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Abstract. We describe the first instance of a novel approach for con-
trol programming of humanoid robots, based on evolution. To overcome
some of the difficulties with evolution on real hardware, we use a phys-
ically realistic simulation of the robot. The essential idea is to evolve
control programs from first principles on a simulated robot, transfer the
programs to the real robot, and continue to evolve on the robot. As the
key motivation for using simulators, we describe an on-line learning ex-
periment with a humanoid robot. The Genetic Programming system is
implemented as a Virtual Register Machine, with a linear genome, and
steady state tournament selection. Evolution created controller programs
that made the simulated robot produce forward locomotion behavior. A
further application of this system, with two phases of evolution, would
be to have a flexible adaptation mechanism that can react to hardware
failures in the robot.

1 Introduction

The applications of robots with human-like dimensions and motion capabilities
are plentiful. In a world where man is the standard for almost all interactions,
humanoid robots have a very large potential acting in environments created for
humans. Both in industry and in academia walking humanoid robots attracts
an accelerating interest [17]. In 1996, Honda Corporation presented the P2 hu-
manoid robot, which is a biped robot that can walk like a human, even up and
down stairs. A smaller and lighter robot, P3, was introduced in 1997 and in the
year of 2000, they presented the humanoid robot ASIMO, which is conceived to
function in an actual human living environment in the near future. The Sony
Corporation has developed a small biped walking robot, SDR-4X, which is a
platform for exploration of new possibilities for entertainment robots. Recently,
in 2002, another Japanese company, Kawada Industries, Inc. introduced a hu-
manoid robot named ’isamu’ directed for use as a test bench for their product
development.
Dealing with humanoid robots requires supply of expertise in many different
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areas, such as vision systems, sensor fusion, planning and navigation, mechanical
and electrical hardware design, and software design only to mention a few. The
objective of this paper, however, is focused on the synthesizing of biped robot
gait.
Honda’s ASIMO, as well as SONY Dream Robot, is walking under the Zero

Moment Point walking algorithm, developed by Atsuo Takanishi at Waseda Uni-
versity [16]. The dynamic stability of a walking machine can be defined by the
Zero Moment Point position [22] and [23]. This criterion states that the ZMP
position of a biped robot is maintained within the footprint of the supporting leg.
This approach, however, is based on derivation of an internal geometric model of
the locomotion mechanism, and requires intensive calculations by the controlling
computer, to be performed in real time.
Robots, designed in such a way that a model can be derived and used for con-

trolling, shows large affinity with complex, highly specialized industrial robots,
and thus they are as expensive as conventional industrial robots. Our belief is
that for humanoids to become an everyday product in our homes and offices, af-
fordable for everyone, there is need to develop low cost, relatively simple robots.
Such robots can hardly be controlled the traditional way; hence this is not our
primary design principle [5] and [13].
A basic condition for humanoids to successfully operate in human living en-

vironment is that they must be able to deal with unpredictable situations and
gather knowledge and information, and adapt to their actual circumstances.
For this reason, among others, we propose an alternative way for control pro-
gramming of humanoid robots. Our approach is based on evolution as the main
adaptation mechanism, utilizing computing techniques from the field of Evolu-
tionary Algorithms.
The first attempt in using a real, physical robot to evolve gait patterns was

made at the University of Southern California. Neural networks were evolved
as controllers to produce a tripod gait for a hexapod robot with two degrees of
freedom for each leg [Lewis et al, 1992]. Researchers at Sony Corporation have
worked with evolving locomotion controllers for dynamic gait of their quadruped
robot dog AIBO. These results show that evolutionary algorithms can be used
on complex, physical robots to evolve non-trivial behaviors on these robots [9]
and [10]. Gary Parker use Cyclic Genetic Algorithms to evolve gait actuation
lists for a simulated, six legged StiquitoII robot [18].
However, dealing with biped locomotion leads us into a partly different prob-

lem domain. Evolution of static walking with a biped robot is a lot more difficult
than it is with a robot that got a greater number of legs. A static gait requires
that the projection of the center of mass of the robot on the ground lie within
the support polygon formed by feet on the ground. This is obviously easier to
fulfill with a robot that got four, six, eight or more legs. When a biped robot
is walking (static), it is supported only by one foot at the ground during an
appreciable period of time. Only this single foot then constitutes its support
area. For a biped robot, the area of support is relatively small, compared to
the altitude of its center of mass. The corresponding measure for a robot with
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four or more legs is more favorable. Therefore it is easier for a robot with many
legs to maintain balance than it is for a biped robot, as the motion of walking
dynamically changes the stability of the robot.
Evolving efficient gaits with real physical hardware is a challenge, and evolv-

ing biped gait from first principles is an even more challenging task. It is ex-
tremely stressing for the hardware and it is very time consuming. To overcome
the difficulties with evolving on real hardware, we introduce a new method, based
on simulation of the actual humanoid robot.
Nick Jakobi has developed a methodology for evolution of robot controllers

in simulator, called ’minimal simulations’, and shown it to be successful when
transferred to a real, physical octopod robot [11]. This method, however, has not
been validated on a biped robot. Recently, a research group in Germany reported
an experiment relevant to our ideas, where they evolved robot controllers in a
physics simulator, and successfully executed them onboard a real biped robot.
They were not able to fully realize biped locomotion behavior, but their results
were definitely promising [26].
The rest of this paper is organized as follows; next to this section we describe

an on-line learning experiment a humanoid robot, serving as a motivation for the
work presented in the last section. That section is describing initial experiments
in evolving biped walking from first principles on a simulated humanoid robot.

2 Background and Motivation

In this section we briefly describe an on-line learning experiment performed with
our biped humanoid robot ’elvina’. However this experiment was fairly successful
in evolving locomotion controller parameters that optimized the robot’s gait, it
pointed out some difficulties with on-line learning. We summarize the experiment
here in order to exemplify the difficulties of evolving gaits on-line, and let it
serve as an illustrative motivation for the work presented in the remainder of
this paper.

2.1 Real Robot Experiment

Robot Platform The robot used in our experiments was ’elvina’, which is a
simplified, scaled model of a full-size humanoid with body dimensions that mir-
rors the dimensions of a human. It was originally developed as an alternative,
low-cost humanoid robot platform, intended for research [27]. The ’elvina’ hu-
manoid is a fully autonomous robot with onboard power supply and computer,
however many experiments are performed with external power supply. It is 28
cm tall and it weights about 1.49 kg including batteries. Each of the two legs
has 5 degrees of freedom, of which 4 dof is active and 1 dof is passive. The head,
the torso and the arms has 1 dof each, giving a total of 14 dof. The robot is
equipped with a digital CMOS color camera, mounted in its head. The body
also houses a near-infrared PSD (position sensitive detector) that is used to de-
termine distances to nearby objects.
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Fig. 1. Picture of the humanoid robot ’elvina’.

The robot has the 32-bit micro-controller EyeBot MK3 [3] onboard, carrying
it as a backpack. The robot control programs are developed on a host com-
puter, and after cross-compilation the binary file is downloaded to the EyeBot
controller. All signal processing, including control, vision, and evolutionary al-
gorithm, is carried out on the EyeBot controller itself. The body structure of the
robot is constructed with the actuators as the main elements. The actuators that
constitute the different sections of the body are connected to each other with
parts made of PVC-plastic board so that they together form the robot body.
This PVC material fulfills all necessary requirements since it is inexpensive and
lightweight, yet strong and durable. The robot is assembled with standard off-
the-shelf R/C servomotors as actuators. This kind of servo has an integrated
closed loop position control circuit, which detects the pulse-code modulated sig-
nal that emanates from the controller board for commanding the servo to a given
position. In this implementation, each servo is assigned a target position by the
robot control program by addressing it an integer value within the interval {0,
255}. In its present status, the robot is capable of static walking.

Gait Generation Method The gait control method for this robot involves rep-
etition of a sequence of integrated steps. Considering fully realistic bipedal walk,
two different situations arise in sequence: the statically stable double-support
phase in which the robot is supported on both feet simultaneously, and stati-
cally unstable single-support phase when only one foot of the robot is in contact
with the ground, the other foot being transferred from the back to front position.
When this sequence of transitions has been repeated twice, one can consider a
single gait cycle to be completed. That is, the locomotion mechanism’s posture
and limb’s positions are the same after the completion as it was before it started
to move, and hence it’s internal state is the same.
If we now study only static walk, i.e. the projection of the center of mass of
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the robot on the ground always lie within the support polygon formed by feet on
the ground, there is obviously a number of statically stable postures in between
the internal state of the robot and it’s final state, during completion of a single
gait cycle. Consider e.g. the situation when one is standing still on one leg, only
supported by one foot on the ground. By interpolation between numbers of such,
statically stable, consecutive states it is possible to make the robot to complete
a single gait cycle. Then, by continually looping, biped gait is produced. In a
more formalistic way:
Let ji denote the state variable within the interval {0,255} of the i:th degree

of freedom of the robot, having k degrees of freedom in total. Now, for some
internal state P of the robot, there is a unique vector JP = [j1, j2, ..., jk] de-
scribing that state. The robot’s workspace W is defined by all possible linear
combinations of the vectors J1, ...,Jj , where j = 256k. Impose the restriction
that this state P should correspond to the robot being statically stable, and
suppose that there exists n such statically stable states. Those states correspond
to the vectors JP1

, ...,JPn
, and all possible linear combinations of these vectors

then define the subspace G ofW. Here after, we will refer to G as the statically
stable state space.
For the robot to complete a single gait cycle as described above, there must

be at least m such statically stable internal states P1, ..., Pm, of the robot to
interpolate between. With the described methodology, we can find the stati-
cally stable internal states P1, ..., Pm of the robot by experimentally explore the
workspace W of the robot until it is capable of performing a single gait cycle
without falling. Thus, we have found one subspace G∗ of G. With this method-
ology however, one is restricted to produce static biped gait only.
Now, the vectors J1, ...,Jm, definingG∗, are stored as a list of integers, within

the interval {0, 255}, in an array. By interpolating between consecutive vectors
Ji, and continually looping the array, the robot is able to produce stable, biped
gait.
In order to control the movements of a limb, the partial movements of all

involved joints must be coordinated and synchronized to get the desired motion.
For this reason, a servo locomotion module has been implemented in software.
Consider two consecutive vectors Ji and Ji+1, which corresponds to two consec-
utive, statically stable states of the robot. The difference between the vectors
corresponds to the translation of the robot’s limbs, when interpolating between
those vectors. Some of the limbs will have to make a large move, and some will
only move very little, or not move at all. By subtracting the values of corre-
sponding entries of the two vectors from each other, and divide the differences
into small increments, sent to each servo to update its state, the robot’s limbs
is caused to simultaneously move from one position to another.

Evolutionary Gait Optimization Experiment In this sub-section we briefly
describe an evolutionary experiment performed with our biped humanoid robot.
The experiment is performed in order to optimize a by hand developed set of
state vectors J1, ...,Jm, defining a static robot gait (a subspace G∗). The evolu-
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tionary algorithm used was a steady state evolutionary strategy [1] running on
the robot’s onboard computer. Individuals were evaluated and fitness scores au-
tomatically determined using the robots onboard digital camera and proximity
sensor.
A population stemming from a manually developed individual was created

with a uniform distribution over a given search range. Then four individuals were
randomly selected from this initial population. These individuals were evaluated
and their fitness was measured. The two individuals with the better fitness values
were considered as parents and the two individuals with the lower fitness were
replaced by the offspring’s of the parent individuals. The selection, evaluation
and reproduction phases of the evolutionary strategy was then repeated until
the maximum number of trials was reached.

For this evolutionary strategies experiment we used an initial population

Fig. 2. The experimental environment.

of 30 individuals, and the method of tournament selection, with size four. The
best-evolved individual and the manually developed individual were indepen-
dently tested, and their performances were compared to each other’s. The former
one received a fitness score, averaged over three trials, of 0.1707, and the latter
one, tested under equal conditions, got a fitness of 0.1051. Within this context,
a higher fitness value means a better individual, and thus the best-evolved in-
dividual outperformed the manually developed individual both in its ability to
maintain the robot in a straight course and in robustness, i.e. with a lesser ten-
dency to fall over. By using this system, we evolved gait patterns that locomote
the robot in a straighter path and in a more robust way, than the previously
manually developed gait did.
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For a more detailed description of the ’elvina’ humanoid robot platform, and
the evolutionary experiment performed with it, we refer to [24] and [25].

Observations To run such an evolutionary experiment as described above span
over several days, and requires manual supervision all this time. Between each
generation of four individuals evaluated, we paused the experiment for about 15
minutes in order to spare the hardware and especially the actuators. The main
reason for this is that the actuators accumulate heat when they are running
continuously under heavy stress. They then run the risk of getting overheated
and gradually destroyed. We also observed that the position control circuit of
the servomotors was sensitive to temperature. When commanding a servomotor
to a given position by addressing it a fixed integer value within the interval {0,
255}, the physical angle of the servo’s output shaft dislocates over time as the
temperature of the servo increases. Since the robot’s feet are coupled to each
other via nine actuators their relative positions are then affected so much by
this drift that it could cause the robot to fall. One way to handle this problem
was, as mentioned above, to run the robot intermittent so that the servos main-
tain an approximately constant temperature.
Evolving efficient gaits with real physical hardware was a challenging task.

In the six months of manually developing gaits and testing the evolutionary al-
gorithm, frequent maintenance of the robot was indeed necessary. The torso and
both the ankle actuators were exchanged once as well as the two hip servos. The
most vulnerable parts of the robot were proved to be the knee servos. Both these
servos were replaced tree times.
Obviously there are a number of difficulties related with evolving biped walk-

ing behavior on a real, physical robot. In an attempt to overcome some of the
problems, we want to use a physically realistic simulation of the robot. The cen-
tral idea in this concept is to evolve control programs from first principles on a
simulated robot, transfer the resulting programs to the real robot and continue
to evolve efficient gait on the real robot. Of course, there will arise other problems
applying this method, as simulation systems always imply some simplifications
of the real world.

3 Evolution Of Control Programs

3.1 Genetic Programming

In The Origin of Species [4], it was argued that all existing organisms are the
descendants of a few simple ancestors that arose on Earth in the distant past,
and that the driving mechanism behind this evolutionary development was nat-
ural selection and survival of the fittest. Theologians quickly labelled Charles
Darwin ”the most dangerous man in England”, but his principle has become
widely accepted among scientists and society in general today.
Over the past 35 years, the principle of natural selection and survival of the

fittest has been successfully utilized on computers to optimize a solution towards
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a pre-defined goal, and from this Evolutionary Algorithms have raised. Several
research subfields, such as Evolutionary Programming [6], Genetic Algorithms
[8] and Evolution Strategies [19] and [20] have emerged, and however they differ
from each other in many aspects, they all mimic natural evolution.
Another flavor of Evolutionary Algorithms is Genetic Programming. While ES is
associated with engineering optimization problems working on real-valued vari-
ables, and GA frequently operates on fixed length binary strings, GP deals with
the evolution of computer programs. Genetic Programming, like other adap-
tive techniques as e.g. Evolutionary Algorithms, has applications in problem
domains where theories are incomplete and insufficient for the human program-
mer, or when there isn’t enough time or resources available to allow for human
programming.
However GP is a relatively young research topic, methods for GP was sug-

gested as far back as in the 1950s [7]. GP has been growing fast since the early
1990s, when John Koza published his book Genetic Programming [12], demon-
strating the feasibility of GP with numerous applications. Koza has been in-
strumental in the development to establish Genetic Programming as a matured
research field.
In Koza’s formulation, program individuals are tree structures represented

by LISP-S expressions, and by hierarchical subtree exchanging genetic crossover
operator guarantee syntax preservation during evolution. Programs are stored
as trees in a population and evaluated using a goodness criterion, or fitness func-
tion, to determine their quality. According to their individual quality, a selection
of individuals is recombined using the genetic operators crossover and mutation.
The resulting offspring are insert into the population, replacing some of the pre-
vious generation individuals. In our present work, however, we use a different
variant of Genetic Programming, which is implemented as a Virtual Register
Machine, and uses a linear representation of the programs.
Our primary goal is to utilize Genetic Programming for evolving locomotion

control programs from first principles for our simulated biped robot, i.e. with no
a priori knowledge for the robot on how to walk, information of morphology etc.
The evolved programs take the robot’s current internal state parameter values
as input vector and return a vector predicting it’s next internal state parameter
values, in order to produce robust biped gait.

3.2 Physics Simulator Engine

The Open Dynamics Engine (ODE) is a free library for simulating articulated
rigid body dynamics, developed by Russell Smith [21]. An articulated structure
is created when rigid bodies of various shapes are connected together with joints
of various kinds. ODE is designed for use in interactive or real-time simulation.
It is particularly good for simulating moving objects in changeable virtual reality
environments, because it is fast, robust and stable. Additionally, the user has
complete freedom to change the structure of the system even while the simu-
lation is running. ODE uses a highly stable, first order integrator, so that the
simulation errors should not grow out of control. The physical meaning of this is



Lecture Notes in Computer Science 9

that the simulated system should not ”explode” for any reason. The simulation is
based on a method where the equations of motion are derived from a Lagrange
multiplier velocity based model. ODE has hard contacts, which means that a
special non-penetration constraint is used whenever two bodies collide. Another,
in simulators widely used method, is virtual springs to represent contacts. ODE
has a built-in collision detection system with sphere, box, capped cylinder and
plane as the collision primitives. Other features of ODE are arbitrary mass dis-
tribution of the rigid bodies, and a contact/friction model based on the Dantzig
LCP solver described by [2]. The joint types implemented in ODE are ball-and-
socket, hinge, hinge-2, fixed, prismatic slider and angular motor. The hinge-2
joint is the same as two hinges connected in series, with different hinge axes.
The ODE library has a native C interface (even though ODE is mostly written
in C++) and platform specific optimizations.

Fig. 3. Snapshot of the simulated humanoid robot. The body elements are directly
connected to each other, although this is not visualized here.

Simulated Robot Model The robot model is qualitatively consistent with
the real robot regarding the aspects of geometry, mass distribution, and mor-
phology, see fig.3. It consists of 12 actuated joints and 13 body elements. It is
constructed with its mass concentrated to the main body elements, which in
the real robot correspond to the servo actuators, batteries and computer. The
plastic body parts, interconnecting the servos to each other, are not rendered in
the simulation, since their mass is very low compared to the total mass.



10 Krister Wolff and Peter Nordin

3.3 Symbolic Regression

The procedure of finding a symbolic equation, function, or program that fits
given numerical data is called symbolic regression. A GP-system performing
symbolic regression takes a number of numerical input/output relations, called
fitness cases, and produces a function or program that is consistent with these
fitness cases. Genetic Programming is ideal for symbolic regression, and most GP
applications could be reformulated as an instance of symbolic regression [14].
Our problem can thus be formulated: approximate a function that takes the

robot’s current internal state parameter values as input, and returns a vector
predicting it’s next internal state parameter values in order to produce robust
biped gait:

f(j1, j2, ..., jk) = [j
′

1, j
′

2, ..., j
′

k] (1)

3.4 Virtual Register Machine

The Genetic Programming representation used for this problem of robot control
program induction is an instance of a Virtual Register Machine, VRM(k, l). It
has k I/O registers and l internal work registers. In the current implementation
of our system, l equals k. The function set consists in the present of arithmetic
functions ADD, SUB, MUL, DIV, where DIV is protected division, and SINE.
We now define a register state vectorReg ≡ [Reg1, ..., Regk] of k integers, each of
the elements corresponding to one of the actuated joints of the simulated robot.
All program input/output is communicated through the states of the I/O regis-
ters. That is, program inputs are supplied in the initial state Reg, and output is
taken from the final register state Reg′. Further, the I/O register state vector is
initially copied into the internal work registers. We can do this in a straight for-
ward manner, since we have imposed that the number of I/O registers, k, equals
the number of work registers, l. The Virtual Register Machine is allowed writing
only to the internal work registers when looping the program instructions. The
I/O registers are write-protected in this phase, and their final state is updated
after the end of the program execution cycle, before they are passed to the robot
and then updating it’s internal state. With this set-up, registers may be used to
initially supply the program with constants, or alternatively, the program may
synthesize necessary constants in registers. Therefore, this GP-system doesn’t
require any random initialized constants to be used.

3.5 Linear Genome Representation

Each individual is composed of simple instructions between input and output
parameters. Each instruction consists of four elements, encoded as integers, and
the whole individual is a linear list of such instructions:
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8, 22, 3, 12,

19, 11, 2, 16,

15, 12, 3, 12,

8, 3, 4, 19,

12, 12, 4, 21,

1, 6, 5, 12,

20, 3, 1, 19,

9, 12, 2, 21,

23, 5, 3, 19,

16, 9, 3, 14,

13, 21, 5, 19,

6, 13, 5, 14,

16, 22, 3, 16,

16, 3, 4, 18,

8, 19, 2, 13,

20, 5, 3, 20,

13, 6, 1, 14,

Parsing the individual above, and print out the instructions in ’C-style’ looks
like this:

Reg12 = Reg8 * Reg22;

Reg16 = Reg19 - Reg11;

Reg12 = Reg15 / Reg12;

Reg19 = Reg8 / Reg3;

Reg21 = Reg12 / Reg12;

Reg12 = sin(Reg1);

Reg19 = Reg20 + Reg3;

Reg21 = Reg9 - Reg12;

Reg19 = Reg23 * Reg5;

Reg14 = Reg16 * Reg9;

Reg19 = sin(Reg13);

Reg14 = sin(Reg6);

Reg16 = Reg16 * Reg22;

Reg18 = Reg16 / Reg3;

Reg13 = Reg8 - Reg19;

Reg20 = Reg20 * Reg5;

Reg14 = Reg13 + Reg6;

This example individual consists of 17 instructions, and thus have 4×17 = 68
genes. The encoding scheme is as follows; the first and second elements of an
instruction refers to the registers to be used as arguments, the third element
corresponds to the operator, i.e. ADD, MUL, and so on, and the last element is
a register reference for where to put the result of the operation. The meaning
of the first line (instruction) here is: multiply register 8 with register 22 and
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put the result in register 12. The operators take two arguments, except when
the operator is SINE, which of course only take one argument. In this case,
the SINE operator is applied to the first element in the instruction, and the
second element is simply discarded. A mutation on that element will thus have
no effect on that individual’s genotype. The register references 1-11 are assigned
to I/O-registers, and register references 12-23 are assigned for the internal work
registers.

Table 1. Encoding scheme for the operator gene.

Operator Encoding

ADD 1
SUB 2
MUL 3
DIV 4
SINE 5

3.6 Evolutionary Algorithm

At the beginning of the evolutionary process, the population is filled with ran-
domly created individuals. The length, or number of instructions, of an individual
is chosen randomly with Gaussian distribution, with expectation value 20. The
maximum length is restricted to 256 instructions. The genes are created with
a uniform distribution over their respective search range; 1-23 for the two first
genes of an instruction, 12-23 for the last gene, and 1-5 for the third gene, which
corresponds to the function set.
Our GP-system is a steady state tournament selection algorithm, with the

following execution cycle:

1. Select four members of the population for tournament.

2. For all members in tournament do:

a. Create an instance of the simulated robot.

b. Record the position in 3d-space of all the robot’s limbs.

c. Execute the individual for 2500 simulation time steps.

d. Record the final position of all the robot’s limbs.

e. Compute the fitness value (see below).

f. Destroy the simulated robot.

3. Perform tournament selection.

4. Apply genetic operators on the winners to produce two children.

5. Replace the two losers in the population with the offspring.

6. Go to step 1.

The individuals are evaluated (evaluation cycle starting with point 2a. above)
under identical conditions, since the simulation is entirely deterministic. They
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all start from the same standing upright pose, with the same orientation. The
execution time for individuals are 2500 simulation time steps (corresponding
to approx. 20 seconds of real time simulation), and if an individual cause the
robot to fall before this time is completed, the evaluation is terminated. In the
beginning of an experiment, a great majority of individuals are terminated before
the intended time.

Table 2. Koza style tableau, showing parameter settings for the evolution of locomo-
tion control programs for the simulated humanoid robot.

Parameter Value

Objective Approximate a function that produce robust biped gait
Terminal Set 24 integer registers,
Function Set ADD, SUB, MUL, DIV, SINE
Raw Fitness According to eq. (2), scalar value
Standardized Fitness Same as Raw Fitness
Population Size 800
Initialization Method Random
Simulation Time 2500 simulation time steps
Crossover Probability 100%
Mutation Probability 80%
Initial Program Length Gaussian distribution, expectation value 20.
Maximum Program Length 256 instructions
Maximum Tournament Number None
Selection Scheme Tournament, size 4
Termination Criteria None (determined by the experimenter)

Fitness Calculation As in all GP-applications, finding a proper fitness func-
tion that guides the artificial evolution in the desired direction is of great im-
portance. The primary goal for the experiment was to produce a ”human-like”,
bipedal gait without the robot falling. To accomplish this task, the individual
controlling the robot should; (i) locomote the robot as straight forward as pos-
sible, and (ii) keep the robot in an upright pose during the movement. Hence,
the proper measurements to feed the fitness function with are related to the
height maintained by the robot, and the covered distance during simulation.
Taking this as starting point, we initially experimented a lot with different vari-
ants of the fitness function, before we could find a function, consistent with our
intentions. Another commonly used feature in robotics-GP is that the fitness
function should have a rewarding part and a punishing part. Explicitly formu-
lated in mathematical terms, the proper fitness function was found to be:

f =W

[

1.0−
hstart

hstop

]

− (dleft + dright) (2)
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where hstart is the height of the robot at the starting position, hstop is the height
when evaluation terminates (either the simulation is fully completed, or it is
terminated before the intended time, caused by the robot falling). The height
measure is applied to the position of the robot’s head, however one could take the
height of any body part. The second term is a measure of the distance covered
by the robot during evaluation, applied to its feet. The robot is always starting
with its feet in origo (in xy-plane), forward direction being along the negative
y-axis. Forward movement is thus resulting in a value < 0 for the second term,
but since the second term is preceded by a minus sign, the contribution to fitness
will then be a value > 0. The first term will give a positive contribution to fitness
if hstop > hstart, negative contribution in the case when hstop < hstart, and zero
contribution if hstop = hstart. Thus we have a fitness function rewarding forward
locomotion and keeping the upright pose, and punishing backward movements
and falling. The W in the first term is a weight, scaling the mutual relation of
rewarding and punishing. After some tweaking, it was found to work best when
set to a value in the order of 10.

Genetic Operators By crossover and mutation, variations are introduced to
the genetic material. The crossover operator exchanges blocks of code that are
cut out at instruction boundaries, and mutation operator changes the inside of
an instruction by mutating register references and operators.
We use only two-point string crossover, with 100% probability for crossover,

divided mutually on the rate 4:1 on homologous and non-homologous crossover.
The homologous crossover acts by randomly picking equivalent two points in
both parent’s genome, and simply swap the instructions between the two points.
This operation is genome-length preserving. Non-homologous crossover differs in
that the selected points must not be corresponding. This allows for the crossover
operator to vary the length of the genomes.
Mutation operates only on one individual. When an individual is chosen for

mutation, the mutation operator works by randomly selecting an instruction
from that individual, and makes a change in that instruction. It makes that
change either by changing any of the register references to another randomly
chosen register reference from the register set, or the operator in the instruction
may be changed to another operator that is in the function set. The probability
for an individual to undergo mutation is 80%.

4 Results

When observing the experiments in run-time, it is compelling how quickly the
simulated robot learns. In the first couple of hundred tournaments, a great major-
ity of the individuals cause the robot to fall almost immediately in the beginning
of the evaluation cycle, and the greater part of them tip over backwards. Maybe
one out of ten individuals fall to the fore, which is a good starting point of taking
a step ahead. Rather soon, however, one can observe the opposite situation, one
out of ten individuals’ overturn backwards and the rest fall ahead. This was not
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the desired goal for the evolution, but we regard this as being the first refined
behavior that emerged.
The next observable stage of development in the evolution is when a large

fraction of individuals is keeping the robot at a standstill, almost motionless,
on its feet. In the beginning of our experiments, we faced some problems with
evolution converged to this state. By increasing the population size and making
some adjustments to the fitness function (mainly by decreasing the weight w,
giving lesser punishment for tipping over), we could guide the evolution towards
the desired goal. The mix of individuals showing this behavior, and individuals
with a more ’energetic’ behavior guarantee sufficient diversity of the population
for evolution to proceed.
The final results of these experiment was indeed consistent with our initial ob-

jectives. That is, evolution created controller programs that made the simulated
robot produce forward locomotion behavior. Some of the resulting programs
made the robot walking forward in a spiral manner, with small movements, and
others produced gait patterns with more lively movements. When tested, some
of the individuals managed to keep the robot on its feet for the whole evalu-
ation time (2500 simulation time steps), but when executed for a longer time,
the robot usually ended up overturned. Nevertheless, a division of evolved pro-
grams could accomplish the task during the test run, without ever tipping over
the robot. Fig. 4 and fig. 5 displays some statistics from a representative run. In
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Fig. 4. Fitness value of over all best individual in the population (a) and fitness value
of the best individual in every tournament (b).

these experiments we did more than thirty independent runs, ranging from a few
thousand tournaments, up to more than 80000 tournaments. The way fitness was
defined (eq.2), a fitness value < 0 correspond to the robot falling backward, and
a small positive value (typically ranging from ∼ 0.3 to ∼ 0.6) correspond to the
robot immediately falling ahead, while a value around 1.5 indicate a standstill.
In figure 4a, one can observe how the best individual performed those behaviors;
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falling backward in the first few hundred tournaments, falling ahead in the first
thousand tournaments, and standing still up to the 3000 tournaments. Fitness
values in the range of ∼ 1.5 to ∼ 2.5 indicate some good locomotion, but usually
ended up with the robot overturned, and fitness > 2.5 was successful locomotion
behavior.
As depicted in fig. 4a, the currently best individuals in the population showed

progress from the beginning of the evolution and continued to develop over time.
Examining fig. 4b show that there is a fraction, relatively constant over time, of
very poor individuals in the population. This pool of not-so-good individuals is
probably required to maintain the diversity of the population, and thus avoiding
that evolution get stuck in the state of inactive individuals.
Typically, the program length decrease below the initialization length in the

beginning of a run, but after a short while it starts to increase above that thresh-
old, and finally it stabilize around some value. See figure 5. In all experiments
we used the same initialization program length, with gaussian distribution and
expectation value 20. It was observed that the program length, averaged over
the whole population, did never go below the value 13, and never above 50, and
it usually stabilized somewhere around 30.
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Fig. 5. Average genome length of all individuals in the population, length being defined
as the number of instructions in an individual.

5 Summary and Conclusions

We describe the first instance of a novel approach for control programming of
humanoid robots. It is based on evolution as the main adaptation mechanism,
utilizing computing techniques from the field of Evolutionary Algorithms. How-
ever, evolving on real hardware is a challenging task, and in an attempt to
overcome some of the difficulties, we use a physically realistic simulation of the
robot. The central idea in this concept is to evolve control programs from first
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principles on a simulated robot, transfer the resulting programs to the real robot
and continue to evolve efficient gait on the real robot. As the key motivation for
using simulators, we briefly describe an on-line learning experiment performed
with our biped humanoid robot ’elvina’.
The ’elvina’ robot is a simplified, scaled model of a full-size humanoid with

body dimensions that mirrors the dimensions of a human. It is a 28 cm tall,
fully autonomous robot with onboard power supply and computer and it has 14
degrees of freedom. The robot is equipped with a digital color camera, and a
near-infrared PSD that is used to determine distances to nearby objects. The
experiment was performed in order to optimize a by hand developed set of state
vectors, defining a static robot gait. We used a steady state evolutionary strat-
egy, running on the robot’s onboard computer. Individuals were evaluated and
fitness scores automatically determined using the robots onboard digital cam-
era and proximity sensor. By using this system, we evolved gait patterns that
locomote the robot in a straighter path and in a more robust way, than the
previously manually developed gait did.
However, we want to use physically realistic simulation of the robot, to evolve

control programs from first principle. For this we use the Open Dynamics En-
gine, which is a free library for simulating articulated rigid body dynamics.
The Evolutionary Algorithm is an instance of Genetic Programming, imple-

mented as a Virtual Register Machine with 12 internal work registers and 12
external registers for I/O operations. The individual representation scheme is a
linear genome, encoded as an array of integers. The selection method is a steady
state tournament algorithm, with size four. By crossover and mutation, varia-
tions are introduced to the genetic material. The crossover operator exchanges
blocks of code that are cut out at instruction boundaries, and mutation operator
changes the inside of an instruction by mutating register references and opera-
tors.
The final results of these experiment was consistent with our initial objec-

tives. That is, evolution created controller programs that made the simulated
robot produce forward locomotion behavior. Some of the resulting programs
made the robot walking forward in a spiral manner, with small movements, and
others produced gait patterns with more lively movements.
Current versions of the simulation system and the robot, however, do not

allow the evolved programs to be directly downloaded to the robot. Further in-
vestigations and improvements are needed. To begin with, we must implement
a subsystem of the simulated robot’s control system and program interpreter
on the real robots micro controller. Further, the real robot has an active feed-
back system, consisting of a color camera and a distance sensor, which will
be implemented on the simulated robot as well. Since the development of the
robot platform is an ongoing process, various other sensors, will shortly be im-
plemented on the robot. Then, the simulated robot should of course reflect all
aspects, morphological and perceptual, of the real robot.
With this system of two phases of evolution, it will be possible to have a

flexible adaptation mechanism that can react to hardware failures in the robot,
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e.g. if an actuator or sensor break down. By extracting information about mal-
functioning parts and do off-line evolution with a modified model of the robot, it
will become possible to react to the changes in the robot morphology. For robots
working in hazardous environments, or in applications with remote presence
robots, this feature would be very useful.
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