

Electron Beam									
 In general, our ability to view or fabricate small objects depends on availability of strongly focused particle beams. Diffraction limits the spot size. The smaller the wavelength, the smaller the spot. 									
Particle wavelength (A) at various energies Particle energy E_{0} (eV)									
Particle: 1 10 10^2 10^3 10^4 10^5 10^4							106		
photons	1240 0	1240	124	12.4	1.24	0.124	0.012		
electrons	12.3	3.89	1.23	0.39	0.12	0.037	8.7e-3		
protons	0.29	0.091	2.9e-2	9.1e-3	2.9e-3	9.1e-4	2.8e-4		
$λ = 1240/E_0$ (photons); $λ = 12.3/(E_0 + 1e - 6E_0^2)^{0.5}$ (electrons); $λ = 0.28/E_0^{0.5}$ (protons). 6							6		

Practical Cathodes							
Thermionic o	athodes:						
		A /ama 2).					
norrated tung	sten (1700°C & 3	A/Cm^2 ; v	$VC+IhO_2 \rightarrow VV +$	$Ih + CO_2 (\rightarrow b)$	ad vacuum)		
anthanum he	xaborid;						
xide coated (750 C & 0 5 A/cm	1^2). Ni coat	ted by Sr-O_Ba-(Ca-O: can b	e noisoned		
			a a b (1100	$P = A / com^2$	o poloonou		
ungsten spon	ige illied with Ba/C	Ja alumi	nate (1100 C	& 5 A/Cm ²)			
Field-Emissi	on cathodes (hest	t hut mos	et evnensive).				
Field-Emissi	on cathodes (best	t but mos	st expensive):				
Field-Emission occ	on cathodes (best curs in "lobes" bec	t but mos cause of	st expensive): crvstal facets	present at	the surface		
Field-Emission emission occ	on cathodes (best curs in "lobes" bec	t but mos cause of	st expensive): crystal facets	present at	the surface		
Field-Emission emission occ emission car	on cathodes (best curs in "lobes" bec be unstable.	t but mos cause of	st expensive): crystal facets	present at	the surface		
Field-Emission emission occ emission car	on cathodes (best curs in "lobes" bec be unstable.	t but mos cause of	st expensive): crystal facets	present at	the surface		
Field-Emissio emission occ emission car	on cathodes (best curs in "lobes" beo n be unstable.	t but mos cause of	ot expensive): crystal facets	present at	the surface		
Field-Emission emission car Type of emission	on cathodes (best curs in "lobes" bec n be unstable.	t but mos cause of Emission	operating temperature (T _e)	Upper pressure limit (Torr)	the surface Brightness (<i>β</i>)		
Field-Emission emission car Type of emission	on cathodes (best curs in "lobes" bed be unstable. Type of cathole	Emission (A/cm ²)	operating temperature (<i>T_c</i>) (K)	Upper pressure limit (Torr)	the surface Brightness (β) (A/cm ² · sr at 20 kV)		
Field-Emission occ emission car Type of emission Thermionic	on cathodes (best curs in "lobes" bec be unstable. Type of cathode Tungsten	t but mos cause of Emission (A/cm ²)	operating Crystal facets Operating temperature (T _c) (K) 2470	Upper pressure limit (Torr) 10 ⁻⁴	the surface Brightness (β) (A/cm ² · sr at 20 kV) 1.8 × 10 ⁴ 1.9 × 10 ⁵		
Field-Emission occ emission car Type of emission Thermionic	on cathodes (best curs in "lobes" bec n be unstable. Type of cathode Tungsten Tantalum	Emission (A/cm ²)	Operating temperature (T _c) (K) 2470 2700 2300	Upper pressure limit (Torr) 10 ⁻⁴	the surface Brightness (β) (A/cm ² · sr at 20 kV) 1.8 × 10 ⁴ 1.9 × 10 ⁶ 1.6 × 10 ⁴		
Field-Emission occ emission car Type of emission Thermionic Thermionic	on cathodes (best curs in "lobes" bec n be unstable. Type of cathode Tungsten Tantalum Thoriated tungsten	Emission (A/cm ²) 0.6 7.3 0.5 1–3	st expensive): crystal facets operating temperature (T_c) (K) 2470 2700 2300 2000	Upper pressure limit (Torr) 10 ⁻⁴	the surface Brightness (β) (A/cm ³ · sr at 20 kV) 1.8 × 10 ⁴ 1.9 × 10 ⁶ 1.6 × 10 ⁴ 3.75 × 10 ⁶ ↔ 11 × 10 ⁵		
Field-Emission occ emission car Type of emission Thermionic Thermionic Thermionic	on cathodes (best curs in "lobes" bec be unstable. Type of cathode Tungsten Tantalum Thoriated tungsten Oxide coated	Emission (A/cm ²) 0.6 7.3 0.5 1-3 0.5	Operating temperature (T _c) (K) 2470 2300 2000 1050	Upper pressure limit (Torr) 10^{-4} 5×10^{-6} 10^{-6}	the surface Brightness (β) (A/cm ² · sr at 20 kV) 1.8 × 10 ⁴ 1.9 × 10 ⁵ 1.6 × 10 ⁴ 3.75 × 10 ⁴ → 1.1 × 10 ³ 3.4 × 10 ⁴		
Field-Emission emission car emission car Type of emission Thermionic Thermionic Thermionic Thermionic	on cathodes (best curs in "lobes" bed n be unstable. Type of cathode Tungsten Tantalum Thoriated tungsten Oxide coated Barium dispenser	Emission (A/cm ²) 0.6 7.3 0.5 1-3 0.5 0.5 0.5	st expensive): crystal facets <u>Operating</u> temperature (<i>T_c</i>) (<i>K</i>) 2700 2300 2300 1050 1150,1400	present at Upper pressure limit (Torr) 10^{-4} 10^{-5} 5×10^{-6} 10^{-6} 5×10^{-6}	the surface Brightness (β) (A/cm ² · sr at 20 kV) 1.8 × 10 ⁴ 1.9 × 10 ⁵ 1.6 × 10 ⁴ 3.75 × 10 ⁵ → 1.1 × 10 ³ 3.4 × 10 ⁴ 3.3 × 10 ⁶ → 2.2 × 10 ⁵		
Field-Emission occ emission car Type of emission Thermionic Thermionic Thermionic Thermionic Thermionic	on cathodes (best curs in "lobes" bec be unstable. Type of cathode Tungsten Tantalum Thoriated tungsten Oxide coated Barium dispenser Lauthanum beraboride	Emission (A/cm ²) 0.6 7.3 0.5 1-3 0.5 0.5-6 204	st expensive): crystal facets operating temperature (7,) (K) 2470 2300 2300 2000 1050 1150-1400 2100	present at Upper pressure limit (Torr) 10^{-4} 5×10^{-6} 10^{-6}	the surface Brightness (β) (A/cm ² sr at 20 kV) 1.8 × 10 ⁴ 1.9 × 10 ⁵ 1.6 × 10 ⁴ 3.75 × 10 ⁴ \rightarrow 1.1 × 10 ⁵ 3.4 × 10 ⁶ 3.3 × 10 ⁶ \rightarrow 3.2 × 10 ⁵		
Field-Emission occ emission car Type of emission Thermionic Thermionic Thermionic Thermionic Thermionic Thermionic	on cathodes (best curs in "lobes" bec be unstable. Type of cathode Tungsten Tantalum Thoriated tungsten Oxide coated Barium dispenser Lanthanum hexaboride Single-created ungeten	Emission (A/cm ²) 0.6 7.3 0.5 1-3 0.5 0.5 0.5-6 20.4 Up to 10 ⁶	Operating temperature (T _e) (K) 2470 2300 2300 2000 1050 1150-1400 2100 Poom	Upper pressure limit (Torr) 10 ⁻⁴ 10 ⁻⁵ 5 × 10 ⁻⁶ 10 ⁻⁶ 10 ⁻⁶	the surface Brightness (β) (A/cm ³ · sr at 20 kV) 1.8 × 10 ⁴ 1.9 × 10 ⁶ 1.6 × 10 ⁴ 3.75 × 10 ⁴ → 1.1 × 10 ⁵ 3.4 × 10 ⁶ 3.3 × 10 ⁴ → 3.2 × 10 ⁵ 9.5 × 10 ⁵		
Field-Emission occe emission car Type of emission Thermionic Thermionic Thermionic Thermionic Thermionic Field Field	on cathodes (best curs in "lobes" bec n be unstable. Type of cathode Tungsten Tantalum Thoriated tungsten Oxide coated Barium dispenser Lanthanum hexaboride Single-crystal tungsten Ziromated tungsten	Emission (A/cm ²) 0.5 0.5 0.5-6 20.4 Up to 10 ⁶	st expensive): crystal facets Operating temperature (7,) (K) 2470 2300 2000 1050 1150-1400 2100 Room Room	Upper pressure limit (Torr) 10 ⁻⁴ 10 ⁻⁶ 10 ⁻⁶ 10 ⁻⁶ 10 ⁻⁶ 10 ⁻⁶	the surface Brightness (β) (A/cm ² · sr at 20 kV) 1.8 × 10 ⁴ 1.9 × 10 ⁵ 1.6 × 10 ⁴ 3.75 × 10 ⁴ → 1.1 × 10 ³ 3.4 × 10 ⁴ 3.3 × 10 ⁴ → 3.2 × 10 ⁵ 9.5 × 10 ⁵ 10 ⁸ 10 ⁸		
Field-Emission occe emission car Type of emission Thermionic Thermionic Thermionic Thermionic Thermionic Thermionic Thermionic Thermionic	on cathodes (best curs in "lobes" bec n be unstable. Type of cathode Tungsten Tantalum Thoriated tungsten Oxide coated Barium dispenser Lanthanum hexaboride Single-crystal tungsten Zirconated tungsten Pd	Emission (A/cm ²) 0.6 7.3 0.5 0.5 0.5-6 20.4 Up to 10 ⁶ 2 × 10 ⁻⁵	Crystal facets Crystal facets Crystal facets Coperating temperature (7,) (K) 2470 2300 2300 2000 2000 2000 2100 Room 1400-1800 (1.5 eV) Room	Upper pressure limit (Torr) 10 ⁻⁴ 5 × 10 ⁻⁶ 10 ⁻⁶ 10 ⁻⁶ 10 ⁻⁶ 10 ⁻⁶ 10 ⁻⁶ 10 ⁻⁷	the surface Brightness (β) (A/cm ² · sr at 20 kV) 1.8 × 10 ⁴ 1.9 × 10 ⁵ 1.6 × 10 ⁴ 3.75 × 10 ⁷ \rightarrow 1.1 × 10 ³ 3.4 × 10 ⁴ 3.3 × 10 ⁶ \rightarrow 3.2 × 10 ⁵ 10 ⁸ 10 ¹⁰ 2 × 10 ⁻¹		

Orga	anic E-	Beam Re	esists
Polymer ^a	Tone	Sensitivity (C/cm ²)	Resolution (µm)
PMMA P(GMA-co-EA) PBS COP P(GMA-co-EA) PGMA PCA	Positive Negative Positive Negative Negative Negative Positive	$4 \times 10^{-5} - 8 \times 10^{-5}$ $3 \times 10^{-7} (10 \text{ keV})$ $8 \times 10^{-7} (10 \text{ keV})$ 4×10^{-7} $3 \times 10^{-7} (10 \text{ keV})$ $5 \times 10^{-7} (20 \text{ keV})$ $5 \times 10^{-7} (20 \text{ keV})$	0.1 1.0 0.5 1.0 1.0 1.0 0.5
PMMA: polymethyl m P(GMA-co-EA): poly(PBS: poly(butene-1-s COP: copolymer met PGMA: poly(glycidyl n PCA: copolymer of a	ethacrylate; glycidyl methacrylate ulfone); hyl methacrylate; nethacrylate; cyano ethyl acrylate	e-co-ethyl acrylate; and α-amine ethyl acrylate	

Dose at 100 keV to expose 500-nm- thick layer $ratio$ Deposition (C/cm ³) $ratio = 10^{-10^{-1}}$ $ratio = 10^{-10^{-1}}$ Dissociation of Cl ₂ Diffusion of Na Diffusion of Na Diffusion of Na Diffusion of Na Diffusion of Na Diffusion of Cl ₂ Diffusion of Na Diffusion of Na Diffusion of Cl ₂ Diffusion of Na Diffusion of Cl ₂ Diffusion of Na Diffusion of Na Diffusion of Na Diffusion of Cl ₂ Diffusion of Na Diffusion of Cl ₂ Diffusion of Cl ₂ Diffusion of Na Diffusion of Cl ₂ Diffusion of Al NcCl 1.5 nm >40 Sublimation 1-10 Dissociation of Cl ₂ Diffusion of Al Diffusion of Al Diffusion of K NcCl 1.5 nm >40 Cut thin-film 1 × 10 ⁷ (2000 Å thick)		High-Res. Positive Inorganic Resists							
AF3 (I) BEGINNING OF EXPOSUREPMMA NaCl $8-10 \text{ nm}$ 1.5 nm 45 40 Spinning Sublimation 10^2-10^3 5×10^{-4} Dissociation of Cl2 Diffusion of Na Diffusion of Na Diffusion of Na Diffusion of Li Diffusion of Al Diffusion of Al Diffusion of Al Diffusion of Al Diffusion of Al Diffusion of Li Diffusion of Al Diffusion of Al Diffusion of Al Diffusion of Cl2 Diffusion of KBond breaking Diffusion of Li Diffusion of Al Diffusion of Al Diffusion of K $\sqrt{5^2}$ $5^$		Resist	Minimum linewidth	Typical aspect ratio	Deposition	Dose at 100 keV to expose 500-nm- thick layer (C/cm ²)	Mechanism of exposure		
(a) BEGINNING OF EXPOSURE LiF $1.5 \text{ nm} > 40$ Sublimation $10^{-1}-10^{-2}$ Dissociation of F_2 S0-A grain Diffusion of Li MgF ₂ $1.5 \text{ nm} > 40$ Sublimation $1-10^{-1}$ Dissociation of F_2 S0-A grain $1-10^{-1}$ Dissociation of F_2 S0-A grain $1-10^{-1}$ Dissociation of F_2 Diffusion of Al S0-A grain $1-10^{-1}$ Dissociation of F_2 Diffusion of Al S0-A grain $1-10$ Dissociation of Cl Diffusion of Al Diffusion of Cl Diffusion of Al Diffusion of Cl Diffusion of K Metal- $1.5 \text{ nm} > 40$ Cut thin-film 1×10^7 alumina (2000 Å thick)	Alfg	PMMA NaCl	8–10 nm 1.5 nm	45 >40	Spinning Sublimation 40-Å grain	$\begin{array}{c} 5\times 10^{-4} \\ 10^2 10^3 \end{array}$	Bond breaking Dissociation of Cl ₂ Diffusion of Na		
$\begin{array}{c} \begin{array}{c} & & & & & & & & & & & & & & & & & & &$		LiF MgF ₂	1.5 nm 1.5 nm	>40 >40	Sublimation 50-Å grain Sublimation	$10^{-1} - 10^{-2}$ $1 - 10^{-1}$	Dissociation of F_2 Diffusion of Li Dissociation of F_2		
(b) AFTER SOME IRRADIATION (c) AFTER SOME IRRADIATION F_2 F_2 (c) MORE IRRADIATION F_2	AIC AIF3	AlF ₂	1.5 nm	>40	Amorphous	1–10	Dissociation of F ₂ Diffusion of Al		
alumina slabs (2000 A thick)	F2 (b) AFTER SOME IRRADIATION	KCl Metal–	1.5 nm 1.5 nm	>40 >40	Deposition 50-Å grain Cut thin-film	1-10 1×10^{7}	Dissociation of Cl ₂ Diffusion of K		
Self-development of metal halides by e-beam 27	AF3 F2 (0) MORE IRRADIATION	alumina	/elopment c	f metal ha	slabs	(2000 A thick)	27		

