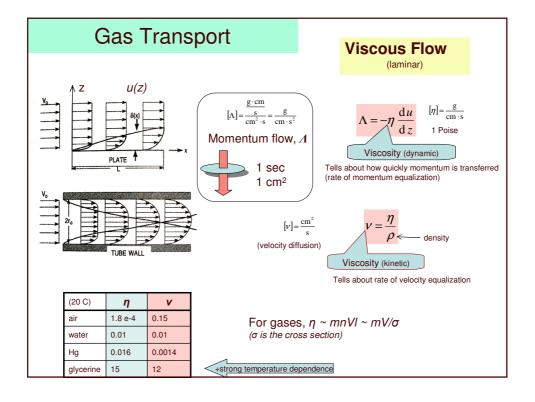
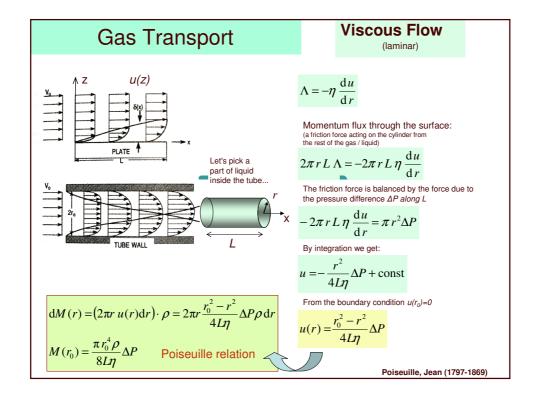
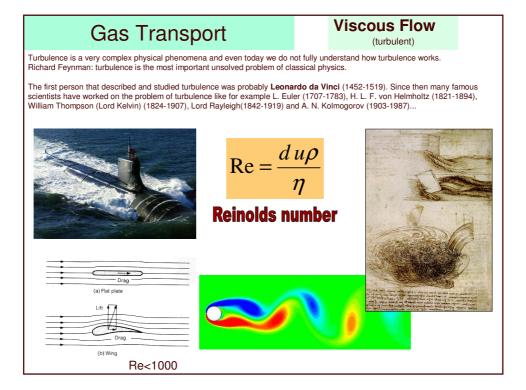
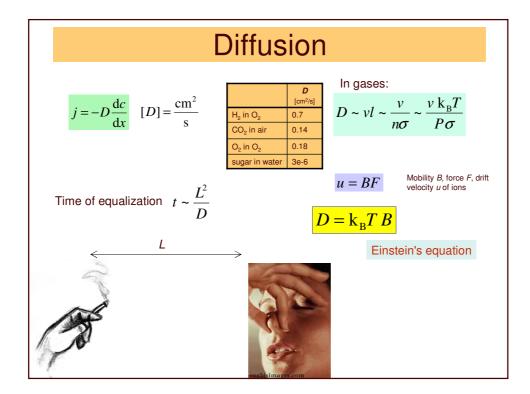
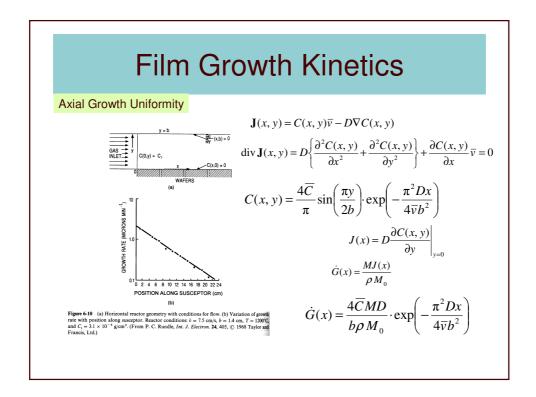

	Therma	Thermal CVD Films and Coatings		
Deposited material	Substrate	Input reactants	Deposition temperature (°C)	Crystallinity
Si	Single-crystal Si	$SiCl_2H_2$, $SiCl_3H$, or $SiCl_4 + H_2$	1050-1200	Е
Si		SiH ₄ +H ₂	600-700	Р
Ge	Single-crystal Ge	$GeCl_4$ or $GeH_4 + H_2$	600-900	Е
GaAs	Single-crystal GaAs	(CH ₃) ₃ Ga+AsH ₃	650-750	Е
InP	Single-crystal InP	$(CH_3)_3In + PH_3$	725	Е
SiC	Single-crystal Si	SiCl ₄ , toluene, H ₂	1100	Р
AlN	Sapphire	AlCl ₃ , NH ₃ , H ₂	1000	Е
In ₂ O ₃ :Sn	Glass	In-chelate, $(C_4H_9)_2$ Sn(OOCH ₃) ₂ , H_2O, O_2, H_2	500	A
ZnS	GaAs, GaP	Zn, H ₂ S, H ₂	825	Е
CdS	GaAs, sapphire	Cd, H ₂ S, H ₂	690	Е
Al_2O_3	Si, cemented carbide	$\begin{array}{l} \text{Al}(\text{CH}_3)_3 + \text{O}_2, \\ \text{AlCl}_3, \text{CO}_2, \text{H}_2 \end{array}$	275-475 850-1100	A A
SiO_2	Si	$\begin{array}{c} \text{SiH}_4 + \text{O}_2, \\ \text{SiCl}_2\text{H}_2 + \text{N}_2\text{O} \end{array}$	450	Α
Si ₃ N ₄	SiO ₂	$SiCl_2H_2 + NH_3$	750	Α
TiO ₂	Quartz	$Ti(OC_2H_5)_4 + O_2$	450	Α
TiC	Steel	TiCl ₄ , CH ₄ , H ₂	1000	Р
TiN	Steel	TiCl ₄ , N ₂ , H ₂	1000	Р
BN	Steel	BCl ₃ , NH ₃ , H ₂	1000	Р
TiB ₂	Steel	TiCl ₄ , BCl ₃ , H ₂	> 800	Р

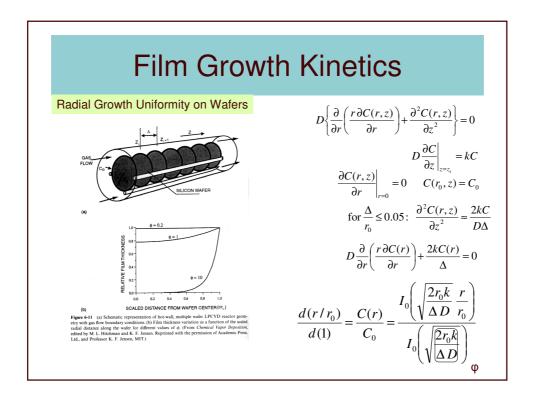


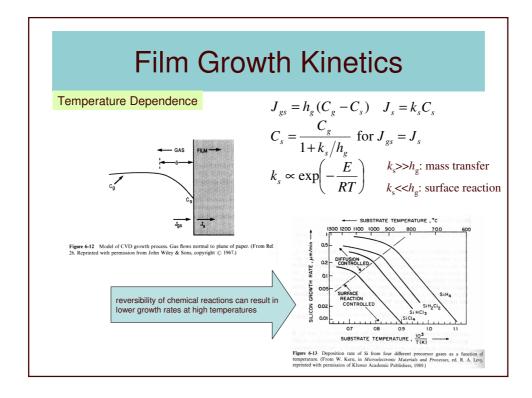


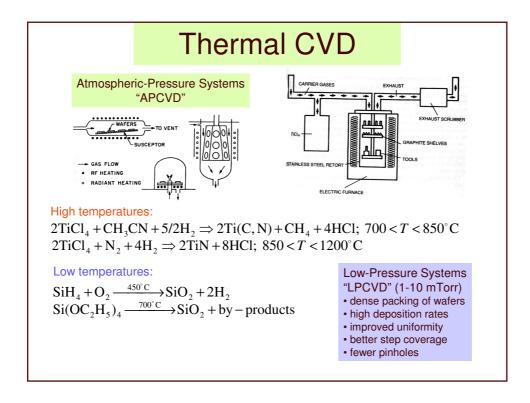

Ther	modynamics of CVD	
	Law of Mass Action (continued)	
	 H₂ + I₂ ↔ 2HI; the direct reaction results from collision of H₂ and I₂ molecules => reaction rate is proportional to the number of such collisions; the number of collisions is proportional to density of H₂ and I₂; the density is proportional to pressure => 	
	• the reaction rate is proportional to the partial pressures of H_2 and I_2 :	
	$\mathbf{k}_1 \boldsymbol{P}_{\mathbf{H}_2} \boldsymbol{P}_{\mathbf{I}_2}$	
	• similarly, the reverse reaction rate is proportional to the number of collisions between HI molecules => the reaction rate is	
	$k_{-1} P_{\rm HI}^{2}$	
	• in equilibrium $k_1 P_{H_2} P_{I_2} = k_{-1} P_{H_1}^2$	
	• we define the constant of equilibrium as	
	$K(T) = k_{-1} / k_1 = P_{H_2} P_{I_2} / P_{HI}^2$	
	• presenting $H_2 + I_2 = 2HI$ in the form $H_2 + I_2 - 2HI = 0$ (= $a_1A_1 + a_2A_2 + a_3A_3 +$) the Law of Mass Action can be rewritten in terms of partial pressures P_i : $P_1^{a_1} P_2^{a_2} P_3^{a_3} = K(T)$	

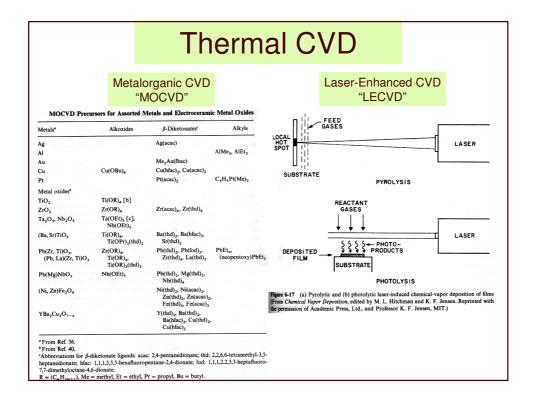


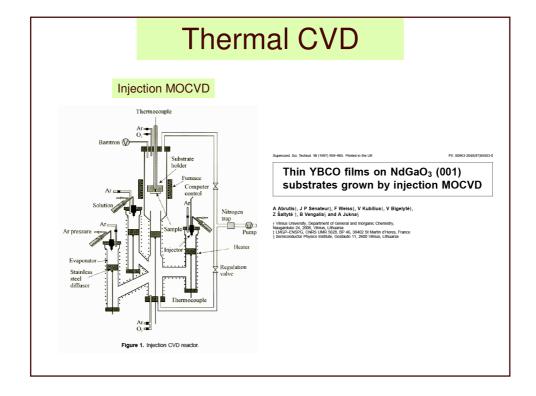


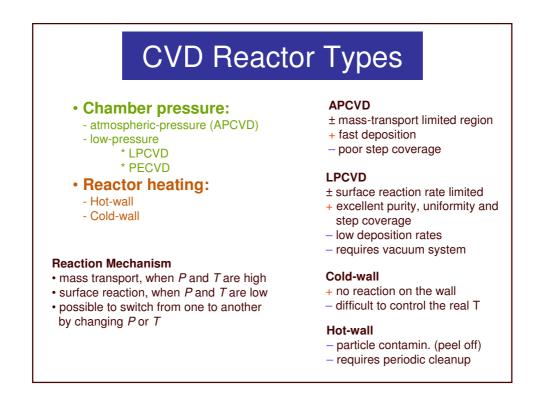


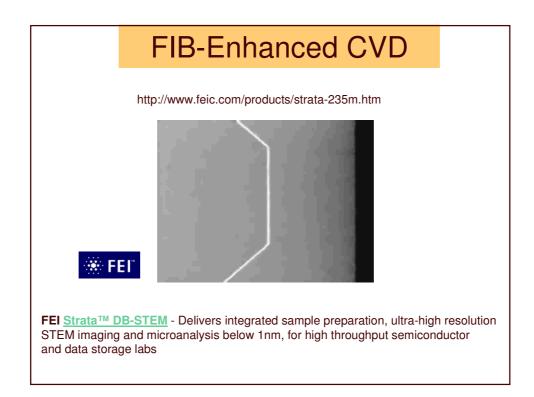


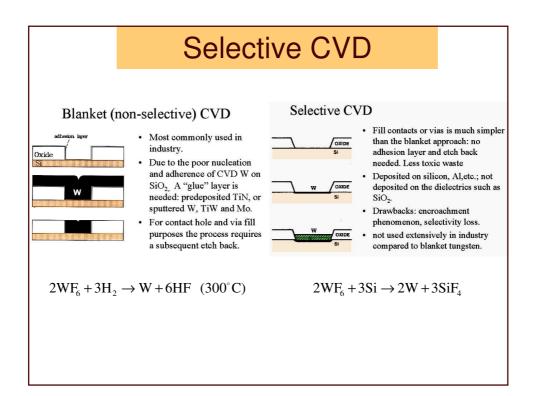


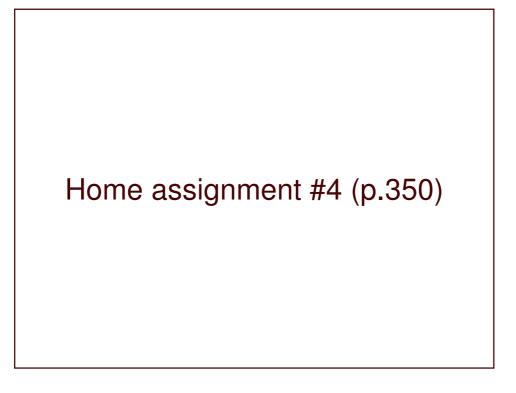

	Dimensio	onless Parameter Groups in	CVD	
	1913		Typical r	nagnitude
Name	Definition	Physical interpretation	APCVD	LPCVD
Knudsen	$Kn = \lambda/L$	Ratio of gas mean free path to characteristic length	10 ⁻⁶ -10 ⁻⁵	10-3-10-2
Prandtl	$\Pr = C_{\rm p} \eta / K$	Ratio of momentum diffusivity to thermal diffusivity	~0.7	~0.7
Schmidt	$Sc = C_p \eta/D$	Ratio of momentum diffusivity to mass diffusivity	1-10	1-10
Reynolds	$\operatorname{Re} = \rho v L / \eta$	Ratio of inertia forces to viscous forces	10 ⁻² -10 ²	10-2-102
Peclet (mass)	$Pe_m = ReSc$	Ratio of convective mass flux to diffusive mass flux	10 ⁻¹ -10 ³	10 ⁻¹ -10 ³
Grashof (thermal)	$Gr_t = \frac{g\rho^2 L^3 \Delta T}{\eta^2 T_r}$	Ratio of buoyancy force to viscous force	10 ² -10 ⁷	0-10
Rayleigh	Ra = GrPr	Ratio of buoyancy force to viscous force	10 ² -10 ⁷	0-10
Damkohler (gas phase)	$\mathrm{Da}_{\mathbf{g}} = \frac{\dot{R}_{g}L}{C_{in}v}$	Ratio of chemical reaction rate to bulk flow rate	10-3-103	10 ⁻³ -10 ³
Damkohler (surface)	$\mathrm{Da}_{\mathrm{s}} = \frac{\dot{R}_{\mathrm{s}}L}{C_{\mathrm{in}}D}$	Ratio of chemical reaction rate to diffusion rate	10-3-103	10 ⁻³ -10 ³
Arrhenius	$\operatorname{Arrh} = \frac{E}{RT_r}$	Ratio of activation energy to potential energy	0-100	0-100
Gay-Lussac	$\mathbf{G}\mathbf{a} = \Delta T/T_r$	Ratio of temperature difference to reference temperature	1-1.3	0.6-1











	Ρ	lasm	a-Enhan	ced CVD		
PECVD Films, Source Gases, and Deposition Temperatures						
Film	Source gases	Deposition temperature (°C)	Plasma can lower deposition <i>T</i>			
Elemental	an dan san kana sa	a shekara a				
Al	AlCl ₃ -H ₂	100-250				
a-B	BCl ₃ -H ₂	400		T.C. CYLINDER		
a-C	C _n H _m -H ₂ /Ar	25-250				
a-Si	SiH4-H2	300				
c-Si	SiH ₄ -H ₂	400		PUMP NH3 GAUGE		
Oxides				(+ Ar OR)		
Al ₂ O ₃	AlCl ₃ -O ₂	100-400		(N ₂)		
SiO ₂	SiCl ₄ -O ₂	100-400		Reinberg-type cylindrical radial-flow plasma reactor Rand. J. Vac. Sci. Technol. 16(2), 420 (1979).		
TiO ₂	TiCl ₄ -O ₂	100-500		MICROWAVE 2.45 GHz		
Nitrides				GAS (1)		
AIN	AlCl ₃ -N ₂	<1000				
BN	$B_2H_6-NH_3$	300-700		WATER		
	BCl3-NH3/Ar	300-700				
Si ₃ N ₄	SiH ₄ -NH ₃ -N ₂	25-500	ECB vs BE:			
TiN	$TiCl_4 - N_2 - H_2$	100-500		PLASMA		
Carbides			denser discharge			
B ₄ C	B ₂ H ₆ -CH ₄	400	 lower pressures 			
BCN	$B_2H_6-CH_4-N_2$	~25	 higher degree of 	GAS (2) PLASMA		
	C ₈ H ₁₈ BN	250	ionization	SIH4 + TISTREAM V (WINDOW)		
SiC	SiH4-C,Hm	140-600	 absence of electrodes 	SPECIMEN		
TiC	TiCl ₄ -CH ₄ -H ₂	400-900		VACUUM		
Borides						
TiB ₂	TiCl ₄ -BCl ₃ -H ₂	480-650		ECR plasma deposition reactor. (From S. Matuso, in Handbook of Thin ocesses and Techniques, ed. K. K. Schuegraf. Noyes, Park Ridge, NJ, 1		

	C		ΈT	` V	,
	5	АГ		Y	
Ì	Haza	rdous Gase	s Employed	in CVI	D
Gas	Corrosive	Flammable	Pyrophoric	Toxic	Bodily hazard
Ammonia (NH ₃)				٠	Eye and respiratory irritation
Arsine (AsH ₃)			T	٠	Anemia, kidney damage death
Boron trichloride (BCl ₃)					(U) **
Boron trifluoride (BF ₃)					
Chlorine (Cl ₂)					Eye and respiratory irritation
Diborane (B2H6)					Respiratory irritation
Dichlorosilane (SiH ₂ Cl ₂)					0
Germane (GeH ₄)					1 m
Hydrogen chloride (HCl)	•			_	a
Hydrogen fluoride (HF)					Severe burns
Hydrogen (H ₂)					
Phosphine (PH ₃)	1			•	Respiratory irritation, death
Phosphorus pentachloride (PCl ₅)	٠				
Silane (SiH ₄)					
Silicon tetrachloride (SiCl ₄)	٠				
Stibine (SbH ₃)					

