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Göteborg, Sweden 2001



To my father and the memory of my mother,
with love and gratitude





The Quest for M-theory

Ulf Gran
Department of Theoretical Physics

Chalmers University of Technology and Göteborg University
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Abstract

In ten dimensions, there exist five consistent string theories and in eleven dimensions
there is a unique supergravity theory. When trying to find the fundamental theory
of nature this is clearly an “embarrassment of riches”. In the mid 90s, however, it
was discovered that these theories are all related via a kind of transformation called
duality. The six theories are therefore only facets of a (largely unknown) underlying
theory referred to as M-theory. This theory is intrinsically non-perturbative and
therefore very hard to study. Witten has suggested that until we know more about
M-theory, M can stand for ‘magic’, ‘mystery’ or ‘membrane’, according to taste. In
this thesis, comprising an introductory text and eight appended research papers, we
are going to describe some of the methods used to study M-theory. Central to this
analysis are non-perturbative, solitonic objects collectively referred to as p-branes,
whose properties are studied in Papers I-IV and VI. In Paper II we generalize the
Goldstone mechanism to the case of tensor fields of arbitrary rank, providing an
understanding of the emergence of vector and tensor fields on branes in terms of
broken symmetries. In Papers III and IV we find brane solutions with finite field
strengths on the brane. Lately, noncommutative theories decoupled from closed
strings have been discovered. These theories are defined on branes with critical field
strengths and are studied and extended in Papers VI and VII.

In Paper V we generalize eleven dimensional supergravity to obtain the most gen-
eral geometrical structure in eleven dimensional superspace. The motivation for this
is to examine what constraints supersymmetry imposes on possible correction terms
arising from M-theory. To facilitate this study the Mathematica package GAMMA,
which is capable of performing Γ-matrix algebra and Fierz transformations, were
developed and is presented in Paper VIII.

Keywords: M-theory, supergravity, superspace, string theory, gauge symmetry,
supersymmetry, duality, p-branes, D-branes, solitons.
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1
Introduction

String theory was originally formulated in the late 1960s as an attempt to explain the
spectrum of hadrons and their interactions. It was however discarded as a theory of
the strong interaction for two main reasons. Firstly, there exists a critical dimension,
26 for the bosonic string and 10 for the fermionic string, and our world has just four
dimensions. Secondly, the spectrum contains a massless spin 2 particle not present
in the hadronic world. These problems and the rapid success of QCD made people
abandon string theory.

String theory was revived in 1974 when Scherk and Schwarz turned the existence
of the massless spin 2 particle into an advantage by interpreting it as the graviton, the
field quantum of gravitation. It was also discovered that at low energies string theory
reduced to einsteinian general relativity. String theory was in this way elevated to
be a potential “theory of everything”, i.e., a theory that unifies all four forces of
nature.

The extension of the bosonic string to the fermionic string, thereby including
fermions in the spectrum, was achieved by enforcing supersymmetry [1, 2]. This
is a concept of great importance in high-energy physics. Supersymmetry can be
described as an extension of special relativity taking into account that fermions
exist. In the same sense supergravity can be described as an extension of general
relativity.

The first superstring revolution (1984-85) consisted of three important discover-
ies. The first was an anomaly cancellation mechanism, which enabled the construc-
tion of consistent gauge theories in ten dimensions. The key result was that the
gauge group has to be SO(32) or E8×E8. The second discovery was two new super-
string theories, the heterotic string theories, with exactly these gauge groups. But
perhaps it was the third discovery that made people set their hopes on superstring
theory. By compactifying the E8×E8 heterotic string theory on a particular Calabi-
Yau manifold one obtained a 4d effective theory with many qualitatively realistic
features. There are however a great variety of possible choices of this Calabi-Yau
manifold and no one stands out as particularly special. After this revolution there

1



2 Chapter 1 Introduction

were five distinct ten dimensional superstring theories with consistent weak coupling
perturbation expansions and the understanding of these theories was developed in
the ensuing years.

A great deal of effort has been devoted to the investigation of the non-perturbative
structure of superstring theory. From field theory we know that there are many in-
teresting non-perturbative phenomena like quark confinement, the Higgs mechanism
and dynamical symmetry breaking. Since string theory contains quantum field the-
ory one expects all of these phenomena to occur also in string theory, in addition
to new stringy phenomena. Generalizing ideas from QED, the electrically charged
string was found to have a magnetically charged dual partner, the solitonic five-
brane, analogous to the magnetic monopole (or more precisely analogous to the
’t Hooft-Polyakov monopole in the Georgi-Glashow model, which is obtained as a
solitonic solution). This led to the discovery of various extended objects, collectively
referred to as p-branes of dimension d = p + 1. The p-branes can be classified ac-
cording to their world-volume field content. Papers I-IV deals with these kinds of
objects and especially with branes which have vector and tensor modes living on
them. Superstring theory is thus nowadays quite a misnomer since it contains so
much more than just strings.

What laid the foundation to the second superstring revolution (mid 1990s), which
has to do with the non-perturbative structure of superstring theory, was the concept
of duality. By duality we mean a way of relating different superstring theories,
or different “regions” of a particular superstring theory. One kind of duality, S-
duality, relates weakly and strongly coupled theories and using this duality we can
do calculations in the weakly coupled theory and then translate the results into the
strongly coupled theory. This is of great value since we can only do calculations
for weak coupling. By using this kind of duality we can obtain non-perturbative
information which would be almost impossible to obtain by direct calculation. Since
S-duality is a non-perturbative duality we need non-perturbative objects in order to
check various conjectured S-dualities and here the above mentioned p-branes play a
crucial rôle.

It was later discovered that all five superstring theories are related to each other
via duality and are thus only facets of a (largely unknown) underlying fundamen-
tal theory. This all-encompassing fundamental theory is called M-theory. Witten
has proposed that until we get a better understanding of what M-theory really is,
M can stand for Magic, Mystery or Membrane, according to taste. However, the
sense in which Witten introduced the term M-theory was to designate the eleven-
dimensional quantum theory which has eleven-dimensional supergravity as its low-
energy effective description. Nowadays, the term M-theory is used to designate both
the all-encompassing theory and the quantum theory in eleven dimensions.

A few years ago, an enormous attention was given to the so-called AdS/CFT
correspondence, which is a kind of duality between superstring theory or M-theory
on certain anti-de Sitter spacetime backgrounds and gauge theory. AdS space is
analogous to a sphere with negative curvature. People hope that this will help
us prove quark confinement, which would be one of the greatest achievements of
superstring theory to this date.
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Superstring theory can also be used to calculate black hole entropy. Using
D-branes (one kind of p-branes) Strominger and Vafa [3] were in 1996 able to
give a statistical mechanics derivation of the Bekenstein-Hawking entropy relation
S = A/4G~. Previously this relation was only understood from a thermodynamic
perspective but now the picture is complete. There are however indications that
this result is universal [4], i.e., that any quantum theory of gravity will lead to the
standard result. It should be stressed that the quantitative results mentioned above
consists of agreement with calculations made in more accepted theoretical models,
like QCD, and does not consist of actual experiments.

Recently, also noncommutative geometry has become an important ingredient
in string theory. It first appeared in the context of bound states of D-branes [5]
and then reappeared in matrix theory, which attracted a lot of attention when it
was understood that it provides a well defined quantum theory which reduces to a
supersymmetric theory of eleven dimensional gravity at low energies [6]. However,
due to the level of difficulty of performing calculations within matrix theory its use
has been limited. Noncommutative geometry once again appeared in string theory
with the discovery of numerous noncommutative theories decoupled from closed
strings. Since the graviton is a closed string state these theories will not contain
gravity. Recall that one of the reasons why people discarded string theory as a theory
for the strong interaction was the presence of a massless spin 2 particle, i.e., the
graviton. These new theories do not suffer from this problem and could potentially
be used to describe QCD. The absence of gravity also makes these theories easier
to study than the full string theory itself and therefore, in any case, they provide
interesting “toy” models. To be a bit more precise, the theories in question live
on branes and have open strings, open Dp-branes, or open M2-branes as their light
degrees of freedom. These theories will be discussed in detail in Chapter 8. Recent
advances has also been made concerning the understanding of tachyon condensation,
which will be briefly discussed in the outlook in Chapter 9.

This briefly recapitulates the major line of development in string theory since its
birth and we will now examine some areas in more detail. In Chapter 2 we will start
by presenting bosonic string theory and then move on to its supersymmetric gener-
alization, the fermionic string, and discuss its spectrum. The various supergravity
theories, which provide the setting for the work done in Papers I-VII, are reviewed
in Chapter 3. It is explained how the ten dimensional supergravity theories arise
as the low-energy limit of the corresponding superstring theories. Emphasis is put
on the treatment of eleven dimensional supergravity in order to introduce the work
in Paper V. There exist a multitude of supergravity solutions describing extended
objects called p-branes. They are studied in Papers I-IV and VI, and are also impor-
tant to the work done in Paper VII. In Chapter 4 the basic properties of p-branes are
reviewed and a classification based on their world-volume field content is presented.
Chapter 5 deals with the concept of duality and describes how the five superstring
theories and M-theory are related through the web of dualities. Chapter 6 gives a
brief introduction to the AdS/CFT correspondence, focusing on the main ideas. In
Chapter 7 we extend our study of branes to the case when they have finitely excited
field strengths on their world-volumes, important for the construction of decoupled,
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noncommutative theories, studied in Papers VI and VII and discussed in Chapter 8.
Finally, we conclude with an outlook in Chapter 9.



2
Perturbative string theory

Before the discovery of the various duality relations only perturbative aspects of
string theory were accessible and the only known object in the theory was the
string. This picture changed dramatically when multifarious higher-dimensional
objects were discovered and found to be an integral part of string theory. Perturba-
tive string theory is nevertheless still very important since it is for weakly coupled
strings that calculations are most manageable.

In this chapter we will present the elementary concepts of bosonic string theory
and superstring theory and describe how the latter is related to supergravity. For a
more complete treatment of string theory see, e.g., Refs. [7, 8, 9].

2.1 Bosonic string theory

The fundamental idea behind string theory is actually very simple. Consider first
an ordinary point particle. The action is in this case given by the length of the path
the particle traces out as it propagates, which is called the world-line. If we instead
consider the propagation of a closed string, its orbit will be a two-dimensional tube
instead of a line. In analogy with the point-particle case we take the action to be
the area of this tube, the world-sheet. An action of this type was first written down
by Nambu and Goto:

SNG[Xµ] = −T
∫

Σ
d2σ
√
−det(∂iXµ∂jXνηµν). (2.1)

Here T = (2πα′)−1 is the string tension, a constant of dimension (length)−2, and
α′ is known as the Regge slope. We can view this as an embedding of the world-
sheet, Σ, in M , the target space. The target space is often, for simplicity, taken
to be flat, D-dimensional Minkowski space. Nothing prevents us however from
considering a general target space by just replacing ηµν in (2.1) with gµν. The fields
Xµ, µ = 1, 2, . . . , D represent the position of the string in target space. The world-
sheet parameterized up by σ0 = τ , representing the time and σ1 = σ, 0 ≤ σ <

5



6 Chapter 2 Perturbative string theory

π, representing the angle around the string. The embedding X induces a metric,
(X∗η)ij = ∂iX

µ∂jX
νηµν , and as seen in (2.1) it is with this metric the area of the

world-sheet is measured. If the world-sheet has boundaries in the σ-direction, we
have an open string, otherwise it is closed.

A problem with the Nambu-Goto action is that it can not be quantized preserving
manifest Lorentz covariance due to the square root. A classically equivalent action
without the square root can however be constructed using an auxiliary, intrinsic
world-sheet metric γij:

SBDH[Xµ, γij] = −T
2

∫
Σ
d2σ
√
−γγij∂iXµ∂jX

νηµν. (2.2)

This action was first written down by Brink, Di Vecchia and Howe [10] and by
Deser and Zumino [11], but is most commonly known as the Polyakov action since
Polyakov used it to construct the path integral formulation of string theory [12, 13].
The difference compared to the Nambu-Goto formulation is that the world-sheet is
given an intrinsic geometry, given by γij, but one also has an algebraic equation of
motion for γij. By using the solution to this equation the action (2.2) reduces to
the one in (2.1). The property of having an intrinsic world-sheet geometry will also
be important when trying to quantize the string.

The action (2.2) has three local invariances, two coming from the reparameter-
ization invariance of the world-sheet and one from the Weyl invariance, γij(σ) →
eΛ(σ)γij(σ). In addition, we have rigid Poincaré invariance in target space, but from
the world-sheet point of view this is an internal symmetry.

By using the reparameterization invariance we can locally go to the conformal
gauge, γij = eΛ(σ)ηij, where η=diag(-1,1),

Scg[Xµ] = −T
2

∫
Σ
d2σηij∂iX

µ∂jX
νηµν. (2.3)

This is a free, conformally invariant action (which is of course also true for the action
in (2.2)) and we thus have a conformal field theory [14] living on the world-sheet.

By varying the action we get the equation of motion, �X = ∂i∂
iXµ = 0. This

is an ordinary wave equation and we can split the general solution into one left-
and one right-moving part. Whether these parts are related or not depends on the
boundary conditions. An ordinary closed string has periodic boundary conditions,
while an open string can have either Dirichlet or Neumann boundary conditions
(or combinations of them). The Dirichlet condition was for many years considered
unphysical since it breaks Poincaré invariance. This changed with the discovery of
D-branes, objects on which open strings can end, where D stands for Dirichlet. We
will discuss this type of brane in Chapter 4. In the following we will concentrate on
the closed string and show how quantization is achieved and how the spectrum is
derived.

For the closed string, the general solution to the equation of motion is

Xµ(z, z̄) = qµ − i

4
α′pµ ln(zz̄) + i

√
α′

2

∑
n6=0

(
α
µ
n

n
z−n +

α̃
µ
n

n
z̄−n), (2.4)
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where we have performed a Wick rotation, σ2 = iσ0, and introduced complex coordi-
nates z = e2(σ2+iσ1). This maps the, now euclidean, world-sheet to the compactified
complex plane, which is topologically S2.

Quantization is most easily achieved by quantizing the embedding fields Xµ

canonically, which leads to the commutation relations

[qµ, pν] = iηµν, [αµm, α
ν
n] = mδm+n,0η

µν, (2.5)

with an analogous expression for the α̃µm oscillators. We will from now on concen-
trate on the left-moving part described by the αµm oscillators. Let us introduce a
(momentum) vacuum, |0〉, defined by

pµ|0〉 = αµm|0〉 = 0, m > 0. (2.6)

Eigenstates of pµ can now be constructed, |k〉 = eik·q |0〉, and we have a set of Fock
vacua where each vacuum is labeled by its momentum1. The full state space is
generated by applying the creation operators (αµm)† = αµ−m, m > 0, to the Fock
vacua. The physical state space is however only a subspace of the full state space
since we must take into account the constraints imposed by the equation of motion
for γij to which we will now turn.

Since the action (2.3) is free the non-trivial content of the theory is contained in
the equation of motion for γij, which is equivalent to the vanishing of the energy-
momentum tensor

Tij = − 1
T

1√−γ
δSBDH
δγij

|γ=η . (2.7)

The energy-momentum tensor is defined to describe the response of the system to
changes in the metric according to

δS = −T
∫

Σ
d2σ
√
−γTijδγij. (2.8)

In the complex basis we have

Tzz(z) =
1
2
∂zXµ∂zX

µ, (2.9)

T̄z̄z̄(z̄) =
1
2
∂z̄Xµ∂z̄X

µ, (2.10)

while Tzz̄ and Tz̄z vanish identically due to the tracelessness of Tij, which is a general
feature of conformal field theories [14]. This can easily be understood by considering
a Weyl invariant theory, like the one defined by the action (2.2), where only the
metric transform under Weyl rescalings, δγij = Λγij. We then have

0 = δS = −T
∫

Σ
d2σ
√
−γΛ(σ)Tijγij (2.11)

1Note that 〈k|k′〉 = δ(k−k′) and therefore 〈p= 0|p= 0〉 =∞. We can, however, define a left
vacuum, 〈x=0|, satisfying 〈0|x=0 and 〈0|αn, for n < 0, which has the property that 〈x=0|p=0〉=1.
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and since Λ(σ) is an arbitrary function it follows that Tij must be traceless. We now
make a Fourier expansion of the stress-energy tensor,

T (z) = Tzz(z) =
∑
n∈Z

Lnz
−n−2 . (2.12)

The Fourier coefficients satisfy the Virasoro algebra

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0, (2.13)

where c = D is the central charge. The equations of motion for the energy-
momentum tensor, Tij = 0, require it to vanish. In order to deduce what this
implies for the Lm operators we write the condition as 〈phys|T |phys′〉 = 0 which
gives us the Virasoro constraints

(Lm − aδm,0)|phys〉 = 0, m ≥ 0, (2.14)

where the constant a is introduced due to the normal ordering ambiguity in L0.
Having a ghost free spectrum requires D ≤ 26 and a ≤ 1. Furthermore, to have a
Lorentz invariant theory we must take D = 26 and a = 1. The fact that L0 − L̄0

generates rigid σ-translations implies the level-matching constraint

(L0 − L̄0)|phys〉 = 0 (2.15)

since no point on the string is special, i.e., the string is invariant under σ-translations.
Using (2.9) we can write the Lm operators as normal ordered expressions in the
oscillators

Lm =
1
2

∑
n∈Z

: αm−n · αn :, αµ0 =
√
α′/2pµ. (2.16)

Acting with L0 on a physical state gives the mass-shell constraint

α′M2 = 4(N − a), (2.17)

where N is the eigenvalue of the level operator N =
∑

m>0 α−m ·αm and N = N̄ due
to level-matching. As is immediately seen from (2.17) the ground state of the bosonic
string is tachyonic, i.e., has negative mass squared. This implies that the vacuum
is not stable and therefore the bosonic string was thought not to be consistent.
Recent developments, however, show that the potential associated with the open
string tachyon has a local minimum corresponding to a perturbatively stable closed
string vacuum (see [15] and references therein). The tachyon can also be removed by
introducing supersymmetry and making a particular projection as will be described
in the next section.

The first excited level, ξµνα
µ
−1α̃

ν
−1|k〉, is the massless sector of the theory. De-

pending on the choice of polarization tensor we get a scalar φ, a symmetric traceless
tensor gµν and an antisymmetric tensor Bµν . These are, respectively, the dilaton,
the graviton and the abelian two-form gauge potential.
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One of the most important properties of bosonic string theory is that it reduces
to einsteinian general relativity in the low-energy limit. One way to see this is to
consider a non-trivial background for the string, which is described by the non-linear
σ-model action

S = − 1
4πα′

∫
d2σ
(√
−γγij∂iXµ∂jX

νgµν(X)

+εij∂iXµ∂jX
νBµν(X)− α′

√
−γR(2)φ(X)

)
, (2.18)

where R(2) is the Ricci scalar for the world-sheet metric. From the world-sheet point
of view the massless target space fields gµν , Bµν and φ are coupling constants, or
rather coupling functionals since they depend onX . To get the Einstein equations we
require conformal invariance at the quantum level, i.e., that the β-functionals vanish.
A non-linear σ-model calculation, to lowest non-trivial order in α′ (corresponding
to the low-energy limit), gives [7]

β(g)
µν = Rµν −

1
4
HµρσHν

ρσ + 2DµDνφ+O(α′),

β(B)
µν =

1
2
DρHρµν −DρφHρµν +O(α′), (2.19)

β(φ) =
(26−D)

3α′
−R+

1
12
H2 − 4DµD

µφ+ 4(Dµφ)2 +O(α′).

Here Rµν is the target space Ricci tensor and H = dB is the three-form field strength.
By requiring that all the β-functionals vanish we obtain the equations of motion for
the massless background fields.

2.2 Superstring theory

There are three different formulations of the superstring, depending on where the
supersymmetry is manifest. One can have manifest supersymmetry either on the
world-sheet, on the target space, or both simultaneously, which is called a doubly
supersymmetric formulation. The Neveu-Schwarz-Ramond formulation, which has
manifest world-sheet supersymmetry, is the formulation we will use in order to dis-
cuss the spectrum of the open fermionic string. In the Green-Schwarz formulation
one embeds the bosonic world-sheet of the string into a target superspace and thus
has manifest target space supersymmetry. In order to get supersymmetry also on
the world-sheet one must require an additional fermionic target space symmetry
called κ-symmetry, which reduces the number of fermionic degrees of freedom on
the world-sheet by a factor 1/2. A recently developed approach is the “doubly
supersymmetric geometrical approach” [16, 17, 18], or the “embedding formalism”
[19], which is described in detail in Paper I. In this approach one has manifest su-
persymmetry both on the world-sheet and in target space. This is accomplished
by embedding a supermanifold, in the string case the super-world-sheet, into the
supermanifold which constitutes the target space. In this sense it can be viewed as
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an extension of the Green-Schwarz formalism. In order to get the dynamics we have
to impose an embedding condition and in some cases supplementary conditions.

The action in the NSR formulation is

S =
1

4π

∫
d2z

(
2
α′
∂Xµ∂̄Xµ + ψµ∂̄ψµ + ψ̃µ∂ψ̃µ

)
, (2.20)

which leads to the equations of motion ∂̄ψµ = 0 = ∂ψ̃µ. The two spinor components
ψµ and ψ̃µ form a world-sheet Majorana spinor(

ψµ

ψ̃µ

)
(2.21)

transforming as a spacetime vector. The Majorana condition ensures that we have
the same number of bosonic and fermionic degrees of freedom on shell. The action
(2.20) is obtained by gauge-fixing a supersymmetric analogue of (2.2).

We will now analyze the spectrum of the open fermionic string, which in the next
chapter will be used to derive the massless spectra of the five superstring theories
and hence the field content of the corresponding supergravity theories. Note first
that the classical action (2.20) does not contain any spacetime spinors. They will
arise as a consequence of quantization and the origin of this phenomenon has to
do with the boundary conditions of the world-sheet spinors. The vanishing of the
surface term when varying the action (2.20) is satisfied by two different Poincaré
invariant boundary conditions

ψµ(0, σ2) = −ψ̃µ(0, σ2), ψµ(π, σ2) = ψ̃µ(π, σ2) (NS)
ψµ(0, σ2) = ψ̃µ(0, σ2), ψµ(π, σ2) = ψ̃µ(π, σ2) (R)

(2.22)

which defines the Neveu-Schwarz (NS) and Ramond (R) sectors, respectively. With
respect to these conditions, the solutions to the equations of motion are

ψµ(σ1, σ2) = i−1/2
∑

r∈Z+1/2ψ
µ
r e−r(σ

2−iσ1)

ψ̃µ(σ1, σ2) = i1/2
∑

r∈Z+1/2ψ
µ
r e−r(σ

2+iσ1)
(NS) (2.23)

for the NS sector and

ψµ(σ1, σ2) = i−1/2
∑

n∈Zψ
µ
ne
−n(σ2−iσ1)

ψ̃µ(σ1, σ2) = i1/2
∑

n∈Zψ
µ
ne−n(σ2+iσ1)

(R) (2.24)

for the R sector. Proceeding with the quantization as in the bosonic case gives the
commutation relations

{ψµr , ψνs} =
{
ψ̃µr , ψ̃

ν
s

}
= ηµνδm+n ,

[αµm, α
ν
n] = [α̃µm, α̃

ν
n] = mηµνδm+n ,

(2.25)

which is valid both for integer and half-integer values of r and s. The states in the
NS sector are now generated from the Fock vacua |k〉 by applying the negative modes
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αµ−m and ψµ−r. The Virasoro constraint corresponding to the mass-shell constraint
is

(L(NS)
0 − 1

2
)|phys〉 = 0 (2.26)

where

L
(NS)
0 =

1
2

∑
n∈Z

: α−n · αn : +
1
2

∑
r∈Z+1/2

r : ψ−r · ψr : (2.27)

and αµ0 =
√

2α′pµ for the open string. The mass spectrum for the NS sector is thus

α′M2
NS = Nα +Nψ −

1
2
. (2.28)

The ground state is thus unique which implies that it is a spin 0 state.
The R sector is a bit more complicated due to the fermionic zero-modes ψµ0 , which

commutes with the mass operator. This implies that |0〉 and ψµ0 |0〉 are degenerate
in mass. Since the ψµ0 are the generators of a Clifford algebra (cf. Eq. (2.25)) we
conclude that the R ground state is a SO(9,1) spinor. Since we have Majorana-Weyl
spinors in ten dimensions we are free to choose the chirality of the vacuum. The
oscillators are spacetime vectors, and can not change tensors into spinors or vice
versa. Thus all states in the R sector will be fermionic and all states in the NS
sector will be bosonic. In this way the emergence of spacetime fermions is due to
the zero-modes ψµ0 .

In addition to the usual Virasoro and level-matching constraints the physical
states in the R and NS sectors must satisfy

Gr|phys〉 = 0; r ≥ 0 (2.29)

where

Gr =
∑
n∈Z

α−n · ψr+n . (2.30)

The Gr operators are the Fourier components of the supercurrent and the constraints
come from the vanishing of the supercurrent in the same way as the Virasoro con-
straints come from the vanishing of the stress-energy tensor. The G0 constraint of
(2.29) actually contains the mass-shell constraint, due to the super-Virasoro algebra,
and we get the mass spectrum

α′M2
(R) = Nα +Nψ. (2.31)

We still however have tachyons in the NS sector. These can be removed by invok-
ing the GSO projection, which is also crucial in order to have modular invariance.
The projection consists of removing states with odd world-sheet fermion number
after which we finally arrive at the physical spectrum. A closed string can now be
considered as built up by two open strings and therefore its spectrum can be writ-
ten as the direct product of two open string spectra. In this way we can obtain the
spectra for the five superstring theories, see, e.g., Ref. [7].
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3
Supergravity

In the previous chapter we derived the spectrum for the open fermionic string.
Taking the tensor product of two open string spectra yields the spectra for the five
closed fermionic string theories. Since the massless spectra dominate the low-energy
behavior of these theories these spectra give the field content of the corresponding
supergravity theories. The various supergravity theories are thus obtained from the
dynamics of the corresponding massless string states in the low-energy limit. We
will now briefly review the supergravity theories in ten dimensions and then discuss
eleven dimensional supergravity in more detail.

3.1 Type IIA

Type IIA supergravity can be obtained by reducing eleven dimensional supergravity
on a circle, as will be explained in Chapter 5. We can also derive the massless
spectrum by taking the tensor product of two copies of the massless spectrum for
the open fermionic string, as mentioned above. In the NS-sector, the massless state
is ψµ−1/2|0〉, which is a target space vector. In the R-sector, the massless state is,
as explained in the previous chapter, a target space spinor whose chirality we are
free to choose. Using the little group SO(8), we therefore get the massless spectra
8V⊕8S or 8V⊕8C depending on the choice of chirality of the R-vacuum. By taking
the product of spectra with the same or opposite chirality we get the type IIA or
type IIB field content, respectively

(8V ⊕ 8S)⊗ (8V ⊕ 8C) (IIA) ,
(8V ⊕ 8S)⊗ (8V ⊕ 8S) (IIB) .

(3.1)

We immediately see that type IIA is a non-chiral theory and that type IIB is chiral.
The NS-NS sector

8V ⊗ 8V = 8 ⊕ 28⊕ 35V = φ⊕Bµν ⊕ gµν (3.2)

13
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is the same for type IIA and type IIB but the RR sectors differ

8S ⊗ 8C = 8V ⊕ 56t = C(1) ⊕ C(3) (IIA) ,
8S ⊗ 8S = 1 ⊕ 28⊕ 35S = C(0) ⊕C(2) ⊕C+

(4) (IIB) . (3.3)

Here C(n) is a RR n-form potential and C(4) has a self-dual field strength, more will
be said about type IIB in the next section. The content of the products in (3.3)
can be understood by considering the index structure of the Γ-matrices in eight
dimensions. The fields of the NS-NS and R-R sectors are bosonic and we now turn
to the fermionic NS-R and R-NS sectors. The field contents are

8V ⊗ 8C = 8S ⊕ 56S = λα̇ ⊕ ψµα ,
8V ⊗ 8S = 8C ⊕ 56C = λα ⊕ ψµα̇ ,

(3.4)

where we take one copy of each set for type IIA but two copies of the lower set for
type IIB. The action for type IIA supergravity is

SIIA =
1
2

∫
d10x
√
−g
(
e−2φ[R+ 4(∂φ)2− 1

2 · 3!
H 2

(3)]

−2[
1

2 · 2!
R 2

(2) +
1

2 · 4!
R 2

(4)]
)
− 1

4

∫
dC(3) ∧ dC(3) ∧B(2), (3.5)

where H(3) = dB(2), R(2) = dC(1) and R(4) = dC(3) + H(3) ∧C(1).

3.2 Type IIB

The type IIB supergravity in ten dimensions has an SL(2,R) invariance, which is
broken to SL(2,Z) at the string level by charge quantization. The field content is two
scalars in the coset space SL(2,R)/U(1) (the dilaton, φ, from the NS-NS sector and
the axion, χ, from the R-R sector), a self-dual R-R 5-form field strength H(5), which
is an SL(2,R) singlet, and a real SL(2,R) doublet of 3-form field strengths, H(3)r =
dC(2)r(r = 1, 2), corresponding to the NS-NS and R-R field strengths respectively (r
is an SL(2,R) index), and finally the metric. We will use a formulation of the theory
where the SL(2,R) covariance is manifest [20, 21] in the notation of [22, 23]. Due to
the self-dual five-form field strength it is complicated to construct a covariant action
for this theory [24, 25, 26].

The scalars are described by the complex doublet Ur obeying the SL(2,R) in-
variant constraint

i

2
εrsUrŪs = 1, (3.6)

where we use the convention that ε12 = 1 (ε12 = −1). If we gauge the U(1) we are left
with the two physical scalars, which can be obtained through τ = U1/U2 = χ+ie−φ.
The left-invariant SL(2,R) Maurer-Cartan forms are

Q =
1
2
εrsdUrŪs, P =

1
2
εrsdUrUs. (3.7)
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We normalize the U(1) charge to 1 for the scalar doublet and therefore Ur → Ureiθ
under local U(1) transformations. From the expressions for Q and P above we see
that they transform as Q→ Q+dθ and P → Pe2iθ under local U(1) transformations,
i.e., Q is a U(1) gauge field and P has U(1) charge 2. The Maurer-Cartan equations
are

DP = 0, dQ− iP ∧ P̄ = 0, (3.8)

where the covariant derivative D = d − ieQ acts from the right and e is the U(1)
charge. It is important to note that the scalar doublet transforms in a simple
way under SL(2,R), i.e., contravariantly, compared to the physical scalars, which
transforms in a complicated way via τ . The main advantage of using this formalism
is that we can combine the contravariant scalar doublet with a covariant doublet,
e.g., the doublet of 3-form field strengths, in order to get an SL(2,R) invariant object.
The object constructed in this way is in general complex, since the scalar doublet
is complex, and will be denoted by calligraphic letters. The real doublet can be
retrieved by using the scalar doublet, e.g.,

H(3) ≡ UrH(3)r, H(3)r = εrsIm(UsH̄(3)). (3.9)

The equations of motion1 can now be written as

D∗P +
i

4
H(3) ∧ ∗H(3) = 0 (3.10)

D∗H(3) − i ∗ H̄(3) ∧ P − iH(5) ∧H(3) = 0 (3.11)

and the Bianchi identities are

DH(3) + iH̄(3) ∧ P = 0 (3.12)

dH(5) −
i

2
H(3) ∧ H̄(3) = 0. (3.13)

Finally, we also have the Einstein equations

RMN = 2P̄(MPN) +
1
4
H̄(M

RSHN)RS −
1
48
gMNH̄RSTHRST +

1
96
H(M

RSTUHN)RSTU .

(3.14)

3.3 Type I

The type I superstring spectrum is obtained from the type IIB spectrum by ap-
plying an orientifold projection which only keeps the left-right symmetric states.
The resulting type I string theory is therefore unoriented and chiral. In the NS-NS
sector (3.2) we see that the two-form Bµν is projected out. In the RR sector (3.3)

1We have rescaled the fields as H(3)r → 1
2
H(3)r and H(5) → 1

4
H(5) compared to Paper IV in

order to conform to the most commonly used conventions.
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only the two-form C(2) survives since it is Γ(1), Γ(2) and Γ(5) that are the symmet-
ric Γ-matrices2. In the fermionic sector (3.4), the orientifold projection picks out
the linear combination (NS-R)+(R-NS), which is the reason why only one of each
representation survives. For type I supergravity we thus get the field content

[8V ⊗ 8V ⊕ 8S ⊗ 8S]Symmetric = 1⊕ 28⊕ 35V = φ⊕C(2) ⊕ gµν ,
[8C ⊗ 56C]Symmetric = λα ⊕ ψµα̇ .

(3.15)

The string theory obtained in this way is however anomalous and in order to cancel
the anomaly we have to add an open string sector with SO(32) Chan-Paton factors.
For the low-energy theory this corresponds to adding a super-Yang-Mills theory with
gauge group SO(32). The low-energy effective action for the type I theory is then

SI =
∫
d10x
√
−g
(
e−2φ[R+ 4(∂φ)2]− 1

12
H2

(3) −
1
4
e−φ trF 2

)
, (3.16)

where H(3) = dC(2) and F = dA + A ∧ A is the SO(32) Chan-Paton gauge field
strength.

3.4 Heterotic

Since the left- and right-moving sectors of the closed string can be chosen indepen-
dently, we can choose to have the degrees of freedom of a bosonic string in the left-
moving sector and the degrees of freedom of a fermionic string in the right-moving
sector. In order to get the spacetime dimensions to match, we must compactify 16
of the 26 dimensions of the bosonic sector. To be specific, the 16 dimensions form a
torusR16/Λ where Λ must, due to modular invariance, be a euclidean, even, self-dual
lattice. There are actually only two lattices of this kind, the root lattice of E8×E8

and the lattice of Spin(32)/Z2. When viewed as a theory in ten dimensions, these
lattices will give rise to the space-time gauge symmetry of the heterotic string, which
will be E8×E8 or SO(32). This theory is tachyon free since the potential tachyon
from the bosonic sector is removed from the spectrum due to the level-matching
constraint. The massless spectrum is seen to be the same as for the type I string
(without Chan-Paton factors) together with an N = 1 super-Yang-Mills multiplet
with the gauge field Aµ in the adjoint representation of E8×E8 or SO(32). In the
latter case the massless spectrum is identical to the massless type I spectrum, in-
cluding Chan-Paton factors, hinting at a possible duality between these theories, as
we will see in Chapter 5. The action for heterotic supergravity is

Shet =
∫
d10x
√
−ge−2φ

(
R+ 4(∂φ)2 − 1

12
H 2

(3) −
1
4

trF 2

)
, (3.17)

where H(3) = dB(2) and the gauge field strength F = dA+A∧A, where A transforms
in the adjoint of either SO(32) or E8×E8.

2We do not have to go higher than Γ(5) since the higher Γ-matrices can be obtained by dualizing
the lower ones. In the same way, we only consider up to Γ(5)-terms in eleven dimensions.
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3.5 Eleven-dimensional supergravity

Supergravity takes its simplest form when formulated in eleven dimensions [27]. The
bosonic part of the action is simply

−2κ2S11 =
∫
d11x
√
−g
(
R+

1
2 · 4!

HmnpqHmnpq

)
+

1
6

∫
C ∧H ∧H , (3.18)

where H(4) = dC(3) is the four-form field strength. Eleven turns out to be the maxi-
mal dimension if we require that there are no particles with spin higher than two. If
we do not want to make assumptions regarding higher spins we would still get into
trouble by going beyond eleven dimensions since, as we shall see in the next chapter,
eleven is the maximal dimension admitting supersymmetric extended objects [28].
At first, eleven dimensional supergravity was just regarded as a useful device for
deriving supergravities in four dimensions. It was, however, well known that type
IIA supergravity could be obtained by reducing eleven dimensional supergravity on
an S1, but it was not until the discovery that the string in ten dimensions could be
obtained by wrapping the membrane in eleven dimensions around the circle [29, 30]
that a fundamental theory in eleven dimensions was seriously considered.

Eleven dimensional supergravity has also been formulated in superspace [31, 32]
and it is this formulation we will use. The advantage of the superspace formulation
is that supersymmetry is manifest throughout all calculations. In this section we
will derive eleven dimensional supergravity3 using superspace techniques and in the
next section we will generalize this treatment to obtain the most general geometrical
structure in eleven dimensional superspace. The aim of this generalization is to
investigate possible M-theory corrections to ordinary supergravity.

The coordinates are denoted zM = (xm, θµ), where m enumerates the 11 bosonic
and µ the 32 real fermionic coordinates, respectively. The tangent space has as struc-
ture group the Lorentz group (not the superversion of it), and hence one introduces
a supervielbein and a superconnection

EM
A(z) , ωMA

B(z) , (3.19)

where ωMA
B = (ωMa

b,−1
4(Γab)αβωMa

b). A flat superindex A = (a, α), obtained
from a curved one using the vielbein, contains an SO(10,1) vector index a and a
(Majorana) spinor index α. Note that ωMa

β = ωMα
b = 0 since the connection is Lie

algebra valued and therefore do not mix vector and spinor indices. The two-form
field strengths corresponding to the potentials in (3.19) are

TA = DEA = dEA +EB ∧ ωBA, (3.20)

RA
B = dωA

B + ωA
C ∧ ωCB , (3.21)

where the covariant derivative D = d+ ω is acting from the right. The associated
Bianchi identities are

DTA = EB ∧RBA, (3.22)

DRA
B = 0 . (3.23)

3For details see [33].
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By imposing constraints on the torsion the Bianchi identities cease to be identities
and have to be solved. Since the second Bianchi identity is automatically satisfied
if the first one is [34], we will only have to analyze the first Bianchi identity. For
simplicity, we also introduce the four-form field strength H(4) = dC(3), satisfying the
Bianchi identity

dH(4) = 0 . (3.24)

As was shown by Candiello and Lechner [35], it is not necessary to introduce the
four-form by hand; it emerges from the analysis. In the next section where we study
generalized supergravity, we will perform a complete analysis not introducing the
four-form by hand.

The supergravity multiplet consists of the field strengths

Field Dimension (mass)
Rabcd 2
∂[aψb]

γ 3/2
Habcd 1

corresponding to the potentials

Field Degrees of freedom
em

a 44 bosonic
ψm

γ 128 fermionic
Bmnp 84 bosonic

We note that we have the same number of bosonic and fermionic degrees of freedom
and the theory is supersymmetric as it should be since it is formulated in superspace4.
In order to facilitate the analysis, we can determine which components of the torsion
and the four-form that can potentially be non-vanishing given the field content above.
Since we are working with Bianchi identities the only objects that can appear are the
field strengths. At dimension 1, the torsion components Taβγ contain two four-form
representations that can be proportional to Habcd, motivating the Ansatz

Taβ
γ = xHac1c2c3(Γc1c2c3)βγ + yHc1...c4(Γac1...c4)βγ . (3.25)

At dimension 3
2 the torsion component Tabγ can be proportional to the gravitino

field strength. We can make a general Ansatz for Tabγ , decomposed into a sum of
irreducible representations, as

Tab
γ = Gab

γ + 2G[a
β(Γb])β

γ + Gβ(Γab)βγ , (3.26)

where Gabγ and Gaγ are Γ-traceless, i.e., Gabγ(Γb)γα = Ga
γ(Γa)γα = 0. Other non-

vanishing components can only be proportional to Γ-matrices and can therefore only
occur at dimension 0. Considering the index structure, we get two possible terms,

Tαβ
c = 2(Γc)αβ (3.27)

4It is not enough to have an equal numbers of bosons and fermions in order to have a supersym-
metric theory, the multiplet must also close under supersymmetry transformations. This, however,
is manifest in a superspace formulation.
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and

Habγδ = 2(Γab)γδ , (3.28)

where we have chosen a convenient normalization. Both these expressions turn out
to be required. All other components of TABC and HABCD, not related to those
above by, e.g., derivatives, must be zero. Using this information, we can now start
solving the Bianchi identities.

In order to analyze the Bianchi identities (3.22) and (3.24) it is convenient to
rewrite them as tensor equations,

D[BTCD)
A + T[BC

ET|E|D)
A −R[BCD)

A = 0 (3.29)

and

D[AHBCDE) + 2T[AB
FH|F |CDE) = 0, (3.30)

where [· · · ) denotes graded symmetrization. We start by examining the Bianchi
identity for H(4). The equations at dimension −1

2 and 1
2 are empty. Using the Fierz

identity

(Γa)(αβ(Γab)γδ) = 0 , (3.31)

we see that the dimension 0 equation is satisfied too. At dimension 1 we are able
to relate the two four-forms in Taβ

γ to Habcd, yielding x = − 1
36 and y = − 1

288 in
the Ansatz (3.25). The equation at dimension 3

2 will be used below, together with
the two equations of this dimension from the torsion Bianchi identity, to obtain the
equation of motion for the spin 3

2 field. Finally at dimension 2 we see that Habcd is
closed, enabling it (at least locally) to be written as the derivative of a three-form
potential. This is crucial for the supersymmetric matching of bosonic and fermionic
degrees of freedom mentioned above.

We now turn to the torsion Bianchi identity. The equation at dimension 1
2 is

empty. We get two equations at dimension 1, which only provide a consistency
check. The two equations at dimension 3

2 , together with the one from the four-form
Bianchi identity, imply that Gaγ = Gγ = 0 and also give the equation of motion for
the spin 3

2 field

∂bψc
γ(Γabc)γδ = 0 , (3.32)

where the gravitino field strength sits in the torsion like

Tab
γ = Gab

γ ∼ ∂[aψb]
γ . (3.33)

At dimension 2 we get Einstein’s equations

Rab −
1
2
ηabR =

1
96
ηabH

2 − 1
12
Ha(3)Hb

(3) (3.34)
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and the equation of motion for Habcd

DdHdabc =
1

1152
εabc

(4)(4̃)H(4)H(4̃) . (3.35)

Finally, the last equation at dimension 5
2 ,

D[bTcd]
α + T[bc

εT|ε|d]
α = 0 , (3.36)

contains the Bianchi identity for the spin 3
2 field.

By imposing constraints on the torsion and then solving the Bianchi identities
for the torsion and the four-form, we have obtained the equations of motion for
eleven dimensional supergravity. One way of motivating the torsion constraints is
to study the differential geometry of certain function superspaces [36, 37]. Howe has
shown that eleven dimensional supergravity follows from imposing only the single
constraint Tαβc ∼ (Γc)αβ on the dimension zero component of the torsion [38]. As
in the analysis by Candiello and Lechner [35], the four-form is not introduced by
hand. In the next section we will relax this constraint in order to study the most
general geometrical structure in eleven dimensions compatible with supersymmetry.
In this way we can get information regarding the allowed structure of corrections
from M-theory and we also avoid the problem of having to enforce ad hoc torsion
constraints.

3.6 Generalized eleven-dimensional supergravity

Ordinary eleven-dimensional supergravity is the low energy effective theory of M-
theory. When compactified on a circle, eleven-dimensional supergravity yields type
IIA supergravity, as will be explained in more detail in Chapter 5. Type IIA super-
gravity is the low energy effective theory of type IIA string theory, and by studying
the string theory we can derive higher order corrections to the type IIA supergrav-
ity action. From the non-linear σ-model action for the string in (2.18), we see that
there are two parameters we can expand in, giving quantum corrections to the su-
pergravity action. The first parameter is α′, the σ-model loop-counting parameter
and the second parameter is gs, the string loop-counting parameter, whose power is
determined by the genus of the world-sheet of the string. For each power of gs there
will be a tower of α′ corrections. Since α′ ≡ `2s is a dimensionful parameter and
the action is dimensionless we must group α′ together with some other dimensionful
object, e.g., the curvature, in the expansion. Corrections to the tree-level type IIA
action is shown to enter first at order `6s [39, 40, 41, 42]. These kinds of higher
curvature corrections to the effective action is also expected to appear in eleven di-
mensions since we can lift the result from ten dimensions. In eleven dimensions there
is, however, no simple way of deriving these terms and one must rely on anomaly
cancellation arguments [43, 44] or superparticle loop calculations [45, 39, 46, 47, 41]
together with the connection to string theory via dimensional reduction. Supersym-
metry now puts severe restrictions on the structure of permitted corrections [40]
and it would be very interesting to investigate what kinds of higher derivative terms
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that are permitted by supersymmetry in eleven dimensions. This is the motivation
for the work in Paper V. We are interested in the constraints imposed by supersym-
metry. It is convenient to use the superspace formulation where supersymmetry is
manifest. The correction terms can be viewed as possible M-theory corrections to
ordinary supergravity, but we can not say which correction terms that will actually
be used by M-theory. Related work, based on lifting results from ten dimensions,
have been presented in [48, 49]. The strategy of relaxing the ordinary constraints
to get information about possible higher order corrections has also been applied to
maximally supersymmetric Yang-Mills theory in ten dimensions [50, 51].

We generalize the torsion constraint5 Tαβ
c = 2(Γc)αβ, leading to ordinary super-

gravity, to [53, 54]

Tαβ
c = 2

(
(Γd)αβXd

c +
1
2

(Γd1d2)αβXd1d2
c +

1
5!

(Γd1...d5)αβXd1...d5
c

)
, (3.37)

where we have included the other two symmetric Γ-matrices. The X’s can be de-
composed into irreducible representations and the representational content of the
dimension 0 torsion component, as well as the other torsion components, are shown
in Tab. 3.1. We also follow Howe and use Weyl superspace, which means adding a
Weyl part KMA

B to the connection used in the previous section,

ΩMA
B = ωMA

B + KMA
B, (3.38)

where KMA
B = (2KMδa

b, KMδα
β).

We can now enforce conventional constraints [55, 56] to eliminate some of the
representations in the torsion. This amounts to using the arbitrariness in the dis-
tinction between spin connection and torsion as well as the freedom to re-define
the vielbeins. To make this explicit, we can write down the expression for how the
torsion transforms under a variation of the vielbein and the spin connection

δTAB
C = 2D[AHB)

C − 2H[A
FT|F |B)

C + TAB
FHF

C + 2δΩ[AB)
C (3.39)

where HA
B = EA

M δEM
B. By writing out the various index combinations, to linear

order in the fields, we get

δTαβ
c = 2D(αHβ)

c − 4H(α
δ(Γc)|δ|β) + 2(Γe)αβHe

c, (3.40)

δTαb
c = DαHb

c −DbHα
c + 2Hb

γ(Γc)γα + δΩαb
c, (3.41)

δTαβ
γ = 2D(αHβ)

γ + 2(Γc)αβHc
γ + 2δΩ(αβ)

γ , (3.42)

δTab
c = 2D[aHb]

c + 2δΩ[ab]
c (3.43)

and

δTaβ
γ = DaHβ

γ −DβHa
γ + δΩaβ

γ . (3.44)

5The constraint analysis presented here is an explicit account of that performed in Paper V and
will be part of a forthcoming publication [52].
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dim 0: Tαβ
c (00000) (00002) (00010) (00100)

(01000) (10000) (10002) (11000)
(20000)

dim 1
2 : Tαb

c 2(00001) (01001) 2(10001) (20001)

Tαβ
γ 3(00001) (00003) (00011) (00101)

2(01001) 3(10001)

dim 1: Tab
c (00100) (10000) (11000)

Taβ
γ (00000) 2(00002) 2(00010) 2(00100)

2(01000) 2(10000) (10002) (10010)
(10100) (11000) (20000)

dim 3
2 : Tab

γ (00001) (01001) (10001)

Table 3.1: Representations in TABC , in Dynkin notation, before enforcing the con-
ventional constraints.

We can now directly use the spin connection to eliminate representations in the
torsion in Eqs. (3.40)-(3.44). It is important to keep in mind, however, that due to
the Lorentz condition ΩAα

β and ΩAa
b are related and we can therefore only use one

of these to remove parts of the torsion. In those cases that we can solve algebraically
for a representation in HA

B in terms of a representation in the torsion, we can use
that part of HA

B to remove the torsion part in question. We can therefore not use
the terms in which there is a derivative acting on HA

B. Since all the components
of the torsion have dimensions6 ≥ 0, we can not use the dimension −1

2 part Hα
b to

cancel parts of the torsion. In Tab. 3.2 we have collected the results of the analysis
of the conventional constraints. Note that there is not a unique choice of which part
of HA

B or the spin connection that is used to cancel a specific part of the torsion
and hence alternatives to the choices in Tab. 3.2 exist. We can now write down
all the representations that are left in the torsion after imposing the conventional
constraints

dim 0 : Tαβ
c = 2(Γc)αβ + (Γd1d2)αβXd1d2,

c (11000)

+
2
5!

(Γd1...d5)αβXd1...d5,
c (10002)

6Each vector (spinor) index contributes with mass dimension 1 ( 1
2
) if it sits downstairs and

contributes with the opposite sign if it sits upstairs, as can be seen from, e.g., Eq. (3.20).
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Hα
b

(dim −1
2 )

(00001)
(10001)

Not used

Ha
b

(dim 0)

(00000)
Tαβ

c
(00000)

(01000) (01000)
(20000) (20000)

Hα
β

(dim 0)

(00000)
(01000)

Not used

(10000)

Tαβ
c

(10000)
(00100) (00100)
(00010) (00010)
(00002) (00002)

Ha
β

(dim 1
2)

(00001)
Tαβ

γ (00001)
(10001) (10001)

Ωαb
c

(dim 1
2)

(00001)

Tαb
c

(00001)
(00001) (00001)
(10001) (10001)
(01001) (01001)

Ωab
c

(dim 1)

(10000) Taβ
γ (10000)

(10000)
Tab

c
(10000)

(11000) (11000)
(00100) (00100)

Table 3.2: Summary of which parts of HA
B that is used to remove specific parts of

the torsion. Note that the connection ΩAb
c contains both Lorentz and Weyl parts.
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dim
1
2

: Tαb
c = Sb

c
α (20001)

+ 2(Γ(bSd))αη
cd (10001)

Tαβ
γ =

1
120

Γd1...d5
αβ Zd1...d5

γ (00003)

+
1
24

Γd1...d5
αβ (Γd1Zd2...d5)γ (00011)

+
1
12

Γd1...d5
αβ (Γd1d2Zd3d4d5)γ (00101)

+
1
12

Γd1...d5
αβ (Γd1d2d3Zd4d5)γ +

1
2

Γd1d2
αβ Yd1d2

c 2(01001)

+
1
24

Γd1...d5
αβ (Γd1...d4Zd5)γ + Γd1d2

αβ (Γd1Yd2)γ 2(10001)

+
1

120
Γd1...d5
αβ (Γd1...d5Z)γ +

1
2

Γd1d2
αβ (Γd1d2Y )γ 2(00001)

dim 1 : Tab
c = 0

Taβ
γ =

1
24

(Γd1...d4)βγAd1...d4a +
1

120
(Γad1...d5)βγA′d1...d5

2(00002)

+
1
6

(Γd1d2d3)βγAd1d2d3a +
1
24

(Γad1...d4)βγA′d1...d4
2(00010)

+
1
2

(Γd1d2)βγAd1d2a +
1
6

(Γad1d2d3)βγA′d1d2d3
2(00100)

+ (Γd)βγAda +
1
2

(Γad1d2)βγA′d1d2
2(01000)

+ (Γad)βγA′d (10000)
+ (Γa)βγA′ (00000)

+
1

120
(Γd1...d5)βγBd1...d5,a (10002)

+
1
24

(Γd1...d4)βγBd1...d4,a (10010)

+
1
6

(Γd1d2d3)βγBd1d2d3,a (10100)

+
1
2

(Γd1d2)βγBd1d2,a (11000)

+ (Γd)βγBd,a (20000)

dim
3
2

: Tab
γ = tab

γ (01001)

+ 2(Γ[atb])
γ (10001)

+ (Γabt)γ (00001)
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Using the torsion components above we start solving the Bianchi identity (3.22)
in Paper V. We start at dimension 1

2 and then work our way through the equations
with progressively higher dimensions. The analysis is very technical For each di-
mension of the Bianchi identity we have to decompose the equation into irreducible
representations and study each representation separately. This requires a lot of
Γ-matrix algebra and Fierz transformations to be performed, motivating the devel-
opment of the Mathematica package GAMMA in paper VIII, which is capable of
performing both Γ-matrix algebra and Fierz transformations. In order to simplify
the analysis we have so far only taken into account the (10002) part Tαβc; in the
complete analysis we of course also have to consider the (11000) part. We have also
restricted ourselves to a linear analysis where ordinary supergravity fields and the
auxiliary ones are treated on equal footing. We also drop vector derivatives on the
auxiliary superfield, which can be thought of as a kind of low-energy expansion. The
analysis is not yet complete, but in Paper V we have obtained a correction to the
spin 3

2 field equation showing that the prescription we use indeed takes us off-shell.
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4
p-branes

p-branes are solitonic solutions to the low-energy effective supergravity theories. An
important property is that they interpolate between different vacua. This means
that they are topological in nature and therefore their stability is guaranteed. Since
they are topological objects they are not included in the perturbative spectrum and
are thus intrinsically non-perturbative. By saturating a Bogomol’nyi bound, i.e.,
having the charge equal to the mass, in appropriate units, we get BPS states, i.e.,
states preserving some fraction of the supersymmetry. They therefore belong to
short supersymmetry multiplets and are thus protected from quantum corrections.
This means that BPS states can give us vital information about the exact theory
even at strong coupling. This feature makes BPS p-branes the best candidate to use
in exploring the non-perturbative structure of string theory and they play a central
rôle in verifying the duality conjectures in the previous chapter.

In this chapter we are first going to derive the brane-scan in Fig. 4.1, which shows
the p-branes allowed by supersymmetry. We are then going to review some of the
salient features of p-branes and explain how the M2 and M5 brane in D = 11 are
related to various branes in type IIA string theory. Finally, we are going say a few
words about D-branes, e.g., explain how they arise when T-dualizing an open string
and why they are dynamical objects.

4.1 The brane-scan

Unlike bosonic p-branes, which can be formulated in an arbitrary spacetime dimen-
sion D, supersymmetric p-branes can only be formulated for certain combinations
of d = p + 1 and D. This restriction, enforced by supersymmetry, gives rise to the
brane-scan in Fig. 4.1. It is important to note that the brane-scan only tells us
which branes are not forbidden by supersymmetry. If these branes actually exist as
solutions to any supersymmetric field theory is another question.

Let us now derive the brane-scan1. We start by considering the world volume
1We are not considering Kaluza-Klein monopoles in this analysis.

27
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t = scalar

i= vector

= tensor
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Figure 4.1: The brane-scan.

scalar multiplets. This analysis can be done using two different methods. The first
method is to list all scalar supermultiplets and interpret the space-time dimension
as D = d + the number of scalars. We are only considering space-times having
Minkowski signature. The second method, which we will use, is to require world-
volume supersymmetry by matching the numbers of bosonic and fermionic on-shell
degrees of freedom in the superspace embeddings Xa(ξ) and θα(ξ). The bosonic
degrees of freedom are

NB = D − d, (4.1)

where we have taken into account the reparameterization invariance of the world-
volume. The bosonic degrees of freedom correspond in this case to the directions
transverse to the brane. Motion in these directions will give rise to the simplest
example of Goldstone modes, i.e., scalar Goldstone modes. The concept of Goldstone
modes is extended to the case of Goldstone tensor modes of arbitrary rank in Paper
II and will be reviewed in Chapter 7.

By taking into account that kappa symmetry halves the fermionic degrees of
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freedom and going on-shell halves them again, we obtain

NF =
1
2
mn =

1
4
MN, (4.2)

where m (M) is the number of real components of an irreducible spinor in d (D)
dimensions and n (N ) is the numbers of supersymmetries. By matching bosonic and
fermionic degrees of freedom we get

D − d =
1
2
mn =

1
4
MN , (4.3)

which must be fulfilled in order to allow the existence of a scalar multiplet (for d > 2).
By consulting Tab. 4.1 we find that Eq. (4.3) has eight solutions, represented by dots
in Fig. 4.1. We also see that DMAX = 11 since M ≥ 64 for D ≥ 12 and therefore (4.3)
can not be satisfied for D ≥ 12. This means that there exist no supersymmetric
extended objects for D ≥ 12 [28], as was mentioned in Section 3.5. The case d = 2,
i.e., the string, is special since the left- and right-handed modes can be treated
independently. By having fermions in both sectors, i.e., having a type II theory, we
get the same condition as in Eq. (4.3) resulting in strings in D = 3, 4, 6 and 10 with
N = 2. By having fermions in only one sector, i.e., having a heterotic theory, we
get the condition

D − 2 = n =
1
2
MN (4.4)

resulting in strings in D = 3, 4, 6 and 10 with N = 1. For completeness we have
also included the superparticles (p = 0) in D = 2, 3, 5 and 9.

We must also consider higher spin multiplets, a possibility that was originally
overlooked. In the case of a vector multiplet we get d−2 additional bosonic degrees
of freedom from the vector gauge field, giving

D − 2 =
1
4
MN, (4.5)

which can be satisfied in D = 3, 4, 6 and 10 for arbitrary d, giving the circles in
Fig. 4.1. The branes with vector multiplets living on them are called D-branes.

Finally, branes with tensor multiplets are allowed in D = 7 and D = 11. The
first case is considered in Paper I and the second in Papers II and III.

4.2 p-branes

We are now going to review some of the general properties of p-branes. We can
describe bosonic p-branes by a generalization of the Nambu-Goto action (2.1)

SDNG[Xµ] = −Tp
∫
dp+1ξ

√
− det(∂iXµ∂jXνηµν), (4.6)
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Dimension Spinor Type of spinor Number of susy
11 32 Majorana 1
10 16 Maj & Weyl 1,2
9 16 Majorana 1,2
8 16 Weyl 1,2
7 16 Dirac 1,2
6 8 Weyl 1, . . . ,4
5 8 Dirac 1, . . . ,4
4 4 Maj or Weyl 1, . . . ,8
3 2 Majorana 1, . . . ,16
2 1 Maj & Weyl 1, . . . ,32

Table 4.1: Irreducible spinor representations in various dimensions.

which is called the Dirac-Nambu-Goto action. Since the p-branes we are interested in
are charged with respect to the gauge fields in the low-energy supergravity theories
we must add a Wess-Zumino term2

SWZ = Tp

∫
X∗A(d), (4.7)

where A(d) is a d-form gauge potential which is pulled back to the world-volume.
This generalizes the coupling of Bµν to the string world-sheet in Eq. (2.18). The
d-form gauge potential A(d) couples naturally to a p-brane, where d = p+ 1. Since
the p-brane can be surrounded by a space-like surface SD−d−1 we can define an
“electric” charge

qe =
∫
SD−d−1

∗F(d+1), (4.8)

where ∗F(d+1) is the Hodge dual of the field strength F(d+1) = dA(d). This is a direct
generalization of Gauss law. By using the field equations for F it follows that the
electric charge is conserved. We can also define a “magnetic” charge by

qm =
∫
Sd+1

F(d+1), (4.9)

which is a topological charge, i.e., it is conserved by virtue of the Bianchi identity
for F . The electric and magnetic charges defined above now satisfy the generalized
Dirac quantization rule [57, 58]

qeqm = 2πn, n ∈Z. (4.10)

Since the potential corresponding to the dual field strength is a (D−d−2)-form
it couples naturally to a (D− d− 3)-brane. We thus have an electric-magnetic dual
pair consisting of a p-brane and a p̃-brane satisfying p+ p̃ = D − 4.
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D = 11 M2 M5

Type IIA D0 F1 D2 D4 S5 D6

Type IIB F1+D1 D3+ S5+D5

Type I D1 D5

Heterotic F1 S5

Table 4.2: The M-theory brane-scan.

Branes carrying electric charge are called fundamental or elementary, in anal-
ogy with the electron, while branes carrying magnetic charge are called solitonic, in
analogy with the magnetic monopole. It is now interesting to note how the brane
tensions depend on the string coupling constant gs = 〈eφ〉. For the fundamental
p-branes the tension do not depend on the string coupling constant and we have
TFp ∼ (ms)p+1, where we have used the string mass ms = 1/

√
α′ as the dimen-

sionful parameter. Such p-branes only occur for p = 1 (cf. Tab. 4.2) and are thus
fundamental strings. For the solitonic p-branes we have TSp ∼ (ms)p+1/g2

s which
indicates that they will dominate the dynamics at strong coupling. Finally, for the
D-branes, which lies outside the electric-magnetic considerations above, we have
TDp ∼ (ms)p+1/gs which is an intermediate behavior compared to the fundamental
and solitonic cases.

If we now consider eleven dimensional supergravity we have a 3-form potential
that couple to an electric M2-brane, which has the M5-brane as its magnetic dual.
Since M-theory compactified on a circle is conjectured to be equivalent to the strong
coupling limit of type IIA string theory [59, 60] it should be possible to obtain the
branes of type IIA theory by suitable wrappings of the M2 and M5 branes around
the compact direction [30, 61, 62, 59]. The branes we are considering are, among
others, collected in Tab. 4.2. We start by noting that in type IIA theory there
are two parameters, the string coupling constant gs and the string mass ms. In
M-theory there are only one parameter, the Plank mass mp, but since we consider
compactified M-theory we also have the radius R of the compact direction. The M2
brane tension is TM2 = m3

p and by wrapping it around the compact direction we get

2The Wess-Zumino term turns out to be required in order to cancel the κ-variation of the Dirac-
Nambu-Goto term.
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the F1 string tension

TF1 = m2
s = RTM2 = Rm3

p. (4.11)

This implies the identificationm2
s = Rm3

p. By instead wrapping one of the transverse
directions we obtain the D2 brane tension

TD2 =
m3
s

gs
= TM2 = m3

p (4.12)

implying the identification gs = Rms. Let us now check if these identifications work
for the M5 brane. By wrapping it around the compact direction we get the D4 brane
tension

RTM5 = Rm6
p =

m5
s

gs
= TD4 (4.13)

and by wrapping a transverse direction we get

TM5 = m6
p =

m6
s

g2
s

= TS5, (4.14)

which is the correct tension for the solitonic 5-brane. By this simple procedure we
have thus related the M2 and M5 branes to various branes in type IIA theory.

We end this section by indicating how the supersymmetry algebra can be used to
deduce which kinds of branes that exist in a given dimension [63]. Consider D = 11
where we have the M-theory algebra

{Qα, Qβ} = (CΓM )αβPM +
1
2!

(CΓMN)αβZMN +
1
5!

(CΓMNPQR)αβZMNPQR,

(4.15)

where the supercharge Qα is a 32-component Majorana spinor. By counting the
degrees of freedom in the RHS we get

11 + 55 + 462 = 528 (4.16)

which equals the degrees of freedom in the LHS. It can be shown that the spatial
components of ZMN correspond to the electric charge of the M2-brane while the
spatial components of ZMNPQR correspond to the magnetic charge of the M5-brane.
We can thus get a good hint of what branes there exist in a particular theory by
just looking at the supersymmetry algebra.

4.3 Dp-branes

The p-branes which have vector multiplets living on their world-volumes are called
Dp-branes, or simply D-branes. They are dynamical objects on which open strings
can end. This implies that the D-branes have an exact description at the string
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level in contrast to the solitonic branes. The low-energy dynamics is given by the
Dirac-Born-Infeld action

SDBI[Xµ, Ai] = −Tp
∫
dp+1ξe−φ

√
− det (g +F ), (4.17)

where Tp is the world-volume tension and Fij = 2πα′Fij − Bij where Fij = ∂iAj −
∂jAi is the field strength of Ai. The target-space fields φ, g and B are understood
to be pulled back to the world-volume by the embedding X . These fields represent
the closed string background in which the D-brane is embedded. The scaling of the
tension with the dilaton as described in the previous section can directly be seen to
agree with that given by the action (4.17). The reason for the dilaton dependence
e−φ = g−1

s is that (4.17) is an open string tree level action and we thus get a
factor e−φ from the disc. From the brane-scan, D-branes are seen to be allowed in
D = 3, 4, 6 and 10. In type II string theory no states in the perturbative spectrum
are charged under the RR gauge fields. This is because only the gauge-invariant
field strengths appear in the vertex operators creating the RR vacuum out of the
NS-NS ground state. The D-branes now restore the balance since they are RR-
charged objects which in addition satisfy charge quantization conditions of the form
qeqm = 2πn.

Let us now go back and explain how D-branes can be seen to arise when applying
T-duality to open strings. Consider an open bosonic string and take one of the
target space directions to be compact, i.e., X25 ∼ X25 + 2πR. The corresponding
component of the embedding field decomposes as X25(σ1, σ2) = X25(z) + X̃25(z̄),
where

X25(z) =
x25

2
+
c25

2
− iα′p25 ln z + i

√
α′

2

∑
m6=0

α25
m

mzm
,

X̃25(z̄) =
x25

2
− c25

2
− iα′p25 ln z̄ + i

√
α′

2

∑
m6=0

α25
m

mz̄m
.

(4.18)

We have here added and subtracted the constant c25/2 and used that z = eσ
2+iσ1

.
By now looking at the T-dual field3

X ′
25(z, z̄) = X25(z)− X̃25(z̄) = c25 + 2α′p25σ1 + osc. (4.19)

and noting that the oscillator terms vanish at the endpoints σ1 = 0, π we see that
the endpoints are fixed at the hyperplane x25 = c25

X ′
25(σ1 = 0) = c25, X ′

25(σ1 = π) = c25 + 2πnR′ ∼ c25. (4.20)

We have here used that the momentum is quantized in the compact direction, p25 =
n/R, and that R′ = α′/R. The T-dual field thus lives on a circle of radius R′ and
we also note that the string is wound n times around the compact direction. The

3For an explanation of why this is the T-dual field see Section 5.1.
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Neumann boundary condition has thus been converted into a Dirichlet boundary
condition by T-duality.

To see why the D-branes are dynamical objects and why there is a vector field
living on them we examine the massless states of the T-dualized open string. The
massless states correspond to non-winding states at oscillator level N = 1. In the
original open string theory this corresponds to the massless U(1) gauge field αµ−1|k〉.
In the T-dual theory (where we now have dualized 25− p directions in order to get
a Dp-brane) this field decomposes into a longitudinal part, giving a U(1) gauge field
Ai on the world-volume, and a transverse part, giving 25−p scalars φm representing
the transverse oscillations of the world-volume.

4.4 Branes ending on branes

When examining, e.g., the theory induced on a probe brane configuration, as we
will do in Chapter 8, it is important to consider whether the brane used to describe
the theory on the probe is actually allowed to end on all the branes in the probe
configuration, or if it sees only some of the branes. In Paper VII we get an example
where this actually happens. We are therefore sometimes able to examine just a
subset of the branes in a configuration by choosing a special kind of brane to study
the configuration. One, however, has to be careful when trying to find an S-dual
theory in these cases since the S-dual brane4 might not see the same branes in
the configuration and we can therefore not regard the theories to be S-dual. It is
therefore important to determine the rules for when one brane is allowed to end on
another brane [64, 65, 66, 67].

What will constrain the possible intersections is charge conservation. Consider,
e.g., an M2-brane ending on an M5-brane. As was discussed in Section 4.2 we can
measure the (electric) charge of the membrane by computing

qM2 =
∫
S7

∗H(4), (4.21)

where the seven sphere surrounds the M2-brane. If we were able to neglect the
M5-brane in calculating the M2-brane charge, we would be able to take the S7

through the M5-brane, thereby sliding it off the M2-brane, after which it would be
contractible and we would not get any charge. This scenario would therefore violate
charge conservation. We thus have to require that the membrane charge can be
accounted for on the M5-brane, i.e., generating a flux on the M5-brane, preventing
us from sliding off the S7. In the case we are considering it turns out that the
boundary of the M2-brane gives rise to a self-dual string soliton on the M5-brane.
In order for the intersection to be permitted by charge conservation the boundary of
the lower dimensional brane must have an interpretation as a charged object living
on the higher dimensional brane.

4We keep the background fixed and S-dualize the brane used to study the configuration, as will
be explained in detail in Chapter 8.
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Continuing this reasoning in eleven dimensions we can also get intersection rules
concerning M-waves and Kaluza-Klein monopoles [67]. By denoting a k-dimensional
intersection between an A-type and a B-type object A||B(k) or A ⊥ B(k) depending
on whether A and B are parallel or perpendicular to each other, we get [68]

M2 ⊥M2(0), M2 ⊥ M5(1), M5 ⊥ M5(1) or M5 ⊥ M5(3),
W ||M2, W ||M5, M2 ||KK or M2 ⊥ KK(0),

M5 ||KK or M5 ⊥ KK(1) or M5 ⊥ KK(3),
W ||KK, KK ⊥ KK(4, 2).

(4.22)

In ten dimensions the same reasoning of course applies, but we can also start from a
simple system, e.g., an F-string ending on a Dp-brane, and then use T- and S-duality
to generate other allowed intersections. Either way we get

Dm ||Dm+ 4(m), m = 0, 1, 2 , Dp ⊥ Dq(m), p+ q = 4 + 2m,
F1 ||NS5, NS5 ⊥ NS5(3), Dp ⊥ NS5(p− 1),

(4.23)

where we for simplicity only consider Dp-branes with p ≤ 6 whose asymptotic geome-
tries are flat. For multi-brane intersections, these rules must be obeyed by each pair
of branes.
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5
Duality

The discovery of various duality relations led to a dramatic advance in the un-
derstanding of the non-perturbative structure of string theory. Each string theory
corresponds to a point in the moduli space of vacua, i.e., a particular choice of vac-
uum. The dualities take us between different points in this moduli space, relating
all the string theories. This indicates the existence of one all-embracing theory, M-
theory. The big question is whether there exists a deeper formulation of M-theory
or if the best definition we can get is in terms of perturbation expansions and var-
ious non-perturbative dualities. As Vafa pointed out [69] this latter alternative is
much like how one defines a manifold in terms of charts, being the perturbative
string theories, and transition functions, being the dualities. Here we will describe
how different string theories and M-theory are related through the basic T- and S-
dualities, which have been shown to be subgroups of a larger class of duality called
U-duality [70]. In this way we will obtain the web of dualities in which all string
theories and M-theory are related.

5.1 T-duality

T-duality is an equivalence between two weakly coupled string theories compactified
on manifolds of different volume. A generic feature is that when one volume is large
the other one is small and vice versa. More concretely, look at the zero-modes of a
closed bosonic string

Xµ(z, z̄) = −i
√
α′

2
(αµ0 + α̃µ0 )σ2 +

√
α′

2
(αµ0 − α̃

µ
0 )σ1 + · · · , (5.1)

where, as in Chapter 2, σ1 is the coordinate along the string and σ2 is the world-sheet
time coordinate. The spacetime momentum of a string is

pµ =
1√
2α′

(αµ0 + α̃µ0 ) . (5.2)
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When going around the string, i.e., taking σ1 → σ1 + 2π, Xµ(z, z̄) changes by
2π
√

(α′/2)(αµ0 − α̃
µ
0 ). In the non-compact (spatial) directions, however, Xµ(z, z̄)

must be periodic, leading to

αµ0 = α̃µ0 =

√
α′

2
pµ . (5.3)

For a compact direction, say X25, of radius R we get a weaker condition since
X25(z, z̄) is now allowed to change by 2πωR, where ω is the winding number. Using
also that the compact momentum is quantized, p25 = n/R, where n is the Kaluza-
Klein level, we get

α25
0 =

(
n

R
+
ωR

α′

)√
α′

2
,

α̃25
0 =

(
n

R
− ωR

α′

)√
α′

2
.

(5.4)

We thus get a modification to the mass spectrum (2.17)

M2 = −pµpµ =
4
α′

(N − 1) +
2
α′

(α25
0 )2

=
4
α′

(Ñ − 1) +
2
α′

(α̃25
0 )2 ,

(5.5)

where µ runs over all non-compact dimensions and N and Ñ are the oscillator
levels for the left- and right-moving excitations, respectively. Note that if we let
R→ R′ = α′/R and also interchange n and ω the mass spectrum is unchanged. The
effect on the oscillators under this transformation is

α25
0 → α25

0 ,

α̃25
0 → −α̃25

0

(5.6)

and we can therefore write the T-dual field as

X ′25(z, z̄) = X25(z)− X̃25(z̄) , (5.7)

where X25(z) and X̃25(z̄) are defined in Eq. (4.18). This explains the form of the
T-dual field used in Section 4.3 where we studied the effect of T-duality on open
bosonic strings. Since X25(z, z̄) and X ′25(z, z̄) have the same energy momentum
tensor and OPEs, and therefore also the same correlation functions, we conclude
that T-duality is an exact symmetry of perturbative closed string theory.

The invariance under T-duality also implies the existence of a smallest scale in
string theory since we can always go from the radius which is smaller than the self-
dual radius, Rsd =

√
α′, to a radius larger than Rsd by using the duality. It is as if

an extra term is present in the Heisenberg uncertainty relation1

∆x ≥ 1
2
~

∆p
+

1
2

∆p
~
α′ (5.8)

1 See, e.g., Ref. [71] and references therein.
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giving a minimum length of order2
√
α′ ≈ 10−33cm. Note that the construction

of this extra term is possible due to the presence of α′. Since T-duality involves a
compactification it will be a duality in nine dimensions3. There are two examples,
type II and heterotic duality, to which we will now turn.

By compactifying type IIA and type IIB theory on circles with different radii we
can identify a T-duality map between the two theories. More generally, dualizing in
an odd number of coordinates relates IIA to IIB and dualizing in an even number
of coordinates relates IIA to IIA or IIB to IIB. A very efficient way of performing
T-duality transformations is to use the Buscher rules [72, 73, 74, 75] which we will
use in Section 7.3 where we discuss solution generating transformations for brane
bound states.

The two heterotic theories are also T-dual when compactified as above. This
can be understood by noting that the existence of the two heterotic theories in ten
dimensions is due to the existence of two 16-dimensional euclidean self-dual even
lattices. By further compactification on T d, the lattice must now be lorentzian (still
being even and self-dual). It is however known that for each d ≥ 1 there exists a
unique lattice with these properties and therefore this duality should come as no
surprise [76].

5.2 S-duality

S-duality is a strong-weak coupling duality and therefore of great interest since it
enables us to obtain information about the non-perturbative structure of string the-
ory. This, however, also means that conjectured S-dualities can not be investigated
using perturbation theory, as in the case of T-dualities. Instead, the p-branes will
now play a central rôle, especially those whose properties remain unaltered when
going to the strong coupling region, the so called BPS branes. In this way we can
devise some non-trivial tests which the conjectured S-dualities must pass. We will
now turn to four important S-dualities.

To start with we will consider the duality between M-theory on R10 × S1 and
type IIA string theory. A strong indication of this duality is that by wrapping the
M2-brane around the compact circle we get the string in type IIA [30], as explained
in the previous chapter. This compactification does not break any supersymmetry
and we can hope to obtain one of the two N = 2 type II theories. It turns out that
we obtain the type IIA supergravity action, i.e., the low-energy limit of type IIA
string theory. This is reasonable since this theory is non-chiral. As was shown in
Section 4.2, we get the relations [60]

`3p = R`2s and gs =
R

`s
(5.9)

2There are two different conventions for calculating the Planck length. By using ~ we get
`P ≈ 10−33cm and by using h we get `P ≈ 10−32cm.

3By further compactification we can of course obtain T-dualities in less than nine dimensions
but the primary ones, which we will examine, will be in nine dimensions.
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by requiring that the branes in M-theory reduce to the branes of type IIA. We can
now solve for the string coupling gs in terms of M-theory parameters

gs =
(
R

`p

)3/2

, (5.10)

saying that strong coupling corresponds to large compactification radius. In type IIA
theory the strong coupling limit thus effectively corresponds to a decompactification
and we obtain an eleven dimensional theory. When doing perturbation theory in
the type IIA theory, i.e., expanding around gs = 0, this extra dimension is invisible
explaining why it passed unnoticed for so long. We can use this duality to relate
brane solution in the two theories. In that context the following formulas are very
useful

ds2
11

`2p
= e−2φ/3 ds

2
IIA

α′
+ e4φ/3

(
dx11

R
−
R(1)√
α′

)2

, (5.11)

C(3)

`3p
=

R(3)

(α′)3/2
+
dx11

R
∧
B(2)

α′
, (5.12)

where x11 is the compact direction, C(3) is the three-form potential in eleven dimen-
sions, R(3), R(1) and B(2) are the RR three- and one-form potentials and the NS-NS
two-form potential of type IIA, respectively, and the type IIA metric is the string
frame metric.

If we instead compactify M-theory on S1/Z2 we get a theory dual to the E8×E8

heterotic string theory [77, 78, 79]. The orbifolding breaks half the supersymmetry
so we must obtain an N = 1 theory. The orbifold S1/Z2 is effectively an interval and
one E8 factor is associated with each endpoint. These endpoints are ten dimensional
hyperplanes, or “end-of-the-world 9-branes” as they are metaphorically called, and
are separated by a distance determined by the coupling constant.

Type IIB supergravity has an SL(2,R) symmetry, as explained in Section 3.2. In
type IIB string theory this symmetry is broken to SL(2,Z) by charge quantization
[80, 70, 60]. Since we are only allowed to have integer multiples of the fundamental
F- and D-string charges, the transformation matrix must now only contain integers.
The SL(2;Z) transformations contain in particular a transformation taking φ→ −φ.
Since the string coupling constant is given by gs = 〈eφ〉 we have that type IIB
theory is S-selfdual. The SL(2,Z) symmetry of type IIB are used in Papers II-IV
to obtain SL(2,Z) covariant brane solution and in Paper VII to obtain a SL(2,Z)
covariant generalization of open string theories. In Chapter 8 we will see some
explicit examples of how this symmetry is utilized.

The last duality we are going to mention is that between type I and SO(32)
heterotic string theory. Both theories have SO(32) as gauge group and this indicates
that the two theories may be related by duality. By comparing the low-energy limits
of the two theories one sees that they only differ by a field redefinition, i.e.,

(gµν)I = e−φhet(gµν)het , φI = −φhet

C(2) = B(2) , AI = Ahet .
(5.13)
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Figure 5.1: The web of dualities.

Note in particular that the mapping for the dilaton is φI = −φhet. Based on this
Witten [60] conjectured that these theories are related by S-duality. Since then
further evidence has strengthened this conjecture.

5.3 The web of dualities

Collecting the results above gives us the web of dualities, as illustrated in Fig. 5.1.
The fact that the five string theories and M-theory are related in this way indicates
that there is really only one fundamental theory.

In Fig. 5.1 we have also included the orientifold projection by which Type I
theory can be obtained from Type IIB theory, as explained in Section 3.3. This
projection, P (Ω)

+ = 1
2 (11 + Ω), is constructed from the orientifold operation Ω which

reverses the roles of the left- and right-moving sectors. The resulting theory is
left-right symmetric and therefore unoriented. Thus, by keeping only the left-right
symmetric states of Type IIB theory we end up with Type I theory.
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6
The AdS/CFT correspondence

In November 1997 Juan Maldacena published a paper [81] which was to be the main
influence on the string community in the years to come. What Maldacena did was
to identify a duality between string theory and gauge theory. It is important to note
that string theory inherently includes gravity which gauge theory does not. The
person first to propose the existence of such a duality was ’t Hooft in 1974 [82].
He was trying to expand the equations for QCD in the variable 1/N , where N is
the number of colours, taking N to be large. This idea of looking at the large N
limit will be central in the AdS/CFT correspondence as described below. However,
’t Hooft’s approach fell short of solving the problems of interest in QCD, but he
proposed that one should be able to find a string theory describing QCD where 1/N
played the role of some coupling constant. Despite the considerable interest aroused
by this proposal no one was able to find a relation between string theory and gauge
theory until now.

More precisely, the proposed duality is between type IIB string theory on AdS5×
S5 and a conformal field theory on the 4-dimensional Minkowski space which is the
boundary of AdS5. The important property is that weakly coupled string theory
is dual to strongly coupled gauge theory, where calculations are intractable. As
described in Chapter 3, the low-energy limit of weakly coupled string theory is
given by supergravity. Thus, to lowest order we have a correspondence between
supergravity and gauge theory.

Since Maldacena’s first paper, a more precise version of the correspondence has
been developed by Gubser, Klebanov and Polyakov [83] and independently by Witten
[84], which made it possible to relate quantities in the interior of AdS5 to quantities
in the gauge theory living on the boundary1. The correspondence was still limited
to maximally supersymmetric and conformal gauge theories, but progress has been
made in order to rid it from these two restrictions. In order to describe gauge
theories with reduced supersymmetry we must take string theory on AdS5 × X5,
where X5 is a positively curved Einstein manifold, i.e., one for which Rµν = Λgµν

1See [85] for an extensive review of the AdS/CFT correspondence.
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with Λ > 0. The number of supersymmetries in the dual gauge theory is determined
by the number of Killing spinors on X5. Some progress has also been made towards
non-conformal gauge theories. This development is very important in order to make
contact with QCD, the prime application, since it is neither supersymmetric nor
conformal.

It is amusing to note that string theory has come full circle; it was invented to
provide a description of QCD and now, after thirty years of development, it might
just do that.

6.1 The large N limit

What Maldacena did in order to discover the duality between supergravity and gauge
theory was to relate both theories to D-branes. In order to get a four-dimensional
gauge theory one must use D3-branes, which can be embedded in ten-dimensional
spacetime. Each D-brane carries a U(1) charge and by stacking N D-branes one
obtains N = 4 U(N ) super-Yang-Mills in the low-energy limit. To be more precise,
we take the low energy (in units of α′) limit by keeping the energy (not in units of
α′), and dimensionless quantities like gs and N , fixed and sending α′ → 0. Since
the Newton constant is proportional to α′, κ ∼ gs(α′)2, the gauge theory on the
D-branes will decouple from gravity in the low-energy limit. Also, higher derivative
corrections to the super-Yang-Mills action depend on positive power of κ and will
therefore be suppressed.

On the supergravity side, the stacked D3-branes make up a black hole solution
to the supergravity equations [86]

ds2 = f−1/2
(
−(dx0)2 + (dx1)2 + (dx2)2 + (dx3)2

)
+ f1/2(dr2 + r2dΩ2

5) ,

H(5) = (1 + ∗)dx0 ∧ dx1 ∧ dx2 ∧ dx3 ∧ df−1 ,

f = 1 +
R4

r4
, R4 ≡ 4πgs(α′)2N ,

(6.1)

where x0 ≡ t. Far away from the D-branes space is flat, but near the D-branes there
is an infinite throat leading down to the horizon of the black hole as depicted in
Fig. 6.1. In order to understand what happens in the low-energy limit we consider
particle waves in the asymptotically flat region. Their wave lengths will increase as
the energy is lowered and in the low-energy limit their wave lengths will be much
larger than the typical gravitational size of the D-brane system (which is of order
R). Since g00 is non-constant, the energy Er measured by an observer at radius r
and the energy E measured at infinity are related by the redshift factor given by
f−1/4 in (6.1)

E = f−1/4Er . (6.2)

An object that is brought closer to r = 0 will therefore appear to have lower and lower
energy for an observer at infinity. In this way, excitations inside the throat region
will lie closer and closer to the event horizon as the energy is lowered and it will be



6.1 The large N limit 45

Minkowski

Anti de-Sitter

Figure 6.1: The geometry near the stacked D-branes.

increasingly harder for them to climb the gravitational potential and escape to the
asymptotically flat region. We therefore conclude that the bulk physics decouples
from the boundary physics near the horizon in the low energy limit. Since it is the
low-energy dynamics of the D-branes that we are interested in it is the low-energy
region near the horizon we should be focusing at. By taking the near horizon limit,
i.e., r � R, in the the stacked D3-brane solution (6.1) we get the near horizon
geometry

ds2 =
r2

R2

(
−(dx0)2 + (dx1)2 + (dx2)2 + (dx3)2

)
+ R2dr

2

r2
+R2dΩ2

5 , (6.3)

where we have used that f ∼ R4/r4 for r � R. This metric describes the geometry of
AdS5×S5 and since the radius of curvature of this AdS space is proportional toN 1/4,
the supergravity solution is most reliable when N is large. On the supergravity side
the low energy limit of the stacked D3-branes are therefore described by supergravity
in an AdS5×S5 background. Maldacena’s conclusion was that the two descriptions
are dual to each other.

On the gauge theory side, N is the number of colours and we are interested
in how the effective coupling scales with N . To see this, consider the exchange of
a gluon between two quarks. Since the emitting quark can turn into N different
colours, the effective coupling will be λ = g2

eff = g2
YMN , where λ is called the ’t

Hooft parameter. As we will see below, the duality takes its simplest form when λ
is large and since λ corresponds to the effective coupling we have a duality between
strongly coupled gauge theory and supergravity.

When trying to relate quantities in the two pictures we have to be a bit more
careful when taking the near horizon limit. We take α′ → 0 but want to be able
to study arbitrary string states in the near horizon region, requiring that we keep
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the energy in string units, i.e.,
√
α′Er, fixed. In the dual field theory, the energy is

measured at infinity. In the near horizon region it follows from (6.2) thatE ∼ r√
α′
Er.

In order to keep also this energy fixed in the low energy limit we get the condition2

that r/α′ has to be fixed as α′ → 0. It is now convenient to rewrite the near horizon
metric (6.3) in terms of the new variable U ≡ r/α′, which is fixed in the low energy
limit, giving

ds2 = α′
[

U2

√
4πgsN

(−(dx0)2 + (dx1)2 + (dx2)2 + (dx3)2)

+
√

4πgsN
dU2

U2
+
√

4πgsNdΩ2
5

]
. (6.4)

Note that U has the dimension of energy. An alternative way of seeing that r/α′

must be fixed is to consider a D3-brane that has been pulled out from the stack
at ~r = 0 to a location3 ~r. In the Yang-Mills theory this corresponds to giving a
vacuum expectation value to one of the scalars, which gives rise to massive W -
bosons described by strings stretching between the brane at ~r and the branes in the
stack. The mass of a W -boson is given simply by the energy of the corresponding
stretched string as EW ∼ |~r|/α′ = U , where we use the euclidean distance since we
are considering D-branes in flat space. In order to keep this energy fixed we arrive at
the same conclusion as before that r/α′ must be fixed in the α′ → 0 limit. Note that
we get the same result by using the supergravity solution to compute the energy of
a stretched string since the factor f(|~r|)1/4 from the transverse metric is cancelled
by the redshift factor f(|~r|)−1/4 when converting the string tension into energy.

Let us finally examine the validity of the supergravity-gauge theory correspon-
dence a bit more carefully. The argument above that string theory reduces to su-
pergravity in the low-energy limit near the horizon is a bit too weak. We must also
demand that the radius of AdS5 and S5 (they have the same radius) is large com-
pared to the string scale in order to be able to neglect stringy effects. The radius,
expressed in the ’t Hooft parameter, is

R = λ1/4`s. (6.5)

This implies that we must have λ � 1. In order to be able to neglect quantum
effect, the string scale must be large compared to the Planck scale4, given by

(`p)10 ∼ g1/4
s `s . (6.6)

2The same chain of reasoning can be used to motivate the electric near-horizon limit used in
Paper VI. In that case there exist a finite length scale, corresponding to the open strings, in the
limit α′ → 0. Energies should therefore be measured in this fixed unit and consequently Er is
fixed in the limit α′ → 0 using the same reasoning as above. To also keep E in (6.2) fixed we get
the condition that r/

√
α′ must be fixed as α′ → 0, which is the radial scaling used in the electric

near-horizon limit.
3We are here viewing the D-branes as hyper surfaces in flat space.
4The Planck length in Eq. (6.6) is the ten dimensional Planck length, defined from the Newton

constant κ ∼ gs(α′)2. For relations between Newton constants in various dimensions see, e.g., [87].
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Using that gs = g2
YM we see that we must have gYM � 1, which implies N � 1

since λ is large. To conclude, we have the following relations between gauge theory
and supergravity quantities

λ =
R4

`4s
, N =

R4

gs`4s
, (6.7)

and in order for the correspondence to be valid the large N limit is not enough, we
must also take λ to be large.

6.2 Holography

The supergravity-gauge theory duality also gives new insights into an intriguing
concept which ’t Hooft has named “holography”. By holography we mean a relation
between the information carried on a surface and that within the volume it encloses.
To be more precise, ’t Hooft [88] and Susskind [89] proposed that the degrees of
freedom in the bulk of a region matches the degrees of freedom on the surface of
that region with an upper bound on the amount of information per unit area.

Before the discovery of the supergravity-gauge theory duality, the best candidate
for realizing holography was black holes. As Bekenstein and Hawking showed, the
entropy of a black hole is proportional to its surface area. But if we consider the
creation of a black hole, in order not to lose any information, all the information
carried by what forms the inside of the black hole must be carried by its surface. The
holographic principle then means that the hologram captures all the information but
in a non-transparent way. Considering this, it is not surprising that Maldacena got
his idea while studying black holes.

Not everyone believes in the idea of holography, but the supergravity-gauge the-
ory duality may provide a new realization of holography and can thus bring some
new insights. The important difference to the black hole realization mentioned above
is that the supergravity-gauge theory realization would provide a microscopic un-
derstanding of the physics behind holography. Witten and Susskind [90] have used
this new realization to get an order of magnitude estimate of the degrees of freedom
of a black hole [3]. They also found that infrared, i.e., long distance, effects in the
bulk are related to ultraviolet, i.e., short distance, effects on the boundary.
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7
Branes in background fields

In Chapter 4, we studied the simplest cases of brane solutions, i.e., brane solutions
with only electric or magnetic charge. A more general situation would be to allow
for non-zero background fields, which from the brane point of view is equivalent to
excite the brane by including a non-zero field strength on the brane world volume.
After this excitation the brane will carry both electric and magnetic charge, the
new charge being interpreted as coming from new branes within the brane, and will
therefore sometimes be referred to as a dyonic brane.

There are two alternative approaches to the problem of obtaining these more
general solutions. We will start by explaining the method of analyzing the zero-
modes, used in Papers III and IV to obtain M5, D3 and (p, q) 5-brane solutions
in non-zero background fields. We also review the more commonly used method of
solution generating transformations, used in Paper VI, and in the last section we
explain the relation between solutions obtained by using these two methods.

7.1 Goldstone tensor modes

It is well known that massless degrees of freedom, so called Goldstone modes, arise
when a continuous symmetry is broken. Put, e.g., an M2-brane into an eleven
dimensional space. This breaks half of the supersymmetry. Another half is broken
by the Dirac equation when going on-shell, resulting in eight fermionic zero-modes.
The translational symmetry in the transverse directions are also broken, generating
eight bosonic zero-modes. Since we get the same number of bosonic and fermionic
degrees of freedom, there is a supersymmetric theory living on the M2-brane. The
M2-brane case, however, contains only scalar modes, which have been understood for
quite some time. The situation is a bit different if we instead look at the M5-brane.
Here we get eight fermionic degrees of freedom as above, but now we only get five
bosonic degrees of freedom from the breaking of translational symmetries. The three
extra bosonic degrees of freedom needed to get a supersymmetric theory come from
an anti-self-dual three-form field strength on the brane. In Paper II, we generalize
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the Goldstone mechanism to tensor fields of arbitrary rank, providing the same level
of understanding in terms of broken symmetries as for the scalar modes. We will end
this section by explaining how the anti-self-dual three-form field strength on the M5-
brane arise from broken gauge symmetries of the background three-form potential.
The presentation in Paper II is very thorough and we will here only recapitulate the
main ideas.

In order to understand how to make the proper generalization to tensor modes, it
is important to understand in detail how the scalar modes arise. Since we are study-
ing a theory with gravity, i.e., a theory having local diffeomorphism invariance, we
have to be more careful when we say that introducing a brane breaks translational
symmetry in the transverse directions. We can always make a small diffeomorphism,
i.e., a diffeomorphism taking the same value in the two asymptotic regions of the
brane solution, r → 0 and r → ∞, without changing any conserved quantities like,
e.g., the momentum. If we instead make a large diffeomorphism, taking different
values in the asymptotic regions, we change conserved quantities and these symme-
tries are therefore broken in the presence of a brane. Since diffeomorphisms are the
gauge symmetry associated with gravity, we come to the conclusion that Goldstone
modes are associated with broken large gauge symmetries. In the case of the fermi-
onic modes it is the large supersymmetry transformations that are broken and, e.g.,
the tensor modes on the M5-brane come from broken large gauge transformations
of the background three-form potential.

Now that we know where the Goldstone modes come from, we can deduce exactly
how they appear in the target space fields. Let us again look at the scalar modes.
Under an infinitesimal diffeomorphism we have

δgMN = LεgMN = 2D(MεN), (7.1)

where M = (µ,m) corresponds to the split into longitudinal and transverse direc-
tions. For a diffeomorphism in the transverse directions we now write εm = ∆sφ̄m,
where ∆ is the harmonic function in the brane solution, s is a parameter that will be
determined by imposing the supergravity field equations and φ̄m are constant moduli
corresponding to a rigid transverse displacement of the brane in the usual zero-mode
picture. Inserting this form of εm into (7.1) gives us how the scalar zero-modes sit in
the metric. So far, all we have done is a gauge transformation and this can not give
rise to any non-trivial dynamics. Now, however, we make φ̄m x-dependent, where x
is a coordinate on the brane, corresponding to allowing for transverse wiggles of the
brane. Since we turned on the x-dependence after calculating δgMN , which includes
a derivative, we have no longer just performed a gauge transformation. By using the
supergravity field equations we can now get the equations of motion for the zero-
modes and we are also able to determine the parameter s, which turns out to be
equal to −1 for all brane solutions. Thus, by doing a “rigid” transformation we get
information on how to introduce the zero-modes in the relevant field and by turning
on the x-dependence we can then get the equations of motion for the zero-modes
using the supergravity field equations. In the same way the fermionic modes will be
introduced in the gravitino field and the tensor modes in the corresponding gauge
potential. Since we want to have a theory living on the brane, we must require that
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all the zero-modes are normalizable when integrating out the transverse directions,
which, as we will soon see, will be very important for the M5-brane.

We now return to the analysis of the M5-brane. Using the notation of Paper II,
we make a gauge transformation of the background three-form potential δC = dΛ,
where Λ = ∆kA and A is a constant two-form which lies in the transverse directions,
since we want a theory on the brane, and k is a constant that will be determined
using the supergravity equations. Following the prescription above we first calculate
δC = d∆k ∧ A and then turn on the x-dependence of A. We can now compute the
variation of the four-form field strength H = dC,

h = δH = d∆k ∧ F , (7.2)

where F = dA. The field equation for H is, to linear order in h,

d ∗ h−H ∧ h = 0 (7.3)

yielding

∆d ∗x F ∧ ∗yd∆− (k ∗x F − F ) ∧ d∆ ∧ ∗yd∆ = 0 , (7.4)

where ∗x and ∗y denotes dualization in the longitudinal and transverse directions,
respectively, and we have used H = ∗yd∆. By considering the two duality compo-
nents of F separately (fulfilling ∗xF = ±F ) we get that k = −1 for the anti-self-dual
part and k = 1 for the self-dual part. We also get the equation of motion d∗xF = 0.
Since each duality component of F contributes with three bosonic degrees of free-
dom, we seem to have twice the number of extra degrees of freedom that we needed
in order to get supersymmetry. By considering normalizability, however, we see
that the self-dual part of F has non-normalizable zero-modes, and must therefore
be discarded. We have thus seen how the tensor modes on the M5-brane can be
understood as arising from broken large gauge transformation of the background
three-form potential. In Paper II the same procedure is also applied to the vector
modes on a D3-brane and in Paper III to the modes on a (p, q) 5-brane.

7.2 Finite tensor deformations

We can start from any “host” brane, whose normalizable zero-modes we identify
using the prescription described above. This gives us exact knowledge of how the
zero-modes appear in all target space fields and enables us to make an Ansatz for
the full solution. The non-linear supergravity equations are then solved for the
unknown functions in the Ansatz. The reason for the designation “host” brane is
that the full solution with finite field strength on the brane can also be viewed as
a non-threshold bound state where various smaller branes, depending on the rank
of the field strength, have dissolved into the “host” brane and become smeared in
some directions. In this way the original brane acts as a host for all kinds of lower-
dimensional branes representing the excitation. Using this method, we were able
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to obtain the most general1 bound state solutions, with constant fields on the host
brane, for the D3- and M5-branes2 as host branes in Paper III and for the (p, q)-5
brane as host brane in Paper IV. Apart from the general M5-brane solution, only
special cases of these solutions were previously obtained.

7.3 Solution generating transformations

The simplest way to derive bound state solutions is to use solution generating trans-
formations, consisting of T-duality, Lorentz and gauge transformations, on existing
solutions. See, e.g., [68] for a nice review on the subject. The advantage of using
this method compared to the method described in the previous section is that it is
purely algebraic and it is therefore not necessary to solve any non-linear differential
equations. It is also possible to combine the action of diagonal T-dualities, constant
NS gauge transformations and SO(p, 1) transformations to get an arbitrary element
of the T-duality group O(p + 1, p+ 1). Using the full T-duality group, it is possi-
ble to generate a general Dp-brane bound state in a very efficient way [95]. This
method was used in Paper VI to generate electrically and magnetically deformed
supergravity duals.

T-duality transformations are most easily performed using the Buscher rules
[72, 73, 74, 75]. Let y be the direction in which we T-dualize and let all the other
indices be different from y, then the Buscher rules for the NS fields are

ĝyy =
1
gyy

, ĝmn = gmn −
gmygny − BmyBny

gyy
,

B̂my =
gmy
gyy

, B̂mn = Bmn −
Bmygny − gmyBny

gyy
, (7.5)

ĝmy =
Bmy
gyy

, e2φ̂ =
e2φ

gyy

and the RR-fields transform as

Ĉ(p)m···nqy = C(p−1)m···nq − (p− 1)
C(p−1)[m···n|y|gq]y

gyy
, (7.6)

Ĉ(p)m···nqr = C(p+1)m···nqry + pC(p−1)[m···nqBr]y + p(p+ 1)
C(p−1)[m···n|y|Bq|y|gr]y

gyy
.

Note that the off-diagonal parts of the metric and the B-field get interchanged under
T-duality. When doing a T-duality transformation in a direction longitudinal to a
Dp-brane (except for the time direction) we get a D(p− 1)-brane and a transverse

1The motivation for this statement is that we start from the zero-modes and then find a unique
solution with finite field strength. This method do not generate any waves in the solutions, but
solutions including waves [91] has been shown to be related to solutions without waves via finite
boosts [92]. Solutions with light-like fields have been shown to be obtainable by taking a limit
involving an infinite boost [93]

2As will be explained in Section 7.4, our M5-brane solution in Paper III is equivalent to the
solution already obtained in [94].
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T-duality gives a D(p+1)-brane. It is important to note, however, that the Buscher
rules apply only when dualizing in a direction that is an isometry of the solution.
A longitudinal direction is automatically an isometry, but in order to be able to
T-dualize in a direction transverse to the brane we must first “smear” it in that
direction to create an isometry. We will now derive the (F,Dp) bound state using
two different methods.

7.3.1 T-duality and Lorentz transformations

We start from the Dp brane solution, for p ≤ 6, in the string frame

ds2 = H−
1
2
(
−(dx0)2 + (dx1)2 + · · ·+ (dxp)2

)
+ H

1
2dy2 ,

C(p+1) =
1
gsH

dx0 ∧ · · · ∧ dxp + (7− p)N (α′)
7−p

2 ε7−p , (7.7)

e2φ = g2
sH

3−p
2 ,

where dε7−p is the volume element on the transverse (8−p)-sphere and the harmonic
function is

H = 1 +
gsN (α′)

7−p
2

r7−p . (7.8)

In order to turn on an electric B-field, B01, we can T-dualize in the x1-direction
and then boost in the same direction, creating an off-diagonal term in the metric,
and finally T-dualize back, transforming the off-diagonal metric component into a
B-field. If we instead want to generate a magnetic field on the brane we have to T-
dualize and rotate in the magnetic directions where we want to generate the B-field,
yielding a bound state of a Dp-brane and a D(p− 2)-brane.

T-dualizing in the x1-direction gives

ĝ11 = H
1
2 , e2φ̂ = g2

sH
4−p

2 ,

Ĉ01···p =
1
gsH

.
(7.9)

Boosting in the x1-direction,

dx0 = cosh γ dx̃0 + sinhγ dx̃1 ,

dx1 = sinh γ dx̃0 + coshγ dx̃1 ,
(7.10)

leads to transformed metric and p-form components

g̃00 = H
1
2 (sinh2 γ − cosh2 γH−1) ,

g̃01 = H
1
2 (1−H−1) coshγ sinhγ ,

g̃11 = H
1
2 (cosh2 γ − sinh2 γH−1) ,

C̃02···p = cosh γ
(−1)p−1

gsH
,

C̃12···p = sinhγ
(−1)p−1

gsH
.

(7.11)
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By T-dualizing back in the x1-direction the off-diagonal component of the metric
gets transformed into a B-field, giving3

ds2 = H−
1
2
(
h
(
−(dx0)2 + (dx1)2

)
+ (dx2)2 + · · ·+ (dxp)2

)
+H

1
2dy2 ,

e2φ = g2
sH

3−p
2 h , B01 = − tanhγH−1h , (7.12)

C01···p =
h coshγ
gsH

, C23···p =
sinhγ
gsH

,

where

h−1 = cosh2 γ − sinh2 γH−1. (7.13)

We have also performed a gauge transformation, δB = − tanhγdx0∧dx1, in order to
get the solution on standard form with a B-field that is asymptotically non-vanishing
and that goes to zero as r → 0. That fact that we now have a non-zero B01, in
addition to a non-zero C01···p, means that we have a (F,Dp) bound state. In general,
all q-form potentials having a component along the time direction corresponds to a
(q − 1)-brane lying in the same directions as the potential.

7.3.2 T-duality and gauge transformations

We can also generate the same bound state using (double) T-duality and gauge
transformations. In the case of the (F,Dp) bound state, we T-dualize first in the
x0-direction and then in the x1-direction. Since the x0 and x1 directions after the
T-dualities are transverse to the brane we can turn on a B-field in these directions
using a gauge transformation. By then T-dualizing back, first in the x1-direction
and then in the x0-direction, the B-field gets interchanged with the off-diagonal part
of the metric twice and therefore ends up as a B-field on the brane.

T-dualizing in the x0 and x1 directions and performing a gauge transformation
give

ĝ00 = −H 1
2 , ĝ11 = H

1
2 ,

e2φ̂ = −g2
sH

5−p
2 , Ĉ2···p = − 1

gsH
, (7.14)

B̂01 = b .

By T-dualizing back in the x1 and x0 directions we get the bound state solution

ds2 = H−
1
2

(
ĥ
(
−(dx0)2 + (dx1)2

)
+ (dx2)2 + · · ·+ (dxp)2

)
+ H

1
2dy2 ,

e2φ = g2
sH

3−p
2 ĥ , B01 = bH−1ĥ , (7.15)

C01···p =
ĥ

gsH
, C23···p = − b

gsH
,

3We have used the same notation as in (7.7), but keep in mind that the fields have been T-
dualized twice and the coordinates have been boosted.
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where

ĥ−1 = 1− b2H−1 . (7.16)

By making the replacements

b→ − tanh γ ,

gs →
gs

cosh γ
, (7.17)

x0,1→ x0,1

cosh γ

we get the solution in the previous section. We have thus explicitly checked that
these two methods yield equivalent solutions. In the next section we will explicitly
verify the equivalence of various bound state solutions in eleven dimensions.

7.4 Relations between different forms of solutions

In the two previous sections we have discussed two different approaches to obtaining
brane solutions with non-zero background field strengths. While the method of ana-
lyzing the zero-modes generally gives a unique solution, starting from an un-excited
host brane, parameterized by the field strength on the host brane, the method of
using solution generating transformations generally gives a multitude of solutions for
the same host brane. An important question is whether these two approaches are
equivalent or in what way they differ. We argue that the method of analyzing the
zero-modes always gives the most general half supersymmetric solution by construc-
tion, since there is a unique way of fitting the half supersymmetric zero-modes into
the target space fields and since the subsequent full solution is uniquely obtained
from the zero-mode solution. Therefore, all the solutions obtained using solution
generating transformations are related to solutions obtained by analyzing the zero-
modes and thus do not generate a larger family of solutions despite the multitude of
different looking solutions4. As a consequence of this, the most general bound state
in type IIB having a (p, q) 5-brane as host brane was first obtained in Paper IV. The
most general bound state having a D3-brane as a host brane was first obtained in
Paper III.

In order to explicitly prove this assertion we have chosen to look at bound states
in eleven dimensions and want to show that all the obtained bound state solutions
can be related to the one we obtained in Paper III using the zero-mode approach.
One reason for this choice is that in eleven dimensions we will not have to deal with
the additional complication of SL(2,Z) covariance, which we have to in the case
of bound states in type IIB theory. More importantly, due to the various dualities
described in Chapter 5, all bound state solutions in lower dimensions can be obtained
from the one in eleven dimensions.

We will start from the solution obtained in Paper III, representing an M5-M2
bound state, and derive an explicit mapping to the M5-M2 solution of Izquierdo et

4The results in this section are part of a forthcoming publication [96].
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al. [94], who were the first to obtain the M5-M2 solution. We will then boost the
solution of Izquierdo et al. leading to the M5-M2-M2′-MW solution of Bergshoeff
et al. [91], essentially following [92] but using a slightly generalized form of the
mapping.

The M5-M2 solution obtained in Paper III is5

ds2 = (∆2 − ν2)1/3

[
1

(∆− ν)
(
−dt2 + (dx1)2 + (dx2)2

)
+

1
(∆ + ν)

(
(dx3)2 + (dx4)2 + (dx5)2

)
+ dr2 + r2dΩ2

4

]
,

`3pC3 =
√

2ν
[

1
(∆− ν)

dt ∧ dx1 ∧ dx2 − 1
(∆ + ν)

dx3 ∧ dx4 ∧ dx5

]
,

H4 = dC3 + 3πNε4,

(7.18)

where `p is the eleven dimensional Planck length, N is the number of M5-branes in
the bound state, ε4 is the volume element on the unit 4-sphere and

∆ = k +
(
R

r

)3

, R ≡ πN 1/3`p (7.19)

is the harmonic function and ν is proportional to the square of the field strength on
the brane, see Paper III for details. We must have ν ≤ k in order to avoid naked
singularities and it is for the critical case, ν = k, that we can take a decoupling limit
and obtain OM theory.

If we make the following substitutions [97]

(∆− ν)
2ν

=
H

tan2 α
,

(∆ + ν)
2ν

=
H

h sin2 α
,

(k − ν)
2ν

=
A

tan2 α
,

(7.20)

keeping R unchanged and rescaling the coordinates according to

r→
(

tan2 α cosα
2ν

)1/3

r ,

x0,1,2→
(

2ν cos2 α

tan2 α

)1/6

x0,1,2 ,

x3,4,5→
(

2ν
tan2 α cos4 α

)1/6

x3,4,5 ,

(7.21)

5Note that we have chosen a sign such that h+++ = −h−−− = −
√

2ν in the formulation of
Paper III.
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where x0 ≡ t, we get the M5-M2 solution of Izquierdo et al. [94],

ds2 = H−1/3h−1/3
[
−dt2 + (dx1)2 + (dx2)2 + h

(
(dx3)2 + (dx4)2 + (dx5)2

)
+H(dr2 + r2dΩ2

4)
]
,

`3pC = H−1 sinα dt ∧ dx1 ∧ dx2 −H−1h tanα dx3 ∧ dx4 ∧ dx5, (7.22)

H4 = dC3 + 3πNε4 ,

where the function h and the harmonic function H are defined as

H = A+
R3

cos α r3
, h−1 = H−1 sin2 α + cos2 α , (7.23)

where we have allowed for an arbitrary constant A in the harmonic function.
Since we at this point can not solve for A and α in terms of k and ν, we are

free to impose further constraints on the mapping. One alternative is to set, e.g.,
A = 1. This, however, prevents us from being able to map our critical solution in a
non-singular manner, which will be important later on. The constraint we are going
to impose instead is that we obtain exactly the solution of Bergshoeff et al. after a
Lorentz boost as explained below. We can then map a solution with arbitrary k and
ν to a solution of Bergshoeff et al. with arbitrary a and θ1, as shown in Eqs. (7.36)
and (7.37), except in the critical case.

We now boost the solution of Izquierdo et al. (7.22), for details see [92], letting

t→ t coshγ − x5 sinh γ , x5 → x5 cosh γ − t sinhγ. (7.24)

We introduce the angles θ1 and θ2, where θ1 ≤ θ2, through the definitions

cosα =
cos θ2

cos θ1
, cosh γ =

sin θ2

cos θ1

1
sinα

, sinh γ =
sin θ1

cos θ2

1
tanα

. (7.25)

We also introduce

H ′ = B +
R3

cos θ1 cos θ2 r3
, h−1

i = H ′
−1 sin2 θi + cos2 θi , (7.26)

satisfying

H = H ′h−1
1 , h−1 = h1h

−1
2 , (7.27)

where

B =
A− sin2 θ1

cos2 θ1
. (7.28)
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In [92] they use A = B = 1 which is consisted with (7.28). Using the relations above
we now get

ds2 = (H ′h1h2)−1/3

[
− dt2 + h1

(
(dx1)2 + (dx2)2

)
+ h2

(
(dx3)2 + (dx4)2

)
+ h1h2

(
dx5 + sin θ1 sin θ2(H ′−1 − 1)dt

)2
+H ′(dr2 + r2dΩ2

4)
]
,

`3pC3 = H ′
−1
(

sin θ2

cos θ1
h1dt ∧ dx1 ∧ dx2 +

sin θ1

cos θ2
h2dt ∧ dx3 ∧ dx4

− h1 tan θ1dx
1 ∧ dx2 ∧ dx5 − h2 tan θ2dx

3 ∧ dx4 ∧ dx5

)
,

H4 = dC3 + 3πNε4 .

(7.29)

We now want to match this to the solution of Bergshoeff et al. [91]

ds2 = (E1E2)1/3

[
−H̃−1

[
1− (1− H̃)2 s

2
1s

2
2

E1E2

]
dt2

+
2

E1E2
(1− H̃)s1s2dtdx

5 +
H̃

E1E2
(dx5)2 +

1
E1

(
(dx1)2 + (dx2)2

)
+

1
E2

(
(dx3)2 + (dx4)2

)
+ dr2 + r2dΩ2

4

]
, (7.30)

dC3 = d

(
1− H̃
E1

)
c1s2 ∧ dt ∧ dx1 ∧ dx2 + d

(
1− H̃
E2

)
c2s1 ∧ dt ∧ dx3 ∧ dx4

−d
(

1− H̃
E1

)
c1s1 ∧ dx1 ∧ dx2 ∧ dx5 − d

(
1− H̃
E2

)
c2s2 ∧ dx3 ∧ dx4 ∧ dx5

−c1c2 ? dH̃,

where si = sin θi, ci = cos θi and

Ei = s2
i + H̃c2

i (7.31)

with the harmonic function

H̃ = a+

(
R̃

r

)3

. (7.32)

We have allowed for a constant R̃ in order not to have to rescale the radial coordinate
in the mapping. The mapping is obtained by setting

H ′ = H̃ , H ′h−1
i = Ei (7.33)

without any coordinate rescalings. The first requirement implies that

R̃3 =
R3

cos θ1 cos θ2
(7.34)
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and also that the constants in the harmonic functions must match, i.e.,

a =
A − sin2 θ1

cos2 θ1
, (7.35)

which, if we view k, ν, a and θ1 as independent parameters, impose an additional
constraint on A. We can now solve for A and α,

A = (a− 1) cos2 θ1 + 1, (7.36)

tan2 α = A

(
2ν
k − ν

)
. (7.37)

We have thus obtained a complete mapping between our solution in Paper III, the
solution of Izquierdo et al. and the solution of Bergshoeff et al.

It is also interesting to examine how the critical case k = ν is mapped into the
parameters of solution (7.30). This analysis is only relevant if one wants to be able
to boost the critical solution or go to the critical case k = ν without having to take
any limits like tanα→∞. From (7.37) and (7.21) we have

x0,1,2 →
(

(k− ν)
A

[
2ν
(

A

k − ν

)
+ 1
]−1
)1/6

x0,1,2,

x3,4,5 →
(

(k− ν)
A

[
2ν
(

A

k − ν

)
+ 1
]2
)1/6

x3,4,5, (7.38)

r →
(

A

(k− ν)

[
2ν
(

A

k − ν

)
+ 1
]−1/2

)1/3

r .

and we must require that the mapping is non-singular. Therefore we let A → 0 as
ν → k in such a way that the quotient A/(k − ν) is kept fixed. We also note that
A = 0 corresponds to

a = − tan2 θ1 (7.39)

and therefore, as soon as we have boosted the solution (see (7.25)), the value of a
which gives the critical solution is negative. We can obviously not regard k, ν, a and
θ1 as independent parameters, as we did above, when we consider the critical case.
Since we now have a relation between k and ν, which gives us the critical solution,
we will also get a relation between a and θ1, i.e., relation (7.39).

It is interesting to note that unlike the ordinary DLCQ compactification of M-
theory in flat space, where one compactifies on a light-like circle, we can compactify
on a (finitely boosted) space-like circle, and still get a system with critical D0-branes
in ten dimensions, provided that we have an M-wave in eleven dimensions. To see
this take the M5-M2-M2’-MW solution (7.30) and reduce it to ten dimensions along
the M-wave. By setting the constant in the harmonic function to zero, we get
smeared D0-branes at infinity, i.e., the D0-branes are critical. It is interesting to
note that lowering the constant in the harmonic function below zero yields a singular
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solution in ten dimension, while the solution in eleven dimensions is regular [98] all
the way down to a = − tan2 θ1, where the M2-branes become critical, and the
metric at infinity describes membranes smeared in three dimensions. Since the ten
dimensional theory does not have to be in the non-relativistic “infinite momentum
frame” in order to have critical D0-branes, it might be possible to extend the analysis
of how the D0-branes describe M-theory in more general backgrounds.

We end this section with some comments regarding the recently proposed V-
duality [99, 100, 92]. In [92] it is argued that it is only possible to obtain a de-
coupled OM theory from an infinitesimally boosted (M5,M2) bound state, but not
from a finitely boosted one. Important for this conclusion is that the decoupling
limit is assumed to be the same after the boost as before. We see that the restric-
tion to infinitesimal boosts, i.e., galilean transformations, follows directly from this
assumption regarding the decoupling limit. The decoupling limit is obtained by
scaling t ∼ ε0 and x5 ∼ ε3/2 and demanding this scaling both before and after the
boost gives, when inserted into the Lorentz transformation (7.24), that sinhγ ∼ ε3/2,
i.e., γ ∼ ε3/2. The restriction to infinitesimal Lorentz transformations can therefore
be seen to arise due to the different scalings of the coordinates when one tries to
keep the decoupling limit fixed. If we instead use the decoupling limit reviewed in
Section 8.3 [97], where all the coordinates on the M5-brane scale in the same way,
we do not get any restriction to infinitesimal boosts. We get exactly the same su-
pergravity dual, and therefore the same decoupled theory, for all values of n in the
scaling limit (8.46). Since the coordinates scale in the same way, boosting before
or after taking the decoupling limit commute. The scaling used in [92] corresponds
to n = 1, but if we instead map the scaling limit with n = 0 to their coordinates
it gives a decoupling limit where all coordinates on the M5-brane scale in the same
way, thereby avoiding the restriction to infinitesimal boosts. It is therefore unclear
to us in what sense V-duality is a non-trivial concept.



8
Decoupled theories

An obvious generalization of the AdS/CFT correspondence described above, is to try
to take the same decoupling limit for a brane in a background field. By doing this in
a magnetic background, one obtains a noncommutative Yang-Mills (NCYM) theory
[101] with space-space noncommutativity instead of an ordinary commutative one.
The case with an electric background, which leads to space-time noncommutativity,
is a bit harder to make sense of since we are used to viewing time as just a parameter
which labels the time evolution of a system. In this sense time is not an operator and
it is unclear how it could fail to commute. It turns out that taking the decoupling
limit in a critical electric field yields a noncommutative open string (NCOS) theory
[102, 103], instead of a field theory, on the brane. The effect of the critical electric
field is to make the effective string tension finite in the decoupling limit, in contrast
to the Yang-Mills case where it diverges, keeping the full open string spectrum in the
theory. After this was done, these ideas were generalized to eleven dimensions where
one can take an analogous decoupling limit for an M5-brane in a critical background
field, obtaining an open membrane (OM) theory [101, 104, 105, 106, 107] on the M5-
brane world volume. By reducing OM-theory to ten-dimensions and using various
dualities, decoupled theories on NS5 branes containing light open Dp-branes (ODp)
[106, 108, 109], can be defined. It is also possible to define open Dp-brane theories
on other host branes than NS5-branes [110, 111]. In Paper VII we generalize NCYM
and NCOS theory, which can be defined as (0,1) or (1,0)-string theory, respectively,
on a D3-brane probe in an (F,D3) background. By instead studying a (p, q)-string
theory on the probe brane we get new noncommutative theories with interesting
S-duality properties. We will now examine some of these noncommutative theories
in more detail.

8.1 NCYM and NCOS

In their very influential paper [101], Seiberg and Witten study open string theory
on a Dp-brane in a background B-field. The B-field affects the boundary conditions
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for open strings ending on the Dp-brane according to1 2

(gµν∂nxν + iBµν∂tx
ν)

∂Σ

= 0, (8.1)

where µ is along the Dp-brane and ∂n (∂t) is a derivative normal (tangential) to
the string world-sheet. If Bµν = 0 we get the ordinary Neumann boundary condi-
tions, but as Bµν becomes large compared to gµν the boundary conditions turn into
Dirichlet ones. With these boundary conditions, the two-point function is

〈Xµ(0)Xν(τ)〉 = −α′Gµν log τ + iπΘµνε(τ), (8.2)

〈X i(0)X j(τ)〉 = −α′gij log τ, (8.3)

where

α′Gµν + Θµν = α′
(

1
g + 2πα′〈F〉

)µν
. (8.4)

Here Gµν is the effective metric seen by open strings, Θµν measures the noncommuta-
tivity and 〈F〉 is the background value of the gauge invariant field strength on the
Dp-brane3,

F = dA+
1

2πα′
B, (8.5)

i.e.,

〈F〉µν =
1

2πα′
Bµν . (8.6)

The effective open string coupling is

Go = eφ

√
det (g + B)

det g
= eφ

(
detG
det g

)1
4

(8.7)

and from (8.4) we have the following expressions for Gµν , Θµν and Gµν :

Gµν =
(

1
g + B

)µν
S

=
(

1
g + B

g
1

g − B

)µν
, (8.8)

Θµν

α′
=
(

1
g + B

)µν
A

= −
(

1
g + B

B
1

g −B

)µν
(8.9)

and

Gµν = gµν − BµρgρσBσν , (8.10)

1As in Paper VI, our convention for BMN differs by a factor 2πα′ from that in [101].
2We have not yet added any gauge fields on the world-sheet.
3All background fields that appear in the formulas regarding open string data are implicitly

assumed to be pulled back to the brane.
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where S and A denote the symmetric and antisymmetric part, respectively, and Gµν
is the inverse of Gµν. The metric gMN will always refer to the string metric and will
sometimes be denoted gstrMN to avoid confusion.

As was shown by Seiberg and Witten [101], depending on what type of regulariza-
tion we choose we get seemingly different theories. With Pauli-Villars regularization
we get an ordinary commutative theory, while with point-splitting regularization we
get a noncommutative theory. However, since it is known that the difference between
different regularizations is always in a choice of contact terms these theories must be
related via coupling constant redefinitions. Since for a world-sheet lagrangian, the
coupling constants are the space-time fields, the two theories must be related via a
field redefinition. Noncommutative Yang-Mills is therefore shown to be equivalent
to ordinary Yang-Mills and the equivalence is realized by a field redefinition.

Originally, the noncommutative theories were obtained in a certain flat space
scaling limit [101, 102, 103]. This limit is obtained by demanding that the massive
closed string states, having a rest mass proportional to

√
|g00|/α′, become infinitely

heavy, while at the same time the mass of open string states are kept finite in the
NCOS case and are sent to infinity in the NCYM case. In order to decouple also the
massless closed string sector we must take α′ → 0, as is in the AdS/CFT case. A
more careful analysis [112] based on calculations of absorption cross-sections shows,
however, that the massless closed string sector only decouples for p ≤ 5. There is
also compelling evidence [109] that for p = 5 the resulting theory contains a (closed)
little string sector. Since the rest-mass of an open string state with oscillator number
N ≥ 1 is proportional to

√
|G00|(N − 1)/α′, we can read off the effective tension for

an F-string from the open string metric as4

1
α′eff

=
|G00|
α′

. (8.11)

By requiring, as was mentioned above, that the effective open string tension is fixed
for NCOS we keep the full open string spectrum in the theory, while for NCYM,
by sending the effective open string tension to infinity, we only keep the massless
level, i.e., we get a field theory. An alternative way of computing the effective open
string tension is to view an open string as a dipole situated in an electric field. The
ordinary string tension, striving to contract the string, is then counteracted by the
pull on the open string endpoints due to the electric field. We therefore get5

1
α′eff

=
|gstr00 |
α′
− ε01B01

α′
. (8.12)

What makes these two definitions equivalent (up to a constant factor), despite
(α′eff )−1 being quadratic in B in the first definition and linear in the second, is

4In this argument, we use the mass formula for an open bosonic string. For a fermionic open
string the tension will only differ by a constant factor.

5The first term in the RHS can also be written as
√
−det g
α′ , where

√
− det g dx0dx1 is the invariant

volume element in the string directions. It is this form of the effective tension that generalizes to
higher dimensions.
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that in both cases the B term manages to cancel the divergent term in gstr00 /α
′. The

remaining finite terms then give the effective open string tension.
Instead of defining the decoupling limit as a flat space scaling limit [102, 103],

we can derive the decoupling limit from the supergravity dual as in Paper VI and
[104, 107, 97]. This provides a more physical interpretation of the decoupling limit
as a certain limit of a probe brane in the background generated by a stack of branes,
as will be explained below. We choose the canonical dimensions of the fields such
that if ds2/α′ and C(p)/(α′)p/2, where C(p) is a p-form potential, are held fixed in
the limit α′ → 0, then the supergravity action is finite. We start by going to critical
field strength, which is possible for the brane solutions found in Papers III and IV
without having to take any limits. Requiring the quantities above to be fixed in the
α′ → 0 limit tells us how the coordinates and the parameters of the supergravity
dual, i.e., the field strengths, must scale with α′. We can then write the supergravity
dual in terms of quantities that are fixed in the α′ → 0 limit. By putting in a probe
brane, of the same type as the host branes, at some radius, we can now study the
induced theory on the probe. The radial coordinate can be viewed as the energy
scale, in appropriate units, above which higgsed W -bosons, i.e., interactions between
the probe and the stack, are no longer negligible. By pushing the probe brane to
infinity, and taking α′ → 0, we can obtain a theory decoupled from both gravity
and the stack. Taking the probe brane to infinity, which will be called the UV limit
[113, 99, 97], is the only way to obtain a theory that is potentially UV complete.
For critical field strength, the metric in the UV region generally approaches some
configuration of smeared branes, as observed in Papers III and IV, indicating the
presence of light open branes in the theory (of the same type as those being smeared),
implying that the decoupled theory might not be a field theory but rather a theory
of the light open branes in question. Two cases where we get open brane theories
are OM theory and NCOS theory, in which cases the metric at infinity approaches
that of smeared membranes and strings, respectively. For NCYM, however, despite
that the metric is the same as for NCOS, we in this case get a field theory. Note
that there are three separate limits involved here, the critical limit, the α′ → 0 limit
and the UV limit. These three limits together will be referred to as the decoupling
limit. When using the flat space scalings, the three limits are combined into one ε
scaling limit.

As a concrete example, we will now use this method to derive the NCYM/NCOS
decoupling limit. As we will see, using the supergravity solution describing the most
general ((F,D1),D3) bound state, obtained in Paper III, the limits giving NCYM and
NCOS are actually identical. This also serves as an example of how to choose the
scalar doublet Ur in our SL(2,R) invariant solutions in order to get a specific bound
state, e.g., a (F,D3) or a (D1,D3) bound state. The scalars can then be obtained
form the projective invariant according to U1/U2 = χ+ ie−φ. We will first compute
the open string metric for NCYM and NCOS and then derive the decoupling limit.

The scalar doublet satisfies (see Section 3.2 for details)

1 =
i

2
εrsUrŪs , P =

1
2
εrsdUrUs (8.13)
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and

Q =
1
2
εrsdUrŪs, (8.14)

where ε12 = −1.6 From the D3 brane solution in Paper III we have

P = iµ
(
∆2 − ν2

)−1
d∆,

Q = 0,
(8.15)

where

∆ = k +
(
R

r

)4

, R4 = gsN (α′)2, (8.16)

is the harmonic function, µ is a measure of the (complex) field strength and ν = 2|µ|
(see Paper III for details). Solving for Ur gives

U1 = cη(∆+)∓
1
4 (∆−)±

1
4 ,

U2 = − i

cη̄
(∆+)±

1
4 (∆−)∓

1
4 ,

(8.17)

where c is a real constant, η2 = ± µ
|µ| and the lower (upper) sign corresponds to the

NCYM (NCOS) background as we will see shortly. We have also introduced the
notation ∆± = ∆± ν, which is convenient since the harmonic function will only be
deformed in these two ways when we turn on a background field. We can obtain the
field strength doublet according to

H(3)r = εrsIm
(
UsH̄(3)

)
, (8.18)

where

H(3) = UrdB(2)r (8.19)

and7

Hpµν = 2∂p∆
(
∆2 − ν2

)− 1
4

(
∆
− 3

2
− Π+F + ∆

− 3
2

+ Π−F
)
µν

(8.20)

are given by the solution8. To express the field strength we have used the projectors

Π± =
1
2

(
1± 2

ν
FF̄

)
, (8.21)

6The factor i in P is due to the different conventions used in Papers III and IV.
7We have rescaled the fields as H(3)r → 1

2
H(3)r and H(5) → 1

4
H(5) compared to Paper IV in

order to conform to the most commonly used conventions.
8We use the notation that Greek indices denote longitudinal directions and Latin indices denote

transverse directions.
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where time is in the plus sector. Integrating H(3)r gives the potentials

B1 = − 2
cη

∆−1
+ (Π−F ),

B2 = −2icη̄∆−1
− (Π+F ).

(8.22)

The fact that B1 is proportional to Π−F , i.e., B1 has no components along the time
direction, means that this choice of the scalar doublet implies a magnetic field on
the brane and we therefore get the NCYM case. Using

ds2
E =

(
∆2 − ν2

)− 1
4

[(
∆+

∆−

) 1
2

dx2
+ +

(
∆−
∆+

)1
2

dx2
−

]
+
(
∆2 − ν2

)1/4
dy2 , (8.23)

eφ = c−2

(
∆−
∆+

)1
2

(8.24)

and the following useful properties of the projectors,

(Π±F )(Π±F ) = µΠ±,
(Π±F )(Π∓F ) = 0,

(8.25)

we can now compute the open string metric for NCYM

GNCYM
µν ≡ gsµν − (B1g

−1
strB1)µν =

1
c

∆
− 1

2
− ηµν , (8.26)

where gstrMN = e
φ
2 gEMN is the string metric. From equation (8.24) we note that c is

related to the value of the undeformed dilaton.
To obtain the open string metric for NCOS we use the upper sign in the solution

for the scalar doublet. The background potentials are

B1 = −2c
η

∆−1
− (Π+F ),

B2 = i
2η̄
c

∆−1
+ (Π−F )

(8.27)

and the dilaton is

eφ = c2

(
∆+

∆−

)1
2

. (8.28)

The fact that B1 is proportional to Π+F means that this choice of the scalar doublet
implies an electric field on the brane, i.e., we get the NCOS case, and the open string
metric is

GNCOS
µν ≡ gsµν − (B1g

−1
strB1)µν = c∆

− 1
2

+ ηµν. (8.29)
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In order to derive the decoupling limit, we first go to critical field strength, i.e.,
ν = k, and then demand that ds2/α′ is fixed in the limit when α′ → 0. We then get
the following scalings

ν = k =
1
2

(
`

`s

)4n

, x̃± =
(
`s
`

)n−1

x±, r̃ =
`n+1r

`n+1
s (gsN )1/4

, (8.30)

where the tilded coordinates and the length scale ` are fixed in the limit. Rewriting
the supergravity dual in terms of these fixed coordinates gives9

ds2

α′
=

1
`2

(
f1/4r̃3`−3dx̃2

+ + f−3/4r̃−1`dx̃2
− + f1/4r̃−1`(gsN )1/2(dr̃2 + r̃2dΩ2)

)
(8.32)

and

(B1)23

α′
= − 2

c`2
f−1,

(B2)01

α′
= −2c

`6
r̃4, eφ = c−2r̃−2`2f−1/2 (8.33)

for NCYM and

(B1)01

α′
= −2c

`6
r̃4,

(B2)23

α′
= − 2

c`2
f−1, eφ = c2r̃2`−2f1/2 (8.34)

for NCOS where

f = 1 +
(
`

r̃

)4

. (8.35)

For sub-critical field strength, both g00/α
′ and eφ are finite in the UV limit (since

the free r̃ coming from ∆− would be replaced with a constant in the UV limit) and
therefore closed strings are not decoupled.

Now, in order to obtain an NCOS theory we must demand that the effective ten-
sion of the F-strings are finite in the UV limit r̃→∞. Using the critical decoupling
limit above we get

Gµν
α′

=
c

`2
f−1/2ηµν, (8.36)

which is finite in the UV. By applying the same limit to NCYM we see that

Gµν
α′

=
r̃2

c`4
ηµν, (8.37)

9In order to get explicit expressions for the two-form potentials we have used the following
parameterization of Fij ,

Fij =

0
BB@

0
√
µ 0 0

−√µ 0 0 0
0 0 0 i

√
µ

0 0 −i√µ 0

1
CCA , (8.31)

which satisfies the algebra used in Paper III.
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which diverges in the UV as it should. Note that we do not get any constraint on
how α′ should scale with r̃. We have now obtained the decoupling limit, given in
the supergravity dual by r̃→∞, for NCYM and NCOS. Using translations between
different forms of the deformed D3-brane solution, analogous to the ones for the
deformed M5-brane solutions in Section 7.4, we see that the decoupling limit used
in Paper VI corresponds to taking n = 0 in the scaling limit (8.30).

8.2 Open (p, q)-string theories

We can now unify and generalize the treatment in the previous section by considering
open (p, q)-strings theories, on the probe brane, instead of only (1, 0)-string theory,
i.e., ordinary string theory. This treatment can be done both for the D3 and the
(p, q) 5-branes of type IIB, as is done in Paper VII, but here we will concentrate
on the D3-brane case for simplicity. We use the (F,D3) bound state solution from
the previous section, which is given in the Einstein frame. In our approach, we
hold the background fixed, while SL(2,Z) rotating the string we use to study the
theory on the probe in order to get different theories. If we were to apply the same
SL(2,Z) transformation to both the background and the string we would get a theory
equivalent to the one we started with. Since we have chosen the background to be
the (F,D3) bound state solution, we get NCOS if we use a (1,0)-string to study the
probe. Since S-dualizing the background is equivalent to S-dualizing the string in our
picture, we get NCYM if we use a (0,1)-string instead. It is only the angle between
the SL(2) charges of the probe (i.e., the background), given by the doublet of three
forms, and the string used to study it that matters. Let (p1, p2) = (p, q) be the
string charges. The charges with indices downstairs are then obtained as pr = εrsp

s

yielding (p1, p2) = (−q, p), since we use ε01 = −1. In the gauge Im(U2) = 0, the
string tension, in units of 1/α′, is given by [22]

|Urpr| =
√
eφ(p− qχ)2 + q2e−φ. (8.38)

In order to get the SL(2,Z)-covariant open string data we therefore have to replace
eφ/2 by |Urpr| giving

Gµν = 1
|Urpr|

((
gE+ psCs

|Utpt|

)−1

S

)µν
= 1
|Urpr |

((
gE+ psCs

|Utpt|

)−1
gE
(
gE− pmCm

|Unpn|

)−1
)µν

,

Θµν

α′
= 1
|Urpr |

((
gE+ psCs

|Utpt|

)−1

A

)µν
=− 1

|Urpr |

((
gE+ psCs

|Utpt|

)−1 pkCk
|Ulpl|

(
gE− pmCm

|Unpn|

)−1
)µν

,

Gµν = |Urpr|
(
gE
µν −

(psCs)
2
µν

|Utpt|2

)
, GO = |Urpr|

( detG
det gE

) 1
4
. (8.39)

The effective open string tension can now be obtained from the open string metric
as before, or equivalently from the dipole analogy as

1
α′eff

= |Urpr|
|gE00|
α′
−

(C(2)rp
r)01

α′
. (8.40)
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A possible source of confusion in this context is that we keep α′ fixed when rotating
the string charges. Since we do not change the background, α′ will always be the
F-string tension. Most authors instead perform the S-duality transformation on the
background, and since an F-string should turn into a D-string they have to transform
α′.

In order to look at the decoupled theory we choose to use n = 0 in (8.30) giving

k = ν =
1
2
, x̂± =

`

`s
x± , u =

`

`s
r , c fixed. (8.41)

We can now calculate the open string data for arbitrary string charges

Gµν
α′

=
1
`2
c−1(q2 + c4(p− qχ)2)(q2r̃−4`4 + c4(p− qχ)2f)−

1
2 ηµν

Θ01 = −`2
√

2ν c3(p− qχ)(q2 + c4(p− qχ)2)−1

Θ23 = −`2
√

2ν c q(q2 + c4(p− qχ)2)−1

GO = c−2(q2 + c4(p− qχ)2)

(8.42)

We can now look at the two special cases with (1,0) and (0,1)-strings and χ = 0,
giving NCOS and NCYM respectively. The open string data for the (1,0)-probe are

Gµν
α′

=
c√
2`2

ηµν , Θ01 = −
√

2`2c−1,

GO = c2 , Θ23 = 0 (8.43)

and for the (0,1)-probe we have

Gµν
α′

=
1
`4
c−1r̃2ηµν , Θ23 = −

√
2`2c,

GO = c−2 , Θ01 = 0. (8.44)

We thus see that this result agrees with (8.36) and (8.37) and that the open
string coupling for NCOS is the inverse of that of NCYM implying a strong/weak
coupling duality.

An important result of Paper VII is that every strongly coupled open (p, q)-string
theory has a weakly coupled SL(2,Z)-dual theory. Therefore, most of the moduli
space of noncommutative theories on the D3-brane are accessible for perturbative
calculations.

8.3 OM theory

The ideas leading to decoupled theories containing light open strings can be gener-
alized to eleven dimensions giving a theory containing light open membranes, OM
theory [101, 104, 105, 106, 107]. However, since we can not quantize the mem-
brane we do not have the same fundamental understanding of this theory as of, e.g.,
NCOS. For example, the open membrane metric can only be argued for up to a
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conformal factor. We will now derive the decoupling limit for OM theory using the
same technique as in the NCYM/NCOS case [97].

We start from the metric for the deformed M5-brane solution in Paper III,

gµν =
(
∆2 − ν2

)− 1
6

[(
∆+

∆−

)1
2

dx2
− +

(
∆−
∆+

)1
2

dx2
+

]
+
(
∆2 − ν2

)1/3
dy2, (8.45)

where time now is in the minus directions. By requiring that ds2/`2p is fixed in the
`p → 0 limit, we are led to the following scaling limit

k = ν =
1
2

(
`

`p

)3n

, x̃± =
(
`p
`

)n
2
−1

x± , r̃ =
`n+1r

`n+1
p N 1/3

, (8.46)

where again the tilded coordinates and the length scale ` are fixed in the limit.
Rewriting the supergravity dual in terms of these fixed coordinates gives10

ds2

α′
=

1
`2

(
f1/4r̃3`−3dx̃2

+ + f−3/4r̃−1`dx̃2
− + f1/4r̃−1`(gsN )1/2(dr̃2 + r̃2dΩ2)

)
,

(8.47)
H(4)

`3p
=
N

`3
ε4(S4) +

1
`3
d(r̃3`−3dx̃3

− − f−1dx̃3
+)

where now

f = 1 +
(
`

r̃

)3

. (8.48)

The effective open membrane tension can be computed by generalizing the dipole
argument for the open string. We then get

1
`3eff

=
√
− det g
`3p

− ε012C012

`3p
, (8.49)

where
√
− det g dx0dx1dx2 is the invariant volume element in the membrane di-

rections. This expression for the open membrane effective tension reduces to the
expression for the effective string tension (8.12) under dimensional reduction. The
effective tension must be finite in the UV limit in order to have light open membranes
in the spectrum. By using the solution above in (8.49), we get

1
`3eff

= f1/2 r̃
3

`6
− r̃3

`6
(8.50)

and since f → 1 in the UV limit we see that the divergent parts cancel. This, how-
ever, does not mean that the effective tension has to go to zero since we can always
generate a constant finite term in the effective tension using a gauge transformation
of C(3). Note that as in the D3-brane case we get no constraint on how `p should
scale with r̃. By choosing `p ∼ r̃−1 we get the limit used in [106, 107].

10In order to get explicit expressions for the three-form potential we have used h012 = −h345 =√
2ν which satisfy the algebra used in Paper III.
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8.4 ODp theories

It is natural to generalize the ideas above to theories containing light open branes
other than strings and membranes. This has been done for open Dp-branes on NS5-
branes in type IIA/B [106, 109], where there also exist a limit giving light open
Dp-branes, i.e., yielding ODp theories. Very little is known about these theories due
to the lack of any fundamental understanding of them, i.e., it is only the open string
that we can quantize. We would, however, like to make a comment regarding the
OD5 theory. This theory is defined on an NS5-brane in type IIB theory and contains
light open D5-branes [106, 109]. When studying the metrics obtained in Papers III
and IV, for critical field strength, the asymptotic metric generally approaches some
smeared brane configuration. For a D3-brane we get a smeared string, for an M5-
brane we get a smeared membrane and for a (p, q) 5-brane we generically get a
smeared string, but for the special case of a magnetic rank 2 field strength we get a
smeared 3-brane. In all the cases we have studied, the object appearing smeared at
infinity is the light object in the theory. For an NS5-brane in type IIB we therefore
see that we can get OD1 and OD3 theories, depending on the choice of field strength.
However, at first it seems difficult to obtain an SO(5,1) invariant solution for critical
field strength, which would yield an OD5 theory. It turns out that the OD5 theory
is obtained by taking k = ν = 0 in the (p, q) 5-brane solution in Paper IV, which
amounts to taking zero background field strength and setting the constant in the
harmonic function to zero. This is still a critical limit in the sense that k = ν, even
though the field strength in this case is zero. This corresponds to embedding the
(p, q) 5-brane in an AdS background instead of a Minkowski one. Using the analogue
of (8.49) for the effective open D5-brane tension, where the metric used should be
the closed D5-brane metric defined as

gDpµν ≡ e
− 2φ
p+1 gstrµν , (8.51)

we see that the effective tension is finite in the UV limit.
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9
Outlook

The last dramatic advance in our understanding of string theory was the discovery of
the AdS/CFT correspondence, reviewed in Chapter 6. The correspondence has been
scrutinized in a large number of situations and has passed all tests so far. Matrix
theory has also attracted a lot of attention and has been shown to be a well defined
quantum theory which reduces to a supersymmetric theory of gravity at low energies
[6]. The formulation is, however, not background independent. There has also been
the discovery of a multitude of decoupled, noncommutative theories, reviewed in
Chapter 8. It will be interesting to see how much can be learnt from these theories
and what rôle they will play in the future developments of string theory. Lately,
there has been significant progress in the understanding of tachyon condensation
(see [15] and references therein), which is a very active area at the moment.

It will also be interesting to follow the developments concerning higher deriva-
tive corrections to the lowest order effective supergravity actions, especially in eleven
dimensions. Note that in ten dimensions we have a microscopic understanding in
terms of string theory and can derive the correction terms. In eleven dimensions,
however, it has not yet been possible to compute any correction terms using the
current microscopic understanding through matrix theory. The terms we are able
to deduce by, e.g., relating to results in ten dimensions, can instead be viewed as
providing information about the microscopic eleven dimensional theory. The higher
derivative terms are also interesting since they can be used to check various conjec-
tured dualities [45, 39]. It is also believed that many of the space-time singularities
appearing in supergravity solutions will be resolved when taking into account the
higher derivative terms [68].

There are, however, still some great challenges for string theory. One fundamen-
tal problem is that the formulation of string theory is not background independent.
Each background has its own description of string theory, e.g., string theory is
described by a CFT when formulated in AdS space and by matrix theory when
formulated in flat eleven-dimensional space. In light of the recent discovery that
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the expansion of the universe is accelerating1 we are ultimately forced to formulate
string theory in a background like this. There are two ways of modeling an acceler-
ating universe, either by including a positive cosmological constant, giving deSitter
space, or by using the theory of quintessence. The reason for the accelerated expan-
sion in the case of a positive cosmological constant is that the cosmological constant
can be interpreted as a vacuum energy density counter-acting gravity. If correct,
this leads to an ever expanding universe and also implies that most of the energy
in the universe is associated with the vacuum. In the theory of quintessence, on
the other hand, the dark energy of the universe is dominated by the potential of a
scalar field φ, which is still rolling towards the minimum of the potential, typically
at φ =∞. Quintessence models that accommodate the current acceleration seem to
accelerate eternally [114, 115]. There are, however, profound problems concerning
the formulation of string theory in both these approaches since it seems impossible
to define an S-matrix in the respective backgrounds [116, 114, 115]. This might
require a fundamental revision of our ideas about string theory. There is a recent
proposal how to obtain de Sitter space from modified (or massive) M-theory [117].

Finally, the experimental verification of supersymmetry seems to be in reach in
the accelerators under construction. If traces of supersymmetry can be detected it
will no doubt be one of the greatest experimental discoveries. Hopefully the “stock
price” for strings [118] will continue to rise!

1 See, e.g., http://www.eso.org/outreach/press-rel/pr-1998/pr-21-98.html and http://-

www.sciencemag.org/cgi/content/summary/282/5397/2156a.
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