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Ising model

The Hamiltonian

H=—J Z SiSj—hZSi
7

<ij>
Si=:|:1, rL'=:|.,...,]\f

< 13 > - sum of all nearest neighboring

pair of spins
J - coupling constant
h - external field

«— > —> —> —>
— —> —> «— —>
—_—r — —> —> —>
— —> — —> —
—_— > —> —> —>

a lattice model

one of the simpliest and non-trivial model
systems of interacting degrees of freedom

introduced by Lenz and Ising to model
phase transitions in magnetic materials in
the 1920s

solved exactly in 2D by Onsager 1944

has not been solved exactly in 3D (yet)

useful in condensed matter physics and field
theory

a (rather crude) model for magnetism

can be used to model binary alloys in
materials science

can be used to model adsorbed particles in
surface science

can be extended in many directions
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Ising model — statistical thermodynamics

Canonical ensemble:

The probability for the system to be in
microstate v:

1

where g = 1/kgT.

The partition function:

Z(B,h) => exp(—BEy)

The magnetization

N
My — Z S;
i=1
The energy

= —J Z $iS;j —thZ

<1)>

The mean magnetization

M = (M) = ZMyexp( BEL)

The mean energy

U=(E,)= %Z E,exp(—pE,)

The isothermal susceptibility

oM 1
= (), = 2 (o) - a?

The heat capacity at constant field

oU 1
= (57), = ()~ 57
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Ising model — the exact solution (2D)

Due to Onsager, 1944 e
The transition temperature 7,
kT 2
A ~ 2.269
J In(v2+1)
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Ising model — mean field solution (h=0)

The exact solution

The energy

U=-J Z <szsj>

<ij>
T he mean field solution

The energy

Upp=—J > (si)(sj) = —J2Nm?
<i)>

The number of microstates
NI
~ N4IN|!

The entropy

N!

S=kpinW =
NjIN|!

The free energy

F=U-TS
Minimum if
]CBT 1—|—m
m = In
8J 1—m

which implies that

kBTc/J = 4.0
1.2
fexact’ —
i ge..  Mean-field’ -
0.8 } Ny
E 0.6
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0
_0 - 2 L 1 N
kpT/J
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Ising model — mean field solution (h=0)
kgT 1+mnl—|—m+1—m l—m]

Ia
TME o2 4 | In
NJ J 2 2 2 2

kpT/J =2.5 kpT/J = kpTe/J = 4.0 kpT/J =5.5

Dashed line: U
Dash-dotted line: —TS
Full line;: F=U-1TS
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Ising model — Metropolis algorithm

. Set the desired temperature T and
external field h.

. Initialize the system, e.g. use a ran-
dom configuration or a configura-
tion from a previous simulation.

. Perform the desired number of Monte

Carlo sweeps through the lattice.

. Exclude the first configurations (let
the system equilibrate).

. Compute average quantities from sub-
sequent configurations and estimate
the error from statistically indepen-
dent configurations.

3a.

3b.

3cC.

3d.

Make a trial change, e.g. by flipping
a randomly chosen spin.

Determine the change in energy AFE

If AE < 0 accept the new configu-
ration

If AE > 0 generate a random num-
ber r between 0 and 1, and if

exp(—AE/kgT) > r

accept the new configuration, oth-
erwise count the old configuration
once more.
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The Metropolis algorithm

The Metropolis algorithm is a particular
way of ensuring that the transition rule
satisfies detailed balance.

The transition matrix w,,, = W 1S
split into two parts

1 — /
w nm — Tnm CL?I'TTI-

where 7,,,,, is the probability of making a
trial change from state €, to state €,
and «,,,, is the probability of accepting
the trial state.

The acceptance probability is assumed to
satisfy

1 if Pn = Pm,
pn/pm if Pn < Pm

Cpm =

and to ensure detailed balance the trail
change then has to be symmetric

Tnm = Tmn

Moves that are not accepted are rejected
and remain at the same location for at
least one more step

Wy = 1 — E Wnm

n(#m)

rej. accept

I > Dn
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Equilibration

It is important to wait until

the system has equilibrated.

-0.6

08

0 200 400 600 800

1000

Goran Wahnstrom, Department of Physics, Chalmers



Equilibration

It is important to wait until
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Equilibration

It is important to wait until

the system has equilibrated.
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Boundary conditions

To mimic a large system periodic boundary
conditions are commonly used.
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Magnetization

Ising model — Numerical results
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Ising model — Numerical results
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The Cu-Zn system — a binary alloy

Equilibrium phase diagram
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Binary alloy — simple model

AB alloy with bcc structure
ex. Cu-Zn (B3-brass)

- N atoms A, N atoms B

- bcc-lattice = two interpenetrating
sc-lattices (a and b)

Long-range order parameter P

Number of A atoms on the a sublattice
= i(1+ P)N

P =41 perfect order
P =0 no order

Short-range order parameter r

g = number of nearest-neighbor bonds
that are AB bonds

1
r=0a-4)

r =1 complete order
r =0 complete disorder
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Binary alloy — mean field solution
The energy

E=Npabaa+ NppEpp + NapFEap

where Nij is the number of nearest-neighbor 25 bonds, and Eij is the energy of
an 3 bond.

Mean field approximation

Assume no correlations, i.e.

Naa = 8 [;(1+ PN 501 - P)] =2(1 - PN

1
2
8N [S(1+ P)I? +8N [L(1 - P)2 = 4(1 + PPN

Npp = 8 S+ PIN] [[(1 - P) =2(1 - PN

This implies that
Eyp = Eg— 2NP?AE

where

=
o
|

2N(Eaa+ Epp + 2E4pB)
AE = Ejxa+ Epp—2Exp
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Binary alloy — mean field solution

The number of configurations

W= N!
[3(1+ P)NI! [3(1 — P)N]!

The entropy

S ]{TB“']W

= 2NkgIn2— Nkg[(1 4+ P)In(1 + P)+ (1 — P)In(1 — P)]

The free energy

F = U-TS
= Eg—2NP?AE
— 2NkgTIn24 NkgT[(14+P)In(1+P)+ (1 - P)In(1 — P)]

The equilibrium structure is obtained by finding the minimum of F with respect
to the order parameter P. It leads to a phase transition at

T. = 2AE/kp
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- Giordano and Nakanishi, Computational Physics
- Koonin and Meredith, Computational Physics
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Variational Monte Carlo

Content:
= Variational Quantum Monte Carlo
= Multi-dimensional case

= Example: Helium
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Variational Quantum Monte Carlo

Aim: To obtain a good estimate of the ground state
energy Eg for a quantum system.

Based on the variational theorem

<¢T|H|¢T>>E
(Yr | Yy T

Elyr] =

where
Y is a trial wave function

Choose a physically reasonable form for the trial wave
wave function that depends on one or more parameters
a;. Determine E[Yr] and vary «; until a minimum is
obtained.
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Multi-dimensional case

Write in terms of a normalized weight function p(X), or
probability distribution

_ JAX (X HYp(X)
EWor] = e i)~ ) X LA
where
_ Hyp(X)
P =0
is the called the local energy and
2

[dX [ p(X) |2
is the weight function. Use the Metropolis algorithm to
evaluate the multi-dimensional integral.
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Example: Helium

Hamiltonian in atomic units (A =me = e = 4mweg = 1)
2 2 1

1
H=-_(Vi+V3) - ———+ =
2 Lo T 12

Trial wavefunction

Yr(r1,72) = ¢(r1)o(r2) f(r12)

with
o(r) = expl—a1r]
_ aor
Fo) = oxp| - MBJ
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Example: Helium

The cusp conditions (boundary conditions)

im £92(r) _ 5
r—0¢ Or
im 1070 _ 1
r—0 or 9)
imply that
br(ry, 7o) = exp [—2r1] exp [—2ro] exp 712 ]
2(1 ‘I‘ ()5’1“12)

and that the local energy can be written as

(P1 —7T2) - T12

Er(ri,r2) = -4+

(14 ar1s)?
Qv o Q 1
T Fars)  Afam)?  (Q+arma)? 41+ aro)®
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