Diffusion & Oxidation
Doping
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dx Fick's First Law is used in steady state diffusion,

i.e., when the concentration within the diffusion
volume does not change with respect to time.
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Diffusion

= 2" Fick’s law

J=_D d_n Fick's Second Law is used in non-steady state
dx diffusion,i.e., when the concentration within the
o diffusion volume changes in time.
Continuity :
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Diffusion

Constant source diffusion
“pre-deposition”
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Impurity concentration, N(x)

Limited source diffusion
“drive-in”
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Diffusion

Parameters that affect diffusion: Enhanced diffusion:

- Temperature » Stress, electric field

. Pressure * lonization

« Crystal direction (channeling) * Grain boundaries (defects)
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Probability to escape in thermal
activation process:
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Diffusion

= In gases:
. dc cm’ fom?/s] v  vk.T
J]=-D— [D]=—— H,in O, 0.7 D~vl~ ~ 5
dX S CO, in air 0.14 no P o
0,in 0, 0.18
sugar in water 3e-6
_ Mobility B, force F, drift
2 U= BF velocity u of ions
Time of equalization t ~ —
D T .
D= kBT B| Einstein's equation




‘ Doping e

n-p and p-n ,
junctions -
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Thermal Diffusion Calculator

Enter the parameters below and select enter

Constant Surface Concentration (atoms/cm”3): (30
Time (hours): &
Temperature [degrees C): 1000
Substrate Doping Concentration (stoms/cm®3): |2

Enter Dopant Type:
@ Boren
O Arsenic
Q Phosphorus

Enter Diffusion Type:
@ Pre-deposition
Q Drrve-in




Mechanism of Diffusion

Silicon
atom

® @O ®

Interstitial
impurity
atom

impurity

@ @ @ atom

(a) (b)

©)
©)
©

a) substitutional diffusion
b) impurity atom replaces Si atom
c) impurity atom does not replace Si atom
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Doping

Uniformity on Wafers

RELATIVE FILM THICKNESS
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Figure 6-11 (a) Schematic representation of hot-wall, multiple wafer LPCVD reactor geom-
etry with gas flow boundary conditions. (b) Film thickness variation as a function of the scaled
radial distance along the wafer for different values of ¢. (From Chemical Vapor Deposition,
edited by M. L. Hitchman and K. F. Jensen. Reprinted with the permission of Academic Press,

Ltd., and Professor K. F. Jensen, MIT.)

2B,0, +3S1 —> 4B+ 3810,
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2P,04 +5S1 —» 4P + 5810,
4POCl; +30, —» 2P,0, +6Cl,
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‘ DOplﬁg = by thermal diffusion

Tool #433
Rapid Thermal Processor (RTP) AG Heatpulse 610

a PC-controlled halogen lamp furnace.
It accommodates 2", 3", and 4" wafers, or small pieces placed on a wafer.

It is typically used for alloying of ohmic contacts on Ill-V semiconductors.
No other substrates than 1ll-V are allowed.

Specifications:

Protecting gas: N2

Wafer size: pieces, 2", 3", 4
Max temperature:1000°C
Heating rate: 120°C/sec
Temperature sensor: Thermocouple / Pyrometer




Diffusion

Lateral Diffusion

http://www.oki.com/ : '
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diffusion of dopant atoms in the direction parallel to the surface of semiconductor;
undesired in device manufacturing as it causes distortion of the device geometry.




Thermal Oxidation of Si

RESISTANCE

OuARTZ TUBE HEATER
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) % Si+2H,0 — Si0, + 2H,

[FAST GROWTHI]

FIGURE 1.12. Thermal oxidation of 5i0. layer. From Ref. 30.

1. Oxygen is transported from the bulk of the gas phase to the gas-oxide interface
2. Oxygen diffuses through the growing solid oxide film
3. When oxygen reaches the Si/SiO, interface, it chemically reacts with Si and forms SiO,



Interface Reaction Kinetics

S

J,=h,(C,~C)) J, =kC
C
= ford, =]

E k>>h,: mass transfer
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RT k.<<h .+ surface reaction
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Figure 6-12 Model of CVD growth process. Gas flows normal to plane of paper. (From Ref.
26. Reprinted with permission from John Wiley & Sons, copyright © 1967.) azl-
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Figure 6-13 Deposition rate of Si from four different precursor gases as a function of
temperature. (From W. Kern, in Microelectronic Materials and Processes, ed. R. A. Levy,
reprinted with permission of Kluwer Academic Publishers, 1989.)



Interface Reaction Kinetics

J = h (C —C ) C, —concentration of oxygen in the gas
1 g g 0

C, — concentration of oxygen at the gas/Si10, interface

J = D(CO — Ci ) C, — concentration of oxygen at the Si0O, / S1 interface
2 d ) h, —mass transport coefficient
D — diff. coeff. of oxygen in Si0O,
J 3 = k S Ci Ks — chemical reaction rate constant

J, =J, =J, (steady - state growth)

Cg(l_l_deOj C
Co= 5 T
14 Ks Go 1+ =+=2-0
h, D h, D



Interface Reaction Kinetics

Cg(1+k5d°j C
C, = > C =k d
" l_l_ks_l_ksdo 1+—=2+-—2-0
h, D h, D
C T
C, =C, = ‘f( reaction limited (D >> Kk, d, )
1+
hG

C, ~C,;C, ~ 0:diffusion limited (D <<k d, )

the actual growth i d,(t) = KsC

depends on J3: dt N,
d; +Ad, =B(t+7)




Interface Reaction Kinetics

d k<C.
the actual growth a do(t) — IS\I
depends on J3: 0

d; +Ad, =B(t+7)

N, =2.2x10% (dry) 4.4x10> (wet) |em ™|
A=2D(h;' +k;'); B=2DC,/Ny; 7=(d>+Ad,)/B
d. —initial oxide thickness (if any)
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Oxide Expansion

Cracks — lower breakdown voltage (5-10 MV/cm
Leakage

SiyN, Si0, pad SiyN,
Trapped charges zzzzy “wrzzzz ) \ zozzza gz
Silicon wafer Silicon wafer
Silicon etch
s\
Oxidation

Silicon wafer

+% 4" 1
.1 /' Oxidation
$iO, .
~————~"Bird's beak" “Bird's beak” ~° \__9102 s

oy T Y |
Mitride removal - \_1 6 T‘ Mitride removal
{a) (b)
FIGURE 3.12

Cross section depicting process sequence for local oxidation of silicon (LOCOS): (a) semirecessed
and (b} fully recessed structures,



‘ Mechanical Relaxation Effects

during oxide growth (expansion)

Stress relaxation: Strain relaxation:
& =& +6&,
E :& g =& O-O
by ? 72 7 gzv[l—exp(—Yt/n)]

&, = —&, (constant strain)
o, = o, exp(-Yt/7n)
forY =6.6-10"" dyn/cm’
n=2.8-10" dyn-s/cm’

Usually a mixture
of strain and stress
relaxations

T~4 sec

=== | A volume change of ~2009%6!




‘ Dittusion Along Grain Boundaries

= Stress
= Defects

substrate

easier diffusion along
grain boundaries

® substrate
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substrate

http://shasta.mpi-stuttgart. mpg.de/research/thinfilmcnt/thinfilms.htm




Interdiffusion & Transformations
in Thin Films

'e's'e’s _._'.-"”

Y ; ¢
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*EUV lithography
*EUV metrology
*EUV microscopy
ssynchrotron optics
*x-ray astronomy
soft x-ray lasers

*plasma physics

Interdiffusion is crucial
in multilayers

MoSi
multilayers

http://www.iof.fraunhofer.de/departments/optical-coatings/

Electro-migration

M. Ohring: Materials Science of thin films



St Crystal Structure

diamond structure

WIE‘A“" Fp
SECONDARY
FLAT
{11} n-TyPE {11} p-TvPE

FLAT
Two interleaving FCC cells offset by 1/4 of the L
cube diagonal SECONDARY
FLAT 1 SECONDARY
{100} n-TYPE {100} p-TYPE

Primary and secondary flats on silicon wafers.




Isotropic vs Anisotropic Wet Etching

/sao, Mask

Isotropic etching of Si with (A) and without (B) etchant



‘ Chemicals

Isotropic

HF:HNO,:CH;COOH:H,0

EIE:NH4F Masking Materials
Photoresist (Acids Only)
SisN,

: . SIO,

Anisotropic

KOH

EDP (Ethylenediamine Pyrocatechol)

CsOH

NaOH

N,H,-H,0 (Hydrazine)




‘ Chemicals "

nm/h

=60°C

3
7

KOH Etching
Etch rate

4
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i0; © ETCH RATE

(110) > (100) > (111)
(111) > (110) > (111) w/ IPA

Si0,

w Iy

=] o
\

Y
/

GO 0 20 30 40 weight-% 60

Varies with T and concentration KOH CONCENTRATION

The SiO, etch rate in nm/hr as a function of KOH
concentration at 60°C. (From Seidel, H. et al., J. Electrochem. Soc., 137,
3612-3626, 1990. With permissiorn.)
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Masks
Si;N,: is the best, very slow etch rate, selectivity > 1000
SiO, :selectivity >> 100




‘ Application of Anisotropic FEtch

Orifice (A via through

Si wafer)
ol e seps
- ‘ Holes
E Cantilevers
= Bridges

40HM 10KV 00 105

Micromachining
M. Madou “Fundamentals of microfabrication”




Etch Stop Layers
Ew" =

i E - \ ™
Boron Stops Etching B les eps mo
W ¥H e P 10%KOH 21°C
~1020 cm-3 reduces 3 *Ge EOP S 719°C
a:m_! \ « (e 3% KOH &0°C

etch rate 1000 times '\

10 \

10" 10" 101 0 om? 02

DOPANT CONCENTRATION

Relative etch rate for (100) Si in EDP and KOH solu-
tions as a function of concentration of boron, phosphorus, and germa-
nium. (From Seidel, H. et al., J. Electrochem. Soc., 137, 3626-3632, 1990.
With permission.)

maskin

Boron-doped Layer




‘ Laser-Assisted Wet Etching

Fundamentals of Microfabrication

Laser light

Laser light damaged E i Masking layer

or 'spoiled’ zone,
~,

M. Madou, Fundamentals of Microfabrication




‘ MaCfOp O1rous Sl http://www.macroporous-silicon.com/

*

bk Si

EERREREI

B HF ™ scL *haoe

Photogenerated minority carriers
(in the case of n-type Si this means
"holes") diffuse from the back side
of the sample to the pore (etch) pits
and promote dissolution there,
because of the enhanced electrical

www-tkm.physik.uni-karlsruhe.de/ field in the space charge layer (SCL).
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