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Branestorming
On Various Aspects of p-branes

Ulf Gran
Institute for Theoretical Physics

Chalmers University of Technology and Göteborg University
SE-412 96 Göteborg, Sweden

Abstract

In recent years dramatic progress has been made in the understanding of the non-
perturbative structure of superstring theory and M-theory. Central to this progress
are non-perturbative, solitonic objects collectively referred to as p-branes. In this
thesis, comprising an introductory text and three appended research papers, we are
going to briefly review superstring theory and M-theory. Emphasis will be given to
the dynamics of p-branes, which is the subject of Papers I-III.

In the past year enormous attention has been given to the so-called AdS/CFT
correspondence, which is a kind of duality between superstring theory or M-theory
on certain anti de Sitter spacetime backgrounds and gauge theory. For completeness
this subject will also be briefly reviewed.
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1
Introduction

String theory was originally formulated in the late 1960’s as an attempt to explain
the spectrum of hadrons and their interactions. It was however discarded as a
theory of the strong interaction for two main reasons. Firstly, there exists a critical
dimension, 26 for the bosonic string and 10 for the fermionic string, and our world
has just four dimensions. Secondly, the spectrum contains a massless spin 2 particle
not present in the hadronic world. These problems and the rapid success of QCD
made people abandon string theory.

String theory was revived in 1974 when Scherk and Schwarz turned the existence
of the massless spin 2 particle into an advantage by interpreting it as the graviton,
the field quantum of gravitation. It was also discovered that at low energies string
theory reduced to general relativity. String theory was in this way elevated to be a
potential “theory of everything”, i.e. a theory that unifies all four forces of nature.

The extension of the bosonic string to the fermionic string, thereby including
fermions in the spectrum, was achieved by enforcing supersymmetry [1, 2]. This
is a concept of great importance in high-energy physics. Supersymmetry can be
described as an updating of special relativity to take into account that fermions
exist. In the same sense supergravity can be described as an updating of general
relativity.

The first superstring revolution (1984-85) consisted of three important discover-
ies. The first was an anomaly cancellation mechanism, which enabled the construc-
tion of consistent gauge theories in ten dimensions. The key was that the gauge
group had to be SO(32) or E8×E8. The second discovery was two new superstring
theories, the heterotic string theories, with exactly these gauge groups. But per-
haps it was the third discovery that made people set their hopes on superstring
theory. By compactifying the E8×E8 heterotic string theory on a particular Calabi-
Yau manifold one obtained a 4d effective theory with many qualitatively realistic
features. There are however a great variety of possible choices of this Calabi-Yau
manifold and no one stands out as particularly special. After this revolution there
were five distinct ten dimensional superstring theories with consistent weak coupling
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2 Chapter 1 Introduction

perturbation expansions and the understanding of these theories was developed in
the ensuing years.

A great deal of effort was put into the investigation of the non-perturbative
structure of superstring theory. This led to the discovery of various extended objects,
collectively referred to as p-branes. The p-branes can be classified according to
their world-volume field content. Papers I-III deals with these kinds of objects
and especially with branes which have vector and tensor modes living on them.
Superstring theory is thus nowadays quite a misnomer since it contains so much
more that just strings.

What laid the foundation to the second superstring revolution (mid 1990s), which
has to do with the non-perturbative structure of superstring theory, was the concept
of duality. By duality we mean a way of relating different superstring theories, or
different “regions” of a particular superstring theory. Using this relation we can do
calculations in the theory where it is most conveniently done and then just translate
the results to the other theory. One kind of duality, S-duality, relates weak- and
strong-coupling regions. This is of great value since we can only do calculations in
the weak-coupling regime. By using this duality we can obtain non-perturbative
information which would be almost impossible to obtain by direct calculation. Since
S-duality is a non-perturbative duality we need non-perturbative objects in order to
check various conjectured S-dualities and here the above mentioned p-branes play a
crucial rôle.

It was later discovered that all five superstring theories are related to each other
via duality and are thus only facets of a (largely unknown) underlying fundamental
theory. Sen has suggested that this fundamental theory should be called U-theory [3],
where U can stand for either “unknown” or “unified”. Sometimes this fundamental
theory is designated M-theory but Sen proposes that this term should only be used
in the sense Witten introduced it, i.e. for the 11-dimensional quantum theory which
has 11-dimensional supergravity as its low-energy effective description. M-theory is
also related to the superstring theories via duality and thus U-theory encompasses
both superstring theory and M-theory.

In the past year enormous attention has been given to the so-called AdS/CFT
correspondence, which is a kind of duality between superstring theory or M-theory
on certain anti-de Sitter spacetime backgrounds and gauge theory. AdS space is
analogous to a sphere with negative curvature. People hope that this will provide
the theory of quark confinement, which would be one of the greatest achievements of
superstring theory to this date. Actually the mass spectrum of a glueball, a bound
state of gluons, has been calculated using this correspondence [4] and is in perfect
agreement with lattice QCD calculations.

Superstring theory has also been used to calculate black hole entropy. Using
D-branes (one kind of p-branes) Strominger and Vafa [5] were able to give a statisti-
cal mechanical derivation of the Bekenstein-Hawking entropy relation S = A/4G~.
Previously this relation was only understood from a thermodynamic perspective
but now the picture was complete. There are however indications that this result is
universal [6], i.e. that any quantum theory gives the standard result. It should be
stressed that the quantitative results mentioned above consists of agreement with
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calculations made in more accepted theoretical models, like QCD, and does not
consist of actual experiments.

This briefly recapitulates the major line of development in string theory since its
birth and we will now examine some areas in more detail. In chapter 2 we will start
by presenting bosonic string theory and then move on to its supersymmetric gener-
alization, the fermionic string, and discuss its spectrum. We also discuss the relation
between the low-energy limit of the superstring theories and supergravity. Chapter
3 deals with the concept of duality and describes how the five superstring theories
and M-theory are related through the web of dualities. In chapter 4 we introduce the
various branes and present a classification based on their world-volume field content.
Chapter 5 finally gives a brief introduction to the AdS/CFT correspondence, focus-
ing on the main ideas. For a more complete presentation of superstring theory and
M-theory see e.g. Ref. [7] and for an introduction to the AdS/CFT correspondence
see e.g. Ref. [8, 9].

Papers I-III are appended and since they are fairly self-contained, the introduc-
tory text should provide enough background to be able to understand them.
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2
Perturbative string theory

Until the discovery of the various duality relations only perturbative aspects of string
theory were accessible and the only known object in the theory was the string. This
picture changed dramatically when multifarious higher-dimensional objects were dis-
covered and found to be an integral part of string theory. Perturbative string theory
is nevertheless still very important since it is within this part of the theory the
calculations are most manageable.

In this chapter we will present the elementary concepts of bosonic string theory
and superstring theory and describe how the latter is related to supergravity. For a
more complete treatment of string theory see e.g. Ref. [10, 11, 12].

2.1 Bosonic strings

The fundamental idea behind string theory is actually very simple. Consider first
an ordinary point particle. The action is in this case given by the length of the path
which the particle traces out as it propagates, which is called the world-line. If we
instead consider the propagation of a string, its orbit will be a two-dimensional tube
instead of a line. In analogy with the point-particle case we take the action to be
the area of this tube, the world-sheet. An action of this type was first written down
by Nambu and Goto:

SNG[Xµ] = −T
∫

Σ
d2σ

√
−det(∂iXµ∂jXνηµν). (2.1)

Here T = (2πα′)−1 is the string tension, a constant of dimension (length)−2, and
α′ is known as the Regge slope. We can view this as an embedding of the world-
sheet, Σ, in M , the target space. The target space is often, for simplicity, taken
to be flat, D-dimensional Minkowski space, explaining the designation M . Nothing
prevents us however from considering a general target space by just replacing ηµν
in (2.1) with gµν. The fields Xµ, µ = 1, 2, . . . , D represent the position of the
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6 Chapter 2 Perturbative string theory

string in target space. The world-sheet, Σ, is only a collection of parameters used
to parameterize the string as it propagates and has no intrinsic geometry of its
own. The world-sheet is made up by σ0 = τ , representing the time and σ1 = σ,
0 ≤ σ < π, representing the angle around the string. The embedding X induces a
metric, (X∗η)ij = ∂iX

µ∂jX
νηµν, and as seen in (2.1) it is with this metric the area

of the world-sheet is measured. If the world-sheet has boundaries, we have an open
string, otherwise it is closed.

A problem with the Nambu-Goto action is that it can not be quantized preserving
manifest Lorentz covariance due to the square root. A classically equivalent action
without the square root can however be constructed using an auxiliary, intrinsic
world-sheet metric γij:

SBDH[Xµ, γij] = −T
2

∫
Σ

d2σ
√−γγij∂iXµ∂jX

νηµν. (2.2)

This action was first written down by Brink, Di Vecchia and Howe and by Deser
and Zumino, but is actually most commonly known as the Polyakov action. The
difference compared to the Nambu-Goto formulation is that the world-sheet is given
an intrinsic geometry, given by γij, but one also has an algebraic equation of mo-
tion for γij. By using the solution to this equation the action (2.2) reduces to the
action (2.1). The property of having an intrinsic world-sheet geometry will also be
important when trying to quantize the string. In this way, the spacetime defines a
two-dimensional field theory on the world-sheet.

The action (2.2) has three local invariances, two coming from the reparameter-
ization invariance of the world-sheet and one from the Weyl invariance, γij(σ) →
eΛ(σ)γij(σ). In addition, we have rigid Poincaré invariance in target space, but from
the world-sheet point of view this is an internal symmetry.

By using the reparameterization invariance we can locally go to the conformal
gauge, γij = eΛ(σ)ηij, where η=diag(-1,1),

Scg[Xµ] = −T
2

∫
Σ
d2σηij∂iX

µ∂jX
νηµν. (2.3)

The conformal factor cancels and we are left with a free, conformally invariant action.
We thus have a conformal field theory [13] living on the world-sheet.

By varying the action we get the equation of motion, �X = ∂i∂
iXµ = 0. This

is an ordinary wave equation and we can split the general solution into one left- and
one right-moving part If these parts are related or not depends on the boundary con-
ditions. An ordinary closed string has periodic boundary conditions, while an open
string can have either Dirichlet or Neumann boundary conditions (or combinations
of them). The Dirichlet condition was for many years considered un-physical since
it breaks Poincaré invariance. This changed with the discovery of D-branes, objects
on which open strings can end. This amounts to having just Dirichlet boundary
conditions, therefore D-branes. We will discuss this type of brane in chapter 4. In
the following we will concentrate on the closed string and show how quantization is
achieved and how the spectrum is derived.
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For the closed string, the general solution to the equation of motion is

Xµ(z, z̄) = qµ − i

4
α′pµ ln(zz̄) + i

√
α′

2

∑
n6=0

(
αµn
n
z−n +

α̃µn
n
z̄−n), (2.4)

where we have performed a Wick rotation, σ2 = iσ0, and introduced complex coordi-
nates z = e2(σ2+iσ1). This maps the, now euclidean, world-sheet to the compactified
complex plane, which is topologically S2.

Quantization is most easily achieved by quantizing the embedding fields Xµ

canonically, which leads to the commutation relations

[qµ, pν] = iηµν, [αµm, α
ν
n] = mδm+n,0η

µν, (2.5)

with an analogous expression for the α̃µm oscillators. We will from now on concentrate
on the left-moving part described by the αµm oscillators. Let us introduce a vacuum,
|0〉, defined by

〈0|0〉 = 1, 〈0| = (|0〉)†, pµ|0〉 = αµm|0〉 = 0, m > 0. (2.6)

Eigenstates of pµ can now be constructed, |k〉 = eik·q|0〉, and we have a set of
Fock vacua. The full state space is generated by applying the creation operators
(αµm)† = α

µ
−m, m > 0, to the Fock vacua. The physical state space is however only

a subspace of the full state space since we must take into account the constraints
imposed by the equation of motion for γij to which we will now turn.

Since the action (2.3) is free the non-trivial content of the theory is contained in
the equation of motion for γij, which is equivalent to the vanishing of the energy-
momentum tensor

Tij = − 1
T

1√−γ
δSBDH
δγij

|γ=η . (2.7)

The energy-momentum tensor is defined to describe the response of the system to
changes in the metric according to

δS = −T
∫

Σ
d2σ

√−γTijδγij. (2.8)

In the complex basis we have

Tzz(z) =
1
2
∂zXµ∂zX

µ, (2.9)

T̄z̄z̄(z̄) =
1
2
∂z̄Xµ∂z̄X

µ, (2.10)

while Tzz̄ and Tz̄z vanish identically due to the tracelessness of Tij, which is a general
feature of conformal field theories [13]. This can easily be understood by considering
a Weyl invariant theory, like the one defined by the action (2.2), where only the
metric transform under Weyl rescalings, δγij = Λγij. We then have

0 = δS = −T
∫

Σ
d2σ

√−γΛ(σ)Tijγij (2.11)
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and since Λ(σ) is an arbitrary function it follows that Tij must be traceless. We now
make a Fourier expansion of the stress-energy tensor,

T (z) = Tzz(z) =
∑
n∈Z

Lnz
−n−2 . (2.12)

The Fourier coefficients satisfy the Virasoro algebra

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0, (2.13)

where c = D is the central charge. The equations of motion for the energy-
momentum tensor, Tij = 0, require it to vanish. In order to deduce what this
implies for the Lm operators we write the condition as 〈phys|T |phys′〉 = 0 which
gives us the Virasoro constraints

(Lm − aδm,0)|phys〉 = 0, m ≥ 0, (2.14)

where the constant a is introduced due to the normal ordering ambiguity in L0.
Unitarity requires that D = 26 and a = 1. The fact that L0 − L̄0 generates σ-
translations implies the level-matching constraint

(L0 − L̄0)|phys〉 = 0 (2.15)

since no point on the string is special, i.e. the string is invariant under σ-translations.
Using (2.9) we can write the Lm operators as normal ordered expressions in the
oscillators

Lm =
1
2

∑
n∈Z

: αm−n · αn :, αµ0 =
√
α′/2pµ. (2.16)

Acting with L0 on a physical state gives the mass-shell constraint

α′M2 = 4(N − a), (2.17)

where N is the eigenvalue of the level operator N =
∑

m>0 α−m · αm and N = N̄
due to level-matching. As is immediately seen from (2.17) the ground state of the
bosonic string is tachyonic, i.e. has negative mass squared. This implies that the
vacuum is not stable and therefore the bosonic string is not consistent. This problem
is taken care of by introducing supersymmetry and making a particular projection
as will be seen in the next section.

The first excited level, ξµνα
µ
−1α

ν
−1|k〉, is the massless sector of the theory. De-

pending on the choice of polarization tensor we get a scalar φ, a symmetric traceless
tensor gµν and an antisymmetric tensor Bµν . These are, respectively, the dilaton,
the graviton and the abelian two-form gauge potential which are all SO(24) fields
since this is the little group in the massless case.

One of the most important properties of bosonic string theory is that it reduces
to general relativity in the low-energy limit. In order to see this we must consider
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non-trivial backgrounds for the string, which is described by the non-linear σ-model
action

S =
1

4πα′

∫
d2σ

(√−γγij∂iXµ∂jX
νgµν(X) (2.18)

+εij∂iXµ∂jX
νBµν(X)− α′√−γR(2)φ(X)

)
, (2.19)

where R(2) is the Ricci scalar for the world-sheet metric. From the world-sheet point
of view the massless target space fields gµν , Bµν and φ are coupling constants, or
rather coupling functionals since they depend on X . To get the Einstein equations
we require Weyl invariance at the quantum level, i.e. that the β-functionals vanish.
Perturbation theory gives to lowest non-trivial order in α′ (corresponding to the
low-energy limit)

β(g)
µν = Rµν − 1

4
HµρσHν

ρσ + 2DµDνφ+O(α′), (2.20)

β(B)
µν =

1
2
DρHρµν −DρφHρµν +O(α′), (2.21)

β(φ) = −R +
1
12
H2 − 4DµD

µφ+ 4(Dµφ)2 +O(α′). (2.22)

Here Rµν is the target space Ricci tensor andH = dB is the three-form field strength.
By requiring that all the β-functionals vanish we obtain the equations of motion for
the massless background fields.

It is important to note that the picture generalized here is that of a classical
point particle whose path is given by the shortest path in curved spacetime. The
more fundamental description of this particle is by some kind of wave which should
then be quantized in order to give a particle. This wave description would involve
analogs to the Einstein, Maxwell or Yang-Mills equations and is certainly much
closer to the fundamental concepts of physics. These equations are closely related
to the principle of gauge invariance and we thus have no analogous understanding
in the string picture. This is one of the fundamental problems in string theory.

2.2 Superstrings

There are three different formulations of the superstring, depending on where the su-
persymmetry is manifest. One can either have manifest world-sheet or target space
supersymmetry or have manifest supersymmetry in both places, which is called a
doubly supersymmetric formulation. In the end, one wants to have both world-
sheet and target space supersymmetry but one has to derive the non-manifest su-
persymmetry. The Neveu-Schwarz-Ramond formulation, which in its modern form
is covariant and has manifest world-sheet supersymmetry, is the formulation we will
use in order to discuss the spectrum of the open fermionic string. In the Green-
Schwarz formulation one embeds the bosonic world-sheet of the string into a target
superspace and thus has manifest target space supersymmetry. World-sheet su-
persymmetry then arises as a consequence of κ-symmetry. A recently developed
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approach is the “doubly supersymmetric geometrical approach” [14, 15, 16], or the
“embedding formalism” [17], which is described in detail in Paper I. In this approach
one has manifest supersymmetry both on the world-sheet and in target space. This
is accomplished by embedding a supermanifold, in the string case the super-world-
sheet, into the supermanifold which constitutes the target space. In this sense it can
be viewed as an extension of the Green-Schwarz formalism. In order to get the dy-
namics we have to impose an embedding condition and in some cases supplementary
conditions.

The action in the NSR formulation is

S =
1
4π

∫
d2z

(
∂Xµ∂̄Xµ − ψµ∂̄ψµ − ψ̃µ∂ψ̃µ

)
, (2.23)

which leads to the equations of motion ∂̄ψµ = 0 = ∂ψ̃µ. The two spinor components
ψµ and ψ̃µ form a set of world-sheet Majorana spinors(

ψµ

ψ̃µ

)

transforming as a spacetime vector. The Majorana condition ensures that we have
the same number of bosonic and fermionic degrees of freedom on shell. The action
(2.23) is obtained by gauge-fixing a supersymmetric analogue of (2.2).

We will now analyze the spectrum of the open fermionic string, which can be used
to derive the spectra of the five superstring theories. Note first that the classical ac-
tion (2.23) does not contain any spacetime spinors. They will arise as a consequence
of quantization and the origin of the phenomena has to do with the boundary condi-
tions of the world-sheet spinors. The vanishing of the surface term when varying the
action (2.23) is satisfied by two different Poincaré invariant boundary conditions:

ψµ(0, σ2) = ψ̃µ(0, σ2), ψµ(2π, σ2) = −ψ̃µ(2π, σ2) (NS)
ψµ(0, σ2) = ψ̃µ(0, σ2), ψµ(2π, σ2) = ψ̃µ(2π, σ2) (R)

(2.24)

With respect to these conditions, the solutions to the equations of motion are

ψµ(σ1, σ2) =
∑

r∈Z+1/2ψ
µ
r e

−r(σ2+iσ1)

ψ̃µ(σ1, σ2) =
∑

r∈Z+1/2ψ
µ
r e

−r(σ2−iσ1) (NS) (2.25)

for the NS sector and

ψµ(σ1, σ2) =
∑

n∈Zψ
µ
ne−n(σ2+iσ1)

ψ̃µ(σ1, σ2) =
∑

n∈Zψ
µ
ne−n(σ2−iσ1) (R) (2.26)

for the R sector. Proceeding with the quantization as in the bosonic case gives the
commutation relation

{ψµm, ψνn} = ηµνδm+n, (2.27)

which is valid both for integer and half-integer values of m and n. The states in the
NS sector are now generated from the Fock vacua by applying the negative modes
α
µ
−m and ψµ−r. The Virasoro constraint corresponding to the mass-shell constrain is

(L(NS)
0 − 1

2
)|phys〉 = 0 (2.28)
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where
L

(NS)
0 =

1
2

∑
n∈Z

: α−n · αn : +
1
2

∑
r∈Z+1/2

r : ψ−r · ψr : (2.29)

and αµ0 =
√

2α′pµ for the open string. The mass spectrum for the NS sector is thus

α′M2
NS = Nα +Nψ − 1

2
. (2.30)

The ground state is thus unique which implies that it is a spin 0 state.
The R sector is a bit more complicated due to the fermionic zero-modes ψµ0 , which

commutes with the mass operator. This implies that |0〉 and ψµ0 |0〉 are degenerate
in mass. Since the ψµ0 are the generators of a Clifford algebra (cf. Eq. (2.27)) we
conclude that the R ground state is a SO(9,1) spinor. Since we have Majorana-Weyl
spinors in ten dimensions we are free to choose the chirality of the vacuum. The
oscillators are spacetime vectors, and can not change bosons into fermions or vice
versa, thus all states in the R sector will be fermionic and all states in the NS sector
will be bosonic. In this way the emergence of spacetime fermions is due to the
zero-modes ψµ0 .

In addition to the usual Virasoro and level-matching constraints the physical
states in the R and NS sectors must satisfy

Gr|phys〉 = 0; r ≥ 0 (2.31)

where
Gr =

∑
n∈Z

α−n · ψr+n. (2.32)

The Gr operators are the Fourier components of the supercurrent and the constraints
comes from the vanishing of the supercurrent in the same way as the Virasoro
constraints come from the vanishing of the stress-energy tensor. The G0 constraint of
(2.31) actually contains the mass-shell constraint, due to the super-Virasoro algebra,
and we get the mass spectrum

α′M2

(R) = Nα +Nψ. (2.33)

We still however have tachyons in the NS sector. These can be removed by invok-
ing the GSO projection, which is also crucial in order to have modular invariance.
The projection consists of removing states with odd world-sheet fermion number
after which we finally arrive at the physical spectrum.

A closed string can now be considered as built up by two open strings and there-
fore its spectrum can be written as the direct product of two open string spectra.
In this way we can obtain the massless spectra for the five superstring theories,
see e.g. Ref. [10]. The massless spectra is then seen to correspond to supergrav-
ity theories and this is the reason why we say that superstring theory reduces to
supergravity in the low-energy limit.
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3
Duality

The discovery of various duality relations led to a dramatic advance in the un-
derstanding of the non-perturbative structure of string theory. Each string theory
corresponds to a point in the moduli space of vacua, i.e. a particular choice of vac-
uum. The dualities take us between different points in this moduli space, relating
all the string theories. This indicates the existence of one all-embracing theory, U-
theory. The big question is whether there exists a deeper formulation of U-theory or
if the best definition we can get is in terms of perturbation expansions and various
non-perturbative dualities. As Vafa pointed out [18] this latter alternative is much
like how one defines a manifold in terms of charts, being the perturbative string
theories, and transition functions, being the dualities. Here we will briefly describe
how different string theories and M-theory are related through the basic T- and S-
dualities. In this way we will obtain the web of dualities in which all string theories
and M-theory are related.

3.1 T-duality

T-duality is an equivalence between two weakly coupled string theories compactified
on manifolds of different volume. A generic feature is that when one volume is large
the other one is small and vice versa. More concretely, we have the basic relation
R′ = α′/R, where R and R′ are the compactification radii. This relation implies the
existence of a smallest scale in string theory since we can always go from the radius
which is smaller than the self-dual radius, Rsd =

√
α′, to a radius larger than Rsd

by using the duality. Technically, what happens in this transformation is that the
Kaluza-Klein modes and the winding modes get exchanged while the spectrum is
unaltered. It is as if an extra term is present in the Heisenberg uncertainty relation1

∆x ≥ 1
2
~

∆p
+

1
2

∆p
~
α′ (3.1)

1See e.g. Ref. [19] and references therein.
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giving a minimum length of order2
√
α′ ≈ 10−33cm. Note that the construction

of this extra term is possible due to the presence of α′. Since T-duality involves a
compactification it will be a duality in nine dimensions3. There are two examples,
type II and heterotic duality, to which we will now turn.

By compactifying type IIA and type IIB theory on circles with different radii we
can identify a T-duality map between the two theories. More generally, dualizing in
an odd number of coordinates relates IIA to IIB and dualizing in an even number
of coordinates relates IIA to IIA or IIB to IIB. There are strong reasons to believe
that this perturbative equivalence extends to the non-perturbative level.

The two heterotic theories are also T-dual when compactified as above. This
can be understood by noting that the existence of the two heterotic theories in ten
dimensions is due to the existence of two 16-dimensional euclidean self-dual even
lattices. By further compactification on T d, the lattice must now be lorentzian (still
being even and self-dual). It is however known that there for each d ≥ 1 exists a
unique lattice with these properties and therefore this duality should come as no
surprise.

3.2 S-duality

S-duality is a strong-weak coupling duality and therefore of great interest since
it enables us to obtain information about the non-perturbative structure of string
theory. This however also means that conjectured S-dualities can not be investigated
using perturbation theory, as in the case of T-dualities. Instead, the p-branes will
now play a central rôle, especially those whose properties remain unaltered when
going to the strong coupling region, the so called BPS branes. In this way we can
devise some non-trivial tests which the conjectured S-dualities must pass. We will
now turn to four important S-dualities.

To start with we will consider the duality between M-theory on R10 × S1 and
type IIA string theory. The first hint to this duality is obtained by compactifying
the D = 11 supergravity action, i.e. the low-energy limit of M-theory, on a circle
[20]. This compactification does not break any supersymmetry and we can hope to
obtain one of the two N = 2 type II theories. It turns out that we obtain the type
IIA supergravity action, i.e. the low-energy limit of type IIA string theory. This is
reasonable since this theory is non-chiral. We can identify a relation between the
compactification radius and the coupling constant in type IIA theory,

R ∼ λ2/3, (3.2)

saying that strong coupling corresponds to large compactification radius. In type IIA
theory the strong coupling limit thus effectively corresponds to a decompactification
and we obtain an eleven dimensional theory. When doing perturbation theory in

2There are two different conventions for calculating the Plank length. By using ~ we get `P =
10−33cm and by using h we get `P = 10−32cm.

3By further compactification we can of course obtain T-dualities in less than nine dimensions
but the primary ones, which we will examine, will be in nine dimensions.
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Figure 3.1: The web of dualities.

the type IIA theory, i.e. expanding around λ = 0, this extra dimension is invisible
explaining why it passed unnoticed for so long. So far we have only made the duality
plausible by low-energy analysis and in order to check if the duality also extends to
the non-perturbative level we need to examine the spectra of the two theories. In this
analysis the BPS branes play a central rôle and there are now much non-perturbative
evidence for this duality.

If we instead compactify M-theory on S1/Z2 we get a theory dual to the E8×E8

heterotic string theory. The orbifolding breaks half the supersymmetry so we must
obtain a N = 1 theory. The orbifold S1/Z2 is effectively an interval and one E8 factor
is associated with each endpoint. These endpoints are ten dimensional hyperplanes,
or “end-of-the-world 9-branes” as they are metaphorically called, and are separated
a distance determined by the coupling constant.

Type IIB string theory is conjectured to be invariant under SL(2;Z) transfor-
mations which in particular transforms the dilaton as φ → −φ. Since the string
coupling constant is given by gs = 〈eφ〉 we have that type IIB theory is S-selfdual.
Further analysis of the spectrum strengthen this conjecture.

The last duality we are going to mention is that between type I and SO(32)
heterotic string theory. Both theories have SO(32) as gauge group and this indicates
that the two theories may be related by duality. By comparing the low-energy
limits of the two theories one sees that they can be mapped into each other and
particularly that the mapping for the dilaton is φI = −φhet. Based on this Witten
[21] conjectured that these theories are related by S-duality. Since then further
evidence has strengthened this conjecture.
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3.3 The web of dualities

Collecting the results above gives us the web of dualities, as illustrated in Fig. 3.1.
The fact that the five string theories and M-theory are related in this way indicates
that there is really only one theory, U-theory.

In Fig. 3.1 we have also included the orientifold projection by which Type I
theory can be obtained from Type IIB theory. This projection, P (Ω)

+ = 1
2(11 + Ω),

is constructed from the orientifold operation Ω which reverses the roles of the left-
and right-moving sectors. The resulting theory is left-right symmetric and therefore
unoriented. Thus, by keeping only the left-right symmetric states of Type IIB theory
we end up with Type I theory.



4
p-branes

The p-branes are solitonic solutions to the low-energy effective supergravity theories.
An important property is that they interpolate between different vacua. This means
that they are topological in nature and therefore their stability is guaranteed. Since
they are topological objects they are not included in the perturbative spectrum and
are thus intrinsically non-perturbative. By saturating a Bogomol’nyi bound we get
BPS states belonging to short supersymmetry multiplets implying that they preserve
some fraction of the supersymmetry and are stable to quantum corrections in the
strong coupling limit. This feature makes BPS p-branes the best candidate to use
in exploring the non-perturbative structure of string theory and they play a central
rôle in verifying the duality conjectures in the previous chapter.

In this chapter we are first going to derive the brane-scan in Fig. 4.1, which shows
the p-branes allowed by supersymmetry. We are then going to review some of the
salient features of p-branes and explain how the M2 and M5 brane in D = 11 are
related to various branes in type IIA string theory. Finally, we are going say a few
words about D-branes, e.g. explain how they arise when T-dualizing an open string
and why they are dynamical objects.

4.1 The brane-scan

Unlike bosonic p-branes, which can be formulated in arbitrary spacetime dimension
D, supersymmetric p-branes can only be formulated for certain combinations of
d = p + 1 and D. This restriction, enforced by supersymmetry, gives rise to the
brane-scan in Fig. 4.1. It is important to note that the brane-scan only tells us
which branes are not forbidden by supersymmetry. If these branes actually exist as
solutions to any supersymmetric field theory is another question.

Let us now derive the brane-scan. We start by considering the scalar world
volume multiplets. This analysis can be done using two different methods. The first
method is to list all scalar supermultiplets and interpret the space-time dimension as

17
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Figure 4.1: The brane-scan.

D = d + the number of scalars. The second method, which we will use, is to require
world-volume supersymmetry by matching the numbers of bosonic and fermionic
on-shell degrees of freedom in the superspace embeddings Xa(ξ) and θα(ξ). The
bosonic degrees of freedom are

NB = D − d, (4.1)

where we have taken into account the reparameterization invariance of the world-
volume. The bosonic degrees of freedom correspond in this case to the directions
transverse to the brane. Motion in these directions will give rise to the simplest
example of Goldstone modes, i.e. scalar Goldstone modes. The concept of Goldstone
modes is analyzed in detail in Paper II and extended to the case of Goldstone tensor
modes of arbitrary rank.

By taking into account that kappa symmetry halves the fermionic degrees of
freedom and going on-shell halves them again, we obtain

NF =
1
2
mn =

1
4
MN, (4.2)
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Dimension Spinor Type of spinor Number of susy
11 32 Majorana 1
10 16 Maj & Weyl 1,2
9 16 Majorana 1,2
8 16 Weyl 1,2
7 16 Dirac 1,2
6 8 Weyl 1,. . . ,4
5 8 Dirac 1,. . . ,4
4 4 Maj or Weyl 1,. . . ,8
3 2 Majorana 1,. . . ,16
2 1 Maj & Weyl 1,. . . ,32

Table 4.1: Irreducible spinor representations in various dimensions.

where m (M) is the number of real components of an irreducible spinor in d (D)
dimensions and n (N ) is the numbers of supersymmetries. By matching bosonic and
fermionic degrees of freedom we get

D − d =
1
2
mn =

1
4
MN, (4.3)

which must be fulfilled in order to allow the existence of a scalar multiplet (for d > 2).
By consulting Tab. 4.1 we find that Eq. (4.3) has eight solutions, represented by the
dots in Fig. 4.1. The case d = 2, i.e. the string, is special since the left- and right-
handed modes can be treated independently. By having fermions in both sectors,
i.e. having a type II theory, we get the same condition as in Eq. (4.3) resulting in
strings in D = 3, 4, 6 and 10 with N = 2. By having fermions in only one sector,
i.e. having a heterotic theory, we get the condition

D − 2 = n =
1
2
MN (4.4)

resulting in strings in D = 3, 4, 6 and 10 with N = 1. For completeness we have
also included the superparticles (p = 0) in D = 2, 3, 5 and 9.

We must also consider higher spin multiplets, a possibility that was originally
overlooked. In the case of a vector multiplet we get d−2 additional bosonic degrees
of freedom from the vector gauge field, giving

D − 2 =
1
4
MN, (4.5)

which can be satisfied in D = 3, 4, 6 and 10 for arbitrary d, giving the circles in
Fig. 4.1. The branes with vector multiplets living on them are called D-branes.

Finally, branes with tensor multiplets are allowed in D = 7 and D = 11. The
first case is considered in Paper I and the second in Paper II and III.
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4.2 p-branes

We are now going to review some of the general properties of p-branes. We can
describe bosonic p-branes by a generalization of the Nambu-Goto action (2.1)

SDNG[Xµ] = −Tp
∫
dp+1ξ

√
− det(∂iXµ∂jXνηµν), (4.6)

which is called the Dirac-Nambu-Goto action. Since the p-branes we are interested in
are charged with respect to the gauge fields in the low-energy supergravity theories
we must add a Wess-Zumino term1

SWZ = Tp

∫
X∗A(d), (4.7)

where A(d) is a d-form gauge potential which is pulled back to the world-volume.
This generalizes the coupling of Bµν to the string world-sheet in Eq. (2.19). The
d-form gauge potential A(d) couples naturally to a p-brane, where d = p+ 1. Since
the p-brane can be surrounded by a space-like surface SD−d−1 we can define an
“electric” charge

qe =
∫
SD−d−1

∗F(d+1), (4.8)

where ∗F(d+1) is the Hodge dual of the field strength F(d+1) = dA(d). This is a direct
generalization of Gauss law. By using the field equations for F it follows that the
electric charge is conserved. We can also define a “magnetic” charge by

qm =
∫
Sd+1

F(d+1), (4.9)

which is a topological charge, i.e. it is conserved by virtue of the Bianchi identity
for F . The electric and magnetic charges defined above now satisfy the generalized
Dirac quantization rule [22, 23]

qeqm = 2πn, n ∈Z. (4.10)

Since the potential corresponding to the dual field strength is a (D−d−2)-form
it couples naturally to a (D− d− 3)-brane. We thus have an electric-magnetic dual
pair consisting of a p-brane and a p̃-brane satisfying p+ p̃ = D − 4.

Since the branes carrying electric charge have an associated source term (the
Wess-Zumino term) they are called fundamental or elementary. The branes carrying
magnetic charge have no associated source term and are just solutions to the effective
supergravity theory. They are therefore called solitonic. Note that the designation
electric/magnetic reflects our choice of basic fields in the effective supergravity theory
which at the string level corresponds to a particular choice of vacuum [24]. It is now

1The Wess-Zumino term turns out to be required in order to cancel the κ-variation of the Dirac-
Nambu-Goto term.
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M-theory M2 M5

Type IIA D0 F1 D2 D4 S5 D6

Type IIB F1+D1 D3+ S5+D5

Type I D1 D5

Heterotic F1 S5

Table 4.2: The U-theory brane-scan.

interesting to note how the brane tensions depend on the string coupling constant
gs = 〈eφ〉. For the fundamental p-branes the tension do not depend on the string
coupling constant and we have TFp ∼ (ms)p+1, where we have used the string
mass ms = 1/

√
α′ to get the correct dimensions. Such p-branes only occur for

p = 1 (cf. Tab. 4.2) and are thus fundamental strings. For the solitonic p-branes
we have TSp ∼ (ms)p+1/g2

s which indicates that they will dominate the dynamics at
strong coupling. Finally, for the D-branes, which lies outside the electric-magnetic
considerations above, we have TDp ∼ (ms)p+1/gs which is an intermediate behavior
compared to the fundamental and solitonic cases.

If we now consider eleven dimensional supergravity we have a 3-form potential
coupling to an electric M2 brane and giving rise to a dual magnetic M5 brane.
Since M-theory compactified on a circle is conjectured to be equivalent to the strong
coupling limit of type IIA string theory it should be possible to obtain the branes
of type IIA theory by suitable wrappings of the M2 and M5 branes around the
compact direction. The branes we are considering are, among others, collected in
Tab. 4.2. We start by noting that in type IIA theory there are two parameters, the
string coupling constant gs and the string mass ms. In M-theory there are only one
parameter, the Plank mass mp, but since we consider compactified M-theory we also
have the radius R of the compact direction. The M2 brane tension is TM2 = m3

p

and by wrapping it around the compact direction we want to get the F1 string

TF1 = m2
s = RTM2 = Rm3

p. (4.11)

This implies the identificationm2
s = Rm3

p. By instead wrapping one of the transverse
directions we want to obtain the D2 brane

TD2 =
m3
s

gs
= TM2 = m3

p (4.12)
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implying the identification gs = Rms. Let us now check if these identifications work
for the M5 brane. By wrapping it around the compact direction we want to get the
D4 brane

RTM5 = Rm6
p =

m5
s

gs
= TD4. (4.13)

By wrapping a transverse direction we get

TM5 = m6
p =

m6
s

g2
s

= TS5 (4.14)

and we see that we get exactly what we wanted. By this simple procedure we have
related the M2 and M5 branes to various branes in type IIA theory.

We end this section by explaining how the supersymmetry algebra can be used
to deduce which kinds of branes that exist in a given dimension. Consider D = 11
where we have the M-theory algebra

{Qα, Qβ} = (CΓM )αβPM +
1
2!

(CΓMN )αβZMN+
1
5!

(CΓMNPQR)αβZMNPQR, (4.15)

where the supercharge Qα is a 32-component Majorana spinor. By counting the
degrees of freedom in the RHS we get

11 + 55 + 462 = 528 (4.16)

which equals the degrees of freedom in the LHS. It turns out that the spatial com-
ponents of ZMN correspond to the electric charge while the spatial components of
ZMNPQR correspond to the magnetic charge. We can thus deduce that there must
exist M2 and M5 branes by just looking at the supersymmetry algebra.

4.3 Dp-branes

The p-branes which have vector multiplets living on their world-volumes are called
Dp-branes, or simply D-branes. They are dynamical objects on which open strings
can end. This implies that the D-branes have an exact description at the string
level, i.e. an exact description in term of a conformal field theory, in contrast to the
other types of branes. The low-energy dynamics are given by the Dirac-Born-Infeld
action

SDBI[Xµ, Ai] = −Tp
∫
dp+1ξe−φ

√
− det (g + F ), (4.17)

where Tp is the world-volume tension and Fij = 2πα′Fij − Bij where Fij = ∂iAj −
∂jAi is the field strength of Ai. The target-space fields φ, g and B are understood
to be pulled back to the world-volume by the embedding X . These fields represent
the closed string background in which the D-brane is embedded. The scaling of the
tension with the dilaton as described in the previous section can directly be seen to
agree with that given by the action (4.17). The reason for the dilaton dependence
e−φ = g−1

s is that (4.17) is an open string tree level action and we thus get a
factor e−φ from the disc. From the brane-scan, D-branes are seen to be allowed in
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D = 3, 4, 6 and 10. In type II string theory no states in the perturbative spectrum
are charged under the RR gauge fields. This is because only the gauge-invariant
field strengths appear in the vertex operators creating the RR vacuum out of the
NS-NS ground state. The D-branes now restore the balance since they are RR-
charged objects which in addition satisfy charge quantization conditions of the form
qeqm = 2πn.

Let us now go back and explain how D-branes can be seen to arise when applying
T-duality to open strings. Consider an open bosonic string and take one of the target
space directions to be compact, i.e. x25 ∼ x25 +2πR. The corresponding component
of the embedding field decomposes as X25(σ1, σ2) = X25(z) + X̃25(z̄), where

X25(z) =
q25

2
+
c25

2
− iα′p25 ln z + i

√
α′

2

∑
m6=0

z−m

m
α25
m , (4.18)

X̃25(z̄) =
q25

2
− c25

2
− iα′p25 ln z̄ + i

√
α′

2

∑
m6=0

z̄−m

m
α25
m . (4.19)

We have here added and subtracted the constant c25/2 and used that z = eσ
2+iσ1

.
By now looking at the T-dual field

X ′25(z, z̄) = X25(z)− X̃25(z̄) = c25 + 2α′p25σ1 + osc. (4.20)

and noting that the oscillator terms vanish at the endpoints σ1 = 0, 2π we see that
the endpoints are fixed at the hyperplane x25 = c25

X ′25(σ1 = 0) = c25, X ′25(σ1 = 2π) = c25 + 2πnR′ ∼ c25. (4.21)

We have here used that the momentum is quantized in the compact direction, p25 =
n/R, and that R′ = α′/R. We also note that the string is wound n times around
the compact direction. The Neumann boundary condition has thus been converted
into a Dirichlet boundary condition by T-duality.

To see why the D-branes are dynamical objects and why there is a vector field
living on them we look at the massless states of the T-dualized open string. The
massless states correspond to non-winding states at oscillator level N = 1. In the
original open string theory this corresponds to the massless U(1) gauge field αµ−1|k〉.
In the T-dual theory (where we now have dualized 25− p directions in order to get
a Dp-brane) this field decomposes into a longitudinal part, giving a U(1) gauge field
Ai on the world-volume, and a transverse part, giving 25−p scalars φm representing
the transverse oscillations of the world-volume.
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5
The AdS/CFT correspondence

In November 1997 Juan Maldacena published a paper [25] which was to be the
main influence on the string community in the year to come. Only one year after
appearing on the net his paper had received around 500 citations.

What Maldacena did was to identify a duality between string theory and gauge
theory. It is important to note that string theory inherently includes gravity which
gauge theory does not. The person first to propose the existence of such a duality
was ’t Hooft in 1974 [26]. He was trying to expand the equations for QCD in the
variable 1/N , where N is the number of colours, taking N to be large. This idea
of looking at the large N limit will be central in the AdS/CFT correspondence as
described below. However ’t Hooft’s approach fell short of solving the problems of
interest in QCD, but he proposed that one should be able to find a string theory
describing QCD where 1/N played the role of some coupling constant. Despite the
considerable interest aroused by this proposal no one was able to find the anticipated
string theory until now.

More precisely, the proposed duality is between type IIB string theory on AdS5×
S5 and a conformal field theory on the 4-dimensional Minkowski space which is the
boundary of AdS5. The important property is that weakly coupled string theory is
dual to strongly coupled gauge theory, where calculations are intractable. As de-
scribed in chapter 2, the low-energy limit of weakly coupled string theory is given by
supergravity. Thus, to lowest order we have a correspondence between supergravity
and gauge theory.

Since Maldacena’s first paper, a more precise version of the correspondence has
been developed by Gubser, Klebanov and Polyakov and independently by Witten,
which made it possible to relate quantities in the interior of AdS5 to quantities
in the gauge theory living on the boundary. The correspondence was still limited
to maximally supersymmetric and conformal gauge theories, but progress has been
made in order to rid it from these two restrictions. In order to describe gauge
theories with reduced supersymmetry we must take string theory on AdS5 × X5,

25
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where X5 is a positively curved Einstein manifold, i.e. one for which Rµν = Λgµν
with Λ > 0. The number of supersymmetries in the dual gauge theory is determined
by the number of Killing spinors on X5. Some progress has also been made towards
non-conformal gauge theories. This development is very important in order to make
contact with QCD, the prime application, since it is neither supersymmetric nor
conformal.

It is amusing to note that string theory has come full circle; it was invented to
provide a description of QCD and now, after thirty years of development, it might
just do that.

5.1 The large N limit

What Maldacena did in order to discover the duality between supergravity and
gauge theory was to formulate both theories in terms of D-branes. In order to get a
four-dimensional gauge theory one must use D3 branes, which can be embedded in
ten-dimensional spacetime. Each D-brane carries a U(1) charge and by stacking N
D-branes one obtains a U(N ) Born-Infeld theory. By taking the low-energy limit the
gauge fields decouple from gravity, simply because Newton’s constant depends on the
energy. In this limit we can also neglect higher order terms Fn in the Born-Infeld
action. In this way we get that the low-energy dynamics is governed by a U(N )
super-Yang-Mills theory. We will thus describe the gauge theory as the low-energy
limit of stacked D-branes.

On the supergravity side, the stacked D-branes make up a black hole solution
to the supergravity equations. Far away from the D-branes space is flat, but near
the D-branes there is an infinite throat leading down to the horizon of the black
hole as depicted in Fig. 5.1. In order to understand what happens in the low-energy
limit we consider particle waves in the Minkowski region. Their wave length will
increase as the energy is lowered and in the low-energy limit they will not notice the
D-branes. Similarly, excitations inside the throat region will lie closer and closer to
the event horizon as the energy is lowered. In this way we see that the bulk physics
decouples from the boundary physics near the horizon. Since it is the low-energy
dynamics of the D-branes that we are interested in it is the low-energy region near
the horizon we should be focusing at.

From the metric for the stacked D-brane solution it is easy to see that the near
horizon geometry is AdS5 × S5. Since the radius of curvature of this AdS space is
proportional to N 1/4, the supergravity solution is most reliable when N is large.
Maldacena’s conclusion was that these two descriptions are dual to each other.

On the gauge theory side, N is the number of colours and we are interested in
how the effective coupling scales with N . To see this, consider the exchange of a
gluon between two quarks. Since the emitting quark can turn into the order of N
colours, the effective coupling will be λ = g2

eff = g2
YMN , where λ is called the ’t

Hooft parameter. As we will see below, the duality takes its simplest form when λ

is large and since λ corresponds to the effective coupling we have a duality between
strongly coupled gauge theory and supergravity.



5.2 Holography 27

Minkowski

Anti de-Sitter

Figure 5.1: The geometry near the stacked D-branes.

Let us finally examine the validity of the supergravity-gauge theory correspon-
dence a bit more carefully. The argument above that string theory reduces to su-
pergravity in the low-energy limit near the horizon is a bit too weak. We must also
demand that the radius of AdS5 and S5 (they have the same radius) is large com-
pared to the string scale in order to be able to neglect stringy effects. The radius,
expressed in the ’t Hooft parameter is

R = λ1/4`s. (5.1)

This implies that we must have λ � 1. In order to be able to neglect quantum
effect, the string scale must be large compared to the Plank scale, given by

`p = g1/4
s `s. (5.2)

Using that gs = g2
YM we see that we must have gYM � 1, which implies N � 1

since λ is large. To conclude, in order for the correspondence to be valid between
supergravity and gauge theory the large N limit is not enough, we must also take λ
to be large.

5.2 Holography

The supergravity-gauge theory duality also gives new insights into an intriguing
concept which ’t Hooft has named “holography”. By holography we mean a relation
between the information carried on a surface and that within the volume it encloses.
To be more precise, ’t Hooft [27] and Susskind [28] proposed that the degrees of
freedom in the bulk of a region matches the degrees of freedom on the surface of
that region with an upper bound on the amount of information per unit area.
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Before the discovery of the supergravity-gauge theory duality, the best candidate
for realizing holography was black holes. As Bekenstein and Hawking showed, the
entropy of a black hole is proportional to its surface area. But if we consider the
creation of a black hole, in order not to lose any information, all the information
carried by what forms the inside of the black hole must be carried by its surface. The
holographic principle then means that the hologram captures all the information but
in a non-transparent way. Considering this, it is not surprising that Maldacena got
his idea while studying black holes.

Not everyone believes in the idea of holography, but the supergravity-gauge the-
ory duality may provide a new realization of holography and can thus bring some
new insights. The important difference to the black hole realization mentioned above
is that the supergravity-gauge theory realization would provide a microscopic un-
derstanding of the physics behind holography. Witten and Susskind have used this
new realization to get an order of magnitude estimate of the degrees of freedom of a
black hole [29]. They also found that infrared, i.e. long distance, effects in the bulk
are related to ultraviolet, i.e. short distance, effects on the boundary.



6
Outlook

In light of the recent years’ dramatic progress we are getting closer to answering
some long-standing problems in string theory. The Maldacena duality, together
with matrix theory, bring us a step closer to a non-perturbative definition of U-
theory. It is also possible that the Maldacena duality can be applied to QCD as
described above.

There are however some problems that still seem to be out of reach, e.g. the
problems related to vacuum selection, supersymmetry breaking and the cosmological
constant. In the latter case there may be some new input from the recent discovery
that the expansion of the universe is accelerating1. This implies the existence of a
non-zero (positive) cosmological constant, meaning that the universal expansion is
dominated by a repulsive force, counter-acting gravity. If correct, this leads to an
ever expanding universe and also implies that most of the energy in the universe
is associated with the vacuum (the cosmological constant is related to the vacuum
energy density).

Finally, the experimental verification of supersymmetry seems to be in reach in
the accelerators under construction. If traces of supersymmetry can be detected it
will no doubt be one of the greatest experimental discoveries. There will no doubt
be much excitement in the years to come!

1See e.g. http://www.eso.org/outreach/press-rel/pr-1998/pr-21-98.html and http://www-

.sciencemag.org/cgi/content/summary/282/5397/2156a.
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