance sampling

Multidimensional generalization of I = ff{g(w) p(x)dx

Discrete system

e.g. the Ising model

«— > > > —
— > —> «— >
— — > —> >
— > — —> —
— > —> —> —>

Probability distribution function
1
P = 7 exp [-BE;]
Partition function
Z =Y exp|[-BE]
i
Mean value, e.g. the energy

(E) =) E;P;

)

N

Continuous system O%O )
O

e.g. an atomic system %%)

q
D
< OOOC

Probability distribution function

PNy = ~exp [V (V)]
Partition function

7 = /drN exp [-B8V (x™)]
Mean value, e.g. the potential energy

(V) = /drNV(rN)P(rN)
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Importance sampling

Multidimensional generalization of I = ff{g(w) p(x)dx

Discrete system 1 I 1 # 1
e.g. the Ising model ttt it
tt et
20 N R

Probability distribution function
1
P = 7 exp [-BE;]
Partition function
Z =Y exp|[-BE]
i
Mean value, e.g. the energy

(E) =) E;P;

)

N

Continuous system O%O )
O

e.g. an atomic system | g;%o)é)

Probability distribution function
PNy = ~exp [~V ()]
Partition function
Z = /drN exp [-B8V (x™)]

Mean value, e.g. the potential energy

\ How to generate ?

Goran Wahnstréom, Department of Physics, Chalmers



Monte Carlo

Content:

* Monte Carlo integration

Markov chains

The Metropolis algorithm

Error estimate

Variance reduction / Importance sampling
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The Metropolis algorithm

A general method of sampling arbitrary highly-dimensional probability dis-
tributions by taking a random walk through configuration space.

e It was introduced by Metropolis et al. 1953 to determine the equation
of state for a hard sphere liquid.

e It uses the Markov chain technique to generate configurations with
knowledge of only relative probabilities, no absolute probabilities have
to be known.

e T he algorithm guides the Markov chain to important regions by re-
jecting unlikely configurations.

e The generated configurations become correlated and care has to be
taken when evaluating proper error bars.
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Example - the weather in Goteborg

The weather in Goteborg is either 0O 0.25 0.25 |
sunny (1), cloudy (2) or rainy (3). W — 0.5 0-.5 0:25
A sunny day is never followed by another 0.5 0.25 0.5

sunny day. Rainy or cloudy weather is
equally probable after a sunny day. A rainy
or cloudy day is followed with 50% proba-
bility by another day with the same weather.
If, on the other hand, the weather is chang-
ing from cloudy or rainy weather, the fol-
lowing day will be sunny only in half of the
cases.
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Example - the weather in Goteborg

P(s) = WSP(0)

S p1 p2 pP3 S P1 P2 P3

0 | 1.00000 0.00000 0.00000 0O | 0.50000 0.00000 0.50000
1 | 0.00000 0.50000 0.50000 1 | 0.12500 0.37500 0.50000
2 | 0.25000 0.37500 0.37500 2 | 0.21875 0.37500 0.40625
3 | 0.18750 0.40625 0.40625 3 1 0.19531 0.39844 0.40625
4 1 0.20312 0.39844 0.39844 4 | 0.20117 0.39844 0.40039
5 1 0.19922 0.40039 0.40039 5 1 0.19971  0.39990 0.40039
6 | 0.20020 0.39990 0.39990 6 | 0.20007 0.39990 0.40002
7 1 0.19995 0.40002 0.40002 7 1 0.19998 0.39999 0.40002
& | 0.20001 0.39999 0.39999 & | 0.20000 0.39999 0.40000
9 | 0.20000 0.40000 0.40000 9 | 0.20000 0.40000 0.40000
10 | 0.20000 0.40000 0.40000 10 | 0.20000 0.40000 0.40000
oo | 0.20000 0.40000 0.40000 oo | 0.20000 0.40000 0.40000
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Example - the weather in Goteborg

The weather in Goteborg is either 0O 0.25 0.25 |
sunny (1), cloudy (2) or rainy (3). W=1|05 0-.5 0:25
A sunny day is never followed by another 05 025 05

sunny day. Rainy or cloudy weather is

equally probable after a sunny day. A rainy SO|UtiOﬂ Of
or cloudy day is followed with 50% proba-

bility by another day with the same weather. PSt . WPSt

If, on the other hand, the weather is chang- -

ing from cloudy or rainy weather, the fol- . .

lowing day will be sunny only in half of the m D| 1€S that

cases. B .
0.2

PSt=| 0.4

0.4
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Importance sampling

Multidimensional generalization of I = ff{g(w) p(x)dx

Discrete system 1 I 1 # 1
e.g. the Ising model ttt it
tt et
20 N R

Probability distribution function
1
P = 7 exp [-BE;]
Partition function
Z =Y exp|[-BE]
i
Mean value, e.g. the energy

(E) =) E;P;

)

N

Continuous system O%O )
O

e.g. an atomic system | g;%o)é)

Probability distribution function
PNy = ~exp [~V ()]
Partition function
Z = /drN exp [-B8V (x™)]

Mean value, e.g. the potential energy

\ How to generate ?
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PSt — WPSt
The idea is to use PSt in a simulation studly.

Importance sampling

Mean value, e.g. the potential energy

(V) = / NV NPy

However, we do not have control over PSt.
It is a consequence of a given transition matrix W.

How to construct the matrix W
to obtain Pst ?
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Basic idea

If you can find a matrix W with the following properties

1. 0<w,, <1 Vnandm
M

2. E Wy = Vm

n=1

3. Wy, 1s ergodic

4. flU?ﬂ!Tlp'n- — QU'nﬂﬂlp m

then the Markov process will, in the long run, produce states distributed
according to the probability distribution P.
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Example - the weather in Goteborg

0O 0.25 0.25
The weather in G6teborg is either W = 0.5 0.5 0.25
sunny (1), cloudy (2) or rainy (3). 05 025 0.5
A sunny day is never followed by another
sunny day. Rainy or cloudy weather is - -
equally probable after a sunny day. A rainy 0-2
or cloudy day is followed with 50% proba- Pst= | 0.4
bility by another day with the same weather. 0.4
If, on the other hand, the weather is chang- L -

ing from cloudy or rainy weather, the fol-
lowing day will be sunny only in half of the
cases.
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Example - the weather in Goteborg

0O 0.25 0.25
The weather in G6teborg is either W = 0.5 0.5 0.25
sunny (1), cloudy (2) or rainy (3). 05 025 0.5
A sunny day is never followed by another
sunny day. Rainy or cloudy weather is - -
equally probable after a sunny day. A rainy 0-2
or cloudy day is followed with 50% proba- Pst= | 0.4
bility by another day with the same weather. 0.4
If, on the other hand, the weather is chang- L -
ing from cloudy or rainy weather, the fol-
lowing day will be sunny only in half of the _ -
cases. 0.4 0.2 0.1
W=|04 0.3 0.5
0.2 0.5 04
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Monte Carlo

Content:

* Monte Carlo integration

Markov chains

The Metropolis algorithm

Error estimate

Variance reduction / Importance sampling
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