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Abstract 
 
 In this paper we present the autonomous, walking 
humanoids Priscilla, ELVIS and ELVINA and an 
experiment using evolutionary adaptive systems. We 
also present the anthropomorphic principles behind 
our humanoid project and the multistage 
development methodology. The adaptive 
evolutionary system used is a steady state 
evolutionary strategy running on the robot’s onboard 
computer. Individuals are evaluated and fitness 
scores are automatically determined using the robots 
onboard digital cameras and near-infrared range 
sensor. The experiments are performed in order to 
optimize a by hand developed locomotion controller. 
By using this system, we evolved gait patterns that 
locomote the robot in a straighter path and in a more 
robust way, than the previously manually developed 
gait did. 
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1. Introduction 

 
 The applications of robots with human-like 
dimensions and motion capabilities, humanoid 
robots, are plentiful. Humanoid robots constitute 
both one of the largest potentials and one of the 
largest challenges in the fields of autonomous 
agents and intelligent robotic control. In a world 
where man is the standard for almost all 
interactions, humanoid robots have a very large 
potential acting in environments created for human 
beings [1].  
 In traditional robot control programming, an 
internal model of the system is derived and the 
inverse kinematics can thus be calculated. The 
trajectory for movement between given points in 
the working area of the robot is then calculated 
from the inverse kinematics. Even though this still 
is a very common approach, we propose for 
several reasons the concept of genetic 
programming for control programming of so-

called bio-inspired robots [2] as e.g. a humanoid.  
The traditional geometric approach to robot control, 
based on modeling of the robot and derivation of 
leg trajectories, is computationally expensive and 
requires fine-tuning of several parameters in the 
equations describing the inverse kinematics [3]. 
Conventional industrial robots are designed in such 
a way that a model can be easily derived, but for 
the development of bio-inspired robots, this is not 
a primary design principle. Thus, a model of the 
system is very hard to derive or to complex so that 
a model-based calculation of actuator commands 
requires too much time for reactive tasks [2]. For a 
robot that is conceived to operate in an actual 
human living environment, it is impossible for the 
programmer to consider all eventualities in 
advance. The robot is therefore required to have an 
adaptation mechanism that is able to cope with 
unexpected situations. 
 The anthropomorphic principle behind humanoids 
might be a stronger motivation factor then 
conventionally assumed. Consider for example the 
phenomenon of human left-handedness. Left-
handed persons have been shown to have a shorter 
expected life length than right-handed persons. 
The standard explanation for the higher mortality 
rate is a higher accident frequency and the 
assumed explanation for this deviation is due to the 
fact that the world is built for right-handed people 
[11]. If such a minute deviation in behavior could 
cause accident frequencies measurable in as 
statistically significant mortality biases, we could 
expect considerable difficulties for a robot working 
in a human environment. The differences between 
human and robot will always be bigger there, than 
the difference between a left-handed and right-
handed person. We aim at exploring and 
evaluating the consequences of a strong 
anthropomorphic principle where humanoids are 
built with very close correspondence with humans 
in terms of size, weight, geometry and motion 
capabilities. We have therefore devised a full-sized 
autonomous humanoid robot that is built around an 
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accurate model of a human skeleton –the Priscilla 
robot.  

 
 
 
Figure 1. ELVIS (left) and Priscilla (right). 
 
 The skeleton design guarantees anthropomorphic 
geometry and enables close correspondence in 
movement capabilities. 
 From a methodological and developmental 
standpoint are the project guided by more than the 
anthropomorphic principle. Even though we have 
simulators for the Priscilla robot we strongly 
believe in the embodiment principle and we try to 
make most of our experiments on the full-size 
autonomous Priscilla robot. However, the over-all 
efficiency of our humanoid project has turned out 
to increase when using several smaller size 
prototypes. The mid-size prototype is called 
ELVIS and it is about 60 cm tall. The smallest size 
humanoid is the ELVINA type, about 25 cm tall. 
Two instances of ELVINA have been built to 
enable experiments with cooperating humanoids. 
In this paper we briefly introduce three humanoid 
robot prototypes. 
 A third guiding principle is the need for adaptivity 
when dealing with such a complex object as a 
humanoid in such a complex environment as 
everyday human life. We are furthermore using 
evolutionary algorithms and more specifically 
genetic programming as the adaptation method. 
Genetic programming is an efficient method for 
breeding symbolic structures such as computer 
programs and behavior definitions [4]. 
 We present work in this paper evolving a gait 
pattern, using genetic programming and especially 
evolutionary strategies [4]. To do this, one has to 
choose between two main alternatives: using a real 

robot for the evolution, or using a simulated robot.       
Several experiments with simulations, with 
different approaches, have been reported recently. 
Anytime learning can make use of evolutionary 
computation in a learning module for the robot to 
adapt to changes in the robot’s capabilities without 
the use of internal sensors [5]. A methodology for 
developing simulators for evolution of controllers 
in minimal simulations has been proposed and 
shown to be successful when transferred to a real, 
physical octopod robot [6]. This was also 
compared with a controller that was evolved with a 
real octopod robot [7]. It was found that it matched 
better the physical constraints of the robot 
hardware. Using simulation, ball-chasing behavior 
has been evolved and successfully transferred to a 
real AIBO 1  quadruped robot dog [8]. The 
collisions between the robot and ball had different 
results in the real world than in the simulated 
world, however it did not affect ball-chasing 
performance. When a high degree of accuracy is 
necessary, it is desirable to be able to evolve with a 
physical robot. We want to show that evolution of 
controllers with complex, physical robots can be 
carried out in reality, although evolving with a 
simulator would do it many times faster. 
 The first attempt in using a real, physical robot to 
evolve gait patterns was made at the University of 
Southern California [9]. Neural networks were 
evolved as controllers to get a tripod gait for a 
hexapod robot with two degrees of freedom for 
each leg. Recently, a group of researchers at Sony 
Corporation presented the results of their work 
with evolving locomotion controllers for dynamic 
gait of their quadruped robot dog AIBO [10] and 
[13]. These results show that evolutionary 
algorithms can be used on complex, physical 
robots to evolve non-trivial behaviors on those 
robots. In previous evolution with physical robots 
has a humanoid, biped robot not been used. 
 Our test problem is that of developing locomotion 
controllers for static gaits for our biped robots. 
Evolution of static walking with a biped robot is 
much more difficult than it is with a robot that has 
a greater number of legs. A static gait requires that 
the projection of the center of mass of the robot on 
the ground lie within the support polygon formed 
by feet on the ground [3]. This is obviously easier 
to fulfill with a robot that got four, six, eight or 
more legs. However, dealing with biped 
locomotion leads us into a partly different problem 
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domain. When a biped robot is walking (static), it 
is supported only by one foot at the ground during 
an appreciable period of time. Only this single foot 
then constitutes its support polygon. For a biped 
robot, the area of the support polygon is relatively 
small, compared to the altitude of where its center 
of mass is located. The corresponding measure for 
a robot that got four or more legs is relatively 
larger. Therefore it is easier for a robot with many 
legs to maintain balance than it is for a biped robot, 
as the motion of walking dynamically changes the 
stability of the robot. 
 
2. Robot Platforms 
  
 All the three humanoids 2  carry their main 
computer power onboard. ELVIS and Priscilla 
have a small PC laptop, while ELVINA has the 
EyeBot MK3 controller onboard, carrying it as a 
backpack. The EyeBot MK33 consists of a 32-bit 
micro-controller board with a graphics display and 
four push buttons for user input. 
  
2.1 Priscilla  
  
 The Priscilla robot consists of a plastic skeleton 
with titanium reinforcements and linear electric 
actuators.  
 

 
 
Figure 2. CAD-drawings of Priscilla showing 
skeleton, titanium reinforcements and actuators. 
 
 Linear electric actuators are more accurate and 
therefore easier to control than pneumatic actuators, 
which was also considered as an option when 
designing the robot. Even though pneumatic 
actuators are more powerful in an autonomous 

setting, linear electric actuators were chosen for 
the Priscilla humanoid. 

                                                 
2 http://humanoid.chalmers.se 
3 http://www.ee.uwa.edu.au/~braunl/eyebot/ 

 One goal was to make the robot strong and fast 
enough to be able to walk with normal human 
walking speed. There are also a number of 
movements that the robot should be able to carry 
out when speed is not critical. That could be lifting 
the arm when holding an object in its hand, or 
rising from a chair. Such movements dictate other 
constraints on the actuators. 
 Once the requirements were defined, suitable 
actuators were chosen. For the legs Linak La30 
actuators with different strokes is used and for the 
arms Warner Electric La1 actuators. For head 
movement we use standard off-the-shelf R/C 
servomotors as actuators, because of their 
convenience in connection to computer for control. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Picture of the actuators and servo. From 
top to bottom La30, La1 with stroke 0.115m and 
0.06m respectively. To the right the R/C-servo. 
  
 The La 30 actuator is equipped with a passive 
brake that is activated automatically when the 
motor stops. This prevents the robot from 
consuming energy when not moving. The smaller 
La1 actuator is not available with brake. Both the 
La30 and La1 actuator have built-in potentiometers 
that provides us with the possibility to get accurate 
readings within the controller software of the state 
of each actuator at a certain time. The actuators 
weights, depending on the stroke, from about 
1.0kg to 2.5kg. The weight is the main reason why 
not even more powerful actuators are used for the 
Priscilla humanoid. 
 
2.2 Elvis    
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with a height of about 60cm, built with 42 servos 
giving a high degree of freedom in legs, arms and 



hands. Microphones, cameras and touch sensors 
guide the robot. The imminent goals are to walk 
upright and to navigate through vision serving a 
prototype for Priscilla. Seven on board micro-
controllers control the servos and sensors. ELVIS 
is autonomous, with onboard power supply and 
main processing unit, but many experiments are 
mainly performed with connection to a host 
computer. ELVIS can for instance walk fully 
autonomously. 
 
2.3 Elvina    
 
 ELVINA is a simplified, scaled model of a full-
size humanoid with body dimensions that mirrors 
the dimensions of a human [15]. The ELVINA 
humanoid is a fully autonomous robot with 
onboard power supply and computer, but many 
experiments are performed with external power 
supply. It is 28cm tall and it weights about 1490g 
including batteries. Each of the two legs has 5 
degrees of freedom, of which 4 DOF is active and 
1 DOF is passive. The head, the torso and the arms 
has 1 DOF each, giving a total of 14 DOF.  
 

 
Figure 4. Pictures of the ELVINA Humanoid. 
Camera and PSD sensor visible (left) and 
controller board (right). 
 
 Vision is the most important sensor of this robot. 
Therefore, it is equipped with full color 24 bit 
digital camera, which is based on CMOS 
technology. The camera is directly connected to 
the controller board and mounted in the robot’s 
head. The body also houses a near-infrared PSD 
(position sensitive detector) which is used to 
determine distances to nearby objects. In its 
present status, the robot is capable of static 
walking. 
 A single camera cannot be used to accurately 
measure the distance to a nearby object. This is 

instead achieved with the near-infrared PSD range 
sensor, which consists of an IR emitter and a 
position sensitive detector in a single package. The 
principle of this sensor is based on triangulation, 
which means that the sensor is relatively 
insensitive to the texture and color of the object at 
which it is pointed [14]. 
 

 
Figure 5. Series of pictures showing a complete 
gait cycle, from top left to bottom right. 
 
 In order to control the movements of a limb, the 
partial movements of all involved joints must be 
coordinated and synchronized to get the desired 
motion. For this reason, a servo locomotion 
module has been developed. The idea behind it is 
that twelve integer-valued vectors specify a 
complete gait cycle, each of the vectors specifying 
given positions of the robot’s limbs. Each of the 
vectors consists in fact of a set of control 
parameters, a position value for each actuator and 
two time constants. The first of the vectors in the 
set correspond to the robot’s initial position and 
the second vector corresponds to the second 
position of the robot and so on. By interpolation 
from the values of one vector to the values of 
another vector the robot’s limbs is caused to 
smoothly move from one position to another 
position. The first time constant specifies how fast 
the limbs should move between consecutive 
positions and the other constant specifies time 
delay before the position of the limbs is updated. 
To obtain a complete gait cycle the set of vectors 
specifying it is interpolated once and the robot is 
made to continuously walk by iteration. All robot 
control programs that we have developed are 
implemented in C language.  
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3. Architecture 
 
 The philosophy behind all our robots is that the 
software architecture should mainly build on 
evolutionary algorithms and specifically genetic 
programming. Evolution is thus used to induce 
programs, functions and symbolic rules for all 
levels of control. Three hierarchical layers are used 
for control. Those are the reactive, the model 
building and the reasoning layer. 
 
3.1 Reactive Layer  
 
 The first layer is a reactive layer based on on-line 
evolution of machine code. This method assumes 
that all fitness feedback is obtained directly from 
the actual robot. The disadvantage is that the GP 
individuals spend most of their time waiting for 
feedback from the physical environment. This 
results in moderate learning speed, and the 
constant movement shortens the life span of the 
hardware. The benefit of the method is its 
simplicity, and that the only constraints needed for 
the models being learned are that they should fulfil 
their task as a black box. This layer is used for 
reactive behaviors such as balancing. 
 
3.2 Model Building Layer  
 
 To achieve higher learning speeds and more 
generic behaviour there is a second control layer 
that works with memories of past events. In this 
genetic reinforcement-learning framework, the 
system tries to evolve a model of the underlying 
hardware system and problem. The model maps 
sensor inputs and actions to a predicted goodness 
or fitness value. The currently best model is then 
used to decide what action results in optimal 
predicted fitness given current sensor inputs. This 
layer allows the genetic programming system to 
run at full speed without having to wait for 
feedback from the environment; instead it fits the 
programs to memories of past events. The machine 
code genetic programming approach used is called 
Automatic Induction of Machine Code GP, 
AIMGP [12]. AIMGP is about 40 times faster than 
conventional GP systems due to the absence of any 
interpreting steps. In addition, the system is 
compact, which is beneficial when working on 
board a real robot. The model-building layer is 
also used for basic control tasks. 
 

3.3  Reasoning Layer  
 
 The third layer is a symbolic processing layer for 
higher “brain functions” requiring reasoning. The 
objective of this layer is to handle high level tasks 
such as navigation, safety and energy supply. This 
layer is built on “genetic reasoning”, a method 
where evolution is used as an inference engine, 
requiring less heuristics to guide the inference 
procedure [12]. 
 Each of these layers consists of modules for 
various tasks such as balancing, walking and 
image processing. Some system functions are 
represented as several modules spanning different 
layers.  
 
4. Experiments  
 
 Several experiments has been performed on this 
architecture: 
 
• Balancing, evolution of functions for balance 
• Walking, evolution of efficient walking, 

described further in this paper 
• Vision, evolution of 3-D vision 
• Navigation, evolution of plans 
• Audio orientation, evolution of stereo hearing 
• Manipulation, evolution of eye hand co-

ordination 
 
In this section we describe an experiment with 
evolution of efficient walking.  
 
4.1 Evolutionary Algorithm 
 
 The evolutionary algorithm used is a steady state 
evolutionary strategy [4], running on the robot‘s 
onboard computer. A population that stems from a 
manually developed individual is created with a 
uniform distribution over a given search range. 
Then four individuals are randomly selected from 
this initial population. These individuals are 
evaluated and their fitness is measured. The two 
individuals with the better fitness values are 
considered as parents and the two individuals with 
the lower fitness are replaced by the offspring of 
the parent individuals. The selection, evaluation 
and reproduction phases of the evolutionary 
strategy is then repeated until the maximum 
number of trials is reached. 
 The initial population is composed of 30 
individuals with 126 genes randomly created with 
a uniform distribution over a given search range.  
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The search range for each parameter type (e.g. 
speed, delay and servo position) is determined 
from experience in manually developing gaits. The 
search range is defined as the magnitude of the 
Euclidean distance between a certain gene in the 
manually developed individual and the 
corresponding gene in a randomly created 
individual. The search ranges are set to suitable 
values in order to produce a sufficient amount of 
individuals in the population that are capable of 
good performance in the evaluation.  
 A tournament selection is used to select 
individuals for parents and the individuals to be 
replaced by their offspring. Four different 
individuals are randomly picked from the 
population and then evaluated one at a time. The 
two individuals who get the higher fitness are 
considered as parents and their offspring, produced 
by recombination and mutation, replaces the two 
individuals with the lower fitness in the population. 
The number of generations a certain individual can 
be selected to be in the tournament is unrestricted.  
 For reproduction both mutation and recombination 
is used. Recombination takes the two individuals 
considered as parents, p1 and p2, and creates two 
child individuals, c1i and c2i. Each gene of the child 
cki then gets the value 

 
where cki is the ith gene of the kth child individual, 
pki is the ith gene of the kth parent individual, p1i 
and p2i are the ith gene of the two parents p1 and p2. 
The αki is a number randomly chosen to be either + 
1 or -1.  
 In each of the child individuals produced, 20 % of 
the genes are mutated by a small amount. The 
genes in these two individuals are selected by 
random to undergo mutation and it is possible for a 
gene to be mutated several times. The gene to be 
mutated gets a value according to the equation 

 
where cki,mutate is the mutated ith gene of the kth 
child individual, cki is the gene to be mutated. The 
δki denotes a number randomly chosen to be either 
–1 or +1. The mki are a random number with 
uniform distribution that determines how much 
each gene should be mutated and it is set 
proportional to each parameter type‘s search range. 
That is, for the delay parameter, mki values are set 

to maximum 6% of its search range and for the 
speed and servo position parameters, mki values are, 
in a similar way, set to 33% maximum respectively. 
 
4.2 Experimental method  
 
 The aim in short term for our experiments is to 
optimize a set of integer values, used as control 
parameters for a biped robot gait. They should 
move the robot faster, straighter and in a more 
robust manner than the previously manually 
developed set of parameter values did.  
 The robot is placed on top of a table with a surface 
of relatively low friction during the evolution. A 
target wall of 50cm height and white color is 
placed at one end of the table and to mark the 
center of that end there is a vertical black stripe on 
the wall. Right above the robot (65cm above the 
table surface) there is a horizontal beam, used as a 
carrier for the power supply cables.  
 Each individual evaluates under as equal 
conditions as possible. The robot‘s starting 
position is at a distance of about 40cm from the 
wall and facing it. The experimenter centers the 
robot according to the black line by using its 
onboard camera. Once centered, the robot 
measures its distance with the PSD infrared range 
sensor and starts to locomote towards the wall. 
After a fixed number of gait cycles it stops. Again 
it measures its distance from the wall and pans its 
head (camera) to search for the black line on the 
wall. Using these measurements and the time 
required for the locomotion trial, it calculate a 
fitness value for this actual individual. The robot is 
then manually reset to its starting position by the 
experimenter for the next individual to be 
evaluated. 

( )iikikiki pppc 21 −+= α

 The primary task for the onboard camera is to 
provide a precise tool for determination of 
direction. Initially, the camera is set to continuos 
image mode, whereas the frames are put to the 
EyeBot‘s LCD screen and thus made visible to the 
experimenter. The robot is considered as centered 
when the image of the black line appears near the 
center of the LCD display. A single snapshot is 
then analyzed by the software's image processing 
routines [16] to precisely determine the robot's 
position relative the black stripe. This measure is 
then stored for later use.  

kikikimutateki mcc δ+=,

After an individual has performed a trial, the 
camera is again used to determine how straight the 
robot moved during the trial. As the robot body 
remains fixed the camera pans from left to right. 
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When the black line appears on the LCD display, 
the camera stops moving and the difference 
between this value and the earlier obtained 
measure is considered as the angular deviation θ 
from the desired (straight) path of locomotion. 
 While the robot uses its onboard camera for 
determination of direction, distances are measured 
using a near-infrared PSD range sensor located at 
the robot’s chest.  
 To determine an individuals fitness score both its 
average velocity during the trial and its ability to 
move in a straightforward path is taken into 
account for. The fitness score function is defined 
as 

  
 
where v (d0, df, t) is the average velocity of the 
robot during the trial and s(θ, df) is the straightness 
function. The d0 and the df denote the initial and 
the final distances to the target wall respectively 
and t is the time passed during the trial. The 
straightness function is dependent of both the 
angular deviation θ and the robot’s final distance 
to the target wall and it is thus defined as 
 

 
 
Here, f (θ) is a normalization function to convert θ 
into a 0 – 1 measure. The values 150 and 10 are 
used as constants for the straightness function 
because they are raw values corresponding to the 
maximum and minimum measurable distances for 
the PSD sensor. The straightness function accounts 
for the robot’s final distance from the black target 
strip - with the robot at a fixed orientation θ being 
larger when the robot stops closer to the target wall. 
Finally, the average velocity function is defined as 
 

  
 In the case when an individual does not maintain 
the robot’s balance during a complete trial (e.g. the 
robot falls) it receives a zero fitness score.  
 
 
4.3 Results  
 

 For this evolutionary strategies experiment we 
used an initial population of 30 individuals and ran 
for nine generations. The best-evolved individual 
received a fitness score of 0.1707. The manually 
developed individual was also tested and received 
a fitness score, averaged over three trials, of 
0.1051. The best-evolved individual outperformed 
the manually developed individual both in its 
ability to maintain the robot in a straight course 
and in robustness, i.e. with a less tendency to fall 
over. The qualities of different individuals were 
also tested in other ways than direct fitness 
measuring. To evaluate one generation, consisting 
of four individuals, took approximately 30 minutes 
in this experiment. ( ) ( )ff dstddvscore ,,,0 θ×=  
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Figure 6. Plot of the average fitness scores 
 
The above figure shows the average fitness scores 
for each generation as dots and the line is produced 
by statistical analysis, i.e. linear regression, of the 
dots. Since the slope of the line is positive, we 
observe a tendency towards better and better 
fitness values.  
 
4.4 Discussion 
 
 Evolving efficient gaits with real physical 
hardware is a challenging task. That is because the 
mechanical structure of the robot is non-rigid. 
When moving a limb (e.g. a leg), the trajectory, 
thus the limb’s final position, is affected by from 
which position the movement started. How much 
the torso leans also affects the resulting position of 
the robot. The most vulnerable parts of the robot 
were proved to be the knee servos. Both these 
servos were replaced tree times. The torso and 

( )
t

dd
tddv f

f

−
= 0

0 ,,
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both the ankle actuators were exchanged once as 
well as the two hip servos. 
 
5. Conclusions 
 
The work presented in this paper constitutes of two 
main parts, the construction of a series of 
humanoid walking robots and a genetic 
programming experiment performed on the 
humanoids.  
 By manually developing locomotion module 
parameters, the robot was made capable of 
autonomous static walking in a first stage. In the 
next stage we performed a genetic programming 
experiment on the robot in order to improve the 
manually developed gait. For this, we used a 
steady state evolutionary strategy that was run on 
the robot’s onboard computer. This algorithm 
evolved an individual that outperformed the 
previously manually developed set of parameter 
values in a sense that it moved the robot in a 
straighter path and in a more robust way. 
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