Characterization of Thin Films

- Film thickness Surface morphology
- Film compositionFilm properties
- Characterization methods are very diverse
- Size of equipment. Compare desktop interferometer with 2 m accelerator of RBS

1

- Cost. $\$10^1 \10^6 Environment. Ambient 10^{-10} Torr Complexity. Scotch tape SEM, TEM etc.

	1		1		1
Primary beam	Energy range	Secondary signal	Acronym	Technique	Application
Electron	20 - 200 eV	Electron	LEED	Low-energy electron diffraction	Surface structure
	0.3 - 30 keV	Electron	SEM	Scanning electron microscopy	Surface morphology
	1 - 30keV	X-ray	EMP	Electron microprobe	Surface region composition
	500eV-10keV	Electron	(EDX) AES	Auger electron spectroscopy	Surface layer composition
	100 -400 keV	Electron, X-	TEM	Transmission electron microscopy	High-resolution structure
	100 -400 keV	ray	STEM	Scanning TEM	Imaging, X-ray analysis
	100 -400 keV	Electron	EELS	Electron energy loss spectroscopy	Local small-area composition
Ion	0.5 -2.0 keV	Ion	ISS	Ion-scattering spectroscopy	Surface composition
	1 - 15 keV	Ion	SIMS	Secondary ion mass spectroscopy	Trace composition vs depth
	1-15 eV	Atom	SNMS	Secondary neutral mass spectrometry	Trace composition vs depth
	1 keV and up	X-ray	PIXE	Particle-induced X-ray emission	Trace composition
	5-20 keV	Electron	SIM	Scanning ion microscopy	Surface characterization
	>1 MeV	Ion	RBS	Rutherford backscattering	Composition vs depth
Photon	>1 keV	X-ray	XRF	X-ray fluorescence	Composition (1 µm depth)
	>1 keV	X-ray	XRD	X-ray diffraction	Crystal structure
	>1 keV	Electron	ESCA, XPS	X-ray photoelectron spectroscopy	Surface composition
	Laser	Ion	-	Laser microprobe	Composition of irradiated area
	Laser	Light	LEM	Laser emission microprobe	Trace element analysis
J	.B. Bindel, in VLS	I Technol, McGr	aw-Hill, NY88		2

FILM THICKNESS						
Optical methods						
Method	Range (nm)	Characteristics (M = multiple)				
Multiple beam interferometry (FET)	3 - 2000 ± 1-3	A step and reflective coating required (1 λ , θ = 90°)				
Multiple beam interferometry (FECO)	1 - 2000 ± 0.5	A step, reflective coating, and spectrometer required; time consuming $(M \lambda)$				
VAMFO (variable-angle monochromatic fringe observation)	80 - 1000 ± 0.02- 0.05%	Transparent films on reflective substrate (1 λ , M θ)				
CARIS (constant-angle reflection interference spectroscopy)	40 - 2000 ± 1 nm	Transparent films on reflective substrate (M λ , $\theta = 90^{\circ}$)				
Ellipsometry	<0.1-	Transparent films and multilayers, uses polarized light, measures d, n, and k (1 λ , fixed θ)				
Spectral reflectometry (unpolarized)	~ 30 - 2000± 1 nm	Transparent films and multilayers, fast, measures $d, n, \text{ and } k \ (\lambda = \sim 200\text{-}1000 \text{ nm}, \theta = 90^\circ)$ (polarized reflectometry is also performed at $1 \lambda, M \theta$)				
Spectroscopic ellipsometry	<0.1-	Transparent films and multilayers, uses polarized light (M λ , fixed θ) (multiple-angle ellipsometry is also performed at 1 λ)				

FILM THICKNESS- Optics

Patterned-Wafer Thickness and Defect

Mapper The <u>STMapper</u> uses a new scanning technique to acquire millions of spectral reflectance data

points on a 200mm wafer in less than five seconds. An entire cassette of wafers can be

mapped in less than five minutes. It can be used to monitor multiple process parameters on

patterned wafers, such as ILD thickness, metal residual, and scratches and defects. Available in integrated or stand-alone configurations.

Spectral Reflectometry

http://www.filmetrics.com/

14

38

40

CHEMICAL CHARACTERIZATION

Auger Electron Spectroscopy (AES)

• The sample is irradiated with a high energy primary electron beam (2 - 10 keV).

 Backscattered, secondary, and Auger electrons can be detected and analyzed. These can also be used for imaging purposes similar to that in SEM.

 The Auger electrons are emitted at discrete energies, that are characteristic of the elements present on the sample surface (the peak positions are used to identify the elements and their chemical states) All elements in the periodic table, except hydrogen and helium, can be detected, and

The depth of analysis is 3 - 5 nm

• In the scanning mode, the secondary electrons yield information on the surface topography. Excellent spatial resolution (0.5 µm).

· Top layers can be spattered with ions and depth profiles can be measured.

Films

CHEMICAL CHARACTERIZATION

X-RAY PHOTOELECTRON SPECTROSCOPY (XPS)

- also Electron Spectroscopy for Chemical Analysis (ESCA) The sample is irradiated with soft X-rays photons (1-2 keV) which induces direct emission of photoelectrons.
- The energy of photoelectrons is characteristic of the material.
- Depth 2-20 atomic layers. Peak position and area are used to study the composition. The peak shape give information about the chemical bonds of the elements.

Modes of Operation

37

39

- 1. Energy spectrum. Survey spectra (0-1000 eV) to estimate the composition, while high-resolution spectra (10-20 eV) - information about the chemical bonds.
- Mapping. Choosing a single peak and scanning the focal point across the sample gives information on the lateral distribution of species on the surface.
- 3. Imaging with high spatial resolution (<10-15 µm) and high sensitivity.

CHEMICAL CHARACTERIZATION

XPS vs AES (are complimentary to each othe) Give similar information.

• The Auger spot size is smaller than the XPS.

- The XPS spectra are well-documented -> study of surface chemical bonding through the use of tabulated chemical shifts. The Auger chemical shifts are weaker.
- X-rays produce less damage to the surface compared to the primary electrons of AES.

CHEMICAL CHARACTERIZATION

Secondary Ion Mass SpectroscopyDescription (SIMS) The most sensitive method for detection of elements masses up to 10⁴ mass units can be detected;

- separation of isotopes can be made; chemical information can be obtained by identifying sputtered ions;
- detection limits of 1 ppm of a monolayer; surface sensitivity < 1nm; depth resolution < 1nm; lateral resolution 100 nm.

Modes of operation:

- $\mbox{Surface}$ analysis (Static SIMS) low primary ion densities to prevent surface destruction 1.
- 2. Imaging. Focused ion beam scanning over the surface produces images of the surface (recall FIB !)
- Depth profiling (Dynamic SIMS) high primary ion dose densities to remove the surface layer by layer. Spectra taken during the sputtering can give the 3. thickness distribution of elements

CHEMICAL CHARACTERIZATION http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/maspec.html The mass spectrometer is an instrument which can Ð measure the masses and relative concentrations of atoms and molecules. It makes use of the magnetic force on a moving charged particle. mE $r = \frac{mv}{aB} =$ OBB 41

