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Chemical Vapor Deposition
(CVD)

substrate

CVvD

CVD is used to grow a thin layer of
advanced materials on the surface of a
substrate

Applications:

* integrated circuits, optoelectronic
devices and sensors

- catalysts

« micromachines, and fine metal and
ceramic powders protective coatings
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CVD monopolizes the thin film
deposition
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CVD Reaction Types

Pyrolysis

Reduction

Oxidation

Compound formation
Disproportionation
Reversible transfer
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Pyrolysis

chemical decomposition or change induced by heat

Silane amorphous

SiH,,, = Si, +2H,,,
Ni(CO),,, — Ni, +4CO,

Ni carbonyl

(650°C)
(180°C)

Reduction

any process in which electrons are added to an atom or ion

(as by removing oxygen or adding hydrogen);
always occurs accompanied by oxidation of the reducing agent

epitaxial
SiCl,,, +2H,,, — Si,, +4HCl,  (1200°C)
WE,, +3H,, > W, +6HE_,  (300°C)
Mok ,, +3H,, — Mo, +6HE_  (300°C)
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In cooking, reduction is the process of thickening a sauce by evaporation.
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Oxidation

is any electrochemical process which involves the formal oxidation
state of an atom or atoms (within a molecule) being increased by
the removal of electrons. E.g. iron(ll) can be oxidized to iron(lll):

SiH, . +0, . —>Si0, +2H

4(g) 2(g) 2(s) 2(g)

SiH s T 2H2(g) + Oz(g) -
(1500°C)

(450°C)

—S10,  +4HCl

2AICL,, +3H,,, +3CO,, —

— ALO,_ +3CO,, +6HCI

360 © @ ({10W0C)

Compound Formation

hard surface coatings

we +CH,, = SiC +4HCl,  (1400°C)
wo) FCH,, = TiC,, +4HCl,  (1000°C)

+NH,,, — BN, +3HF, (1100°C)

SiCl
TiCl
BE

3(g)

MOCVD:

(CH;),Ga,,, + AsH,, — GaAs +3CH

3(® 4(2)

(650-750°C)
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Disproportionation

a chemical reaction in which a single substance acts
as both oxidizing and reducing agent, resulting in the
production of dissimilar substances

300C —
2 Ge(s) +Gel

«—600C

2Gel

4(g)

lower-valent state is more stable at high T

Al, B, Ga, In, Si, Ti, Zr, Be, Cr
can be deposited this way

Reversible Transfer

750 C —

As,, + Asy, +6GaCl, +3H

(2 2(g)

«—850C

< 6GaAs +6HCI

(&)
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Thermal CVD Films

Thermal CVD Films and Coatings

Deposition
Deposited Input temperature
material Substrate reactants [§®) Crystallinity
Si Single-crystal SiCl,H,, SiCl;H, or 1050-1200 E
si SiCl,+H,

Si SiH, +H, 600700 P
Ge Single-crystal Ge GeCl, or GeH,+H, 600-900 E
GaAs Single-crystal GaAs (CH;);Ga+AsH, 650-750 E
InP Single-crystal InP (CH;);In+PH, 725 E
SiC Single-crystal Si SiCly, toluene, H, 1100 P
AIN Sapphire AICl,, NH,, H, 1000 E
In,0,:Sn Glass In-chelate, 500 A

(C4H,),Sn(OOCH,),,

H,0, 0,, H,
ZnS GaAs, GaP Zn, H,S, H, 825 E
cds GaAs, sapphire Cd, H,S, H, 690 E
ALO, Si, cemented AI(CH,), +O,, 275-475 A

carbide AICl,, CO,, H, 850-1100 A

Sio, Si SiH, +O,, 450 A

SiCLH,+N,0
Si,N, Sio, SiCI,H, +NH, 750 A
TiO, Quartz Ti(OC,Hy), +O, 450 A
TiC Steel TiCl,, CH,, H, 1000 P
TiN Steel TiCl,, N, H, 1000 P
BN Steel BCl,, NH,, H, 1000 P
TiB, Steel TiCl,, BCl,, H, >800 P

Note: E = epitaxial; P = polycrystalline; A = amorphous.
Adapted from Refs. 1, 2, 3.

Implies that the chemical equiliorium Is attained; may not be true 1or filow reactors!

Chemical Reactions enthalpy entropy

The Gibbs free-energy function G: G=H —TS,and AG =AH - TAS
2 | aw of Thermodynamics: spontaneous reactions occur at P, T = const

if AG <0

» Thermal effect of a reaction only depends on
initial and final states and does not depend on
intermediate processes (Hess, 1840)

(Gibbs, J. W.)
(1839 - 1903) 2C+H,=C,H,+?  does not normally occur

| fa
| 2C+20,=2C0, +800KJ; Hy+-0, =H,0+240K) ooy

(1802 - 1850)

5
C,H, JrEo2 =2C0,+H,0+1300kJ

endothermic>  2C+H,=C.H, —260kJ
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Thermodynamics of CVD

Chemical Equilibrium

» The Principle (Le Chételier 1884):
If the conditions of a system, initially at equilibrium,
are changed, the equilibrium will shift in such a direction
as to tend to restore the original conditions

(counter reaction)
(Le Chatelier, Henri-Louis)
P— 200 bar; 600C (1850-1936)
1901
N; (@) + 3H; (9) <> 2NH, (g) + heat
T Haber & Claude

"l let the discovery of the ammonia synthesis slip through my hands.
It was the greatest blunder of my scientific career." Le Chatelier

Law of Mass Action (waage & Guldberg 1867)

° aA+bB+..->xX+yY+..

» [forward rate] o k; [A]* [B]°

» [reverse rate] oo k| [X]* [Y]Y

* in equilibrium, k, [A]* [B]P~ =k , [X]* [Y]Y

(Waage, Peter) (Guldberg, Cato)
(1833-1900) (1836-1902)

Thermodynamics of CVD

Law of Mass Action (continued)
e H,+1, < 2HI;
" the direct reaction results from collision of H, and I, molecules =>
reaction rate is proportional to the number of such collisions;
the number of collisions is proportional to density of H, and I,;
the density is proportional to pressure =>
 the reaction rate is proportional to the partial pressures of H, and L, :
k, P H, P L
e similarly, the reverse reaction rate is proportional to the number of
collisions between HI molecules => the reaction rate is
k. Pyt
* in equilibrium ky Py, P, = k; Py
» we define the constant of equilibrium as
K(T) =k, /k =Py, P,/ Py?

e presenting H, + I, = 2HI in the form H, + [, - 2HI = 0 (= a,A |+ a,A,
+ a;A; +...) the Law of Mass Action can be rewritten in terms of
partial pressures P;:

P P2 P = K(T)
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Thermodynamics of CVD

Law of Mass Action (continued)
Plzll PZ:lz P3a3... = K(T) (partial pressures)
P,=c, P
¢ ey e, = K(T)P ™ %2+ %)
(total pressure and concentrations)

N, (9) + 3H, (9) = 2NH; (9)

3

CN2 CH2 _ K (T) An increase of P means increase of CNHy in
2 - 2 accordance with Le Chételier's principal
G P

% at 1 atm and 298K (standard state) ‘

Finally:  AG = AG°+ RT' InK,
i.e in equilibrium:

-AG°=RT InK

Gas Transport

* Viscous flow (moment transfer)
 Diffusion (particle transfer)
» Convection

Thermal conductivity (energy transfer)

Issues:

* film thickness uniformity

» growth rates

« efficient utilization of process gases

» computer modeling of CVD reactor
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Gas Transport Viscous Flow

(laminar)

z u(z)

g-cm

[Al-=—8—=—£
cm™s  cm-S

du Dl £

cm-s

Momentum flow, A

Tells about how quickly momentum is transferred
(rate of momentum equalization)

1 sec
1 cm?2

om? y=1
P <—— density

o (velocity diffusion)
TUBE WALL

Tells about rate of velocity equalization

(20 C) n v

air 18e:4 " IKAD For gases, n ~ mnVI ~ mV/o
water 0.01 0.01 (o is the cross section)

Hg 0.016 0.0014

glycerine | 15 12 @“rong temperature dependencel

Viscous Flow

(laminar)

Gas Transport

z u(z) du
v, A= -n
dr
Momentum flux through the surface:
(a friction force acting on the cylinder from
the rest of the gas / liquid)
Let's pick a du
pick a 2xrLA=-"27xrLn—
part of liquid dr
= inside the tube... -
Vo , The friction force is balanced by the force due to
r the pressure difference AP along L
du
mx —2xrLn—=7xr’AP
- <> dr
TUBE WALL L By integration we get:
2
u =———AP + const
4Ln
r2 _ r2 From the boundary condition u(r,)=0
dM (r) =Qmr u(r)dr)- p = 2nr7°4 APpdr P22
o u(r)=2""_ap
4Ln

4
M) =" AP

Poiseuille relation

Poiseuille, Jean (1797-1869)
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Gas Transport Viscous Flow

Turbulence is a very complex physical phenomena and even today we do not fully understand how turbulence works.
Richard Feynman: turbulence is the most important unsolved problem of classical physics.

The first person that described and studied turbulence was probably Leonardo da Vinci (1452-1519). Since then many famous
scientists have worked on the problem of turbulence like for example L. Euler (1707-1783), H. L. F. von Helmholtz (1821-1894),
William Thompson (Lord Kelvin) (1824-1907), Lord Rayleigh(1842-1919) and A. N. Kolmogorov (1903-1987)...

Re = dup
n
Reinolds number

—_— T Ten

— T = —————————

T ————Dbag—

S
{a)Flat plate

Lift

— - Drag

(b) Wing
Re<1000
5 In gases:
. dc cm’ Lciniis) v vk,
J=—Da [D]=—- H,in O, 0.7 D~y]l~—~—B_
s CO, in air 0.14 no Po
0,in O, 0.18
sugar in water | 3e-6
_ Mobility B, force F, drift
2 u= BF velocity u of ions

Time of equalization ¢ ~ —

b D=k, TB

Einstein's equation

N
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Gas Transport, everything included
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Dimensionless Parameter Groups in CVD
(a)
Typical magnitude
Name Definition Physical interpretation APCVD LPCVD
Re=1
Knudsen Kn= AL Ratio of gas mean free 1075-107% 107*-10"2 Gr=30
path to characteristic
length
Prandtl Pr=C/K Ratic of momentum ~07 ~07 (b
diffusivity to thermal
diffusivity
Schmidt Se=Cy/D Ratio of momentum 1-10 1-10 _—
diffy ity to mass Gr=300
diffusivity
Reynolds Re = puLfn Ratio of inertia forces to 1072-10*  1072-10%
viscous forces ©
Peclet (mass)  Pe, = ReSc Ratio of convective mass 10712100 10710}
flux to diffusive mass
flux
Grashof o gp*L*AT  Ratio of buoyancy force 10°-107 0-10 A0,
(thermal) "STET to viscous fores s
Rayleigh Ra = GrPr Ratio of buoyancy force 102107 0-10
to viscous force
Damkohler Ratio of chemical 1073-10° 107310 Figure 69 Gas streamlines ef) over the range 0-1, and corresponding sotherms n K (right)
(gas phase) :’nal;ugn rate to for different combinations of Reynolds and Grashof numbers. The reactor profile is outlined.
ulk flow rate (@) Re=1, Gr=30; (b) Re=1, Gr=300; (c) Re =10, Gr = 300. (From C. R. Kleijn,
D - i 3 iy X “Transport Phenomena in Chemical Vapor Deposition Reactore Ph.(DTa'l"'I‘ms\s, chhv;llj::
?mkfohle)r D, = R.L Ratio of chemical 1073-10 1073-10 University of Delft, 1991. Reprinted with permission.)
surface] TC.D reaction rate to
In
diffusion rate
Arrhenius . E Ratio of activation 0-100 0-100
RT, energy to potential
energy
Gay-Lussac  Ga = AT/T, Ratio of temperature 1-13 06-1
difference to reference
temperature
Note: I = reactor dimension (m), C, = specific heat (J/kg-K), 1y = viscosity (Pa<s), K =
thermal diffusivity (m?/s), g = gravitational constant, AT = T,,, — Toya, T, = reference tem-
perature, R, = gas reaction rate (mol/m*-s), R, = surface reaction rate (mol/m?-s), C,, = input
£as concentration (mol/m?).
Adapted from Refs. 22, 23,

Film Growth Kinetics

Axial Growth Uniformity
J(x,y)=C(x,y)v =DVC(x, y)

y=b
=| o 9C(x.y)  *Clx.y)|  AC(y)
M= " |coy- o divJ(x,y)=D o2 * ay* * ox V=

— C(x,0) =0

w 4C | my n°Dx
C(x,y)=——sin| —= |exp| ————
(y)==sinl 45b?

J(0=p2CEY)
dy 40
MJ(x)

Glx) = M
mDZA 6 810 12 14 16 18 20 2224 p 0
POSITION ALONG SUSCEPTOR (cm)
—~ 2

)

© . 4CMD n°Dx
Figure 6-10 (a) Horizontal reactor geometry with conditions for flow. (b) Variation of growth G ( x) =————.eX -
rate with position along susceptor. Reactor conditions: # = 7.5 cm/s, b = 1.4 cm, T = 1200°C, 4— b 2
and C; = 3.1 x 10~* g/em’. (From P. C. Rundle, Int. J. Electron. 24, 405, © 1968 Taylor and b v
Francis, Ltd.)

0

0

2003-11-21
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Film Growth Kinetics

Radial Growth Uniformity on Wafers
=0

i[raC(r, z)]+ 9°C(r,2)
or or 0z*

piC
aZ 7=z
=0 C(r.2)=C,

r=0

=kC

aC(r,z)
or

“ for & <0.05: LCrD) 2%C
no Y DA

?
3
H
] r BC (r) 2kC (r)
£ +———==0
=
-
z
w
2
g
3
£ 2r, k r

I 0
® SCALED DISTANCE FROM WAFER CENTER(1,) 0

Figure 611 () Schematic representation of hot-wall, multiple wafer LPCVD reactor geom- d ( r / I 0 ) C( r )

ctry with gas flow boundary conditions. (b) Film thickness variation as a function of the scaled —

radial distance along the wafer for diflerent values of ¢. (From Chemical Vapor Deposition,

edited by M. L. Hitchman and K. F. Jensen. Reprinted with the permission of Academic Press, d (1) C 2r A

Lt and Professor K. F. Jensen, MIT.) 0 i 0

0

Film Growth Kinetics

Temperature Dependence J,=h,(C,~C,) I =kC,

Cltkn, o E
E k>>h,: mass transfer

5 .
o RT k<<h,: surface reaction

<—— SUBSTRATE TEMPERATURE , °C

I 1300 1200 1100 1000 900 800 700 600
Hy T TRy LBoad Lo Tyl T
Figure 6-12 Model of CVD growth process. Gas flows normal to plane of paper. (From Ref. € o5k
26. Reprinted with permission from John Wiley & Sons, copyright © 1967.) T
o 02
=
g af
z
z
2 005
o
ibility of chemical reactions can result in &
reversiol y . Z 002 CONTROLLED
lower growth rates at high temperatures g
3
EIR T AN, PP, "
o7 o8 09 10 "
3
SUBSTRATE TEMPERATURE , % i

Figure 6-13 Deposition rate of Si from four different precursor gases as a function of
temperature. (From W. Kern, in Microelectronic Materials and Processes, ed. R. A. Levy,
reprinted with permission of Kluwer Academic Publishers, 1989.)
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Thermal CVD

Atmospheric-Pressure Systems
“APCVD”

sesesscccces
/ WAFERS \_
od —=TO VENT
Tesessssegss
SUSCEPTOR

—= GAS FLOW
* RF HEATING
o RADIANT HEATING

High temperatures:

ﬂ CARRIER GASES EXHAUST 4
!
I === === -
¢
4
EXHAUST SCRUBBER
ol

I GRAPHITE SHELVES

[~ TooLs

STAINLESS STEEL RETORT

ELECTRIC FURNACE

2TiCl, + CH,CN +5/2H, = 2Ti(C,N)+CH, +4HCI; 700 < T <850°C
2TiCl, + N, +4H, = 2TiN +8HCI; 850<T <1200°C

Low temperatures:
SiH, +0, —%€ 5Si0, +2H,

Si(OC,H;), —*<Si0, + by — products

Low-Pressure Systems
“LPCVD” (1-10 mTorr)
* dense packing of wafers
* high deposition rates

* improved uniformity

* better step coverage

« fewer pinholes

Thermal CVD

Metalorganic CVD
“MOCVD”

MOCYVD Precursors for Assorted Metals and Electroceramic Metal Oxides

Metals® Alkoxides B-Diketonates Alkyls
Ag Ag(acac)

Al AlMe,, AlEt,
Au Me,Au(fhac)

Cu Cu(OBu), Cu(hfac),, Cu(acac),

Pt Pt(acac), CsHPt(Me),
Metal oxides®

TiO, Ti(OR), [b]

710, Zr(OR), Zr(acac),, Zx(thd),

Ta 04, Nb,Og Ta(OEv), [c],
Nb(OEt)5
(Ba,SHTIO, Ti(OR),, Ba(thd),, Ba(hfac),,
Ti(OPr),(thd), Sr(thd),

Pb(Zr, Ti)O,, Zt(OR),, Pb(thd),, Pb(fod),,  PbEt,,
(Pb, La)(Zr, TO, Ti(OR),, Zr(thd),, La(thd),  (neopentoxy)PbEt,
Ti(OR),(thd),
Pb(M)NbO, Nb(OEt) Pbi(thd),, Mg(thd),,
. Nb(thd),
(Ni, Zn)Fe,0, Ni(thd),, Ni(acac),,

Zn(thd),, Zn(acac),,
Fe(thd),, Fe(acac),

Y(thd),, Ba(thd),,
Bahfac),, Cu(thd),,
Cu(hfac),

YBa,Cu 0,

“From Ref. 36.
®From Ref. 40.
ions for p-di ligands: acac: 2.4 i thd: 2,2,6, 35-
hfac: 1,1,1,5,5, P 2,4-dionate; fod: 1,1,1,2.23,3-heptafluoro-
7,7-dimethyloctane-4,6-dionate.
R = (CyHyp, ), Me = methyl, Et = cthyl, Pr = propyl, Bu = butyl.

Laser-Enhanced CVD
“LECVD”

FEED

]
Iyt
|!4/‘ensss
I

LOCAL
HOT.

sPOT LASER

SUBSTRATE
PYROLYSIS

REACTANT
GASES

!

g % é <— PHOTO-
DEPOSITED _ _ PRODUCTS
FILM

LASER

'SUBSTRATE|

PHOTOLYSIS

617 (a) Pyrolytic and (b) photolytic laser-induced chemical-vaps ition of films
rom Chemical Vapor Deposition, edited by M. L. Hitchman and K. F. Jensen. Reprinted with
permission of Academic Press, Ltd., and Professor K. F. Jensen, MIT.)
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Thermal CVD

Injection MOCVD

Thermocouple

Substrate
holder

Fumnace

i+ Computer X
control

Nitrogen
wap

Pump

Felglm | | T ] 1 [
4 TF A F 8 _ Heater
Evaporator—¥ | 5 L

) i I N . y < Regulation
Stainless valve
steel

diffusor

Figure 1. Injection CVD reactor.

‘Supercond. Sci. Technol. 10 (197) 958-65. Printed in the UK PIl: S0953-2048(7)85503-0

Thin YBCO films on NdGaO; (001)
substrates grown by injection MOCVD

A Abrutist, J P Sénateury, F Weisst, V Kubiliusf, V Bigelytéf,
Z Saltyté {, B Vengalis§ and A Jukna§

1 Vilnius University, Department of General and Inorganic Chermistry,
Naugarduko 24, 2006, Vilnius, Lithuania

§ LMGP-ENSPG, CNRS UMR 5628, BP 46, 38402 St Martin d'Heres, France
i Ser juctor Physics Institute, Gostauto 11, 2600 Vinius, Lithuania

CVD Reactor Types

» Chamber pressure:
- atmospheric-pressure (APCVD)
- low-pressure
*LPCVD
*PECVD

* Reactor heating:
- Hot-wall
- Cold-wall

Reaction Mechanism

» mass transport, when P and T are high

« surface reaction, when Pand T are low

* possible to switch from one to another
by changing Por T

APCVD

+ mass-transport limited region
+ fast deposition

— poor step coverage

LPCVD

* surface reaction rate limited

+ excellent purity, uniformity and
step coverage

— low deposition rates

— requires vacuum system

Cold-wall
+ no reaction on the wall
— difficult to control the real T

Hot-wall
— particle contamin. (peel off)
— requires periodic cleanup

2003-11-21
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Plasma-Enhanced CVD

PECVD Films, Source Gases, and Deposition

Temperatures
Deposition
Film Source gases temperature (°C)
Elemental
Al AICI,-H, 100-250
a-B BCl,-H, 400
a-C C,H,,-H,/Ar 25-250
a-Si SiH,-H, 300
oSi SiH,-H, 400
Oxides
Al 0, AICL,-0, 100-400
Si0, SiCl,~0, 100-400
TiO, TiCl,-0, 100-500
Nitrides
AIN AICI,-N, <1000
BN B,H,-NH, 300-700
BCl;-NH,3/Ar 300-700
SiyN, SiH,~NH,-N, 25-500
TiN TiCl,-N,-H, 100-500
Carbides
B,C B,H,-CH, 400
BCN B,H,-CH,-N, ~25
CgH, BN 250
Sic SiH,-C,H,, 140-600
TiC TiCl,~CH,-H, 400-900
Borides
TiB, TiCl,~BCl,-H, 480-650

Plasma can lower
deposition T

ECR vs RF:

« denser discharge

* lower pressures

« higher degree of
ionization

« absence of electrodes

ALUMINUM

stcmooEsj
/

N SUBSTRATES

i
/

GAS RING—/

Reinberg-type cylindrical radial-low plasma. reactor
Rand. J. Vac. Sci. Technol. 16(2). 420 (1979).
MICROWAVE 2.45 GHz

GAS (1) RECTANGULAR

Nz, efc. WAVEGUIDE

COOLIN

WATER

(== —
MAGNET
coiLs
PLASMA

GAS
iH,

E |
(2)] | pLASMA PLASMA EXTf

H, STREAM H\‘ WINDOW RACTION
SPECIMEN

VACUUM
—lgvsTem |

ECR plasma deposition reactor. (From S. Matuso, in Handbook of Thin Film
Deposition Processes and Techniques, ed. K. K. Schuegraf. Noyes, Park Ridge. NJ. 1988.

FIB-Enhanced CVD

http://www.feic.com/products/strata-235m.htm

FEI Strata™ DBE-STEM - Delivers integrated sample preparation, ultra-high resolution
STEM imaging and microanalysis below 1nm, for high throughput semiconductor

and data storage labs

2003-11-21
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Selective CVD

Selective CVD
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Blanket (non-selective) CVD

industry.

¢ Most commonly used in

¢ Due to the poor nucleation
and adherence of CVD W on
Si0, A “glue” layer is
needed: predeposited TiN, or
sputtered W, TiW and Mo.

* For contact hole and via fill

purposes the process requires Uw oxDE

a subsequent ctch back.

2WE, +3H, - W+6HF (300°C)

! ! OXIDE
8i

w oxipe

Si

si

Fill contacts or vias is much simpler
than the blanket approach: no
adhesion layer and etch back
needed. Less toxic waste
Deposited on silicon, Al,ete.; not
deposited on the diclectrics such as
Si0,.

Drawbacks: encroachment
phenomenon, selectivity loss.

not used extensively in industry
compared to blanket tungsten.

2WE, +3Si — 2W +3SiF,

Hazardous Gases Employed in CVD

Gas Corrosive | Flammable | Pyrophoric | Toxic Bodily hazard
Ammonia ‘ Eye and respiratory
(NH,) irritation
Arsine ‘ ‘ Anemia, kidney damage,
(AsH,) death
Boron trichloride
(BCL,)
Boron trifluoride
(BF3)

Chlorine (Cl,)

L
L _BL ]

Eye and respiratory
irritation

Diborane (B,H) ‘ Respiratory irritation
Dichlorosilane ‘

(SiH,Cl,) [l
Germane (GeH,)

Hydrogen
chloride (HCI)

Hydrogen
fluoride (HF)

e

Severe burns

Hydrogen (H,)

Phosphine (PHj)

Respiratory irritation,
death

Phosphorus
pentachloride
(PCly)

Silane (SiH,)

Silicon
tetrachloride
(8iCL,)

i

o]

Stibine (SbH,)
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Home assignment #4 (p.350)
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