
Göran Wahnström

MONTE CARLO

Lecture notes

Göteborg, 14 November 2017

The Monte Carlo method

Monte Carlo methods are a class of computer based techniques, generally
based on extensive use of random number sequences. The name was invented
by researchers in the 1940’s working at Los Alamos and it refers to the
Monte Carlo Casino in Monaco. One can distinguish between two types
of problems that can be treated by Monte Carlo methods. One type is
direct simulation of problems that are modelled as stochastic in nature and
the other is problems that are deterministic but reformulated such that a
stochastic approach can be used [1].

An example of the former type of problem is Brownian dynamics, which
will be discussed later in the course. Equilibrium properties of interacting
particles in classical statistical mechanics is an example of the latter type
of problems. In 1953 Metropolis et al. [2] studied the equation of state
of a system of particles treated as hard spheres in two dimensions. The
obvious way to find out about the equilibrium properties is to solve for the
dynamics of the system using Newton’s equation of motion, and let it run
until it reaches equilibrium. We call this molecular dynamics simulation.
The great insight of Metropolis et al. [2] was that one does not need to
solve for the dynamical evolution of the system, one can instead make use
of a random walk process, a Markov chain, having the same equilibrium
distribution.

The use of Markov chains has expanded considerably after the seminal
work by Metropolis et al. [2] and the Markov chain Monte Carlo (MCMC)
method has become an important technique in simulation, optimization and
estimation [3]. For instance PageRank, the search ranking algorithm used
by Google, is based on a Monte Carlo random walk technique. Monte Carlo
methods can also be used to solve partial differential equations in high di-
mensions. Later in the course this type of application of the method will be
discussed in connection to problems in quantum mechanics.

1

Contents

1 Probabilities 3
1.1 Probability functions . 3
1.2 Central limit theorem . 4

2 Random numbers 7
2.1 Uniform random numbers . 7
2.2 Non-uniform random numbers 7

2.2.1 Transformation method 8
2.2.2 Rejection method . 11

3 Monte Carlo integration 13
3.1 Monte Carlo integration with uniform sampling 13
3.2 Variance reduction and importance sampling 15

4 Markov Chain Monte Carlo 19
4.1 Markov process . 19
4.2 Random walk in state space 22
4.3 Basic idea . 24
4.4 The Metropolis algorithm . 25
4.5 The Metropolis-Hastings algorithm 27

A Markov Chain 28

B Error estimate 31

2

1 Probabilities

1.1 Probability functions

We start by presenting some basic concepts within probability theory. Con-
sider a physical system. It can be in different states. The set of all possible
states is the sample space. A discrete sample space contains either a finite
or infinite number of distinct values (such as the ”spin” configuration in an
Ising model) while a continuous sample space contains an infinite number
of continuous values (such as the positions of particles in a classical liquid).
The result of an observation of the system, an ”experiment”, is called the
outcome and is characterized by a single point in sample space, a sample
point. We use upper case (X,Y, . . .) to denote a sample point.

The outcome cannot be predicted by certainty, only its probability. For
continuous variables this is described by the probability density function p(x)
that gives the probability for all possible outcomes, with p(x)dx equal to the
probability that the outcome X is in the interval x − dx < X ≤ x. The
probability density function p(x) has to be non-negative and integrate to
unity, ∫ ∞

−∞
p(x) dx = 1 . (1)

It is also convenient to introduce the corresponding cumulative distribution
function according to

F (x) =

∫ x

−∞
p(x′) dx′ , (2)

where then F (x) is equal to the probability that X will take a value less
than or equal to x.

In the discrete case the corresponding probability density function is
denoted probability mass function pi, where pi is the probability that the
outcome is the state with index i. The values pi have to be non-negative
and normalized

N∑
i=1

pi = 1 , (3)

where we assumed finite samle space with N distinct values. The corre-
sponding cumulative distribution function is given by

Fi =
i∑

j=1

pj . (4)

The expected, or average, value of some arbitrary function f(x) with
respect to the probability density function p(x) is given by

〈f〉 =

∫ ∞
−∞

f(x)p(x) dx . (5)

3

The two most important are the mean value

E[X] ≡ µ = 〈x〉 =

∫ ∞
−∞

xp(x) dx (6)

and the variance, the second moment around the mean,

Var[X] ≡ σ2 =
〈
(x− 〈x〉)2

〉
=

∫ ∞
−∞

(x− 〈x〉)2p(x) dx . (7)

The square-root of the variance is the standard deviation σ. The variance
can be evaluated from Eq. (7), which would require the pre-calculation of
the mean 〈x〉. The pre-calculation can be avoided by rewriting Eq. (7) as

σ2 =
〈
x2
〉
− 〈x〉2 =

∫ ∞
−∞

x2p(x) dx−
[∫ ∞
−∞

xp(x) dx

]2
, (8)

which enables one to accumulate
〈
x2
〉

and 〈x〉 simultaneously during a nu-
merical simulation. Corresponding expressions can be derived for the dis-
crete case.

Some useful probability distributions are the uniform pu(x), the exponen-
tial pe(x) and the Gaussian pg(x) distributions. The uniform distribution is
given by

pu(x) =

{
1/(b− a) a ≤ x ≤ b
0 otherwise

(9)

with the mean value µ = (a + b)/2 and variance σ2 = (b − a)2/12, and the
exponential by

pe(x) =

{
λ exp (−λx) x ≥ 0
0 x < 0

(10)

with the mean value µ = 1/λ and variance σ2 = 1/λ2. The Gaussian
distribution with mean value µ and variance σ2 is given by

pg(x) =
1√

2πσ2
exp

[
−(x− µ)2

2σ2

]
. (11)

1.2 Central limit theorem

Consider now the situation where we have performed a set of N experimental
observations or numerical simulations of a system. We denote the sequence
of outcomes by (X1, X2, . . . , XN) and we assume that they are independent.
They are distributed according to the (unknown) probability density func-
tion p(x) with the (unknown) mean value µ and (unknown) variance σ2.
The standard estimate of the mean value of X is the sum

S(X1, . . . , XN) ≡ 1

N

N∑
i=1

Xi , (12)

4

but only in the limit N →∞ the true mean value µ is obtained. For a finite
value of N we only get an approximate value. However, we would like to
obtain some estimate of the error. This can be derived using the central limit
theorem. Suppose that we continue the experiment until we have obtained
M independent sums, S1 to SM , each composed of N samples. The set
of sums {Si} are M new random variables. According to the central limit
theorem these are distributed according to a Gaussian probability function,
regardless of the underlying probability function p(x) (provided the variance
σ2 is finite), with mean value µ and variance σ2S = σ2/N , i.e.

G(s) =
1√

2πσ2S

exp

[
−(s− µ)2

2σ2S

]
(13)

=
1√

2πσ2/N
exp

[
−(s− µ)2

2σ2/N

]
.

In an actual experiment or simulation the mean value and the variance are
estimated by evaluating

µ ' 1

N

N∑
i=1

Xi (14)

and

σ2 '

[
1

N

N∑
i=1

X2
i − (

1

N

N∑
i=1

Xi)
2

]
, (15)

respectively. Due to that the mean value µ is estimated the more correct
expression for the variance of S is

σ2S = σ2/(N − 1) . (16)

For the Gaussian distribution, the probability of a measured result falling
between ±σS of the exact µ is about 68%; the probability for falling within
±2σS is about 95%. Therefore, if N is sufficiently large for the central limit
theorem to hold, then the sum S in Eq.(12) provides an estimate of µ that
has a 68% chance of being within ±σS and a 95 % chance of being within
±2σS of the true mean value.

5

Central limit theorem The sum

I =
1

N

N∑
i=1

fi

is approximately Gaussian distributed

P (I) =
1√

2πσ2I

exp

[
−(I − µ)2

2σ2I

]

with mean value
E[I] = µ = 〈f〉

and variance

Var[I] = σ2I = σ2f/N =
〈
(f − 〈f〉)2

〉
/N

The requirements are:

1. The variables (f1, . . . , fi, . . . , fN) have to be statistically
independent.

2. The mean value µ = 〈f〉 and the variance σ2f =
〈
(f − 〈f〉)2

〉
have to exist.

3. N has to be sufficiently large.

Notice: This is independent on the actual distribution for f .

6

2 Random numbers

Random numbers are made available on most computers as part of the soft-
ware or in common application libraries. The sequence of numbers produced
by the computer cannot be truly random. Some underlying well-defined al-
gorithm produces the numbers which therefore ought to be predictable. For
that reason the numbers produced by a computer are often called pseudo-
random. To test for randomness different statistical tests are available and
good random number generators should pass these tests. A good random
number generator should produce numbers that appear to be perfectly ran-
dom, unless you happen to know both the algorithm and its internal state.

2.1 Uniform random numbers

The basic building block for most random number generators is a routine
that produces a random number uniformly distributed in a specified range,
typically between 0 and 1. These numbers are sometimes called uniform
deviates. During the last decades the state of the art for generating uniform
deviates has advanced considerably and different efficient generators are now
available [4].

For a long time routines based on linear congruential generators domi-
nated. These generates a sequence of integers I1, I2, I3, . . . by the recurrence
relation

Ij+1 = (aIj + c) mod m (17)

where a, c and m are integers and mod denotes the modulus operation,
i.e. Ij+1 is the remainder when the integer (aIj + c) is divided by m. The
generator has to be initialized with a ”seed” number I0. By construction all
integers in the sequence I1, I2, I3, . . . are located between 0 and m − 1 and
the sequence will eventually repeat itself, with a period no greater than m.
The desired uniform random number is obtained from

ξi = Ii/m. (18)

If m, a and c are properly chosen one can prove using number theory that
the period will be of maximal length, i.e. of length m, and all possible
integers between 0 and m−1 occur once and only once. One such generator
is obtained by choosing a = 16807, c = 0, and m = 231 − 1 = 2147483647
[5]. Today the recommendation is to avoid linear congruential generators [4].
Other and better generators have been developed, often based on combining
different unrelated methods [4].

2.2 Non-uniform random numbers

In many situation random numbers are needed that are not distributed
uniformly but according to some probability density function p(x). Here we

7

will present two methods to generate such non-uniform random numbers,
the transformation and rejection method. Both methods are based on the
input from a uniform random number generator, providing uniform random
numbers ξ on [0,1]. For the non-uniform random number we will use the
notation η.

2.2.1 Transformation method

Discrete case

We start with a discrete probability distribution function pi, with i =
1, . . . , N . Consider first a case with only two states with probabilities p1
and p2. To choose the states with correct probabilities using a uniform ran-
dom number ξ we simply choose state 1 if ξ < p1, otherwise we choose state
2. If there are three states with probabilities p1, p2, and p3, then if ξ < p1
we choose state 1, else if ξ < p1 + p2 we choose state 2, else we choose state
3. We can generalize this to N states. We then have to find the value of i
that satisfies the condition

Fi−1 ≤ ξ ≤ Fi (19)

where Fi is the cumulative distribution function (cf Eq. (4))

Fi =

i∑
j=0

pj

where we have defined p0 = 0. According to Eq. (19) state i is chosen with
the correct probability pi.

Continuous case

In the case of a continuous probability distribution function p(x) the cumu-
lative probability function F (x) becomes an integral and the two sums in
Eq. (19) becomes identical and the inequalities become equalities,

F (x) = ξ (20)

where F (x) is defined in Eq. (2). By introducing the inverse function F−1(y)
to F (x) we can write

η = F−1(ξ) (21)

where η is a non-uniform random number that is distributed according to
p(x).

8

Transformation method A non-uniform random number η with
probability distribution p(x).
1. Determine F (x) =

∫ x
−∞ p(x

′) dx′

2. Determine the inverse F−1(y)
3. Generate a uniform random number ξ
4. Obtain η = F−1(ξ)

Uniform distribution A trivial example is to generate random numbers
uniformly distributed on some interval [a,b]. In that case

pu(x) =

{
1/(b− a) a ≤ x ≤ b
0 otherwise

and

F (x) =
x− a
b− a

By inverting F (x) and using Eq. (21) we obtain

η = a+ (b− a)ξ (22)

Exponential distribution As a less trivial example consider the expo-
nential distribution

pe(x) =

{
λ exp (−λx) x ≥ 0
0 x < 0

(23)

The cumulative distribution function is given by

F (x) = 1− exp (−x/λ)

and by inverting this function and using Eq. (21) we obtain

η = −λ ln (1− ξ)

ξ is a uniform random number and therefore also (1 − ξ). A non-uniform
random number η with exponential distribution and average value λ can
therefore be obtained from the expression

η = −λ ln (ξ) (24)

where ξ is a uniform random number.

9

Gaussian distribution Another important probability distribution func-
tion is the Gaussian distribution

pg(x) =
1√

2πσ2
exp

[
−(x− µ)2

2σ2

]
(25)

with mean value µ and variance σ2. In this case the cumulative distribution
function is given by the error function erf(x) according to

F (x) =
1

2

[
1 + erf

(
x− µ√

2σ

)]
but its inverse is not known in closed form. However, it is known for the two
dimensional case. Consider the joint probability function of two independent
Gaussians with zero mean and unit variance

p(x)p(y) =
1

2π
e−x

2/2e−y
2/2 dx dy

and introduce polar coordinates{
x = ρ cos θ
y = ρ sin θ

That transforms the joint probability distribution to

p(x)p(y) dx dy =
1

2π
e−ρ

2/2ρdρdθ

which is further simplified to

p(x)p(y) dx dy = e−u duda

using the substitution{
u = ρ2/2 , 0 < u <∞
a = θ/2π , 0 < a < 1

The two variables u and a are independent, the joint probability distribution
function is a product of two functions, e−u and 1, respectively. This implies
that u is exponential distributed while a is uniformly distributed. Using two
uniform random numbes ξ1 and ξ2, we have{

u = − ln ξ1
a = ξ2

Two independent gaussian random numbers η1 and η2, with zero mean and
unit variance, can therefore be obtained from the expressions{

η1 =
√
−2 ln ξ1 cos (2πξ2)

η2 =
√
−2 ln ξ1 sin (2πξ2)

10

They can be transformed to Gaussian random numbers with mean value µ
and variance σ2 according to{

η1 = µ+ σ
√
−2 ln ξ1 cos (2πξ2)

η2 = µ+ σ
√
−2 ln ξ1 sin (2πξ2)

This way of generating Gaussian random numbers is known as the Box-
Müller method.

2.2.2 Rejection method

Another method that can be used both for discrete and continuous random
numbers is the rejection method. It does not require that the inverse of
a cumulative distribution function can be readily computed as required by
the transformation method. It is in that respect more general and it has a
simple geometric interpretation.

Consider a continuous probability density p(x) on a finite interval [a,b].
Choose a value pmax such that

pmax ≥ p(x) , ∀x

Generate a uniform random number ξ1 on [0,1] and determine the trial value
xtry = a+(b−a)ξ1. Generate another uniform random number ξ2 and accept
the trial value xtry if ξ2 ≤ p(xtry)/pmax and set η = xtry, otherwise reject
the trial value xtry and repeat the procedure. The random number η will
then be given by the probability distribution p(x). The rejection method
is attributed to von Neumann and it is for instance used in the Metropolis
algorithm.

Illustration of the rejection method.

11

Rejection method A non-uniform random number η with proba-
bility distribution p(x) on [a,b].
1. Choose a value pmax such that pmax ≥ p(x) , a < x < b
2. Generate a uniform random number ξ1 and determine

a trial value xtry = a+ (b− a)ξ1
3. Generate another uniform random number ξ2 and set η = xtry,

but only if ξ2 ≤ p(xtry)/pmax
4. Otherwise reject xtry, go back to 2. and try again.

Repeat the procedure until sufficient many random numbers η have
been generated.

The technique can be made applicable also for a probability distribution
p(x) defined on an infinite interval. One then has to find a comparison
function pmax(x) with the property

pmax(x) ≥ p(x) , ∀x

and with
∫
pmac(x) dx finite. One then has to sample points according to

the comparison function pmax(x) and then the method follows the recipe
above.

The method can also be extended to higher dimensions. One example is
choosing random direction on a sphere in three dimensions.

Random direction Random vectors on the surface of a sphere in
three dimensions.
1. Generate three uniform random numbers ξ1, ξ2 and ξ3.
2. Calculate ηi = 1− 2ξi and form the som η2 = η21 + η22 + η23.
3. If η2 < 1 take η̂ = (η1/η, η2/η, η3/η) as a unit vector,

else reject the vector and return to 1.

12

3 Monte Carlo integration

3.1 Monte Carlo integration with uniform sampling

To illustrate the basic idea behind Monte Carlo integration we will first
consider a one-dimensional integral

I =

∫ 1

0
f(x) dx . (26)

Conventional numerical integration methods are based on evaluation of the
integrand at particular values xi. The integral is then obtained as some
weighted sum over the corresponding values of the integrand, fi ≡ f(xi).
Often the x-values are chosen equally spaced while more elaborate methods
also optimize the location of the x-values.

Here we will introduce a different approach, Monte Carlo integration.
The integral can be written as an average over f

I = 〈f〉u =

∫ 1

0
f(x) dx , (27)

where the subscript u indicates that the corresponding probability density
function is a uniform distribution, here on the interval [0,1]. Instead of
evaluating the integrand at prescribed values of x we can simply choose the
x-values randomly with equal probability on the interval [0,1]. The integral
is then approximated by the average value

IN =
1

N

N∑
i=1

f(xi) =
1

N

N∑
i=1

fi . (28)

To make the method useful one has to be able to estimate the error. This can
be done using the central limit theorem. The variables (f1, . . . , fi, . . . , fN)
are statistically independent provided the random number generator is ad-
equate. An estimate of the variance is obtained by evaluating

σ2f =
〈
(f − 〈f〉u)2

〉
u
'

 1

N

N∑
i=1

f2i −

(
1

N

N∑
i=1

fi

)2
 (29)

and hence the integral can be approximated by

I = IN ± σI = IN ±
σf√
N

. (30)

Here one standard deviation is used. It is implies that the correct value I
is within the interval ±σf/

√
N with 68% probability. Using two standard

deviations ±2σf/
√
N the corresponding probability is 95%.

13

Example MC1 As an example consider the integral∫ 1

0

4

1 + x2
dx = π .

The table shows the result N using different number of evaluation of the
integrand and the data with error bars (one standard deviation) is shown
in the figure. The calculated result is equal to the exact value within a
few (usually less than one) standard deviations and the integration becomes
more precise as N increases.

N IN σf σI = σf/
√
N

MC 101 3.18266 0.61954 0.19592
MC 102 3.20677 0.60315 0.06032
MC 103 3.14463 0.65030 0.02056
MC 104 3.14380 0.63989 0.00640
MC 105 3.14096 0.64438 0.00204

exact 3.14159 0.64310

The uncertainty in the estimate of the integral decreases very slowly
with the number of points, as O(N−1/2). This is to be contrasted with more
conventional methods like the trapezoidal formula, where the error scales as
O(N−2) and considerably less computational time is required to obtain the
same accuracy. However, the key point in Monte Carlo integration is that
the error is independent on the dimension of the integral. This is not the
case with the more conventional, ”grid based”, methods.

Consider the evaluation of an integral in d dimensions. Suppose that
you are willing to invest a given amount of computational time, a certain
number N of evaluations of the integrand. Using a conventional method
each dimension of the d-dimensional integral is than broken up into ∼ N1/d

intervals with spacing h ∼ N−1/d. Using the trapeziodal rule the error for
each cell volume hd in the integration region is O(hd+2), so that the total

14

error is NO(hd+2) = O(N−2/d). For large d this decreases very slowly with
increasingN . This can be compared with the Monte Carlo method where the
error scales as O(N−1/2). Assuming that the prefactors in these estimates
are similar we see that Monte Carlo integration becomes more efficient for
d > 4. The details depends on the conventional quadrature scheme, but
the key point is the very different way in which the two errors scale with
increasing N for large d.

Monte Carlo integration - uniform sampling Consider the in-
tegral

I =

∫ 1

0
f(x)

1. Choose N points xi at random with uniform probability within
the integration interval [0,1].
2. Determine the mean value

IN =
1

N

N∑
i=1

fi

and the variance

σ2f =

 1

N

N∑
i=1

f2i −

(
1

N

N∑
i=1

fi

)2


3. Approximate the value of the integral as

I = IN ±
σf√
N

3.2 Variance reduction and importance sampling

The accuracy of Monte Carlo integration increases with the number of samp-
ing points N . From Eq. (30) we notice that the accuracy also increases if
the variance σf of the integrand could be decreased. This can be done us-
ing importance sampling. Consider some function p(x) that is positive and
normalized to 1, ∫ b

a
p(x) dx = 1 and p(x) > 0 on [a, b] ,

i.e. a probability density function. Rewrite the integral as

I =

∫ b

a
f(x) dx =

∫ b

a

f(x)

p(x)
p(x) dx =

∫ b

a
g(x)p(x) dx = 〈g〉p (31)

15

where then

g(x) ≡ f(x)

p(x)

The integral in Eq. (31) can be evaluated using the Monte Carlo technique by
sampling x not uniformly but according to the probability density function
p(x), indicated by the notation 〈. . .〉p. The average is obtained as

IN =
1

N

N∑
i=1

g(xi) =
1

N

N∑
i=1

gi

and the variance σ2g correspondingly. If the function p(x) behaves approx-
imately as f(x), i.e. is large where f(x) is large and small where f(x) is
small, then the new integrand g(x) is made more smooth and the variance
is reduced, σg � σf .

Example MC2 Consider again the integral in Example MC1∫ 1

0

4

1 + x2
dx = π .

If we introduce the normalized probability density function

p(x) =
4− 2x

3

as an importance sampling function the result below is obtained. The sam-
pling can conveniently be done using the Transformation method, intro-
duced in Sec. (2.2.1). The error bars correspond to one standard deviation
and we notice that the method is about 10 times more efficient compared
with uniform sampling (cf. Example MC1).

N IN σf σI = σf/
√
N

MC 101 3.18155 0.06746 0.02133
MC 102 3.14107 0.08327 0.00833
MC 103 3.13931 0.08102 0.00256
MC 104 3.14119 0.08072 0.00081
MC 105 3.14200 0.08012 0.00025

exact 3.14159 0.08002

We have introduced a more efficient integration technique by reducing
the variance. This is accomplished by sampling x non-uniformly. The sam-
pling points are concentrated around more ”important” values of x, where
p(x) and (hopefully) f(x) is large, and less computing power is spent on cal-
culating the integrand for ”unimportant” values of x where p(x) and f(x)

16

are small. The technique is therefore called importance sampling and it
reduces the variance. However, it is based on that one can find a way to
sample points according to the chosen function p(x).

Monte Carlo integration - importance sampling Consider the
integral

I =

∫ b

a
f(x) dx =

∫ b

a

f(x)

p(x)
p(x) dx =

∫ b

a
g(x)p(x) dx

with ∫ b

a
p(x) dx = 1

1. Choose N points xi at random with probability p(x) within the
integration interval [a,b].
2. Determine the mean value

IN =
1

N

N∑
i=1

gi

and the variance

σ2g =

 1

N

N∑
i=1

g2i −

(
1

N

N∑
i=1

gi

)2


3. Approximate the value of the integral as

I = IN ±
σg√
N

Notice that σg � σf if p(x) ”mimics” f(x).

The real power of Monte Carlo integration is in connection to high di-
mensional integrals. Metropolis et al. [2] considered a problem in classical
statistical mechanics, the equilibrium properties of N interacting particles.
If we consider a system at temperature T the average value of some quantity
A that depends on the positions of the particles (r1, . . . , rN) is given by the
integral

〈A〉 =

∫
dr1 . . . drNA(r1, . . . , rN)P (r1, . . . , rN) (32)

where

P (r1, . . . , rN) =
exp[−V (r1, . . . , rN)/kBT]∫

dr1 . . . drN exp [−V (r1, . . . , rN)/kBT]
(33)

and V (r1, . . . , rN) is the potential energy for the system as function of the

17

positions of the particles and kB Boltzmann’s constant. Straightforward
evaluation of the integral in Eq. (32) using some conventional method is
completely out of question. Assuming a system with N=100 particles in
three dimensions corresponds to evaluating a 300 dimensional integral. Say
that you take 10 points in each dimension which implies 10300 evaluation
of the integrand. Even if you have access to the fastest computer in the
world that perform say 100 PFLOPS (1017 operations per second) you will
only be able to perform 1035 floating point operations during the age of the
universe. 1035 evaluations are totally negligible compared to what you need,
10300 evaluations.

Even if you could perform the integral with the above gridspacing the
result would most likely be quite useless with large statistical uncertain-
ties due to too large gridspacing. The integrand is a rapidly varying func-
tion with respect to the particle positions due to the Boltzmann factor
exp[−V (r1, . . . , rN)/kBT]. For instance, for a liquid of 100 particles mod-
elled as hard spheres and at a temperature close to the freezing point only
1 out of 10260 configurations would be non-zero [6] due to the Boltzmann
factor exp[−V (r1, . . . , rN)/kBT].

However, this problem was solved numerically by Metropolis et al. 1953
[2] using Monte Carlo integration and by introducing a new sampling tech-
nique, importance sampling. They stated that ”instead of choosing con-
figurations randomly, then weighting them with exp (−E/kT), we choose
configurations with a probability exp (−E/kT) and weight them evenly”.
The key contribution by Metropolis et al. [2] was to introduce a general
method to choose configurations from some general probability distribution
function in high dimensions, in their case P (r1, . . . , rN) in Eq. (33) (in 2
dimensions). The method was based on a random walk procedure and it has
been extended, generalized and applied in many other research areas. It is
now known as the Markov Chain Monte Carlo (MCMC) technique.

18

4 Markov Chain Monte Carlo

4.1 Markov process

We start with some basic properties of Markov processes. Consider a phys-
ical system that can be in different states. For simplicity assume a discrete
space and that the number of states is finite, equal to M . Denote the dif-
ferent states by Ωm, with m = 1, . . . ,M . The number of states can be very
large. For instance, for a simple ”magnetic” system (the Ising model) in 3
dimensions with 10×10×10 lattice points the number of states is equal to
M = 21000 ' 10300.

Consider now a stochastic process, a sequence of states generated in a
stochastic way. Enumerate the sequence using s = 0, 1, 2, The process
is called a Markov process, or Markov chain, if the outcome at any step s
only depends on the present state. It has no memory. The sequence is in
that case uniquely defined by the conditional probabilities

wnm = wn←m = Prob (n, s+ 1 | m, s) (34)

together with the specification of the initial state. The quantity wnm is the
probability to make a transition from m to n, provided the system is in
state m at step s. These probabilities, which are independent on s, define a
matrix, the transition matrix W, and they fulfil the following two conditions

0 ≤ wnm ≤ 1 ∀ n and m (35)

and
M∑
n=1

wnm = 1 ∀ m (36)

The last condition simply implies that with unit probability the system will
be in one of its M allowed states at the next step. In a sense, the Markov
chain is the probabilistic analogue to trajectories in classical mechanics.
The ”time”-evolution of the Markov process is determined by a stochastic
matrix, while the classical trajectories are given by Newton’s equation of
motion, which is deterministic. However, both are characterized by a lack
of memory, i.e. the immediate future is uniquely determined by the present,
regardless of the past.

Example MC3 Consider the daily weather in Göteborg. It can be in
three different ”states”: (1) sunny, (2) cloudy, or (3) rainy. Construct the
transition matrix based on the following observations. A sunny day is never
followed by another sunny day. Rainy or cloudy weather is equally probable
after a sunny day. A rainy or cloudy day is followed by 50% probability
by another day with the same weather. If, on the other hand, the weather

19

is changing from cloudy or rainy weather, the following day will be sunny
only in half of the cases. From this the following transition matrix can be
constructed.

W =

 0 0.25 0.25
0.5 0.5 0.25
0.5 0.25 0.5


Notice that

∑3
n=1wnm = 1 for m = 1, 2, and 3.

Denote the probability that the system is in state Ωm at step or ”time”
s as pm(s). The probability distribution may then be represented by the
column vector

P(s) =

 p1(s)
...
pM (s)

 (37)

with the normalization
∑M

m=1 pm(s) = 1. At each time point s the system
may move from a state Ωm to a state Ωn with probability wnm. Hence, the
probability distribution will evolve as

pn(s+ 1) =
M∑
m=1

wnmpm(s)

or in matrix form
P(s+ 1) = WP(s) (38)

Using this notation the probability distribution evolves from the initial dis-
tribution as follows: P(1) = WP(0) and then P(2) = WP(1) = W2 P(0).
After s steps P(s) is related to P(0) by

P(s) = Ws P(0) (39)

It is likely that when s becomes large the initial information contained in
P(0) will fade away and under quite general conditions [7] one can show
that P(s) approaches a ”time”-independent constant distribution

P(s→∞) = Pst (40)

This distribution is a fixed point distribution of the transition matrix W
and is called the stationary distribution. It must satisfy the equation

Pst = WPst (41)

This is an eigenvalue equation and it implies that the stationary distribution
corresponds to the eigenvector with eigenvalue λ = 1. It is easy to show that
all transition matrices W have at least one eigenvalue that is equal to 1 and,
hence, a corresponding stationary distribution (see App. A). The absolute
value of all other eigenvectors are less than 1, |λi| ≤ 1, and they determine
how fast P(s) approaches the stationary distribution Pst (see App. A).

20

Example MC4 Consider again the daily weather in Göteborg in example
MC3. We can now solve for the stationary distribution using Eq. (41)
pstn =

∑3
m=1wnmp

st
m, under the constraint that

∑3
n=1 p

st
n = 1. We get

Pst =

 0.2
0.4
0.4


We can also study the convergence of the Markov chain towards the station-
ary distribution using Eq. (39). The table below gives the result for two
different initial distributions. The convergence is slightly faster for the ini-
tial distribution that is ”closer” to the stationary distribution, but in both
cases the convergence is quite rapid.

s p1 p2 p3
0 1.00000 0.00000 0.00000
1 0.00000 0.50000 0.50000
2 0.25000 0.37500 0.37500
3 0.18750 0.40625 0.40625
4 0.20312 0.39844 0.39844
5 0.19922 0.40039 0.40039
6 0.20020 0.39990 0.39990
7 0.19995 0.40002 0.40002
8 0.20001 0.39999 0.39999
9 0.20000 0.40000 0.40000
10 0.20000 0.40000 0.40000

∞ 0.20000 0.40000 0.40000

s p1 p2 p3
0 0.50000 0.00000 0.50000
1 0.12500 0.37500 0.50000
2 0.21875 0.37500 0.40625
3 0.19531 0.39844 0.40625
4 0.20117 0.39844 0.40039
5 0.19971 0.39990 0.40039
6 0.20007 0.39990 0.40002
7 0.19998 0.39999 0.40002
8 0.20000 0.39999 0.40000
9 0.20000 0.40000 0.40000
10 0.20000 0.40000 0.40000

∞ 0.20000 0.40000 0.40000

Consider now some quantity f that depends on the state Ωm of the sys-
tem, fm = f(Xm). It could, for instance, be the pressure in a classical
liquid or the ”magnetization” in an Ising model. Assuming that the proba-
bility for the different states Ωm, (m = 1, . . .M) is given by the stationary
distribution Pst the average of f can be written as the ensemble average

〈f〉ens =
1

M

M∑
i=1

f(Xm) (42)

21

Example MC5 We can construct a ”sunindex” f� with the property
that f�=10 for a sunny(1) day, f�=5 for a cloudy(2) day, and f�=0 for a
rainy(3) day. The average sunindex for Göteborg is〈

f�
〉
ens

= 10 · 1

5
+ 5 · 2

5
+ 0 · 2

5
= 4

which is slightly less than the sunindex for a cloudy day.

4.2 Random walk in state space

The number of states M in actual applications of the Markov chain method
is often enormous. The ensemble average in Eq. (42) then becomes totally
impractical. Instead one focuses the attention on a single random walker,
not on the probability distribution function. Assume that the single walker

is in state k at time s, X
(s)
k . In the next step, time s + 1, the walker will

be in state l, X
(s+1)
l , with probability wlk. In this way we can generate a

sequence of sample points

X(0), X(1), X(2), . . . , X(s), X(s+1), . . . , X(N)

and we can perform a time average along this chain

〈f〉time =
1

N

N∑
s=1

f(X(s)) (43)

In the limit N →∞ we expect the time-average in Eq. (43) is equal to the
ensemble average in Eq. (42). Such transition matrices are said to be ergodic.
The matrices have to be irreducible and aperiodic [7]. Irreducible implies
that the model only has one unique stationary distribution and aperiodic
means that you do not get stuck into a periodic orbit.

Example MC6 Consider again the daily weather in Göteborg in example
MC3. We can now simulate the weather using the probabilities wnm intro-
duced in example MC3. We denote a sunny, cloudy, and rainy day with
X = S, X = C, and X = R, respectively. If we start with a day with sunny
weather, X = S, we get the following sequence using random numbers from
a random number generator

s 0 1 2 3 4 5 6 7 8 9 10 11 12 . . .

X S R C C S C R S R C C C S . . .

The sequence can be used to determine average properties using the time
average in Eq. (43). For the sunindex f�, introduced in Example MC5, we

22

get 〈
f�
〉
time

=
1

10

10∑
s=1

f�(X(s)) = 4.50

using the 10 first days. By expanding to 100 and 1000 days, respectively,
we get

〈
f�
〉
time

=
1

100

100∑
s=1

f�(X(s)) = 3.95

〈
f�
〉
time

=
1

1000

1000∑
s=1

f�(X(s)) = 4.01

In an actual simulation the time average in Eq. (43) is used. The number
of configurations N has to be large but still N is much smaller than M . If the
time average should be accurate it is important that relevant configurations
are sampled. If the starting point X(0) is very unlikely it can take many
steps before a more probable part of the distribution is sampled. There
is thus a need to ”equilibrate” or ”burn-in” the Markov chain by steeping
through, and discarding, a certain number, say Neq, of sampling points.
In many cases this ”equilibration” of the system can be a substantial part
of the total simulation. The subsequent sampling points are then used to
determine different quantities according to

〈f〉 =
1

N

Neq+N∑
s=Neq+1

f(X(s)) (44)

It is crucial to be able to estimate error bounds associated with the mean
value defined in Eq. (44). However, the values along the Markov chain fs =
f(X(s)) can be highly correlated and are not statistically independent and
the error cannot be estimated as in Eq. (30). What is often done in practice
is to use states along the Markov chain separated by some fixed number ns,
chosen so that there is effectively no correlation between the states used.
The number ns is called statistical inefficiency. In Appendix B two ways
to estimate ns are presented. The effective number of configurations to be
used in the averaging then becomes equal to N/ns. Using the central limit
theorem we can then write

f = 〈f〉 ± σ√
N/ns

(45)

where σ2 =
〈
f2
〉
− 〈f〉2 and the error bar corresponds to one standard

deviation.

23

4.3 Basic idea

We have now shown how a stationary distribution Pst can arise using a
Markov process defined by a transition matrix W. Our aim is to use the
obtained stationary distribution Pst in a simulation study. However, we
do not yet have control over Pst. It is a consequence of a given transition
matrix W.

If we would like to generate a particular distribution, say P, we need
to invert the above procedure to find the appropriate W for the desired P.
The size of the vector P is M while W is a matrix with size M ×M . This
implies that there are many different matrices W that will generate the
same probability distribution P and there is a large freedom in construction
W. The probability transition matrix W has to fulfil the two conditions in
Eqs. (35) and (36), be ergodic, and satisfy

P = WP

or

pn =
M∑
m=1

wnmpm (46)

By using
∑M

m=1wmn = 1 this last condition can be written as

M∑
m=1

wmnpn =
M∑
m=1

wnmpm

A sufficient but not necessary condition is to require that each term in the
two sums are equal, i.e

wmnpn = wnmpm (47)

This is called detailed balance. It has a simple physical interpretation.
Eq. (47) states that the probability for a transition from n to m, provided
the system is located in n, is equal to the probability for the reversed tran-
sition, a transition from m to n, provided the system is in m. If that is the
case, nothing will occur in average and, hence, P is a stationary distribution.
The weaker condition in Eq. (46) has been used in few cases [8, 9], but in
practise, the more restrictive detailed balance condition in Eq. (47) is used
in constructing suitable transition matrices W.

24

Basic idea If you can find a matrix W with the following properties

1. 0 ≤ wnm ≤ 1 ∀ n and m (48)

2.
M∑
n=1

wnm = 1 ∀ m (49)

3. wnm is ergodic (50)

4. wmnpn = wnmpm (51)

then the Markov process will, in the long run, produce states dis-
tributed according to the probability distribution P.

Example MC7 The weather in Göteborg

Pst =

 0.2
0.4
0.4


was generated in Example MC4 using the transition matrix introduced in
Example MC3. One can construct other matrices W that give the same
weather. The matrix has to fulfil detailed balance, i.e. w21 = 2w12, w31 =
2w13, and w32 = w23 as well as the normalization w11 + w21 + w31 = 1,
w12 +w22 +w32 = 1, and w13 +w23 +w33 = 1. We have 9 variables wnm and
only 6 equations. Many solutions can be found. For instance, by choosing
w21 = 0.4, w31 = 0.2, and w32 = 0.5, we obtain the transition matrix

W =

 0.4 0.2 0.1
0.4 0.3 0.5
0.2 0.5 0.4


which also will give the ”correct” weather in Göteborg.

4.4 The Metropolis algorithm

We now would like to construct the transition matrix W with P as the
stationary distribution. This implies that we have to find a matrix W that
fulfils the conditions Eqs (48)-(51).

In the Metropolis algorithm a transition step is split into two parts

wnm = τnm αnm (n 6= m) (52)

where τnm = τn←m is the probability to make a trial change from m to n
and αnm = αn←m is the probability to accept the trial change, and

wmm = 1−
∑
n(6=m)

wnm (53)

25

In the original Metropolis algorithm [2] αnm is given by

αnm =

{
1 if pn ≥ pm
pn/pm if pn < pm

(54)

which also can be written as

αnm = min

[
1,
pn
pm

]
(55)

Detailed balance, Eq. (51), is fulfilled if the probability for the trial change
is symmetric, i.e.

τnm = τmn (56)

and the condition in Eq. (53) implies that Eq. (49) is fulfilled. Eq. (53)
implies that moves that are not accepted are rejected and the system remains
at the state m for at least one more step.

A key element in the Metropolis algorithm is that in generating the
configurations only knowledge of the relative probabilities is needed, not the
absolute probabilities. That is crucial. The relative probabilities can often
be computed, but in practise, not the absolute probabilities.

To implement the Metropolis algorithm one has to specify the matrix
τnm, which is designed to take the system from one state m to a trial state
n. It is a probability and hence

∑
n τnm = 1. The only constraint is that

it is symmetric, τnm = τmn, and one has considerable freedom in finding
an appropriate matrix τnm. Often it contains one or several adjustable
parameters which can be tuned to optimize the sampling. The tuning can
be done during the simulation. If nearly all states are accepted the sampling
is not efficient, the changes introduced by τnm are ”too small”. On the other
hand, if very few trial states are accepted the changes are ”too large” and the
efficiency is reduced. Optimum sampling rate depends on the application,
but generally the acceptance ratio should be about 20 % to 50 % [6, 10].

The matrix τnm is in most cases constructed such that the trial state Ωn

is located in the ”vicinity” of Ωm. The reason for this is that one would like
the Markov chain to ”guide” the system into regions with high probability.
Actually, it is this fact that makes the method efficient for high dimensional
problems. If one would simple choose Ωn totally at random one would never
find the rare regions with high probability. However, a drawback is that the
different states along the Markov chain become highly correlated and the
estimate of error bounds has to be made carefully.

To ensure a proper sampling τnm has to be chosen such that all relevant
states are tested. Mathematically this is expressed by Eq. (50), W should
be ergodic. However, here one is not so much helped by the mathematical
formulation but one has to rely more on physical intuition.

26

The Metropolis algorithm Consider a system that can be in dif-
ferent states Ωm with corresponding probabilities pm.
Decide how to make trail changes τnm = τn←m and establish an initial
configuration Ω(s = 0).
To advance the Markov chain one step, from configuration Ω(s) = Ωm

to Ω(s+ 1)
1) Choose a trail state Ωt according to τtm
2) calculate the ratio q = pt/pm
3) generate a random number ξ between 0 and 1

if q ≥ ξ
accept the change and let Ω(s+ 1) = Ωt

otherwise
count the old state once more and let Ω(s+ 1) = Ωm

Repeat step 1)-3) many times.
Throw away a sufficient number of states in the beginning. Determine
average quantities with proper error bars.

A more symmetric expression for αnm has been suggested [11]

αnm =
pn

pn + pm
(57)

and is often referred to as Barker sampling [12]. Eq. (57) also fulfil detailed
balance provided τnm is symmetric and one has to allow for the possibility
of no transition according to Eq. (53).

4.5 The Metropolis-Hastings algorithm

The Metropolis algorithm has also been generalized to the case when τnm is
not equal to τmn by Hastings [13]. In the context of Monte Carlo simulations
it is often called smart Monte Carlo [14] or biased Monte Carlo [6]. In that
case, the acceptance criterion for a trial change m→ n must be replaced by

αnm =

{
1 if τmnpn ≥ τnmpm
(τmnpn/τnmpm) if τmnpn < τnmpm

(58)

or equivalently

αnm = min

[
1,
τmnpn
τnmpm

]
(59)

Also in this case one has to allow for no transition as expressed in Eq. (53).

27

A Markov Chain

In this appendix we will derive a more explicit expression for the Markov
chain time evolution of the probability distribution P(s). We start with the
expression for the evolution given by Eq. (39)

P(s) = Ws P(0)

where W is the transition matrix. It is aM×M matrix with real components
wnm that fulfill the conditions 0 ≤ wnm ≤ 1 and

∑M
n=1wnm = 1. The

evolution equation can be solved formally by introducing the corresponding
eigenvectors and eigenfrequencies to W. Due to that in general W is non-
symmetric the left and right eigenvectors will be different. Using the Dirac
vector notation we write

W|χi〉 = λi|χi〉 (60)

〈χi|W = 〈χi|λi (61)

where 〈χi| and |χi〉 are the left and right eigenvectors, respectively, λi the
eigenvalues and i = 1, . . . ,M . The eigenvectors are orthogonal

〈χi|χj〉 = δi,j (62)

and they form a complete set

M∑
i=1

|χi〉〈χi| = I (63)

where I is the identity matrix [15].
The eigenvalues λi are given by the values of λ which satisfy the charac-

teristic equation
det(W − λI) = 0 (64)

We can prove that λ = 1 is always an eigenvalue. The determinant is
unchanged if two rows are added together. By adding all rows together we
get one row with the components

∑M
n=1 [wnm − λδnm] = 1−λ. By choosing

λ = 1 we get a row of zeros, the determinant is then equal to zero and,
hence, λ = 1 is a solution to Eq. (64). We choose this eigenvalue to have
index 1, i.e.

λ1 = 1 (65)

By comparing Eq. (60) with Eq.(41) we notice that the corresponding right
eigenvector is equal to the stationary distribution

|χ1〉 = Pst (66)

28

and by inspecting Eq. (61) we find that

〈χ1| = [1 1 1 . . . 1] (67)

One can prove that |λi| ≤ 1 for all i’s [15]. (Otherwise, by repeatedly ap-
plying W, P would increase indefinitely, which is not possible.) We assume
here that only one eigenvalue is equal to 1, i.e. the stationary distribution
is unique. This is the case for an ergodic transition matrix.

By using the eigenvectors and eigenfrequencies the transition matrix can
now be written as

W =

M∑
i=1

λi|χi〉〈χi| =
M∑
i=1

λiB
(i)

and we define a matrix B(i) according to

B(i) = |χi〉〈χi| (68)

For s number of steps we then obtain

Ws=
M∑
i=1

λsiB
(i)

and finally

P(s) =
M∑
i=1

λsi B
(i) P(0)

= Pst +

M∑
i=2

λsi B
(i) P(0) (69)

Independent on the initial distribution P(0), the probability distribution
approaches the stationary distribution Pst at long times, for sufficiently
number of steps s,

P(s→∞) = Pst (70)

and the rate of approach is determined by the eigenvalues λi with 2 ≤ i ≤M ,
which all have absolute values less than one, |λi| < 1.

29

Example MC8 Going back to the daily weather in Göteborg in exam-
ples MC3 and MC4, we can now give the explicit solution to the evolution
equation. First we have to determine all eigenvalues. These are given by
the equation det(W − λI) = 0. We obtain

λ1 = 1 , λ2 = 1/4 , λ3 = −1/4

Next we need the eigenvectors. They can be obtained by solving Eq. (60)
and Eq. (61) for the right and left eigenvectors, respectively, and the result
is

|χ1〉 =

 1/5
2/5
2/5

 |χ2〉 =

 0
1/2
−1/2

 |χ3〉 =

 1/5
−1/10
−1/10


〈χ1| =

[
1 1 1

]
〈χ2| =

[
0 1 −1

]
〈χ3| =

[
4 −1 −1

]
The B matrices can then be constructed

B(2) =

 0 0 0
0 1/2 −1/2
0 −1/2 1/2

 B(3) =

 4/5 −1/5 −1/5
−2/5 1/10 1/10
−2/5 1/10 1/10


and finally we get for the evolution of the probability distribution the fol-
lowing explicit expression

P(s) =

 0.2
0.4
0.4

+

(
1

4

)s 0 0 0
0 1/2 −1/2
0 −1/2 1/2

P(0)

+

(
−1

4

)s 4/5 −1/5 −1/5
−2/5 1/10 1/10
−2/5 1/10 1/10

P(0)

This expression can be used to derive the same numerical sequences as in
example MC4.

30

B Error estimate

It is important to find error bounds associated with evaluated quantities in
a simulation. Consider a variable f . Assume that M measurements have
been made {fi} and denote the average as

I =
1

M

M∑
i=1

fi. (71)

We would like to determine the error bounds for I, its variance. If the values
{fi} are independent on each others, i.e. uncorrelated data, the variance for
I is given by Var[I] = 1

MVar[f] where

Var[f] = σ2(f) =
〈
(f − 〈f〉)2

〉
=
〈
f2
〉
− 〈f〉2 . (72)

However, in a simulation subsequent data are often highly correlated. The
variance of I will depend on the number of independent samples Meff gen-
erated by the simulation. We can introduce the statistical inefficiency ns
according to

Meff = M/ns.

The variance of I can then be written as

Var[I] =
1

Meff
Var[f] =

ns
M

Var[f] (73)

and the problem is reduced to determine ns. We will consider two methods,
one based on a direct evaluation of the corresponding correlation function
and one based on data blocking.

Correlation function The variance of I can be written as

Var[I] =

〈(
1

M

M∑
i=1

fi − 〈f〉

)2〉

=
1

M2

M∑
i=1

M∑
j=1

[
〈fifj〉 − 〈f〉2

]
.

If the data are uncorrelated we have that 〈fifj〉−〈f〉2 = [
〈
f2
〉
−〈f〉2]δij and

Var[I] = 1
MVar[f]. If the data are correlated we introduce the correlation

function

Φk =
〈fifi+k〉 − 〈f〉2

〈f2〉 − 〈f〉2
. (74)

This is normalized such that

Φk=0 = 1.

31

We also assume that we study a stationary system and hence Φk = Φ−k.
For large k, k > Mc, Φk will decay to zero,

Φk>Mc → 0.

We assume that the total length of the simulation is considerably longer,
M > Mc. By introducing k = i− j we can now write the variance as

Var[I] =
1

M2

M∑
i=1

M−1∑
k=−(M−1)

(
1− | k |

M

)[
〈fifi+k〉 − 〈f〉2

]

= Var[f]
1

M2

M∑
i=1

M−1∑
k=−(M−1)

(
1− | k |

M

)
Φk

= Var[f]
1

M2

M∑
i=1

Mc∑
k=−Mc

Φk

= Var[f]
1

M

Mc∑
k=−Mc

Φk

and hence

ns =

Mc∑
k=−Mc

Φk. (75)

By comparing with the definition of a relaxation time τrel, Φ(t) = exp (−t/τrel),
we find that the statistical inefficiency ns is equal to 2 times the relaxation
time

ns = 2τrel (76)

If we assume that the correlation function decays exponentially,
Φk = exp (−k/τrel), we notice that

Φk=ns = e−2 = 0.135 ∼ 0.1

The statistical inefficiency can then be determined as the ”time” when the
corresponding correlation function has decayed to about 10% of its initial
value.

Block averaging Another way to determine the statistical inefficiency
ns is to use so called block averaging. Divide the total length M of the
simulation into MB blocks of size B,

M = BMB.

Determine the average in each block

Fj =
1

B

B∑
i=1

fi+(j−1)B for j = 1, . . . ,MB (77)

32

and the corresponding variance Var[F]. If the block size B is larger than ns
{Fj} will be uncorrelated and hence

Var[I] =
1

MB
Var[F] if B > ns.

However, if the block size is smaller than s we have that

Var[I] >
1

MB
Var[F] if B < ns

and we obtain the following relation for ns

Var[I] ≥ 1

MB
Var[F]

ns
M

Var[f] ≥ B

M
Var[F]

ns ≥
BVar[F]

Var[f]

We can then obtain the statistical inefficiency

ns = lim
B large

BVar[F]

Var[f]
(78)

by plotting BVar[F]/Var[f] as function of the block size B. In Fig. 1 we
show a typical result from a simulation.

0 20 40 60 80 100

Block size

0

2

4

6

8

S
ta

tis
tic

al
in

ef
fie

nc
y

Figure 1: Illustration of the calculation of ns using block averaging. The
figure shows the approach to the plateau value s = 7 when the block size B
is increased.

33

References

[1] J. M. Hammmersley and D. C. Handscomb, Monte Carlo Methods,
Methuen, London, 1964.

[2] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and
E. Teller, J. Chem. Phys. 21 1087 (1953).

[3] Handbook of Markov Chain Monte Carlo, Eds. S. Brooks, A. Gelman,
G. L. Jones, X.-L. Meng, Chapman and Hall, CRC, 2011.

[4] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Nu-
merical Recipes, The Art of Scientific Computing, 3rd ed., Cambridge,
2007.

[5] S. K. Park and K. W. Miller, Communications of the ACM 31, 1192
(1988).

[6] D. Frenkel and B. Smit, Understanding Molecular Simulation, 2nd ed.,
Academic Press, 2002.

[7] W. Feller, An Introduction to Probability Theory and Its Applications,
Wiley, 1957.

[8] V. I. Manousiouthakis and M. W. Deem, J. Chem. Phys. 110, 2753
(1999).

[9] H. Suwa and S. Todo, Phys. Rev. Lett. 105 120603 (2010).

[10] G. O. Roberts, A. Gelman, W. R. Gilks, Ann. Appl. Probab. 7 110
(1997).

[11] W. W. Wood and J. D. Jacobson, Proc. of the Western Joint Computer
Conference (San Fransisco) 261 (1959).

[12] A. A. Barker, Aust. J. Phys. 18 119 (1965).

[13] W. K. Hastings, Biometrika 57, 97 (1970).

[14] M. P. Allen and D. J. Tildesley, Computer Simulations of Liquids,
Clarendon Press, 1989.

[15] L. E. Reichl, A Modern Course in Statistical Physics, 2nd ed., Wiley,
1998.

34

